通信卫星基础知识

合集下载

卫星通信系统基础知识及设备操作使用与维护管理

卫星通信系统基础知识及设备操作使用与维护管理

卫星通信系统基础知识及设备操作使用与维护管理卫星通信系统是利用卫星作为中间传输媒介的通信方式。

卫星通信通过将信号传输到地球上的接收站,实现了全球范围内的通信。

它具有全天候、全天时、全球覆盖、无距离限制等优点,被广泛应用于军事、民用、航空、航天等领域。

1.设备操作使用:-在操作卫星通信系统设备之前,需要仔细阅读设备的使用说明书和操作手册,了解设备的工作原理、操作流程以及安全注意事项。

-进行设备操作时,需要按照操作流程的指导进行操作,遵循正确的操作步骤,避免操作错误导致设备损坏或故障。

-在设备操作过程中,应注意设备的状态和指示灯的变化,及时处理设备异常情况,避免出现故障。

2.设备使用:-卫星通信设备通常需要安装在固定的位置上,以保证信号传输的稳定性。

因此,在安装设备时,需要选择合适的位置,并按照设备说明书进行正确的安装和固定。

-设备使用过程中,需要注意设备的环境要求,如温度、湿度、电源供应等。

避免设备在恶劣的环境条件下工作,导致设备故障或损坏。

-使用设备时,应遵循设备的操作规程,合理调节设备参数,保证设备的正常运行。

3.设备维护管理:-定期检查卫星通信设备的硬件和软件状态,检测设备是否正常工作,并及时处理设备异常情况。

例如,设备的散热情况、电源供应是否正常等。

-对设备进行定期的清洁和维护,保持设备的良好状态。

同时,定期对设备进行保养,如更换电池、更新软件等。

-设备的安全保护措施也是重要的一环。

例如,设备需要定期备份数据,以防止数据丢失或损坏。

同时,设备的接入口需要设置密码保护,避免未经授权的人员操作设备。

总结起来,卫星通信系统的设备操作使用与维护管理需要关注设备的正确操作、合理使用和定期维护。

通过正确操作和及时维护,可以确保卫星通信系统的稳定运行,提高通信的可靠性和效率。

卫星通信的基础知识

卫星通信的基础知识
d有较大的信号传输时延(发射和接受时间)和回波干扰。
2.卫星通信系统的组成
(1)卫星通信系统的组成
通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。
(2)卫星通信线路的组成
两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。
(1)地球站的性能指标——品质因数(G/T)
G/T是地球站接收天线的增益G与地球站接收系统的等效噪声温度T的比值,它表征了地球站对微弱信号的接收能力,称为地球站的品质因数。
(2)有效辐射功率及其稳定度
为了保证所传送信号的质量,要求地球站的发射机能够发射较大的功率,一般为几百瓦~十几千瓦,而且要求所发射的射频信号功率非常稳定。
f可自发自收进行监测
(2)静止卫星通信的缺点
a静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。
b地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两极),而且地球的高纬度地区通信效果不好。
c存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断现象。 ——(现今可通过处理缩短这种现象)
静止卫星通信的特点
(1)静止卫星通信的优点
a通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传输与距离无关)
b覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收)
c通信频带宽(带宽为500M),传输容量大
d信号传输质量高,通信线路稳定可靠
e建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信)

卫星通信基础知识

卫星通信基础知识
卫星通信,简单的说就是地球上(包括地面、水面和低层大气中)的 无线电通信站之间利用人造卫星作为中继站转发或反射无线电波,以 此来实现两个或多个地球站之间通信的一种通信方式。它是一种无线 通信方式,可以承载多种通信业务,是当今社会重要的通信手段之一。
1.2 通信卫星的轨道
卫星运行的轨迹和趋势称为卫星运行轨 道;其轨道近似于椭圆或圆形,地心就 处在椭圆的一个焦点或圆心上,按照轨 道平面与赤道平面的夹角i(轨道倾角 )的不同,地球卫星的轨道有赤道轨道 (i=0º)、极轨道(i=90º)、倾斜轨 道(0º<i<90º)之分。
利用静止卫星建立全球通信示意图
1.4 卫星通信的开展概况
1945年五月英国人阿瑟克拉克提出关于静止卫星的设想。1954-1964 卫星 通信试验,1957年10月4日苏联发射了第一颗人造卫星,1963年7月 发射 了第一颗地球同步卫星,他们都进行了卫星通信试验。1965年国际通信卫星 组织的IS-1(国际通信卫星)1.8.1卫星通信使用频率 1、C频段(3.4-6.65GHz) 2、Ku频段(10.95-18GHz) 3、Ka频段(18-40GHz) 4、L频段(1.12-2.6GHz) 5、其他频段(UHF,S,X,Q,V)
1.8.2 C波段与Ku波段比较
C波段
资源较丰富 易受地面干扰 天线口径较大 不受天气影响
国际通信方面我国运营15座国际通信卫星地球站,开通了约1 万3千条双向电路(占国际长途电路的26%)。中国通信播送 卫星公司等具有国际点对点业务许可的单位开通了150~200条 国际双向VSAT电路。公众通信约使用50个转发器 。
我国已有中央电视台的12套节目,中央人民播送电台和国际 台的32路声音播送节目,以及31个省、自治区、直辖市的播送 电视节目均通过通信卫星向全国传送。目前我国播送电视节目 共使用了11颗通信卫星(亚太1A、亚洲2号、亚洲3S、鑫诺1 号、亚太2R、泛美3R号、泛美8号、泛美9号、泛美3R号、泛 美10号、银河3R和热鸟3号)的32个转发器。

卫星通信

卫星通信

卫星通信介绍 - 同步通信卫星
三颗卫星覆盖全球 离地面3万6千公里 在赤道上方,与地球自转同步 卫星间的距离从地面看应保持2度 左右。 “一跳”电波延时在240--270ms之 间


ViaSat Brings Your Network To Life
卫星通信介绍 - 卫星通信的特点

ViaSat Brings Your Network To Life
调制方式(续)


z
z
调制方式对系统设计时的考虑是重要的 调制方式与系统占用转发器带宽和性能有直 接影响 OQPSK,MSK和GMSK是通常用于低成本 非线性功放,但与QPSK比较: 实际占用卫星转发器带宽比QPSK大近1/3 非线性功放输出功率不可调,QPSK通常用 于线性功放,输出功率灵活可变。
- 按需分配

高效利用资源 降低通信成本 FDMA, TDMA, CDMA, SCPC 当用户需要时才分配频率和时隙 用户使用完毕后即释放资源
ViaSat Brings Your Network To Life
时分多址(TDMA)

小站在同一频率上不同时间发送信号

同一频率上两个小站不在同一时间发送信号 每个小站需轮流等待发送 需要精确同步防止碰撞
ViaSat Brings Your Network To Life
卫星资源共享方式
Frequency Division Multiple Access (FDMA) (频分多址) • Based on frequency Time Division Multiple Access (TDMA) (时分多址) • Based on time Code Division Multiple Access (CDMA) (码分多址) • Based on time, frequency, power, or combination Single Carrier Per Channel (SCPC) • Based on frequency (单路单载波)

卫星通信基础知识讲座-PPT课件

卫星通信基础知识讲座-PPT课件

1、基本概念
1.4单跳、双跳
1、基本概念
1.5卫星通信频段
1) C波段,4/6GHZ 设备成熟,可用带宽500MHz,大部分国际卫星通信,尤其是 商业卫星通信都使用此频段,雨衰小,1-2dB C波段工作频段选择可以有以下选择:
1、基本概念
1.5卫星通信常用频段
1) C波段,4/6GHZ 扩展C特点:
1、基本概念
1.2通信卫星的类型
按高度分:
(1)低高度卫星,h<1500km; (2)中高度卫星,8000km<h<12000km; (3)高高度卫星,h>20000km。 范艾伦高速粒子带
1、基本概念
1.2通信卫星的类型
同步卫星
1、基本概念
1.3日凌中断与星蚀
春分和秋分前后还存在星蚀(卫星进入地球的阴影区)和日凌中断(卫星 处于太阳和地球之间,受强大的太阳噪声影响而使通信中断)现象。
2、卫星通信系统
2.2 通信地球站 2.2.2 天线
主要技度
2、卫星通信系统
2.2 通信地球站 2.2.2 天线
2、卫星通信系统
2.2 通信地球站 2.2.3 功放
•行波管功放(TWTA) 微波电子管,大功率(400W以上),线性差,寿命6~10年,便宜。 •固态功放(SSPA、SSPB)
砷化镓场效应管,中小功率,线性好,寿命10年以上,贵。
2、卫星通信系统
2.2 通信地球站 2.2.4 低噪声放大器(LNA、LNB)
•微波信号低噪声放大 •带下变频(LNB)或不带(LNA) •带10MHz参考输入或不带 主要指标: •工作频率
双 工 器 天 线
收中频
下变频
LNA
供电

通信工程师卫星通信原理与技术

通信工程师卫星通信原理与技术

通信工程师卫星通信原理与技术卫星通信是现代通信领域中应用最广泛的技术之一,它通过利用人造卫星传输信息,在广域范围内进行数据传输和通信。

作为通信工程师,了解卫星通信的原理与技术是必不可少的基础知识。

本文将介绍卫星通信的基本原理、主要技术以及其在通信工程中的应用。

一、卫星通信的基本原理卫星通信的基本原理是利用人造卫星作为中继器,在地球表面不同位置之间传输信息。

为了实现这一目标,卫星通信系统一般由地面站、通信卫星和用户终端三部分组成。

1. 地面站地面站是卫星通信的重要组成部分,主要负责与卫星进行通信。

地面站通常分为上行链路和下行链路两个部分。

上行链路负责向卫星发送信息,而下行链路则接收来自卫星的信息。

2. 通信卫星通信卫星是卫星通信系统的关键设备,负责接收地面站发送的信息,并将其转发到其他地点。

通信卫星具有高度稳定的轨道运行和大容量的信息传输能力。

3. 用户终端用户终端是与通信卫星进行通信的最终设备,可以是移动电话、计算机或其他通信设备。

用户终端通过地面站和卫星进行信息的发送和接收。

二、卫星通信的主要技术1. 轨道技术通信卫星的轨道类型主要有地球同步轨道、中低轨道和太阳同步轨道等。

不同的轨道类型适用于不同的通信需求。

地球同步轨道卫星的轨道与地球自转同步,能够实现全球范围内的通信覆盖;中低轨道卫星则适用于移动通信等需要快速覆盖较小区域的场景;太阳同步轨道卫星则主要用于地球观测和环境监测等领域。

2. 频段技术卫星通信系统使用的频段多种多样,通常包括L频段、C频段、Ku 频段和Ka频段等。

不同频段的选择取决于通信系统的需求以及地球大气对信号的衰减情况。

L频段通常被用于广播和电视传输;C频段主要用于军事通信和海上通信;Ku频段和Ka频段则用于卫星宽带通信和互联网。

3. 调制与复用技术卫星通信系统为了提高频谱利用率,采用了调制和复用技术。

调制技术将数字信号转换为模拟信号进行传输,常见的调制方式有调幅(AM)、调频(FM)和相移键控(PSK)等。

卫星通信(基础理论)

卫星通信(基础理论)

卫 星 通 信 卫星基础知识
1962年7月,美国成功地发射了一个颗通信卫星(Telstar), 试验了横跨大西洋的电视和电话传输。但是, Telstar并非 在静止轨道上运行,而是运行在椭圆轨道上,每157分钟绕 地球1周。
第一颗静止轨道卫星是在1963年2月由美国发射,它成功地 转播了1964年东京奥运会的实况,有力地显示出卫星通信的 优越性和实用价值。 经过20多年的探索和实验,到20世纪80年代,卫星通信终 于跨入了实用阶段,渐渐走近我们的生活,走向社会各个领 域。
卫星基础知识
卫 星 通 信 卫星基础知识
引言: 利用卫星进行通信的科学设想,是在1945年10月由英 国空军雷达专家阿瑟· 克拉克首先提出的,他在《无线 电世界》杂志上发表的一篇题为《地球外的中继站》的 文章中,提出了在静止轨道上放置3颗卫星来实现全球 通信的设想。 直到1957年10月4日,前苏联发射了世界上第一颗人造 地球卫星,人们才真正看到实现卫星通信的希望。
卫星通信的优势
1、广播功能
一点发送卫星接收 卫星转发多点接收
卫 星 通 信 卫星基础知识
卫星通信的优势
2、覆盖面广
三颗卫星覆盖整个地球 覆盖面内均可通信
卫 星 通 信 卫星基础知识
卫星通信的优势
3、通信与地面距离无关
通信费用与地面距离无关 通信不受地形地貌的影响
35800+35800
×
A B
卫 星 通 信 卫星基础知识
卫 星 通 信 卫星基础知识
卫星转发器
卫星转发器是通信卫星中最重要的组成部分,它能起到 卫星通信中继站的作用,其性能直接影响到卫星通信系统的工 作质量。
电源系统
通信卫星的电源要求体积小、重量轻和寿命长。常用的 电源有太阳能电池和化学能电池。平时主要使用太阳能电池 ,当卫星进入地球的阴影区(即星蚀)时,则使用化学能电 池。

卫星通信知识点

卫星通信知识点

第1章1.卫星通信:利用人造地球卫星作为中继站转发无线电破,在两个或多个地球站之间进行通信。

它是宇宙通信形式之一。

2.卫星通信的特点:①覆盖面积大, 通信距离远。

一颗静止卫星可最大覆盖地球表面三分之一, 三颗同步卫星可覆盖除两极外的全球表面, 从而实现全球通信。

②设站灵活, 容易实现多址通信。

③通信容量大, 传送的业务类型多。

④卫星通信一般为恒参信道, 信道特性稳定。

⑤电路使用费用与通信距离无关。

⑥建站快, 投资省。

3.卫星通信的缺点:①卫星要求严格,要求有高可靠性、长寿命。

②通信地球站设备较复杂、庞大。

③存在日凌和星蚀现象。

④卫星传输信号有延迟4.非同步卫星系统按轨道分:1)低轨道卫星通信系统(LEO),如极轨道卫星, 当卫星通过赤道上空时卫星间的距离最大, 此时须多开放一些小区; 当卫星通过两极时, 卫星间的距离变小, 这时会出现小区重叠, 在切换时要关闭一些小区。

2)中轨道卫星通信系统(MEO)3)同步(静止)卫星通信系统(GEO):当卫星的运行轨道在赤道平面内,其高度大约为35800 km 时,它的运行方向与地球自转的方向相同.5.地球卫星轨道分为:赤道轨道,极轨道,倾斜轨道。

6.卫星通信系统的组成:通信卫星,地球站,跟走遥测及指令系统和监控管理系统。

7.地球站的组成:天馈设备,收信机,发信机,终端设备,天线跟踪设备,以及电源设备。

8.基本工作原理:当甲地一些用户要与乙地的某些用户通话时, 甲地首先要把本站的信号组成基带信号, 经过调制器变换为中频信号(70 MHz), 再经上变频变为微波信号, 经高功放放大后, 由天线发向卫星(上行线)。

卫星收到地面站的上行信号,经放大处理, 变换为下行的微波信号。

9.影响同步卫星通信的因素:1)摄动:在空中运行的卫星, 受到来自地球、太阳、月亮的引力以及地球形状不均匀, 太阳辐射压力等影响, 使卫星运行轨道偏离预定理想轨道, 这种现象称为摄动。

2)轨道平面倾斜效应3)星蚀与日凌中断4)卫星姿态的保持与控制10.同步卫星通信卫星的组成:控制分系统,通信分系统,遥测指令分系统,电源分系统,温控分系统。

卫星通信知识点

卫星通信知识点

第1章1.卫星通信:利用人造地球卫星作为中继站转发无线电破,在两个或多个地球站之间进行通信。

它是宇宙通信形式之一。

2.卫星通信的特点:①覆盖面积大, 通信距离远。

一颗静止卫星可最大覆盖地球表面三分之一, 三颗同步卫星可覆盖除两极外的全球表面, 从而实现全球通信。

②设站灵活, 容易实现多址通信。

③通信容量大, 传送的业务类型多。

④卫星通信一般为恒参信道, 信道特性稳定。

⑤电路使用费用与通信距离无关。

⑥建站快, 投资省。

3.卫星通信的缺点:①卫星要求严格,要求有高可靠性、长寿命。

②通信地球站设备较复杂、庞大。

③存在日凌和星蚀现象。

④卫星传输信号有延迟4.非同步卫星系统按轨道分:1)低轨道卫星通信系统(LEO),如极轨道卫星, 当卫星通过赤道上空时卫星间的距离最大, 此时须多开放一些小区; 当卫星通过两极时, 卫星间的距离变小, 这时会出现小区重叠, 在切换时要关闭一些小区。

2)中轨道卫星通信系统(MEO)3)同步(静止)卫星通信系统(GEO):当卫星的运行轨道在赤道平面内,其高度大约为35800 km 时,它的运行方向与地球自转的方向相同.5.地球卫星轨道分为:赤道轨道,极轨道,倾斜轨道。

6.卫星通信系统的组成:通信卫星,地球站,跟走遥测及指令系统和监控管理系统。

7.地球站的组成:天馈设备,收信机,发信机,终端设备,天线跟踪设备,以及电源设备。

8.基本工作原理:当甲地一些用户要与乙地的某些用户通话时, 甲地首先要把本站的信号组成基带信号, 经过调制器变换为中频信号(70 MHz), 再经上变频变为微波信号, 经高功放放大后, 由天线发向卫星(上行线)。

卫星收到地面站的上行信号,经放大处理, 变换为下行的微波信号。

9.影响同步卫星通信的因素:1)摄动:在空中运行的卫星, 受到来自地球、太阳、月亮的引力以及地球形状不均匀, 太阳辐射压力等影响, 使卫星运行轨道偏离预定理想轨道, 这种现象称为摄动。

2)轨道平面倾斜效应3)星蚀与日凌中断4)卫星姿态的保持与控制10.同步卫星通信卫星的组成:控制分系统,通信分系统,遥测指令分系统,电源分系统,温控分系统。

卫星通信(基础理论)讲解

卫星通信(基础理论)讲解

卫星通信的缺陷:
星上处理时间:50 — 70ms
1、 固定时延(250 — 270ms/跳)
电磁波速率为300,000km/s 卫星距地球赤道35,800km
100ms 100ms
A
B
卫星卫基星础通知识信
卫星通信的缺陷:
2、 水衰
雨衰 雪衰 解决办法
加大天线 加大功放
卫星卫基星础通知识信
卫星通信的缺陷:
通信卫星组成框图
卫卫星星基础通知信识
控制系统
它的任务是根据地面指令信号来控制卫星姿态和位置 等。通信卫星的控制系统包括位置控制和姿态控制两部分。 1. 位置控制
由于太阳和月球的引力以及太阳的辐射压力等原因,会 破坏卫星对地球的相对位置,使卫星发生缓慢移动,漂出轨 道,影响正常通行。位置控制是利用装在卫星上的气体喷射 装置由地面控制站发出指令进行工作,以进行位置控制。
卫卫星星基础通知信识
电源 部分 太阳 能
电池
蓄电 池
电源 控 制电 路
控制 部分
执行 机构
自旋
传感 器
姿态 控制
天线 控制
轨道 控制
遥测 指令部分
通信部分( 转发器)
遥测 编码 器
遥控 发射 机
指令 译码 器
指令 接收 机
双工 器
本机 振荡 器 变频 器
发射机 接收机
双工 器
遥测 指令天线
通信 天线
卫卫星星基础通知信识
2. 姿态控制 卫星仅仅能保持在轨道上的指定位置还不够,还必须
使它在这个位置上有一个正确的姿态。对通信卫星而言, 为了保证正常通信,要求卫星天线波束始终指向地球中心 或覆盖中心区域;同时,要求卫星上太阳能电池板始终朝 向太阳。这就要对卫星的姿态进行控制。

卫星基础培训13.11

卫星基础培训13.11

3.设备组成
TES卫星通信网络由6.2M卡塞格伦天线、室内单元IDU (标准机箱+CU板或高密机箱+RFM机箱)和室外单元ODU(40W VITACOM高功放、变频器)组成。 (咸阳TES站室内单元共两个机
架,11个标准机箱。)
标准机箱
高密机箱
RFM机箱
ODU:提供上下行链路的频率变换和功率放大。目 前西北地区TES卫星站使用的ODU有EF-DATA、 V2、VITACOM三个类型。
止卫星就可以实现全球通信。
3.卫星通信与其它通信手段相比,具有以下一些特点:
(1)通信距离远,且费用与通信距离无关。 (2)覆盖面积大,可进行多址通信。 (3)通信频带宽、传输容量大。 (4)机动灵活。 (5)通信线路稳定可靠,传输质量高。
4.卫星通信系统的工作过程
卫星通信系统的组成是复杂的。就通信传输部分而言,一 条卫星通信线路是由发端地球站、上行线路、卫星转发器、下 行线路和收端地球站组成。其中的上行线路和下行线路就是无 线电波的传播路径。从地球站到卫星转发器的传播路径称为上 行线路,反之则为下行线路。为了进行双向通信,每一地球站 均应包括发射和接收系统。卫星转发器的作用是接收地面站发 来的信号,并经变频、放大后再转发给其它地球站。
7.VSAT卫星通信网络的组成
同一般的卫星通信系统一样,典型的VSAT卫星通信网络由中央站 (包括网络管理系统),许多VSAT站和通信卫星三部分组成。典型的 VSAT卫星通信网络组成结构如下图所示。
第二章 中国民航C波段卫星通信网络
1.中国民航C波段卫星通信网络的发展
“八五”期间我们在全国民航机场建成了以北京为主站, 广州为备用网控站,全国97个卫星地球站的全国民航TES话音 专用通信网和PES数据专用通信网络,构成了中国民航C波段 卫星通信网络。

卫星通信基础知识

卫星通信基础知识

4.1天线角度定义 方位角以正北为零度, 方位角以正北为零度, 正南为180度。 正南为 度 顺时针为正, 顺时针为正, 逆时针为负。 逆时针为负。
系统框图(卫星通信系统为例) 5.1 系统框图(卫星通信系统为例)
天馈分系统 天线 馈源 双工器 功放 上变频器 室外单元分系统 室内单元分系统
调制器 用户 终端 系统
卫星通信常用波段(静止卫星) 卫星通信常用波段(静止卫星)C、Ku
C: 下行 4.2GHz, 3.7 ~4.2GHz, 扩展 上行 6.425GHz, 5.925 ~6.425GHz, 5.625 ~6.425GHz 3.4 ~4.2GHz
Ku: Ku: 上行 下行
14.5GHz, 14 ~14.5GHz, 10.95 ~12.75GHz, 10.95 ~11.7GHz 欧洲( 欧洲(Ⅰ区) 美洲( 美洲(Ⅱ区) 亚洲、澳洲( 亚洲、澳洲(Ⅲ区)
4.1卫星系统工作流程 一个完整的卫星通信系统,工作流程如下: 一个完整的卫星通信系统,工作流程如下:
4.1卫星网拓扑结构 星状网 网状网 混合网(树状网) 混合网(树状网
4.1卫星通信多址方式 FDMA TDMA CDMA SDMA 混合方式
4.1卫星天线类型 前馈型抛物面天线 卡塞格仑天线 格里高利天线 环焦天线
DVB6.2 DVB-RCS
主站→端站(DVB-数字视频广播) 主站→端站(DVB-数字视频广播) 端站→主站(RCS-回信回传信道)MF-TDMA 端站→主站(RCS-回信回传信道)MF主站组成
天线
馈源
双工器
SSPB DVBDVB-RCS Hub LNB 用户 终端
7.2频谱仪操作
频谱仪用来观察卫星上的频率使用状态, 频谱仪用来观察卫星上的频率使用状态,在对星及频率使用时可起到重要的参 考作用,其设置如下: 考作用,其设置如下: 观察卫星信标时,基本设置如下: 观察卫星信标时,基本设置如下: FRQ:960MHZ : SPAN:500KHZ : REF:按上下键,使底部噪声居于屏幕中间即可 :按上下键, RBW:3KHZ : VBW:1KHZ : SWEEP:500ms : 当天线对准卫星时,将看到鑫诺1号的卫星信标 号的卫星信标。 低两个单载波。 当天线对准卫星时,将看到鑫诺 号的卫星信标。为1高1低两个单载波。 高 低两个单载波 观察卫星频段使用时,基本设置如下: 观察卫星频段使用时,基本设置如下: FRQ:设置为使用的频率,为1259.43 :设置为使用的频率, SPAN:10MHZ : REF:使底部噪声居于屏幕中间即可 : RBW:10KHZ : VBW:3KHZ : SWEEP:500ms : 屏幕上鼓起的一个个小包就是用户发射的载波,我们可以看频段的使用情况。 屏幕上鼓起的一个个小包就是用户发射的载波,我们可以看频段的使用情况。

卫星通信基础知识

卫星通信基础知识

卫星通信基础知识一、电磁波振动的电场和磁场在空间的传播叫做电磁波。

由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。

二、电磁波的频率、波长人们用频率、波长和波速来描述电磁波的性质。

频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。

波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。

波速是指电磁波在单位时间内传播的距离,通常用v 表示。

频率f,波长λ,和波速v之间满足如下关系:v=λf如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz.对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。

例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。

不同的频率的(或不同波长)电磁波具有不同的性质用途。

人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。

频率在3×1011Hz-4×1014Hz 之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。

通信卫星原理

通信卫星原理

通信卫星原理
通信卫星是通过利用地球轨道上的人造卫星,实现地面通信的一种技术手段。

其原理基于微波通信技术和地球的自转。

首先,通信卫星的运行轨道通常位于地球的同步轨道上,即所谓的“地球同步轨道”。

这种轨道使得卫星与地球保持相对固定的位置关系,使卫星能够覆盖特定区域的地面。

其次,通信卫星利用发射天线和接收天线进行通信。

卫星上的发射天线将地面设备发送的信号转化为微波信号,并通过空间中的自由传播将信号传递到地面。

接收天线则将地面设备发送的信号接收并转化为电信号,再通过卫星回传给地面。

这样,卫星实现了地面之间的远距离通信。

通信卫星利用微波信号进行通信的原因是微波信号具有较高的传输效率和穿透能力。

微波信号可以在大气中较远距离传播,从而使得卫星可以覆盖广泛的地面范围。

此外,微波信号的较高频率也使得通信卫星的带宽较大,能够同时传输多个信号,提高通信的效率。

此外,通信卫星的运行还依赖于地球自转。

地球的自转使得卫星能够在同步轨道上保持相对固定的位置,从而保持与地面站点的通信连续性。

当卫星离开同步轨道时,其位置会发生变化,导致与地面站点之间的连续性中断。

总结而言,通信卫星的原理基于微波通信技术和地球自转。


过合理的轨道设计和发射接收天线的配合,卫星能够实现远距离的地面通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2
下面,我们详细介绍采用卫星轨道进行分类:以卫星为基础的移动通信的应用和研制情况,大体上可分为3种情况:
(1) 卫星不动(同步轨道卫星)
目前已经广泛应用的Inmarsat以及正积极开发中的AMSC(美国),CELSAT(美国),MSS(加拿大)、Mobilesat(澳大利亚)等移动通信系统均属于这种情况。这些系统已经实现到车,船和飞机等移动体上的通信,实现到手机的通信指日可待。
项目
低轨道
中轨道
高轨道
轨道高度
700~1200km
8000~13000km
35800km
波束数
6~48
19~150
58~200
天线直径
约1米
约2米
8米以上
卫星信道数
500~1500
1000~4000
3000~8000
卫星移动通信系统可分为海事卫星移动系统(MMSS)、航空卫星移动系统(AMSS)和陆地卫星移动系统(LMSS)。海事卫星移动系统主要用于改善海上救援工作,提高船舶使用的效率和管理水平,增强海上通信业务和无线定位能力。航空卫星移动系统主要用于飞机和地面之间为机组人员和乘客提供话音和数据通信。陆地卫星移动系统主要用于为行驶的车辆提供通信。分配给卫星移动通信业务的频率范围为235MHz~71GHz。工作频率的下限由适合于移动地球站的小口径天线所能达到的天线增益所决定的。例如,若要求的天线增益为3dB,则对于1m有效口径的天线,频率下限为200MHz。工作频率的上限受到很多因素影响。在1GHz以上,降雨衰减(雨点会降低信号强度)和分子吸收一般随频率增加而增大。对于要求高可靠性的系统。最佳的频率范围为200GHz~10GHz。除了传播因素以外还应考虑技术发展水平、可靠性要求以及频率再用等因素。
(2) 卫星动(非同步轨道卫星),终端不动
它是通过非同步轨道卫星实现到较大终端(例如移动通信网的基站)的通信,而以后再连接到手持机的用户。Calling(美国)系统大体上属于这种情况。移动用户通过关口站上的卫星进行通信也基本属于这种情况。
(3) 卫星动(非同步轨道卫星),终端也动。
在S频段为MSS(卫星移动系统)分配的全球主用频段是:1980~2010 MHz;2170~2200 MHz; 2500~2520 MHz; 2670~2690 MHz。但同时要求其中1970~2010 MHz和2160~2200 MHz到2000年1月1日以后才可以使用,2500~2520 MHz和2670~2690 MHz到2005年1月1日以后才可以使用。
(1) 自由空间中,信号强度反比于传输距离的平方。高轨道(GEO)卫星距地球过远,需要有较大口径的通信天线。
(2) 信号经过远距离传输会带来较大的时延。在电话通话中,这种时延会使人感到明显的不适应。在数据通信中,时延限制了反应速度,对于2001年台式超级计算机来说,半秒种的时延意味着数亿字节的信息滞留在缓冲器中。
1992年世界无线电行政大会(WARC"92)对包括低轨道卫星在内的卫星移动业务进行了调整和分配。
(1) 1000MHz以下
包括低轨道卫星在内的非同步卫星全球主用和次用频段原来的分配如下:
137~137.025MHz(下行,主用)
137.175~137.825 MHz(下行,主用)
当前提出来的大量中、低轨道系统(如铱星系统、全球星系统、奥迪赛系统)极化均属这种情况,他们的特征就是做到终端手持化,实现了卫星通信适应未来个人移动通信的需求。
就卫星在空间运行的轨道形状来说,有圆轨道和椭圆轨道。此外,卫星轨道与地球赤道可以构成不同的夹角(称为倾角),倾角等于零的称为赤道轨道;倾角等于90°的称为极轨道;倾角在0°~90°之间的称为倾斜轨道。圆轨道又可以按其高度分为3种:低轨道(LEO)(距地面数百公里至5000KM,运行周期为2~4小时);中轨道(MEO)(距地面5000~20000KM,运行周期4~12小时);高(同步)轨道(GEO)(距地面35800KM,运行周期24小时),它又称为静止轨道。由此,卫星移动通信系统基本上可以分为高、中、低三种。铱星系统(Iridium)和全球星系统(Globalstar)是LEO系统发展那最快的范例。奥迪赛系统(Odyssey)、InmarsatP-21是MEO系统的范例。Inmarsat系统、氚(Tritium)系统、亚洲卫星移动通信系统(ASMTS)(该系统是美国休斯公司建议我国发展的)是GEO系统的范例。其网络基本上与固定业务卫星系统相同。这三种系统都要用手持机进行个人通信。他们除了具有语音通信功能外,还应具有传送数据、传真、寻呼、静态图象和定位等功能。这3种不同轨道系统用手持机进行个人通信,各有优劣,其性能表如下表所示:
(二) 按轨道分类
通信卫星的运行轨道有两种。一种是低或中高轨道。在这种轨道上运行的卫星相对于地面是运动的。它能够用于通信的时间短,卫星天线覆盖的区域也小,并且地面天线还必须随时跟踪卫星。另一种轨道是高达三万六千公里的同步定点轨道,即在赤道平面内的圆形轨道,卫星的运行周期与地球自转一圈的时间相同,在地面上看这种卫星好似静止不动,称为同步定点卫星。它的特点是覆盖照射面大,三颗卫星就可以覆盖地球的几乎全部面积,可以进行二十四小时的全天候通信。
卫星通信同现在常用的电缆通信、微波通信等相比,有较多的优点,基本可以概括为几个字;
远:是指卫星通信的距离远。俗话说,“站的高,看的远”,同步通信卫星可以“看”到地球最大跨度达一万八千余公里。在这个覆盖区内的任意两点都可以通过卫星进行通信,而微波通信一般是50公里左右设一个中继站,一颗同步通信卫星的覆盖距离相当于三百多个微波中继站。
多:指通信路数多、容量大。一颗现代通信卫星,可携带几个到几十个转发器,可提供几路电视和成千上万路电话。
好:指通信质量好、可靠性高。卫星通信的传输环节少,不受地理条件和气象的影响,可获得高质量的通信信号。
卫星移动通信系统的分类可按其应用来分,也可以按他们所采用的技术手段来分。
(一) 按应用分类
可分为海事卫星移动系统(MMSS)、航空卫星移动系统(AMSS)和陆地卫星移动系统(LMSS)。海事卫星移动系统主要用于改善海上救援工作,提高船舶使用的效率和管理水平,增强海上通信业务和无线定位能力。航空卫星移动系统主要用于飞机和地面之间为机组人员和乘客提高话音和数据通信。陆地卫星移动系统主要用于为行驶的车辆提供通信。
(三) 按频率分类
按照该卫星所使用的频率范围将卫星划分为L波段卫星,Ka波段卫星等等。
(四) 按服务区域分类
随着航天技术日新月异的发展,通信卫星的种类也越来越多。按服务区域划分,有全球、区域和国内通信卫星。顾名思义,全球通信卫星是指服务区域遍布全球的通信卫星,这常常需要很多卫星组网形成。而区域卫星仅仅为某一个区域的通信服务。而国内卫星范围则更窄,仅限于国内使用,其实各种分类方式都是想将卫星的某一特性更强地体现出来,以便人们更好的区分各种卫星。
利用通信卫星和广播卫星传输广播电视节目是卫星应用技术的重大发展。那么,通信卫星是怎样工作的呢?
卫星通信系统是由空间部分——通信卫星和地面部分——通信地面站两大部分构成的。
在这一系统中,通信卫星实际上就是一个悬挂在空中的通信中继站。
它居高临下,视野开阔,只要在它的覆盖照射区以内,不论距离远近都可以通信,通过它转发和反射电报、电视、广播和数据等无线信号。
使用
复杂
普通
容易
卫星切换
频繁
频度小

地面网连接


容易
轨道展开时间

普通

自本世纪60年代以来,人类已经将数以百计的通信广播卫星送入高轨道(GEO),在实现国际远距离通信和电视传输方面,这些卫星一直担当主角。但是,高轨道(GEO)卫星也存在一些问题:
电视节目的转收设备中还要有相应的制式转换设备,将电视信号转换为本国标准。电报、传真、广播、数据传输等业务也与电话传输过程相似,不同的是需要在地面站中采用相应的终端设备。
随着航天技术日新月异的发展,通信卫星的种类也越来越多。按服务区域划分,有全球、区域和国内通信卫星。按用途分,有一般通信卫星、广播卫星、海事卫星、跟踪和数据中继卫星以及各种军用卫星。
(3) 轨道资源紧张。高轨道(GEO)卫星只有一条,相邻卫星的间隔又不可以过小,因为地球站天线分辨卫星的能力受限于天线口径的大小。在Ka频段(17~30GHz)为了能够分出2°间隔的卫星,地面站天线口径的合理尺寸应不小于66cm。按这样计算,高轨道(GEO)卫星只能提供180颗同轨道位置。这其中还包括了许多实用价值较差,处于大洋上空的位置。
射频功率
50~200W
200~600W
600~900W
卫星成本合计



卫星寿命
3~7年
12~15年
12~15年
地面站投资



高仰视角时间率



卫星可视域通过时间
短(10~12min)
中(约90min)

通信卫星工作的基本原理
通信卫星工作的基本原理如图所示。从地面站1发出无线电信号,这个微弱的信号被卫星通信天线接收后,首先在通信转发器中进行放大,变频和功率放大,最后再由卫星的通信天线把放大后的无线电波重新发向地面站2,从而实现两个地面站或多个地面站的远距离通信。举一个简单的例子:如北京市某用户要通过卫星与大洋彼岸的另一用户打电话,先要通过长途电话局,由它把用户电话线路与卫星通信系统中的北京地面站连通,地面站把电话信号发射到卫星,卫星接到这个信号后通过功率放大器,将信号放大再转发到大西洋彼岸的地面站,地面站把电话信号取出来,送到受话人所在的城市长途电话局转接用户。
相关文档
最新文档