初二第二次月考语数英物xls2

合集下载

初二年级上学期第二次月考试卷

初二年级上学期第二次月考试卷

图5图7初二年级上学期第二次月考物 理 试 卷(请将答案填写在答题卡上)说明:1.本卷共五大题,22小题,全卷满分100分,考试时间100分钟。

2.考试中写单位时,均要求用字母标注,整卷三次以上未用字母标注,最多可扣1分。

一、填空题(共16分,每空1分)1. 在某些场所安有全自动感应水龙头,如图1甲所示,当李可菲同学把手靠近水龙头附近时,水龙头自动打开放水;当她的手离开时,水龙头自动关闭,这是利用 进行控制的(填:“红外线”或“紫外线”);如图1乙所示的“刻舟求剑”是人人皆知的典故,楚人之所以没有通过“刻舟”而求得剑,是由于他不懂得 的物理知识;2.清晨,明媚的阳光穿过树林,形成了一道道美丽的“光柱”。

“光柱”是由于光的 形成的,正午时分,当一束太阳光垂直入射到水面时发生反射,则反射角为 度。

3.如图2所示,蒙住双眼的文嘉伟能分辨周围同学的声音,这是因为不同的人声音 不同,同时还可以根据声音的 判断周围同学离他的远近(选填“音调”、“响度”或“音色”)。

4.在电影院偷拍是制作盗版电影的惯用方法。

为此,科学家发明了一种反盗版电影的装置,将装置安装在银幕后面,其发出的红外线通过银幕上的小孔射向观众席上的偷拍摄像机,在感光底片上成倒立、的实像,从而形成干扰点。

此装置的使用 (填“不会”或“会”)影响观众的观看。

5. 夏天对着开水杯“吹气”,能使开水变凉,这是因为_____ 吸热,使水温下降。

冬天对着手“哈气”,使手变暖,这是因为水气遇冷___ 放热,使手表面温度升高。

6.王越同学用焦距为10cm 大放大镜去察看地图,地图与放大镜的距离应该 10cm (填“大于”、“等于”或“小于”)。

而当小摄影师王芷晗同学给全班同学照完集体像后,又接着给一个同学照半身像,就应该 (填“增大”或“减小”)照相机镜头和这个同学的距离。

7.如图3所示,是王婷同学到医院检查视力时左眼所看到视力表的情形,这只眼睛存在的视力问题是 ,应利用 镜来矫正。

八年级第二次月考英语试题

八年级第二次月考英语试题

八年级英语检测(考试时间:100分钟, 满分:100分)题号第一部分第二部分ⅠⅡⅢⅣⅠⅡⅢⅣⅠⅡⅢ得分第第一部分听力(20分)Ⅰ.听句子,选择正确图片。

每个句子读一遍。

(5分)( )1.( )2.( )3.( )4.( )5.Ⅱ.听句子,选择正确答语。

每个句子读一遍。

(5分)( )6.A.I am cool. B.I have a cold. C.I drink a lot of tea.( )7.A.Don’t do sports after meals. B.It’s bad.C.I like doing sports.( )8.A.You should stay up late. B.You should wash hands before meals.C.You should have a good rest.( )9.A.Eat bad food. B.Drink sour milk.C.Keep the air clean and fresh.( )10.A.Oh, how terrible! B.That’s wonderful.C.He is a good father.Ⅲ.听对话及问题,选择正确答案。

每组对话及问题读两遍。

(5分)( )11.A.He is sick.B.There is something wrong with his heart.C.He went to bed too late last night.( )12.A.She is walking. B.She’s reading C.She’s doing sports.( )13.A.He likes smoking. B.He likes doing sports.C.He likes Wang Tao.( )14.A.She should not eat anything.B.She should take exercise day and night.C.She should not eat too much and take more exercise.( )15.A.She has an egg and drinks some milk.B.She doesn’t have anything for breakfast.C.She eats too much.Ⅳ第二部分基础知识运用(55分)Ⅰ.单项选择。

八年级第二学期 第二次月考检测数学试卷

八年级第二学期 第二次月考检测数学试卷

一、选择题1.如图所示,等边三角形ABC沿射线BC向右平移到DCE∆的位置,连接AD、BD,则下列结论:(1)AD BC=(2)BD与AC互相平分(3)四边形ACED是菱形(4)BD DE⊥,其中正确的个数是()A.1 B.2 C.3 D.42.如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。

若AB=12,BC=20,则线段EF的长为()A.2 B.3 C.4 D.53.如图,把正方形ABCD沿对边中点所在的直线对折后展开,折痕为,MN再过点B折叠纸片,使点A格在MN上的点F处,折痕为,BE若AB长为2,则EN的长为(()A.233-B.322-C.22D.234.如图,在正方形ABCD中,4AB=,E是对角线AC上的动点,以DE为边作正方形DEFG,H是CD的中点,连接GH,则GH的最小值为()A.2 B.51-C .2D .422-5.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠CBF 为( )A .75°B .60°C .55°D .45°6.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定7.如图,在正方形ABCD 中,E 为BC 上一点,过点E 作EF ∥CD ,交AD 于F ,交对角线BD 于G ,取DG 的中点H ,连结AH ,EH ,FH .下列结论:①∠EFH =45°;②△AHD ≌△EHF ;③∠AEF +∠HAD =45°; ④若BEEC=2,则1113=BEH AHES S .其中结论正确的是( )A .①②③B .①②④C .②③④D .①②③④8.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤9.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .410.如图,一个四边形花坛ABCD ,被两条线段MN , EF 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S 1、S 2、S 3、S 4,若MN ∥AB ∥DC ,EF ∥DA ∥CB ,则有( )A .S 1= S 4B .S 1 + S 4 = S 2 + S 3C .S 1 + S 3 = S 2 + S 4D .S 1·S 4 = S 2·S 3二、填空题11.在平行四边形ABCD 中,30,3,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论: ①可以得到无数个平行四边形EGFH ; ②可以得到无数个矩形EGFH ; ③可以得到无数个菱形EGFH ; ④至少得到一个正方形EGFH . 所有正确结论的序号是__.13.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.14.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.15.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.16.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________17.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =DF =_________.18.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+22.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F . ①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.23.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =; (2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQAM .24.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程: (2)如图4,过点C 作CG ON ⊥,垂足为点G 则90CGB ∠=90GCB CBG ∴∠+∠=又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中, (类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .25.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.26.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DCAE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O .(1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.27.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4). (1)求G 点坐标 (2)求直线EF 解析式(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由28.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l 1:y=443x -+与直线l 2:y=2x+4相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为1.求点P 的坐标.29.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上. (1)若n =1,AF ⊥DE . ①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CFBF的值是_____________(结果用含n 的式子表示).30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长(用含t 的代数式表示); (2)当四边形ABQP 是平行四边形时,求t 的值; (3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;再结合①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.【详解】解:如图:∵△ABC,△DCE是等边三角形∴∠ACB=∠DCE=60°,AC=CD∴∠ACD=180°-∠ACB-∠DCE=60°∴△ACD是等边三角形∴AD=AC=BC,故①正确;由①可得AD=BC∵AB=CD∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE故四边形ACED是菱形,即③正确∵四边形ABCD是平行四边形,BA=BC∴.四边形ABCD是菱形∴AC⊥BD,AC//DE∴∠BDE=∠COD=90°∴BD⊥DE,故④正确综上可得①②③④正确,共4个.故选:D【点睛】此题主要考查了菱形的判定与性质,以及平移的性质,关键是掌握菱形四边相等,对角线互相垂直.2.C解析:C【解析】【分析】由直角三角形的性质可求得DF=BD=12AB ,由角平分线的定义可证得DE ∥BC ,利用三角形中位线定理可求得DE 的长,则可求得EF 的长.【详解】 解:∵AF ⊥BF ,D 为AB 的中点,∴DF=DB=12AB=6, ∴∠DBF=∠DFB ,∵BF 平分∠ABC ,∴∠DBF=∠CBF ,∴∠DFB=∠CBF ,∴DE ∥BC , ∴DE 为△ABC 的中位线,∴DE=12BC=10, ∴EF=DE−DF=10−6=4,故选:C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF 为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC ,即DE 为△ABC 的中位线,从而计算出DE ,继而求出EF.3.A解析:A【分析】根据翻转变换的性质求出BM 、BF ,根据勾股定理计算求出FM 的值;再在Rt △NEF 中,运用勾股定理列方程求解,即可得到EN 的长.【详解】∵四边形ABCD 为正方形,AB=2,过点B 折叠纸片,使点A 落在MN 上的点F 处,∴FB=AB=2,BM=12BC=1,BF=BA=2,∠BMF=90°, 则在Rt △BMF 中,FM ==∴2FN MN FM =-=-设AE=FE=x ,则EN=1x -,∵Rt △EFN 中,222NE NF EF +=,∴()()222123x x -+-=,解得:423x =-,∴EN=1233x -=-.故选:A .【点睛】本题考查了翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4.A解析:A【分析】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,再根据正方形及勾股定理求出OE ,即可得到GH 的长.【详解】取AD 中点O ,连接OE ,得到△ODE ≌△HDG ,得到OE=HG,当OE ⊥AC 时,OE 有最小值,此时△AOE 是等腰直角三角形,OE=AE ,∵AD=AB=4,∴AO=12AB=2 在Rt △AOE 中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=2∴GH 的最小值为2故选A .【点睛】本题考查了正方形的性质,根据题意确定E 点的位置是解题关键.5.A解析:A【分析】根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC ,进而得出∠CBF .【详解】解:∵四边形ABCD 是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.∴∠BFA=180°-60°=120°,∴∠CBF=180°-∠BCA-∠BFC=180°-45°-60=75°,故选:A.【点睛】本题主要是考查正方形的性质和等边三角形的性质,解本题的关键是求出∠ABE=15°.6.B解析:B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB =AI ,AC =AG ,∠G =∠ACB =90°∴△ABC ≌△AIG (SAS )∴S △ABC =S △AIG =S 2,即S 1=S 2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.7.A解析:A【分析】①根据正方形的性质证明∠ADB =45°,进而得△DFG 为等腰直角三角形,根据等腰三角形的三线合一性质得∠EFH =12∠EFD =45°,故①正确; ②根据矩形性质得AF =EB ,∠BEF =90°,再证明△AFH ≌△EGH 得EH =AH ,进而证明△EHF ≌△AHD ,故②正确;③由△EHF ≌△AHD 得∠EHF =∠AHD ,怀AH =EH 得∠AEF +∠HEF =45°,进而得∠AEF +∠HAD =45°,故③正确;④如图,过点H 作MN ⊥AD 于点M ,与BC 交于点N ,设EC =FD =FG =x ,则BE =AF =EG =2x ,BC =DC =AB =AD =3x ,HM =12x ,AM =52x ,HN =52x ,由勾股定理得AH 2,再由三角形的面积公式得BEH AHE S S,便可判断④的正误.【详解】 证明:①在正方形ABCD 中,∠ADC =∠C =90°,∠ADB =45°,∵EF∥CD,∴∠EFD=90°,∴四边形EFDC是矩形.在Rt△FDG中,∠FDG=45°,∴FD=FG,∵H是DG中点,∴∠EFH=12∠EFD=45°故①正确;②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∵∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH(SAS),∴EH=AH,∵EF=AD,FH=DH,∴△EHF≌△AHD(SSS),故②正确;③∵△EHF≌△AHD,∴∠EHF=∠AHD,∴∠AHE=∠DHF=90°,∵AH=EH,∴∠AEH=45°,即∠AEF+∠HEF=45°,∵∠HEF=∠HAD,∴∠AEF+∠HAD=45°,故③正确;④如图,过点H作MN⊥AD于点M,与BC交于点N,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,HM =12x,AM=52x,HN=52x,∴22225113222AH x x x⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭=,∴211021132BEHAHEBE HNS=S AH⋅=,故④错误;故选:A.【点睛】本题主要考查正方形的性质、矩形的性质、等腰三角形的性质及勾股定理,这是一道几何综合型题,关键是根据正方形的性质得到线段的等量关系,然后利用矩形、等腰三角形的性质进行求解即可.8.B解析:B【分析】①连接CF,证明△ADF≌△CEF,得到△EDF是等腰直角三角形;②根据中点的性质和直角三角形的性质得到四边形CDFE是菱形,利用正方形的判定定理进行判断;③当DE最小时,DF也最小,利用垂线段的性质求出DF的最小值,进行计算即可;④根据△ADF≌△CEF,得到S四边形CEFD=S△AFC;⑤由③的结论进行计算即可.【详解】①连接CF,∵△ABC是等腰直角三角形,且F是AB边上的中点,∴∠FCB=∠A=∠B =45°,CF=AF=FB,∵AD=CE,∴△ADF≌△CEF,∴EF=DF,∠AFD=∠CFE,∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,①正确;②当D、E分别为AC、BC中点,即DF、EF分别为Rt△AFC和Rt△BFC斜边上的中线,∴CD=DF=12AC,FE=EC=12BC,∴CD=DF=FE=EC,四边形CDFE是菱形,又∠C=90°,∴四边形CDFE是正方形,②错误;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小,当DF⊥AC时,DE最小,此时EF=DF=12BC=4.∴==④∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC,∴四边形CDFE的面积保持不变,④正确;⑤由③可知当DE最小时,DF也最小,DF的最小值是4,则DE的最小值为当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8,⑤正确;综上,正确的是:①④⑤,故选:B.【点睛】本题考查了正方形的判定、等腰直角三角形的性质、全等三角形的判定和性质,掌握正方形的判定定理、全等三角形的判定定理和性质定理、理解点到直线的距离的概念是解题的关键.9.B解析:B【分析】关键结合图形证明△CHG≌△EGD,即可逐项判断求解【详解】解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴四边形DBCE是平行四边形,∠DFB=∠GBC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB ,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE ,∵DE=DC ,∴∠DEG=∠DCE ,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF ),=180°-(∠BGD+∠BGC ),=180°-(180°-∠DCG )÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE ,∴△CHG ≌△EGD ,∴∠EDG=∠CGB=∠CBF ,∴∠GDH=90°-∠EDG ,∠GHD=∠BHC=90°-∠CGB ,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF 共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.10.D解析:D【分析】由于在四边形中,MN ∥AB ∥DC ,EF ∥DA ∥CB ,因此MN 、EF 把一个平行四边形分割成四个小平行四边形.可设MN 到DC 的距离为h 1,MN 到AB 的距离为h 2,根据AB=CD ,DE=AF ,EC=FB 及平行四边形的面积公式即可得出答案.【详解】解:∵MN ∥AB ∥DC ,EF ∥DA ∥CB ,∴四边形ABCD ,四边形ADEF ,四边形BCEF ,红、紫、黄、白四边形都为平行四边形, ∴AB=CD ,DE=AF ,EC=BF .设MN 到DC 的距离为h 1,MN 到AB 的距离为h 2,则S 1=DE •h 1,S 2=AF •h 2,S 3=EC •h 1,S 4=FB •h 2,因为DE ,h 1,FB ,h 2的关系不确定,所以S 1与S 4的关系无法确定,故A 错误; S 1+S 4=DE •h 1+FB •h 2=AF •h 1+FB •h 2,S 2+S 3=AF •h 2+EC •h 1=AF •h 2+FB •h 1,故B 错误; S 1+S 3=CD •h 1,S 2+S 4=AB •h 2,又AB=CD ,而h 1不一定与h 2相等,故C 错误;S 1·S 4=DE •h1•FB •h 2=AF •h 1•FB •h 2,S 2·S 3=AF •h 2•EC •h 1=AF •h 2•FB •h 1,所以S 1·S 4=S 2·S 3,故D 正确;故选:D .【点睛】本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a •h .其中a 可以是平行四边形的任何一边,h 必须是a 边与其对边的距离,即对应的高.二、填空题11.【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,AD =132DE AD ∴==,332AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-=,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=,如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ==⨯=,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-,30A ∠=︒,3BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.12.①③④【分析】由“AAS ”可证△AOE ≌△COF ,△AHO ≌△CGO ,可得OE =OF ,HO =GO ,可证四边形EGFH 是平行四边形,由EF ⊥GH ,可得四边形EGFH 是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA ”可证△BOG ≌△COF ,可得OG =OF ,可证四边形EGFH 是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD 是菱形,∴AO =CO ,AD ∥BC ,AB ∥CD ,∴∠BAO =∠DCO ,∠AEO =∠CFO ,∴△AOE ≌△COF (AAS ),∴OE =OF ,∵线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,∴GH 过点O ,GH ⊥EF ,∵AD ∥BC ,∴∠DAO =∠BCO ,∠AHO =∠CGO ,∴△AHO ≌△CGO (AAS ),∴HO =GO ,∴四边形EGFH 是平行四边形,∵EF ⊥GH ,∴四边形EGFH 是菱形,∵点E 是AB 上的一个动点,∴随着点E 的移动可以得到无数个平行四边形EGFH ,随着点E 的移动可以得到无数个菱形EGFH ,故①③正确;若四边形ABCD 是正方形,∴∠BOC =90°,∠GBO =∠FCO =45°,OB =OC ;∵EF ⊥GH ,∴∠GOF =90°;∠BOG +∠BOF =∠COF +∠BOF =90°,∴∠BOG =∠COF ;在△BOG 和△COF 中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.13.①②③④【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,可得出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE2=,从而得到AE=AD,然后利用“角角边”证明△ABE 和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【详解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE2=.∵AD2=,∴AE=AD.在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.14.15.5【分析】先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得1 4.52EF BC ==,最后根据三角形的周长公式即可得. 【详解】由折叠的性质得:,AE DE EAD EDA =∠=∠AD 是BC 边上的高,即AD BC ⊥90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒B BDE ∴∠=∠BE DE ∴=1112622DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ====⨯= 又,AE BE AF CF ==∴点E 是AB 的中点,点F 是AC 的中点EF ∴是ABC 的中位线119 4.522EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=故答案为:15.5.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.15.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.16.【分析】由正方形ABCD 的边长为4,得出AB=BC=4,∠B=90°,得出AC=P 与D 重合时,PC=ED=PA ,即G 与A 重合,则EG 的中点为D ,即F 与D 重合,当点P 从D 点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG 的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=12AG=22.【详解】解:连接FD∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=2,当P与D重合时,PC=ED=PA,即G与A重合,∴EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,∴DF是△EAG的中位线,∴DF∥AG,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=12AG=22故答案为:2【点睛】本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.17.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,22BC=,∴BE=122BC=,DF=2DE,在Rt△EMB中,EM2+BM2=BE2且EM=BM∴EM=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,18.8或3【分析】根据AE和DF是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE和DF相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF=BC+EF∴2AB=11+5解得:AB=8;②当AE和DF不相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF+EF =BC∴2AB+5=11解得:AB=3综上所述:AB=8或3故答案为:8或3.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.19.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB22+10,86AC BC+22∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.202【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴22112FG GC FC=+=+=2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题21.(1)证明见解析;(2)BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论.【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH,∴12AE DG CG CD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴2422AB CD AD ,∴AE =∴BE AB BE =+=(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.22.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则3,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,。

人教版八年级第二学期 第二次月考检测数学试卷含答案

人教版八年级第二学期 第二次月考检测数学试卷含答案

一、选择题1.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上的一点,且AB=AE ,过点A 作AF ⊥BE ,垂足为F ,交BD 于点G ,点H 在AD 上,且EH ∥AF.若正方形ABCD 的边长为2,下列结论:①OE=OG ;②EH=BE ;③AH=222-,其中正确的有( )A .0个B .1个C .2个D .3个2.如图,已知△ABC 中,∠ACB =90°,AC =BC =2,将直角边AC 绕A 点逆时针旋转至AC ′,连接BC ′,E 为BC ′的中点,连接CE ,则CE 的最大值为( ).A .5B .21+C .21+D .51+ 3.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m4.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43-5.如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A ,又顺次连接正方形1111D C B A 四边中点得到第二个正方形2222A B C D ,……,以此类推,则第六个正方形6666A B C D 的面积是( )A .164B .116C .132D .186.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为( )A .32B .2C .52D .3 7.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .22B .222C .252D 22+8.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .4 9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.510.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.13.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.14.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.15.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.16.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________17.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.18.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,5HG =,求DE 的长.22.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.23.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+24.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.25.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.26.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.27.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.28.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.29.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒2246B BP PD +=时,求PD 之长.∆是边长为3的等边三角形,点D是射线BC上的一个动点(点D不与30.如图,ABC∆是以AD为边的等边三角形,过点E作BC的平行线,交直线点B、C重合),ADEAC于点F,连接BE.(1)判断四边形BCFE的形状,并说明理由;(2)当DE AB⊥时,求四边形BCFE的周长;(3)四边形BCFE能否是菱形?若可为菱形,请求出BD的长,若不可能为菱形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正方形的性质及全等三角形的判定与性质即可分别求证判断.【详解】在正方形ABCD中,AO=BO,∠AOG=∠BOE,AC⊥BD∵AF⊥BE,∴∠EAF+∠BEO=∠BEO+∠OBE=90°,∴∠OAG=∠OBE,∴△OAG≌△OBE,故OE=OG,①正确;∵AB=AE,∴∠ABE=∠AEB,∵EH∥AF∴HE⊥BE,∴∠AEF+∠AEH=∠ABE+∠CBE,∴∠AEH=∠CBE又∵AE=AB=CB,∠HAE=∠ECB=45°,∴△AEH≌△CBE,∴EH=BE,②正确;∵△AEH≌△22+=222∴AH=CE=AC-AE=22-2,③正确. 故选D【点睛】此题主要考查正方形的性质与线段的证明,解题的关键是熟知正方形的性质定理及全等三角形的判定与性质.2.B解析:B【分析】取AB 的中点M ,连接CM ,EM ,当CE =CM +EM 时,CE 的值最大,根据旋转的性质得到AC ′=AC =2,由三角形的中位线的性质得到EM 12=AC ′=1,根据勾股定理得到AB =22,即可得到结论.【详解】取AB 的中点M ,连接CM ,EM ,∴当CE =CM +EM 时,CE 的值最大.∵将直角边AC 绕A 点逆时针旋转至AC ′,∴AC ′=AC =2.∵E 为BC ′的中点,∴EM 12=AC ′=1. ∵∠ACB =90°,AC =BC =2,∴AB =22,∴CM 12=AB 2=,∴CE =CM +EM 21=+. 故选B .【点睛】本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.3.C解析:C【解析】设正方形O 3KJP 的边长为a ,根据正方形的性质知:O 3O 4=22a , 正方形O 2IHJ 的边长为2a ,O 2O 32a ,正方形O 1GFH 的边长为4a ,O 1O 22a ,正方形OCDF 的边长为8a ,OO 1=42a , ∵AO=2OO 1=82am ,∴22a+2a+22a+42a+82a=312, 解得:a=2m ,∴FD=8a=16m , ∴长方形花坛ABCD 的周长是2×(2FD+CD )=6FD=96m ,故选C .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线与边长的关系,正方形的中心到顶点的距离等于到边的距离的2倍,熟记性质是解题的关键.4.C解析:C【分析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .首先证明∠ACD =90°,求出AC ,AN ,利用三角形中位线定理,可知EF =12AG ,求出AG 的最大值以及最小值即可解决问题.【详解】解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形,∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°,∴AC =43在Rt △ACN 中,∵AC =3ACN =∠DAC =30°,∴AN =12AC =3∵AE =EH ,GF =FH ,∴EF =12AG ,∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为∴EF 的最大值为∴EF 故选:C【点睛】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD =90°,属于中考选择题中的压轴题.5.A解析:A【分析】计算前三个正方形的面积从而得出一般规律求解.【详解】顺次连接正方形ABCD 四边的中点得到第一个正方形1111D C B A则正方形1111D C B A 的面积为11122⨯= 正方形2222A B C D 的面积为111224⨯= 正方形3333A B C D 的面积为11112228⨯⨯= 正方形n n n n A B C D 的面积为11()22n n= 根据规律可得,第六个正方形6666A B C D 的面积为66111()2264== 【点睛】 本题考查了特殊正方形中的面积计算,解题的关键在于找出规律,根据规律求解.6.C解析:C【分析】证明△BNA ≌△BNE ,得到BA=BE ,即△BAE 是等腰三角形,同理△CAD 是等腰三角形,根据题意求出DE ,根据三角形中位线定理计算即可.【详解】解:∵BN 平分∠ABC ,BN ⊥AE ,∴∠NBA=∠NBE ,∠BNA=∠BNE ,在△BNA 和△BNE 中,ABN EBN BN BNANB ENB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△BNA ≌△BNE ,∴BA=BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),∴MN 是△ADE 的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=12DE=52. 故选C .【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7.B解析:B【分析】取DC 的中点E ,连接OE 、DE 、OD ,根据三角形的任意两边之和大于第三边可知当O 、E 、D 三点共线时,点D 到点O 的距离最大,再根据勾股定理求出DE 的长,根据直角三角形斜边上的中线等于斜边的一半求出OE 的长,两者相加即可得解.【详解】取AB 中点E ,连接OE 、DE 、OD ,90MON ∠=︒,122OE AB ∴==. 在Rt DAE ∆中,利用勾股定理可得22DE =.在ODE ∆中,根据三角形三边关系可知DE OE OD +>,∴当O 、E 、D 三点共线时,OD 最大为222OE DE +=+.故选B .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O 的距离最大是解题的关键.8.B解析:B【分析】关键结合图形证明△CHG≌△EGD,即可逐项判断求解【详解】解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴四边形DBCE是平行四边形,∠DFB=∠GBC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF),=180°-(∠BGD+∠BGC),=180°-(180°-∠DCG)÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°-∠EDG,∠GHD=∠BHC=90°-∠CGB,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF 共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.9.B解析:B【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG 2+BG 2=AB 2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,GH===故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.10.D解析:D【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.【详解】∵BF⊥AC∴∠BMC=90°DE BF又∵//∴∠EDO=∠MBO,DE⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD为矩形∴AD=BC,AD∥BC,DC∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM在△AND与△CMB∵90DNA BMC AND CBM AD BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND ≌△CMB(AAS)∴AN=CM ,DN=BM ,故①正确.∵AB ∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .【点睛】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.二、填空题11.25 【详解】由于点B 与点D 关于AC 对称,所以如果连接DE ,交AC 于点P ,那PE+PB 的值最小.在Rt △CDE 中,由勾股定理先计算出DE 的长度,即为PE+PB 的最小值.连接DE ,交AC 于点P ,连接BD .∵点B 与点D 关于AC 对称,∴DE 的长即为PE+PB 的最小值,∵AB=4,E 是BC 的中点,∴CE=2,在Rt △CDE 中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】解:如图:∵正方形ABCD 的对角线相交于点O ,∴△AEO 与△CFO 关于O 点成中心对称,∴△AEO ≌CFO ,∴S △AEO =S △CFO ,∴S △AOD =S △DEO +S △CFO ,∵对角线长为1cm ,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2. 故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.13.①③④【分析】由矩形的性质可得AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,由角平分线的性质和余角的性质可得∠F=∠FAD=45°,可得AD=DF=BC ,可判断①;通过证明△DCG ≌△BEG ,可得∠BGE=∠DGC ,BG=DG ,即可判断②③;过点G 作GH ⊥CD 于H ,设AD=4x=DF ,AB=3x ,由勾股定理可求BD=5x ,由等腰直角三角形的性质可得HG=CH=FH=12x ,DG=GB=2x ,由三角形面积公式可求解,可判断④. 【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴∠F=∠FAD ,∴AD=DF ,∴BC=DF ,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD ,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF 是等腰直角三角形,∵点G 为EF 的中点,∴CG=EG ,∠FCG=45°,CG ⊥AG ,∴∠BEG=∠DCG=135°,在△DCG 和△BEG 中, ===BE CD BEG DCG CG EG ⎧⎪∠∠⎨⎪⎩,∴△DCG≌△BEG(SAS).∴∠BGE=∠DGC,BG=DG,∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°,∵∠CGF=90°,∴∠DGF<135°,故②错误;∵∠BGE=∠DGC,∴∠BGE+∠DGA=∠DGC+∠DGA,∴∠CGA=∠DGB=90°,∴BG⊥DG,故③正确;过点G作GH⊥CD于H,∵34AB AD=,∴设AD=4x=DF,AB=3x,∴CF=CE=x,22AB AD x+,∵△CFG,△GBD是等腰直角三角形,∴HG=CH=FH=12x,DG=GB=522x,∴S△DGF=12×DF×HG=x2,S△BDG=12DG×GB=254x2,∴254BDG FDGS S=,故④正确;故答案为:①③④.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.14102【分析】连结AC,取OC中点M,连结 MB,MG,则MB,MG为定长,利用两点之间线段最短解决问题即可.【详解】连接AC,交EF于O,∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵AE=CF,∴△AEO≌△CFO(ASA),∴OA=OC,∴O是正方形的中心,∵AB=BC=4,∴AC=2OC=2,取OC中点M,连结 MB,MG,过点M作MH⊥BC于H,∵MC=12OC2,∴MH=CH=1,∴BH=4−1=3,由勾股定理可得MB223110在Rt△GOC中,M是OC的中点,则MG=12OC2∵BG≥BM−MG102,当B,M,G三点共线时,BG102,102.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E,F运动到AD,BC的中点时,MG最小是解决本题的关键.15.①③④【分析】由“AAS”可证△AOE≌△COF,△AHO≌△CGO,可得OE=OF,HO=GO,可证四边形EGFH 是平行四边形,由EF⊥GH,可得四边形EGFH是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA”可证△BOG≌△COF,可得OG=OF,可证四边形EGFH是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD是菱形,∴AO=CO,AD∥BC,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OE=OF,∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,∵AD∥BC,∴∠DAO=∠BCO,∠AHO=∠CGO,∴△AHO≌△CGO(AAS),∴HO=GO,∴四边形EGFH是平行四边形,∵EF⊥GH,∴四边形EGFH是菱形,∵点E是AB上的一个动点,∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°,∴∠BOG=∠COF;在△BOG和△COF中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.16.①②④⑤【分析】根据∠B=90°,AB=BE,△ABE绕点A逆时针旋转45°,得到△AHD,可得△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,可证AD//BC,根据DC⊥BC,可得∠HDE=∠CDE,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC,∴∠ADE=∠DEC,∴∠AED=∠DEC,又∵DC⊥BC,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE,即:DE平分∠HDC,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE平分∠HDC,∴∠HDO=12∠HDC=12×45°=22.5°,∵∠BAE=45°,AB=AH,∴∠OHE=∠AHB=12(180°−∠BAE)=12×(180°−45°)=67.5°,∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,在△AED中,AE=AD,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°,∴∠OHE=∠HEO=67.5°,∴OE=OH,∴OD=OE,所以②正确;在△DHE和△DCE中,DHE DCEHDE CDEDE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE≅ΔDCE(AAS),∴DH=DC,∠HDE=∠CDE=12×45°=22.5°,∵OD=OH,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③不正确;如图,过H作HJ⊥BC于J,并延长HJ交AD于点I,∵△ABE是等腰直角三角形,JH⊥JE,∴JH=JE ,又∵J 是BC 的中点,H 是BF 的中点,∴2JH=CF ,2JC=BC ,JC=JE+CE ,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC ,即有:BC−CF=2CE ,所以④正确;∵AD//BC ,∴IJ ⊥AD ,又∵△AHD 是等腰直角三角形,∴I 是AD 的中点,∵四边形ABCD 是矩形,HJ ⊥BC ,∴J 是BC 的中点,∴H 是BF 的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键.17.【详解】解析:∵在正方形ABCD 中,AC=∴AB=AD=BC=DC=6,∠EAD=45°设EF 与AD 交点为O ,O 是AD 的中点,∴AO=3以AD 为对角线的所有▱AEDF 中,当EF ⊥AC 时,EF 最小,即△AOE 是直角三角形,∵∠AEO=90°,∠EAD=45°,OE=2OA=2,∴EF=2OE=18.663【分析】通过四边形ABCD 是矩形以及CE CB BE ==,得到△FEM 是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM ,NK ,KE 的值,进而得到NE 的值,再利用30°直角三角形的性质及勾股定理得到BN ,BE 即可.【详解】解:如图,设NE 交AD 于点K ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠MFE=∠FCB ,∠FME=∠EBC∵CE CB BE ==,∴△BCE 为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC ,∴∠FEM=∠MFE=∠FME=60°,∴△FEM 是等边三角形,FM=FE=EM=2,∵EN ⊥BE ,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt △KME 中,KE=2223KM EM -=,∴NE=NK+KE=6+23,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663BN NE -=+,∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.19.【分析】作AB 的中点E ,连接EM 、CE ,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE 和EM 的长,然后确定CM 的范围.【详解】解:作AB 的中点M ,连接EM 、CM .在Rt △ABC 中,AB 22AC BC +2286+10,∵M 是直角△ABC 斜边AB 上的中点,∴CM =12AB =5. ∵E 是BD 的中点,M 是AB 的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .三、解答题21.(1)①证明见解析;②证明见解析;(2)103DE =. 【分析】(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;②由①得DM=DE ,根据勾股定理可得2,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.【详解】(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒∴四边形DGHM 为平行四边形,∴DM=GH ,GD HM =,∵90GOD ∠=︒,∴90EDM EOH ∠=∠=︒,∴290EDC ∠+∠=︒,∵90ADC ∠=︒,∴190EDC ∠+∠=︒,∴12∠=∠,在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM ∆∆≌,∴DE DM =,∴DE GH =.②在DEM ∆中,∠EDM=90°,∴222DE DM EM +=,∵DE DM =,∴222DE EM =, ∴2EM DE =,在EHM ∆中,HM EH EM +>,∵GD HM =, ∴2GD EH GH +≥.(2)如图(2),过点D 作DN//GH 交BC 于点N ,则四边形GHND 为平行四边形, ∴DN HG =,GD HN =,∵90C ∠=︒,4CD AB ==,25HG DN == ∴222CN DN DC =-=,∴422BN BC CN =-=-=,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,在ADM ∆和CDN ∆中90C MAD CDN ADM DC AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADM CDN ∆∆≌,∴AM NC =,DM DN =,∵45GOD EOH ∠=∠=︒,∴45EDN ∠=︒,∴45ADE CDN ∠+∠=︒,∴45ADE ADN MDE ∠+∠=︒=∠,在MDE ∆和NDE ∆中MD ND MDE EDN DE DE =⎧⎪∠=∠⎨⎪=⎩,∴MDE NDE ∆∆≌,∴EM EN =,即AE AM AE CN EN +=+=,设AE x =,则BE=4-x ,在Rt BEN ∆中,2222(2)x x +=+, 解得:43x =, ∴2222441043DE AD AE ⎛⎫=+=+= ⎪⎝⎭.【点睛】本题考查正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角形的三边关系及勾股定理,熟练掌握相关性质及判定定理,并正确作出辅助线是解题关键.22.(1)(32,32);(2)存在,点D 的坐标为(0,3)或(231)或(0,-1);(3)OM=32或212 【分析】(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=1322OB =∴2232OB BD -=∴点B 332) 332); (2)在图2的基础上继续将直角三角板绕点O 顺时针60︒,此时点A 落在y 轴上,点B 落在x 轴上∴点A 的坐标为(0,1),点B 30)∵△ABC 为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C 32)设点D 的坐标为(a ,b )如图所示,若四边形ABCD 为菱形,连接BD ,与AC 交于点O∴点O既是AC的中点,也是BD的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:3ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O∴点O既是AD的中点,也是BC的中点∴0332212022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:231ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(23,1);当四边形ADBC为菱形时,连接CD,与AB交于点O∴点O既是AB的中点,也是CD的中点∴03322 10222ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:1ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=32∴BP=2232OB OP-=当∠OMB=90°时,如下图所示,连接BM∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO+∠OBM=120°∵点F为OB的中点。

2018-2019学年度八年级第二次月考分数册

2018-2019学年度八年级第二次月考分数册

84 55 51 64 57 37 63 69 67 44 54 61 64 63 32 74 27 54 31 44 53 55 34 39 59 39 58 28
28 30 23 34 37 28 35 25 29 25 32 26 26 25 21 30 25 23 17 31 28 27 30 24 20 17 28 17
30 27 21 14 27 12 9 22 17 9 27 6 14 26 28 28 26 19 18 14 23 10 8 20 15 15
6 20 17 0 14 17 13 5 15 17 22 0 23 11 12 9 9 10 14 11 8 11 16 8 4 19 8 13
16 19 22 21 21 17 8 18 18 26 25 12 22 21 22 31 26 21 17 22 16 11 0 24 17 16
语文
2018--2019学年度上学期期中考试考试 数学 英语 政治 历史 地理 生物
87 83 67 87 71 67 93 72 72 56 80 76 84 82 55 63 50 60 56 74 66 75 64 64 65 73 72 41
26 18 40 33 21 40 40 37 44 24 36 26 19 31 40 63 9 21 18 16 41 42 35 80 6 15 39 42
姓名
高思齐 苏婷婷 祝佳敏 王佳琦 李欢 葛梦迪 李苏苏 王宣 张梦瑶 李朝辉 李雪影 张婷婷 陈梦可 李坤曼 马志豪 张瑞婷 陈晚月 李蕊 陈奥雪 施乐迪 宋浩然 李科文 张金功 张世星 宋梦宇 丁梦丽 李雪寒 陈世豪 李傲 高庆才 李玉博 王冰艳 王志文 于婷 李文飞 李资权 李豪杰 谢梦豪 廖宾贺 郭梦涵 宋真真 施慧丹 李一帆 周梦娇

人教八年级下学期第二次月考(普通班).docx

人教八年级下学期第二次月考(普通班).docx

初中数学试卷 马鸣风萧萧2016-2017学年八年级下学期第二次月考(普通班)出卷人: 审核人:一、选择题(每小题4分,共40分)1.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间2.下列二次根式中是最简二次根式的是( ) A. B. C. D.3.△ABC 的三边长分别为a 、b 、c ,下列条件:① ∠A =∠B -∠C ;② ∠A ∶∠B ∶∠C =3∶4∶5;③ a 2=(b +c )(b -c );④ a ∶b ∶c =5∶12∶13,其中能判断△ABC 是直角三角形的个数有( )A. 1个B. 2个C. 3个D. 4个4.下列性质中,菱形具有而平行四边形不具有的性质是( )A. 对边平行且相等B.对角线互相垂直C.对角线相等D. 对角互补5.如图,Rt △ABC 中,∠ABC=90°,点D 为斜边AC 的中点,BD=6cm ,则AC 的长为( )A .3B .6C .63D .126.在直线上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 4-S 2=( )A .1B .2C .3D .47.一个直角三角形的两直角边长分别为3和4,那么它斜边上的高线长为( )A 、5B 、2.5C 、2.4D 、28.如图Rt △ABC 中,∠B =90。

,AB =3cm,AC =5cm,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于( )cm 。

A 、5B 、6C 、7D 、89.顺次连接矩形四边的中点,所得的新四边形一定是( )A 、菱形B 、矩形C 、正方形D 、等腰梯形10.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A. 2.4B. 4C. 4.8D. 5二、填空题(每题4分,共24分)第8题 第10题11. 矩形的两条对角线的夹角为,矩形的宽为4cm ,则对角线长为_______cm . 12.若┃x -12┃+┃z -13┃+y 2-10y +25=0,则x 、y 、z为三边的三角形是 三角形。

八年级第一学期第二次月考

八年级第一学期第二次月考

90 91 99 94 92 88 95 98 89 91 91 85 90 85 88 91 83 92 96 86 82 87 91 94 87 88 85 97 87 86 88 86 82 94 89 95 98 91 85 85 81 83 94 88 89 92 85 85 87 93
89 84 96 86 90 106 101 80 91 97 107 89 96 99 86 98 100 98 106 84 97 108 93 94 108 91 86 110 101 96 97 91 101 101 86 100 81 97 101 100 90 100 105 90 88 99 91 80 94 110
班级 13--5 13--7 13--7 13--2 13--3 13--5 13--6 13--6 13--7 13--7 13--8 13--1 13--4 13--8 13--5 13--2 13--8 13--1 13--1 13--5 13--1 13--6 13--8 13--5 13--3 13--3 13--7 13--4 13--8 13--8 13--4 13--1 13--5 13--7 13--1 13--5 13--4 13--5 13--8 13--6 13--8 13--5 13--4 13--1 13--2 13--5 13--8 13--6 13--1
物理 45 44 46 47 42 44 43 38 39 44 45 46 43 42 42 46 43 46 44 44 45 44 45 42 40 42 41 39 44 44 39 41 43 36 41 39 38 37 40 40 42 40 36 41 46 40 42 40 40
13--1 13--7 13--1 13--6 13--5 13--6 13--2 13--2 13--6 13--7 13--4 13--6 13--2 13--7 13--6 13--8 13--4 13--3 13--2 13--2 13--1 13--5 13--2 13--2 13--6 13--5 13--1 13--2 13--1 13--8 13--3 13--3 13--1 13--2 13--3 13--6 13--6 13--5 13--8 13--2 13--3 13--6 13--3 13--2 13--1 13--7 13--4 13--6 13--1 13--2

八年级下学期第二次月考试卷

八年级下学期第二次月考试卷

八年级下学期第二次月考试卷一、单项选择题(本大题共10小题,每小题2分,共20分)1.酒精测试仪可检测驾驶员是否酒后驾车,如图6是它的原理图.图中酒精气体传感器的电阻的倒数与酒精气体的浓度成正比,如果测试到的酒精气体浓度越大,那么A.传感器的电阻越大B.通过传感器的电流越小C.传感器两端的电压越大D.电压表的示数越大2.图7中是人们在生活用电时的几种做法,其中正确的是3.把一只标有“220 V 40 W”的灯泡与一只标有“220 V60 W”的灯泡串联,接在电源电压恒定为440 V的电路中,结果将A.两灯都完好,且都正常发光B.两灯都完好,但只有40W的灯正常发光C.40 W 的灯将烧坏,60 W 的灯完好D.40 W 的灯完好,60 W 的灯将烧坏4.图8中各电路图中电源电压U保持不变,小灯泡的额定电压为U0,且U>U0,定值电阻的阻值为R.在不改变电路连接的情况下,能测出小灯泡正常发光时的消耗的电功率是图8D.使用绝缘皮破损的导线C.多个大功率用电器同时使用一个插座A.试电笔的握法B.带金属外壳的用电器使用三孔插座图6图7S25.张亮居住的小区每栋单元楼都安装了防盗门。

他查阅了相关资料,初步了解到单元防盗门门锁的原理如图2所示。

各家住户都安有一个控制开关S,用来控制门锁,图中只画出了其中一家住户的控制开关。

该门锁的工作过程是:楼上的人闭合控制开关S,门锁上通电后的电磁铁吸引右侧门扣中的衔铁,衔铁脱离门扣,门可打开。

关于该门锁,有下列4种说法:①闭合开关后,电磁铁的右端为S极;②闭合开关后,电磁铁的右端为N极;③该单元的各住户控制门锁的开关是并联的;④该单元的各住户控制门锁的开关是串联的。

其中正确的说法是A.①③B.①④C.②③D.②④6.发电机和电动机的发明使人类步入电气化时代。

在通常情况下,制造发电机所依据的主要物理知识是A磁场对电流的作用B磁极间的相互作用C电磁感应现象D电流周围存在着磁场7.如图4是小明同学研究串联电路中电流、电压特点的实物连接图。

八年级英语第二次月考试卷

八年级英语第二次月考试卷

八年级第二次月考试卷一.根据首字母和汉语提示写单词。

.✋❼●● ♦♒☐♦ ⍓☐◆ ♍☐●●♍♦♓☐⏹ ☐♐ ♉♉♉♉☎邮票✆ ♦☐ ♦♒♏ ♍●♋♦♦ . ●♏♋♦♏ ♉♉♉♉♉☎调低,关小✆ ♦♒♏ ❆✞♏ ☐❒♋♍♦♓♍♏♎ ♉♉☎唱✆ ☜⏹♑●♓♦♒ ♦☐⏹♑♦ ♐☐❒ ☐⏹♏ ♋⏹♎ ♋ ♒♋●♐ ♒☐◆❒♦ ♦☐♎♋⍓✋ ♒♋❖♏ ♉♉♉♉☎看过✆♦♒♏ ❍☐❖♓♏ ♌♏♐☐❒♏  ☟☐♦ ❍◆♍♒ ♎☐♏♦ ♦♒♏ ♍☐❍☐◆♦♏❒♉♉♉☎花费✆ ⍓☐◆ ✍ ✌♌☐◆♦  ⍓◆♋⏹✋❼❍ ♑☐♓⏹♑ ♦☐ ♌◆⍓ ☐❍ ♋ ☐♉♉♉♉♐☐❒ ♒♏❒ ♌♓❒♦♒♎♋⍓✋♦ ♋♉♉♉♉ ❍♏ ♦♒♏⏹ ♦♒♏ ❍♋⏹ ⏹♏⌧♦ ♦☐ ❍♏ ♌♏♑♋⏹ ♦☐ ♦❍☐♏✌ ●☐♦ ☐♐ ☐♏☐☐●♏ ❖☐●◆⏹♦♏♏❒♏♎ ♦♒♏♓❒ ♦♓❍♏ ♦☐ ❒♉♉♉♉❍☐⏹♏⍓ ♐☐❒ ♍♒♋❒♓♦⍓ ⍓ ♦♓♦♦♏❒ ♓♦ ⏹♓⏹♏ ⍓♏♋❒♦ ☐●♎ ♦♒♓♦ ⍓♏♋❒♒♏ ♓♦ ☐●♎ ♏♉♉♦☐ ♑☐ ♦☐ ♦♍♒☐☐● ❆♒♏❒♏ ♋❒♏ ❍♋⏹⍓ ♍♉♉♉♉ ☐●♋⍓♓⏹♑☐⏹ ♦♒♏ ☐●♋⍓♑❒☐◆⏹♎ 二.连词成句⏹☐♦ ♒♏❒♏ ❍♓⏹♎ ♦❍☐♓⏹♑ ⍓☐◆ ♦☐◆●♎♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉✍♓♦♓♦ ⏹☐♦ ♏♋♦⍓ ♐☐❒♦☐ ♦♒♓♦❍☐❖♓♏♍♒♓●♎❒♏⏹ ◆⏹♎♏❒♦♦♋⏹♎♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉ ♎☐⏹❼♦ ⍓☐◆  ♦♒⍓ ♑♏♦ ♋ ♦♍♋❒♐ ♒♏❒♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉✍♏❖♏❒♒♋❖♏ ⍓☐◆ ♌♏♏⏹♋⏹ ♋❍◆♦♏❍♏⏹♦ ♦☐ ☐♋❒♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉✍ ☜⏹♑●♓♦♒ ●☐⏹♑⍓☐◆♒♋❖♏ ♌♏♏⏹♦♦◆♎⍓♓⏹♑♒☐♦♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉✍三.用所给词语的适当形式填空。

八年级第二学期第二次月考数学试卷

八年级第二学期第二次月考数学试卷

一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b-(a、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.已知PA 2PB 4==,,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.当∠APB=45°时,PD 的长是( );A .25B .26C .32D .53.已知在直角梯形ABCD 中, AD ∥BC ,∠BCD =90°, BC =CD =2AD , E 、F 分别是BC 、CD 边的中点,连结BF 、DE 交于点P ,连结CP 并延长交AB 于点Q ,连结AF ,则下列结论不正确的是( )A .CP 平分∠BCDB .四边形 ABED 为平行四边形C .CQ 将直角梯形 ABCD 分为面积相等的两部分D .△ABF 为等腰三角形4.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )A.2 B.232-C.3D.43-5.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE 于点P.若AE=AP=1,PD=2,下列结论:①EB⊥ED;②∠AEB=135°;③S正方形ABCD=5+22;④PB=2;其中正确结论的序号是()A.①③④B.②③④C.①②④D.①②③6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()A.75°B.60°C.55°D.45°7.如图,在ABCD中,AD=2AB,CE AB⊥,垂足E在线段AB上,F、G分别是AD、CE的中点,连接FG,EF、CD的延长线交于点H,则下列结论:①12DCF BCD∠=∠;②EF CF=:③2BEC CEFS S=;④3DFE AEF∠=∠.其中,正确结论的个数是()A.1个B.2个C.3个D.4个8.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为1S、2S、3S,若1S=3,3S=8,则2S的值为()A .22B .24C .44D .489.在ABCF 中,2BC AB =,CD AB ⊥于点D ,点E 为AF 的中点,若50ADE ∠=︒,则B 的度数是( )A .50︒B .60︒C .70︒D .80︒10.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .201712二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S=2CEFS; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).14.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .15.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.16.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.22.如图1,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接AE ,CE .(1)求证:AE =CE ;(2)如图2,点P 是边CD 上的一点,且PE ⊥BD 于E ,连接BP ,O 为BP 的中点,连接EO .若∠PBC =30°,求∠POE 的度数;(3)在(2)的条件下,若OE 2,求CE 的长.23.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程: (2)如图4,过点C 作CG ON ⊥,垂足为点G 则90CGB ∠=90GCB CBG ∴∠+∠=又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中, (类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .24.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动. (1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.25.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由; (2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.26.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)27.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF = ①求证:EF 与BD 互相平分; ②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.28.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。

人教版八年级英语第二次月考2

人教版八年级英语第二次月考2

阜南县第一初级中学第二次检测英语试题第一部分听力检测(共五大题满分30分)I. 关键词语选择(共5小题每小题1分共5分)请在每小题所给的A、B、C三个选项中选出你所听到的单词或短语()1,A book B took C look( ) 2, A must B can C need( )3, A each B all C whole( )4, A traditional B important C necessary( )5, A is good at B is weak in C is interested inII.短对话理解(共10小题,每题1分,满分10分)请在每小题所给的A、B、C三个选项中选出最佳选项()6,How can the boy go to the station?A B C( ) 7, How does the girl often go to school ?A B C()8,What does Jenny like doing?A B C()9,What are they going to do this weekend?A B C()10,When is Meimei’s birthday?A B C( ) 11,How should the girl go to the station if she is in a hurry(着急) ?A By busB By trainC By taxi( )12, What day is it today?A FridayB SaturdayC Sunday( )13, What does the girl think of walking?A BoringB FunC Relaxing()14, What’s Cindy like?A Shorter and thinnerB Taller and thinnerC Taller and fatter( )15, What’s the boy doing tomorrow evening?A Looking after his mother.B Coming to the party.C Visiting his grandparents. III.长对话理解(共5小题,满分5分)请在每小题所给的A、B、C三个选项中选出最佳选项听下面一段对话,回答第16至17两个小题()16,Where are they talking?A On the phoneB On a busC At MrSmith’s home( ) 17, When is the birthday party?A On Saturday eveningB On Sunday nightC Next Saturday听下面一段对话,回答第18至20三个小题()18,How does Lucy go to school?A By bikeB By busC On foot( )19, What does Lucy often do after school?A Play basketballB Go swimmingC Play the piano( )20, When does Lucy go to bed?A At 9:00B At 10:00C At 11:00IV 短文理解(共5小题,每小题1分,满分5分)请根据短文内容,在每小题所给的A、B、C三个选项中选出最佳选项()21,How do they get to school?A By busB By bikeC On foot( )22, What does Jenny look like?A She has a round face and short hair.B She has a round face and long hairC She has big eyes and short hair.( )23, Where do they do their homework?A In the libraryB In the classroomC At Jenny’s house( )24, What grade are they in?A Grade SevenB Grade EightC Grade Nine( )25, Who likes playing soccer?A JennyB The girlC Jenny’s sisterV 信息转换(共5小题,每题1分,满分5分)请根据短文内容,写出下面表格中所缺的单词,每空仅填一词。

【精品】八年级第二次月考试卷

【精品】八年级第二次月考试卷

C. an eight-hundred-word
D. an eight-hundred words
( ) 25. Mi Li lives here_______now. But he doesn’tfeel_______.His neighbours moved away
because of _______ of farmland.
A.because
B.because of
C. if
D. but
( ) 28. Did you write a report ______ pandas_____ danger for the club yesterday evening?
Mr. Green says to him,
“ Do you think we are going to have rain today?
B. angrily
C. happily
D. unhappy
( ) 27. The boy made so many mistakes in the exam he was too careless.
America eats better than a child in the poorer countries. The poor countries have some35problems.
( ) 42.How does Mr. Green feel when he sees the old man with an umbrella in his hand?
A. He feels worried. B. He feels surprised.
C. He feels happy.
D. He feels sad

8年级下学期第二次月考

8年级下学期第二次月考

广东省惠来县岐石中学2019-2019学年度8年级下学期第二次月考英语试卷(有答案)班别:姓名:座号:总分:第一部分听力(20分)Ⅰ. 听句子,选择正确图片。

每个句子读一遍。

(5分)A B C DE F1. ____2. ____3. ____4. ____5. ____Ⅱ. 听句子,选择正确答语。

每个句子读一遍。

(5分)( )6. A. I’d like a bowl of rice. B. That’s all right. C. I don’t know.( )7. A. I’d like a small dish. B. A small dish. C. At six.( )8. A. 10 yuan. B. 10 kilometers. C. 8 years old.( )9. A. Thank you. B. This way. C. Welcome!( )10. A. Eat a lot of meat and cakes every day.B. Eat more vegetables,fruit and less meat.C. Get up late.Ⅲ. 听对话及问题,选择正确答案。

每段对话及问题读两遍。

(5分)( )11. A. Some tea. B. Some coffee. C. Some water.( )12. A. He doesn’t know. B. He can’t tell the girl. C. He can’t make the sausage.( )13. A. In a shop. B. In a library. C. In a restaurant.( )14. A. Twenty minutes. B. Thirty minutes. C. Ten minutes.( )15. A. Fried chicken and bread.B. Fruit salad and fried chicken.C. Fruit salad and bread.Ⅳ. 听短文,选择正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

54 81 53 67 126 52 103 74 115 100 180 137 38 105 88 85 57 176 159 141 122 124 95 58 104 36 94 77 50 69 41 133 49 82 87 123 127 178 125 62 150 42 98 45 35 142 51
考号 1 22 4 14 2 18 13 7 24 3 25 37 27 28 9 19 44 47 8 12 60 10 68 21 15 73 11 5 32 6 46 39 30 26 31 17 101 117 20 16 112 61 34 59 154 43
座位号 1 22 4 14 2 18 13 7 24 3 25 7 27 28 9 19 14 17 8 12 30 10 8 21 15 13 11 5 2 6 16 9 30 26 1 17 11 27 20 16 22 1 4 29 4 13
3 26 12 18 20 29 12 18 24 11 7 28 25 23 28 27 1 6 26 12 2 16 6 20 8 17 3 26 21 14 11 5 7 10 4 10 2 25 3 30 25 20 9 5 24 23 30
3 4 3 3 7 1 3 4 4 4 7 6 4 6 7 1 4 3 3 6 3 4 5 5 1 2 7 6 1 5 6 3 6 1 6 6 5 6 5 7 4 7 7 2 6 1 1
语文 133 127 125 123 111 119 117 123 121 109 117 131 107 115 115 113 123 113 99 125 110 100 113 116 120 117 119 121 121 115 121 120 112 114 118 117 97 115 112 118 97 110 109 120 130 111
15 12 15 6 3 21 3 26 29 29 16 16 23 8 6 19 16 14 2 24 13 23 24 18 10 5 19 14 25 29 23 26 5 1 29 25 29 18 14 18 28 10 9 18 12 23 25
4 7 4 4 3 2 2 7 7 7 6 4 5 6 5 3 5 2 3 4 6 1 5 5 5 5 6 2 2 1 6 7 7 6 7 2 3 1 4 2 3 1 1 2 6 6 7
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
李培宁 王玉昕 杨培琪 雷绍谨 李嘉欣 黄雪峰 薛紫璘 王雨菲
张启民
何嘉乐 王鹏昊 李若民 朱哲欣 陈喆 杨奕霄 蔡佳琪 马雨桐 黄晓雪 朱晋雯 杜文璐 权煜 姜明旭 樊清淋 韩韫韬 李渊博 李思婧 柏嘉宁 王涤菲 王晓萌 冯旖琳 周晨彤 李旭韬 李佳聪 姜鹏飞 王维兮 许世晖 刘海越 段雨思 蔡先阅 马昕杰 李凯歌 陶世杰 刘祥 刘元凯 田雨岐 石锐涵 扎西南捷
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
数学 145 143 137 139 147 143 144 135 140 140 147 134 139 127 137 135 140 145 144 127 138 143 122 134 114 132 141 115 132 123 121 131 132 136 126 135 136 131 135 116 127 148 135 137 130 127
海伦 李汶翰 张琨悦 张佳龙 袁静 许钰涵 尹潇敏 魏嘉丽 韩莉雅 刘治澜 张少恺 贾晨 蒋炳乾 张莉 王任嘉 马语涵 刘越 关诗雨 彭一楠 何明瀚 严梦瑶 刘晓楠 何奕洁 程欣 岳春江 李文萱 马雪涵 姬玉清 苏祥宇 刘馨璐 刘磊 朱俊璐 马丹妮 陈如景 欧阳锐明 雷镕旗 马昕 李雨珊 王瑞萌 王天辰 彭俊涵 刘怡 滕译晖 净圣杰 陈崇阳 白雪瑞 孙倩云
6 3 3 4 3 6 8 3 7 ቤተ መጻሕፍቲ ባይዱ 3 4 8 6 10 5 9 9 13 4 6 10 6 8 6 11 4 6 6 5 5 7 9 6 9 8 6 6 8 5 7 5 7 7 7 7 10
165 72 75 96 63 171 213 86 209 119 76 106 233 158 276 139 256 254 362 114 163 293 174 228 160 305 109 164 175 149 143 206 245 151 269 235 179 168 224 138 208 130 189 198 192 203 295
4 2 4 3 4 1 5 2 5 3 4 5 2 3 4 7 4 3 4 6 4 5 6 7 5 4 2 5 4 5 6 3 6 3 3 2 6 5 6 3 7 3 5 7 3 4 4
93 56 102 78 110 29 132 48 144 71 97 148 55 83 118 207 91 66 116 162 92 136 156 200 128 107 33 146 111 134 161 65 157 70 64 40 152 145 153 90 205 80 129 185 84 113 120
118 94 126 100 112 119 120 110 119 107 113 105 106 119.5 100 104 119 111.5 103 100 106 97 103 124 113 115 101 108 112 119 105 101 108 98 109 100 114 102 126 105 105 115 105 103 106 112 112
133 140 113 138 136 134 131 113 130 126 124 137 128 132 139 134 127 145 126 138 134 135 133 132 136 133 134 132 129 122 135 140 135 131 128 128 132 129 110 133 131 130 122 144 125 130 127
班级
4 4 4 4 4 3 4 4 4 4 4 4 6 6 4 2 6 4 5 7 4 4 4 3 4 3 3 2 4 4 4 4 4 4 4 4 2 4 2 4 5 5 4 3 1 4
姓名
孙小乐 郑佳慧 程小卿 李应哲 张宇旻 王明月 徐弘毅 王静宇 祁锐 闫世达 袁誉洋 刘书怀 罗雅雯 严洁 贾志诚 白悦彤 李雨桐 徐世真 张慧熙 陈文雨 马萱怡 薛嘉璐 杨杰彬 田亚凡 袁睿 郭昕宜 张紫燕 罗紫嫣 刘晶晶 邓晓怡 张惠佳 袁梦 杨博建 郭泓佑 李沛卿 周嘉文 宋文琪 林禧龙 王司琪 王易 李志杰 把悦如 文治明 薛宇倩 杨铭霄 李玉洁
119 126 126 134 118 134 127 126 132 119 121 117 108 115 127 111 111 120 125 116 131 120 127 133 125 143 121 122 123 118 93 132 120 123 124 128 127 123 119 140 91 129 128 131 120 118 85
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
2 3 2 3 5 2 4 3 4 4 6 5 2 4 3 3 2 6 6 5 5 5 4 2 4 2 4 3 2 3 2 5 2 3 3 5 5 6 5 3 5 2 4 2 2 5 2
98 107 111 105.5 103 104.5 98 102 112 99 97 108 96 96 99.5 89.5 94 114 95.5 87 91 100 76 79 85 93 107 102 102 97 88 98 96 95 97 115 96 97.5 98 105 98 104 102 102 107 95 96
24 21 23 7 6 22 13 14 25 10 30 17 8 15 28 25 27 26 9 21 2 4 5 28 14 6 4 17 20 9 11 13 19 22 27 3 7 28 5 2 30 12 8 15 5 22 21
4 5 4 4 7 1 4 1 2 4 2 1 4 7 1 5 4 5 1 5 5 7 4 5 5 3 4 3 4 4 5 4 7 4 5 5 7 2 1 2 3 2 1 3 4 5 6
123 111 104 105 142 106 129 87 99 117 104 117 124 118 128 131 128 114 124 107 117 112 128 137 128 111 127 97 95 128 124 122 123 127 121 89 124 105 83 119 98 98 108 103 88 108 115
李彦仪 樊磊 阎颉羽 方源 李青蔓 管靥窈 王麒涵 楚雅婷 管欣雨 摆莉 袁嘉蕾 董丽娜 唐语瞳 孙皓星 王丹怡 韦大海 支昊洋 张新宇 石佳 刘昊彤 杨雨蒙 张伯隆 王佳维 何佳辉 李进惠 柳博雅 范文萱 宋明韬 严浩铭 王淑雯 孙浩然 阎馨月 杨博 杨镒丞 徐嘉忆 杜奕静 韩嘉睿 王嘉轩 武雅萱 郭昱彤 高颖慧 宋韡玉 侯佳月 霍钰云 贾萱 杨楠 王杰
相关文档
最新文档