七年级数学上册 有理数的乘法(第一课时)教案人教版
有理数的乘法教案(精选多篇)
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
1-4-1 有理数的乘法(第一课时)(教学设计)-(人教版)
1.4.1有理数的乘法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.1有理数的乘法(第一课时),内容包括:有理数的乘法法则、运用法则进行运算、多个有理数相乘的积的符号法则.2.内容解析有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上.因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算.有理数的乘法是有理数最基本的运算之一,它是进一步学习有理数运算的基础,也为今后学习实数运算、代数式的运算、解方程以及函数知识奠定基础.学好这部分内容,对增强学习代数的信心具有十分重要的意义.基于以上分析,确定本节课的教学重点为:掌握有理数的乘法法则并能进行熟练地运算;掌握多个有理数相乘的积的符号法则.二、目标和目标解析1.目标(1)掌握有理数的乘法法则并能进行熟练地运算.(运算能力)(2)掌握多个有理数相乘的积的符号法则. (分类讨论)2.目标解析教材是利用合情推理,通过比较数字算式蕴含的规律性,类比发现有理数乘法法则的.教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面来描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面.因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.三、教学问题诊断分析本节课是学生在小学本已学过正有理数的乘法,在中学已引进了负有理数以及学过有理数的加减运算之后进行的.因此,教材首先对照小学乘法的意义和负有理数的意义,结合在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则.然后通过具体例子说明如何具体运用法则进行计算.接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系.同时,指出了“几个数相乘,有一个因数是0,积为0”的规律.最后,通过具体实例,说明了在含有加、减、乘的算式中,没有括号时的运算顺序.本节课的重点是有理数乘法运算法则.在实际教学中,要通过讲、练使学生能熟练地、准确地按照法则进行乘法运算.基于以上学情分析,确定本节课的教学难点为:含有负因数的乘法.四、教学过程设计(一)情境引入甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲、乙水库水位的总的变化量各是多少?如果用正号表示水位上升,用负号表示水位下降,那么4天后甲水库的水位变化量为:3+3+3+3=3×4=12(厘米)乙水库的水位变化量为:(-3)+(-3)+(-3)+(-3)=(-3)×4=___(厘米)(二)自学导航思考:观察下面的乘法算式,你能发现什么规律吗?3×3=9 3×2=6 3×1=3 3×0=0随着后一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=___ 3×(-2)=___ 3×(-3)=___观察下面的算式,你又能发现什么规律吗?3×3=9 2×3=6 1×3=3 0×3=0随着前一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍然成立,那么应有:(-1)×3=___ (-2)×3=___ (-3)×3=___3×3=9 3×3=93×2=6 2×3=63×1=3 1×3=33×(-1)=-3 (-1)×3=-33×(-2)=-6 (-2)×3=-63×(-3)=-9 (-3)×3=-9从符号和绝对值两个角度观察以上算式,可以归纳如下:正数乘正数,积为正数;正数乘负数,积是负数;负数乘正数,积也是负数. 积的绝对值等于各乘数绝对值的积.思考:利用刚才归纳的结论计算下面的算式,你发现有什么规律吗?(-3)×3=____ (-3)×2=____ (-3)×1=____ (-3)×0=____随着后一乘数逐次递减1,积逐次增加3.按照上述规律,下面的空格可以各填什么数?从中可以归纳出什么结论?(-3)×(-1)=___ (-3)×(-2)=___ (-3)×(-3)=___可归纳出如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.例如,(-5)×(-3),……………同号两数相乘(-5)×(-3)=+( ),………………得正5×3=15,………………把绝对值相乘所以,(-5)×(-3)=15.又如,(-7)×4,……………_______________(-7)×4=-( ),……_______________7×4=28,……………______________所以,(-7)×4=____有理数相乘,可以先确定积的_______,再确定积的________.(三)考点解析例1.计算:(1)(-7)×3; (2)35×(-1); (3)-76×0; (4)(-115)×(-123).解:(1)原式=-(7×3)=-21;(2)原式=-(35×1)=-35; (3)原式=0;(4)原式=+(115×53)=19. 【点睛】有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【迁移应用】计算:(1)(-6)×4; (2)(-910)×56; (3)|−3|×(- 23); (4)(-0.24)×(-5); (5)-413×(-313). 解:(1)原式=-(6×4)=-24; (2)原式=-(910×56)=-34; (3)原式=3×(-23)=-(3×23)= -2;(4)原式=+(0.24×5)=1.2; (5)原式=+(133×313)=1. 【总结提升】想一想倒数和相反数有什么异同?相同点:它们都是成对出现的.不同点:①互为相反数的两个数和为0;互为倒数的两个数积为1.②正数的相反数是负数,正数的倒数是正数;负数的相反数是正数,负数的倒数是负数;零的相反数是零,零没有倒数.例2.写出下列各数的倒数:1,-8,25,-234,1.8. 解:因为1×1=1,所以1的倒数是1;因为-8×(-18)=1,所以-8的倒数是-18; 因为25×52=1,所以25的倒数是52;因为-234=-114,-114×(-411)=1,所以-234的倒数是-411; 因为1.8=95,95×59=1,所以1.8的倒数是59. 【迁移应用】1.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.倒数等于本身的数是1和-12.下列互为倒数的是( )A.3和13B.-2和2C.3和-13D.-2和123.若a ,b 互为倒数,则3-4ab 的结果是_______.例3.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是5,则a+b+cd+m 的值是多少?解:因为a ,b 互为相反数,所以a+b=0.因为c ,d 互为倒数,所以cd=1.因为m 的绝对值是5,所以m=5或m=-5.当m=5时,原式=0+1+5=6;当m=-5时,原式=0+1+(-5)=-4.所以a+b+cd+m 的值是6或-4.【迁移应用】1.已知a ,b 互为倒数,c ,d 互为相反数,m 为最大的负整数,则ab+c+d+m 的值为______.2.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求a+b-cd-x 的值.解:因为a ,b 互为相反数,所以a+b=0.因为c ,d 互为倒数,所以cd=1.因为x 的绝对值是2,所以x=2或x=-2.当x=2时,原式=0-1-2=-3;当x=-2时,原式=0-1-(-2)=1.所以a+b-cd-x 的值是-3或1.例4.甲便利店平均每天可盈利120元,那么一周的利润是多少元?乙便利店平均每天亏损30元,那么一周的利润是多少元?分析:本题中既有盈利又有亏损,需要规定一个为正,另一个为负,再利用有理数的乘法列式计算. 解:根据正负数的意义,我们可以规定盈利为正,亏损为负.甲便利店一周的利润是(+120)×7=840(元).乙便利店一周的利润是(-30)×7=-210(元).答:甲便利店一周的利润是840元,乙便利店一周的利润是-210元.【迁移应用】1.某种商品由于库存积压,现要降价促销,如果每件降价8元,一天售出52件,那么与按原价出售同样数量的商品相比,销售额的变化是____________________________.2.甲水库的水位每天上涨2.5cm,乙水库的水位每天下降1.5cm,6天后甲、乙两水库的水位总变化量各是多少?解:根据题意,可以规定上涨为正,下降为负,则6天后甲水库的水位总变化量为(+2.5)×6=15(cm),乙水库的水位总变化量为(-1.5)×6=-9(cm). 答:6天后甲水库的水位总变化量是上涨15cm,乙水库的水位总变化量是下降9cm(或上涨-9cm).例5.【教材P39习题1.4T12变式题】根据下列条件,判断a,b的符号.(1)a+b<0,且ab>0; (2)a-b<0,且ab<0.解:(1)因为ab>0,所以a,b同为正数或同为负数.又a+b<0,所以a,b同为负数.(2)因为ab<0,所以a,b一个是正数,一个是负数.又a-b<<0,所以a<b.所以a为负数,b为正数.【迁移应用】1.如果xy>0,x+y>0,那么有( )A.x>0,y>0B.x<0,y<0C.x>0,y<0D.x<0,y>02.已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b>0B.a<0,b>0C.a,b异号,且正数的绝对值较大D.a ,b 异号,且负数的绝对值较大(四)合作探究思考1:观察下列各式,它们的积是正的还是负的?2×3×4×(-5) ___2×3×(-4)×(-5) ___2×(-3)×(-4)×(-5) ___(-2)×(-3)×(-4)×(-5) ___(-1)×(-2)×(-3)×(-4)×(-5) ___(-1)×(-2)×(-3)×(-4)×(-5)×(-6) ___几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?【归纳】几个不是0的数相乘,当负因数的个数是_____时,积是正数;当负因数的个数是_____时,积是负数.思考2:你能看出下式的结果吗?如果能,请说明理由.7.8×(-8.1)×0×(-19.6) -3.5×0×213×(-13.5)-16×(-23.6)×1.58×0×6 5×(-3.1)×(-2.8)×0.65×0【归纳】几个数相乘,如果其中有因数为0,那么积等于0.(五)考点解析例6.计算:(1)(-2)×5×(-4)×(-3); (2)(-5)×(-43)×(-145)×(-1.75); (3)(-1)×(-2)×(-3)×(-4)×(-5)×0×(-6).分析:先观察因数中是否有0,有0则积为0;无0则根据负因数个数确定积的符号,再计算积的绝对值.解:(1)原式=-(2×5×4×3)=-120;(2)原式=5×43×95×74=21; (3)原式=0.【迁移应用】1.下列计算中,积为负数的是( )A.5×4×(-7)×(-8)B.-6×(-4)×(-1)×(-9)C.(-4)×0×(-2)×(-3)D.(-5)×4×(-3)×(-2)2.若abc>0,则a,b,c中负数的个数为( )A.3B.1C.1或3D.0或23.绝对值小于5的所有整数的和是_____,积是______. (六)小结梳理五、教学反思。
1.4.1有理数的乘法1教案
1.4.1 有理数的乘法(第一课时)【教学目标】1.知识与技能掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2.过程与方法经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3.情感、态度与价值观通过学生自己探索出法则,让学生获得成功的喜悦。
【教学重点难点】重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
【教与学互动设计】(一) 创设情境,导入新课(1)2+2+2= 2╳3=6(2)(-2)+(-2)+(-2)= (-2)╳3=--6你能将以上两个算式写成乘法公式吗?例1:如图,有一只蜗牛沿直线 L 爬行,它现在的位置恰好在L 上的一点O 。
问题一:如果蜗牛一直以每分2cm 的速度从O 点向右爬行,3分钟后它在点O的 右 边 6 cm 处?(PPT )每分钟2cm 的速度向右记为 2 ;3分钟以后记为 3 。
其结果可表为 2╳3=6 。
问题二:如果蜗牛一直以每分2cm 的速度从O 点向左爬行,3分钟后它在点O 的 左 边 6 cm 处每分钟2cm 的速度向左记为 -2 ; 3分钟以后记为 3 。
其结果可表为 (-2)╳3=6 。
问题三:如果蜗牛一直以每分2cm 的速度向右爬行,现在蜗牛在点O 处,3分钟前它在点O 的 左 边 6 cm 处每分钟2cm 的速度向右记为 2 ; 3分钟以前记为 -3 。
其结果可表示为 2╳(-3)=6 。
问题四:如果蜗牛一直以每分2cm 的速度向左爬行,现在蜗牛在点O 处,3分钟前它在点O 的 右 边 6 cm 处每分钟2cm 的速度向左记为 -2 ; 3分钟以前记为 -3 。
其结果可表示为(-2)╳(-3)=6 。
引出课题:有理数的乘法。
(二)交流合作 自主探究1、以例1为基础,观察得出的四个式子,引导学生思考有理数的乘法中四种不同的形式。
完成教材28页-29页的填空。
七年级(人教版)集体备课教学设计:1.4.1《有理数的乘法(1)》
七年级(人教版)集体备课教学设计:1.4.1《有理数的乘法(1)》一. 教材分析《有理数的乘法(1)》是七年级数学的重要内容,主要让学生掌握有理数乘法的基本运算方法。
本节课的内容是在学生已经掌握了有理数加法、减法、除法的基础上进行的,对于学生来说,有理数的乘法是一种新的运算方法,需要他们能够理解和掌握。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的加法、减法、除法有一定的了解。
但是,对于有理数的乘法,他们还是初次接触,可能存在一定的困难。
因此,在教学过程中,教师需要耐心地引导学生,通过实例和练习,让学生理解和掌握有理数的乘法。
三. 教学目标1.让学生理解有理数乘法的概念和运算方法。
2.让学生能够熟练地进行有理数的乘法运算。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.教学重点:有理数乘法的基本运算方法。
2.教学难点:理解有理数乘法的概念,能够熟练地进行有理数的乘法运算。
五. 教学方法1.采用讲授法,教师讲解有理数乘法的概念和运算方法。
2.采用示范法,教师示例有理数的乘法运算。
3.采用练习法,学生通过练习,巩固所学知识。
4.采用小组讨论法,学生分组讨论,共同解决问题。
六. 教学准备1.教师准备PPT,内容包括有理数乘法的概念、运算方法、例题和练习题。
2.准备黑板,用于板书和展示解题过程。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾已学的有理数加法、减法、除法知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用PPT呈现有理数乘法的概念和运算方法,让学生初步了解有理数乘法。
3.操练(15分钟)教师出示例题,让学生独立完成,然后集体讲解解题过程。
接着,教师给出一些练习题,让学生分组练习,共同解决问题。
4.巩固(10分钟)教师挑选一些典型的练习题,让学生在黑板上展示解题过程,其他学生跟随讲解。
通过这种方式,巩固所学知识。
有理数的乘法教案
有理数的乘法(第一课时)
教学目标:
知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
情感态度与价值观:通过学生自己探索出法则,让学生获得成功的喜悦。
教学重点:运用有理数乘法法则正确进行计算。
教学难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
教材分析:
本节课是学生在小学本已学过正有理数的乘法,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。
因此,教材首先对照小学乘法的意义和负有理数的意义,结合在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。
然后通过具体例子说明如何具体运用法则进行计算。
接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。
同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。
最后,通过具体实例,说明了在含有加、减、乘的算式中,没有括号时的运算顺序。
本节课的重点是有理数乘法运算法则。
在实际教学中,要通过讲、练使学生能熟练地、准确地按照法则进行乘法运算。
本节课难点是符号的确定,特别是两负数相乘,积为正。
因而,要让学生牢记同号得正、异号得负。
教具: 多媒体课件
教学方法:发现探究法分层递进法
课时安排:1课时
附:板书设计。
七年级数学有理数的乘法教案及教学设计(精选6篇)
七年级数学有理数的乘法教案及教学设计(精选6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学有理数的乘法教案及教学设计(精选6篇)作为一位杰出的老师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。
人教版七年级数学上册:1.4.1有理数的乘法(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个负数相乘得到正数的情况?”(例如,温度连续下降两天,每次下降5摄氏度,总下降了多少摄氏度?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘法的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指两个有理数相乘的运算,其结果遵循特定的法则。这些法则是我们解决实际问题的数学工具,帮助我们更好地理解和计算生活中的变化。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算温度连续下降两天,每次下降5摄氏度,总下降了多少摄氏度。通过有理数乘法,我们可以得出答案。
3.应用乘法法则解决实际问题,例如计算温度变化、距离变化等。
4.乘法运算的简便计算方法,如分配律、结合律等在有理数乘法中的应用。
5.练习不同类型的有理数乘法题目,提高运算速度和准确性。
二、核心素养目标
1.培养学生运用数学语言进行有效表达和交流的能力,通过有理数乘法法则的理解与运用,提高学生的数学思维能力。
在学生小组讨论环节,我尽量以引导者的身份参与其中,鼓励学生发表自己的观点。从讨论成果来看,这种方法有助于培养学生的独立思考能力。然而,我也发现有的学生在讨论中较为内向,发言不够积极。针对这一问题,我将在今后的教学中关注这部分学生,鼓励他们大胆表达自己的看法。
人教版七年级数学上册:1.4.1有理数的乘法(教案)
一、教学内容
人教版七年级数学上册:1.4.1有理数的乘法。本节课将围绕以下内容展开:
七年级数学1.4.1有理数的乘法(第一课时)优秀教案
1.4.1有理数的乘法(第一课时〕教学目标:1、理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.2、 能说出有理数乘法的符号法则,能用例子说明法则的合理性.3、能计算多个有理数相乘。
教学重难点:教学重点:两个有理数相乘的符号法则.教学难点:有理数乘法法则的运用.教学过程一、导入1、复习稳固:〔1〕有理数包括哪些数?〔2〕计算: 3X2= 3X0= 3X = X =2、引入负数后,有理数的乘法有几类?又应该怎么计算?〔揭示课题〕二、探究新知1、在数轴上,向东运动2米,记作+2米;向西运动2米,记作-2米。
例:(1):2x3其中2看作向东运动2米,“x3〞看作沿此方向运动3次,用数轴表示如下:2361230 1 2 3 4 5 6结果怎么样呢?〔向西运动了6米〕所以2x3=6[学生小组合作探究]按照〔1〕的方式完成〔2〕—〔5〕(2)〔-2〕x3(3)2x(-3)(4)(-2)x(-3)(5)(-2)x0 ,0x3 , 0x(-3) , 2x0〔学生小组汇报〕2、从上面一组题中,同学们觉得两个有理数相乘的结果有没有规律可行?建议大家从两个方面进行考虑:(1)积的符号与两个因数的符号有什么关系?(2)积的绝对值与两个因数的绝对值又有怎样的关系?〔学生活动时间〕学生答复,老师完善,得出有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
(利用数轴不仅前后知识加以联系,还形象的表达出有理数的乘法,并通过小组合作,加深理解,同时锻炼同学们的观察能力以及合作表达交流的能力。
)活动1:1、确定两个有理数相乘的积的符号。
〔教师任意说出一个算式,让学生口答这个算式的积的符号,最后归纳计算步骤。
〕2、让学生同桌之间互相出题计算,初步熟悉运算法则。
三、稳固练习1、计算6×(-4)= (-8)×(-1 )=(-0.5)× = (-3)×(- )=教师说明:在最后一个运算中我们得到了(-3)×(--)=1.与以前学习过的倒数概念一样。
人教版七年级上册2_有理数乘法教学设计
1.4.1有理数的乘法(第一课时)教学设计一、教学内容:七年级上册1.4.1二、教学目标:1、掌握有理数的乘法法则;2、会进行简单的有理数乘法法则。
三、教学重难点:重点:两个有理数相乘的符号法则。
难点:如何观察给定的算式,从哪些角度概括算式的规律。
四、教学准备:学生预习本节课内容五、教学过程:(一)情境引入1、问题:如下图,小明有5张卡片,上面写着不同的数字,他想从中抽取2张卡片,使这2张卡片上的数字乘积最大,你知道他应该如何抽取吗?(设计意图:通过抽卡片活动,培养学生对有理数乘法的学习兴趣,激发学生的求知欲。
)2、温故知新:(1)有理数的加法分为几种情况?(2)回想我们得出有理数的加法法则的过程,从数的那两个角度得出法则的?(3)与有理数的加法类似,有理数的乘法可以分几种情况?(二)探究新知1、探究一:问题1:观察下面的乘法算式,你能发现什么规律?3×3 = 93×2 = 63×1 = 33×0 = 0追问1:应从哪几个角度去观察、发现规律?追问2:要使这个规律在引入负数后仍成立,那么下面算式的积应该是什么?3×(-1) =3×(-2) =3×(-3) =(1)以上三个算式还可以通过什么方法得出乘积?(-1)+(-1)+(-1)=3×(-1)=-3(-1)+(-1)+(-1)=3×(-1)=-3(-1)+(-1)+(-1)=3×(-1)=-32、探究二问题2:观察下面的乘法算式,你能发现什么规律?3×3 = 92×3 = 61×3 = 30×3 = 0规律:随着前一个因数逐次递减1,积逐次递减3.(由学生表述)追问1:要使这个规律在引入负数后仍然成立,空格赢填什么数?(-1)×3 =(-2)×3 =(-3)×3 =追问2:从符号和绝对值两个角度观察上面的算式,你能说说它们的共性吗? 归纳:异号两数相乘,积为负数,积的绝对值等于各因数绝对值的乘积。
人教版初一数学上册有理数乘法(第一课时)两个有理数相乘
有理数相乘教案(第一课时)教学目标:1、理解并掌握有理数乘法法则;2、能利用有理数乘法法则计算两个有理数的乘法;3、理解倒数的慨念,并能求一个数的倒数;3、经历探究有理数乘法法则的过程,培养学生良好的思维方式和观察、总结能力;4、通过教学中有关实际生活的实例,培养学生学习数学的兴趣和信心。
教学重点:有理数的乘法法则和倒数教学难点:利用有理数乘法法则进行正确的计算1、回顾知识,引入新课活动1 :同学们以前学过的乘法有?引入负数后增加了哪几类有理数的乘法呢?学生作答,老师根据学生的回答引导学生总结:正数x正数,正数x 0,负数x负数,负数x正数,负数x 0学生举几个例子,老师把例子板书在黑板上。
提问:新增加的几类数该怎么计算了?认真听完今天的课同学们自己肯定能回答出来。
2、讲授新课1)有理数乘法法则问题1 : 给出学生熟悉的正数和正数简单计算式:3X 3=9 3 X2=6 3X 仁3同学们思考下,下面的两个有理数的积应该是什么?3X( -3)=-9 3 X(-2)=-6 3X(-1)=-3给学生思考时间,然后由学生回答,最后老师直接给出上面式子的答案,同时提问:上面两类不同的算式的相同点和不同点在哪里?从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?引导学生观察并总结:积的结果的符号都是负号,积的结果是绝对值相乘问题2观察下列算式,类比上述过程,你又能发现什么规律?3X 3=9 2 X 3=6 1 X 3=3引入负数后,你认为下面的空格应各填什么数?(-1)X 3=(-2)X 3=(-3)X 3=学生作答并总结有什么规律?引导学生观察并总结:积的结果的符号都是负号,积的结果是绝对值相乘。
问题3观察下列算式,类比上述过程,你又能发现什么规律?3X 3=9 2 X 3=6 1 X 3=3(-1)X( -3) =3 (- 2)X( -3) =6 (-3) X( -3) =9给学生思考时间,然后由学生回答,最后老师直接给出上面式子的答案,同时提问:上面两类不同的算式的相同点和不同点在哪里?从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?引导学生观察并总结:积的结果的符号都是正号,积的结果是绝对值相乘。
有理数的乘法(第一课时)教案
1.4.1有理数的乘法(第一课时)一、教学目标知识与技能1.使学生在了解乘法的基础上,理解有理数乘法法则.2.能熟练地进行有理数乘法运算过程与方法在积极参与探索有理数乘法法则的数学活动中,体会有理数的实际意义,发展应用数学知识的意识与能力.情感态度与价值观通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、重点、难点重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;难点:有理数乘法中的符号法则三、学情分析本节课是在学习了有理数的概念及数轴的基础上学习的,主要内容是有理数的乘法运算。
在原有正数及0的乘法运算经验中,通过一系列活动进行学习,激起学生的学习兴趣.教学环节的设计与展开,以问题解决为中心,在探索后经小组合作,尝试练习,总结自己的观点;同时,让尽可能多的学生自觉参与到学习活动中来。
五、设计思路本节课在引入部分利用回顾旧知为巩固加法法则也为总结乘法法则设台阶,在探索新知时利用数轴上蜗牛运动的例子激发学生的兴趣,使学生能在兴趣的指引下逐步开展探究,在例子中,把表示具有相反意义的量的正负数在实际问题中求积的问题与小学算术乘法相结合,通过小组讨论合作学习的方式得出结论。
在归纳法则的过程中,既培养学生的概括能力,观察能力及口头表达能力,也让学生通过归纳体验从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。
通过气温变化问题,引导学生关注身边的数学,体现数学来源于实践又服务于实践的思想。
在练习设计与作业布置中体现分层次教学的要求,让不同层次的学生都能主动参与并能得到成功的体验。
附:学案1.4.1有理数的乘法(第一课时)一、自主探究问题:一只蜗牛沿直线L爬行,它现在的位置恰好在点O上. 我们规定:向左为负,向右为正,现在前为负,现在后为正.看看它以相同速度沿不同方向运动后的情况吧.−0−→(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?算式:(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?算式:(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?算式:(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?算式:观察上面的算式,你能发现什么规律?2、总结有理数的乘法法则:二、尝试应用1、计算(1)(-5)×(-3)(2)(-7)×4(3)(-3)×9(4)(-21)×(-2)2、用正负数表示气温的变化量,上升为正,下降为负。
有理数的乘法法则教案人教版数学七年级上册
1.4.1有理数的乘法第1课时有理数的乘法法则教学目标:1.理解有理数的乘法法则.2.能利用有理数的乘法法则进行简单的有理数乘法运算.3.会利用有理数的乘法解决实际问题.教学重难点:重点:有理数的乘法法则,多个数相乘的符号法则.难点:积的符号的确定.教学方法:点拨启发法教学课时:1教学过程:新课导入1.计算:(1)(2)+(2)+(2)=6;(2)(9)+(9)+(9)+(9)+(9)=45.2.你能将上面两个算式写成乘法算式吗?答:(2)×3=6;(9)×5=45.引入负数之后有理数的乘法应该怎么运算?这节课我们就来学习有理数的乘法.讲授新课阅读教材P28~31内容,完成下列问题.知识点1有理数的乘法运算1.如图所示,一只蜗牛沿直线l爬行,它现在的位置在l上的点O处.填一填:(1)如果一只蜗牛向右爬行2 cm记为+2 cm,那么向左爬行2 cm应记为 2 cm;(2)如果3分钟后记为+3分钟,那么3分钟前应记为3分钟.想一想:(1)如果蜗牛一直以每分钟2 cm的速度向右爬行,3分钟后它在什么位置?结果:3分钟后蜗牛在l上点O右边6 cm:(+2)×(+3)=6(cm) ;(2)如果蜗牛一直以每分钟2 cm的速度向左爬行,3分钟后它在什么位置?结果:3分钟后蜗牛在l上点O左边6 cm:(2)×(+3)=6(cm) ;(3)如果蜗牛一直以每分钟2 cm的速度向右爬行,3分钟前它在什么位置?结果:3分钟前蜗牛在l上点O左边6 cm处.可以表示为:(+2)×(3)=6(cm) ;(4)如果蜗牛一直以每分钟2 cm的速度向左爬行,3分钟前它在什么位置?结果:3分钟前蜗牛在l上点O右边6 :(2)×(3)=6(cm) ;(5)原地不动或运动时间为零,结果是什么?结果:仍在原处,即结果都是0,可以表示为:0×3=0;0×(3)=0;2×0=0;(2)×0=0. 根据上面的结果可知:1.正数乘正数积为正数;负数乘负数积为正数;(同号得正)2.负数乘正数积为负数;正数乘负数积为负数;(异号得负)3.乘积的绝对值等于各乘数绝对值的积.4.零与任何数相乘或任何数与零相乘结果都是0.范例应用例1计算:(1)5×(9);(2)(5)×(9);(3)(6)×0;解:(1)5×(9)=(5×9)=45.(2)(5)×(9)=5×9=45.(3)(6)×0=0.[方法归纳]有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.例2 判断下列各式的积是正的、负的还是0?2×3×4×(5)(负);2×3×(4)×(5)( 正 );2×(3)×(4)×(5)( 负 );(2)×(3)×(4)×(5)( 正 );7.8×(8.1)×0×(19.6)( 0 ).[方法归纳] 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,如果其中有因数为0,则积等于0.知识点2 倒数计算并观察结果有何特点?(1)12×2;(2)(0.25)×(4).解:(1)12×2=1.(2)(0.25)×(4)=1.规律总结:有理数中,乘积是1的两个数互为倒数.思考:数a(a ≠0)的倒数是什么?答:a ≠0时,a 的倒数是1a . 范例应用例3 求下列各数的倒数.(1)34;(2)223;(3)1.25;(4)5.解:(1)34的倒数是43.(2)223=83,故223的倒数是38.(3)1.25=54,故1.25的倒数是45.(4)5的倒数是15.知识点3有理数的乘法的应用一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东平均每次行驶10 km,向西平均每次行驶7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?解:(1)记向东行驶为正,依题意,得10×8+(7)×12=4(km).答:该出租车连续20次送客后,停在出发地西边4 km处.(2)10×8+7×12=164(km).答:该出租车一共行驶了164 km.范例应用例4 用正、负数表示气温的变化量,上升为正,,每登高1 km,气温的变化量为6℃,攀登3 km 后,气温有什么变化?解:(6)×3=18(℃).答:气温下降18℃.课堂练习的值是(D)1.计算(4)×52A.7 C.102.下列计算结果是负数的是(C)A.(3)×4×(5)B.(3)×4×0C.(3)×4×(5)×(1)×(4)×(5)3.下列两数互为倒数的是(C)和3 B.5和15C.4和14 和04.计算:(1)(0.5)×20×(0.8);(2)(0.8)×134;(3)(4)×(6)×(5).解:(1)(0.5)×20×(0.8)=0.5×20×0.8=8.(2)(0.8)×134=0.8×134=45×74=75.(3)(4)×(6)×(5)=4×6×5=120.5.气象观测统计资料表明,在一般情况下,高度每上升1 km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9 km 处的气温大约是多少?解:(6)×9=54(℃);21+(54)=33(℃).答:甲地上空9 km 处的气温大约为33℃. 小结1.有理数乘法法则:两数相乘,同号得正,异号得负,0相乘,都得0.2.几个不是零的数相乘,负因数的个数为{奇数时,积为负数;偶数时,积为正数.3.几个数相乘,若有因数为零,则积为零.4.乘积是1的两个数互为倒数.板书设计1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.有理数的乘法法则.2.有理数乘法的求解步骤.3.倒数:乘积是1的两个数互为倒数.教学反思有理数的乘法是有理数运算中一个非常重要的内容,它与有理数的加法运算一样,也是建立在小学算术运算的基础上的.“有理数乘法”的教学,在性质上属于定义教学,历来是一个难点课题,教学时应略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则.本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力培养的前提下,最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合“新课程标准”倡导的理念.。
2022年人教版七年级数学上册第一章有理数教案 乘方(第1课时)
第一章有理数1.5 有理数的乘方1.5.1 乘方第1课时一、教学目标【知识与技能】1.正确理解乘方、幂、指数、底数等概念.2.会进行有理数乘方的运算.【过程与方法】通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.【情感态度与价值观】培养探索精神,体验小组交流、合作学习的重要性.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确理解乘方的意义,掌握乘方运算法则.【教学难点】正确理解乘方、底数、指数的概念,并合理运算.五、课前准备教师:课件、直尺、计算器等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8844米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?(出示课件2)(二)探索新知1.师生互动,探究乘方的意义教师问1:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的面积为2×2×2=8(cm2).观察式子2×2,2×2×2有何共同特点?学生回答:都是相同因数的乘法.教师问2:为了简便,我们可以将它们记作什么,读作什么?学生回答:2×2记作22,读作2的平方;2×2×2记作23,读作2的立方.教师问3:某种细胞每30分钟便由一个分裂成两个,经过3小时这种细胞由1个能分裂成多少个?(出示课件4)分裂方式如下所示:(出示课件5)学生讨论后回答:2×6=12.教师问4:这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?(出示课件6)师生共同解答如下:一次:2个两次:2×2个三次:2×2×2个四次:2×2×2×2个六次:2×2×2×2×2×2个教师问5:请比较细胞分裂四次后的个数式子:2×2×2×2和细胞分裂六次后的个数式子: 2×2×2×2×2×2. 这两个式子有什么相同点?(出示课件7)学生回答:它们都是乘法,并且它们各自的因数都相同.教师问6:这样的运算能像平方、立方那样简写吗?学生回答:2×2×2×2记作24,2×2×2×2×2×2记作26.教师问7:24读作2的4次方(幂),26读作2的6次方(幂).同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?学生回答:(-2)×(-2)×(-2)×(-2)记作(-2)2,读作负2的四次方(幂).(-25)×(-25)×(-25)×(-25)×(-25)记作(-25)5,读作负五分之二的五次方(幂).教师问8:a·a·a·a·a·a可以记作什么?读作什么?学生回答:a·a·a·a·a·a可以记作a6,读作a的六次方(幂)教师问9:进一步提出:a·a·…·a,(n个a相乘)(n为正整数)呢?学生回答:可以记作a n,读作a的n次方.教师讲解:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说a可以取任意有理数.总结点拨:(出示课件8)一般地,n个相同的因数a相乘,记作a n,读作“a的n次幂(或a的n次方)”,即教师讲解:求n个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.总结点拨:(出示课件9)这种求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂.一个数可以看作这个数本身的一次方,例如,8就是81,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.例1:计算:(出示课件11)2)3.(1)(–4)3;(2)(–2)4;(3)(-3师生共同解答如下:解:(1)(–4)3=(–4)×(–4)×(–4)=–64;(2)(–2)4 =(–2)×(–2)×(–2)×(–2)=16;(3).322228333327⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭教师问10:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?师生共同解答如下:(出示课件12)负数的奇次幂是负数,负数的偶次幂是正数.正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.例2:用计算器计算(–8)5和(–3)6.(出示课件14)师生共同解答如下:开启计算器后按照下列步骤进行:8 5显示:(-8)^ 5-32768 即(-8)5=-327683 6显示:(-3)^ 6729 即(-3)6=7298 5 =显示:-327683 6显示:729所以(-8)5=-32768 (-3)6=729 例3:计算:(出示课件16)(1)22 -3-3⨯()()(2)–23×(–32)(3)64÷(–2)5(4)(–4)3÷(–1)200+2×(–3)4师生共同解答如下:解:(1)22(-3)(-)329(-)6;3=⨯=-⨯(2)–23×(–32)= –8×(–9)=72;(3)64÷(–2)5=64÷(–32)= –2;(4)(–4)3÷(–1)200+2×(–3)4= –64÷1+2×81=98教师问11:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?(出示课件17)学生回答:先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算.(三)课堂练习(出示课件19-23)1.计算(–3)2等于()A.5 B.–5C.9 D.–92.计算(–1)2017的结果是()A. –1B. 1C. 2017D. –20173.下列说法中正确的是( )A. 23表示2×3的积B. 任何一个有理数的偶次幂是正数C. -32与(-3)2互为相反数D.一个数的平方是94 ,这个数一定是 32 4.在 – |–3|3,– (–3)3, (–3)3 , –33中,最大的数是( )A.– |–3|3B.– (–3)3C. (–3)3D. –335.对任意实数a,下列各式不一定成立的是( )A. a 2= (–a)2B. a 3= (–a)3C. |a| = |–a|D. a 2 ≥06.填空:(1)–(–3)2= ______ ; (2)–32= ___________ ;(3)(–5)3= _______ ; (4)0.13= ___________ ;(5)(–1)9= ________ ; (6)(–1)12= _________;(7)(–1)2n =_________ ; (8)(–1)2n+1=________;(9)(–1)n =____________. .7.计算:(-6)2×(31-21) . 8.厚度是0.1毫米的纸,将它对折1次后,厚度为0.2毫米.(1)对折3次后,厚度为多少毫米?(2)对折7次后,厚度为多少毫米?(3)用计算器计算对折30次后纸的厚度.参考答案:1.C2.A3.C4.B5.B6.(1)-9;(2)-9;(3)-125;(4)0.001;(5)-1;(6)1;(7)1;(8)-1;(9)-1(当n 为奇数时),1(当n 为偶数时)7.解:(-6)2×(31-21)=36×21-36×31=18-12=6 8.(1)0.8毫米;(2)12.8毫米;(3)0.1×230=0.1×1073741824=107374182.4(毫米)107374182.4毫米=107374.1824米.教师补充:107374.1824米>8848.86米(珠穆朗玛峰高度)(四)课堂小结今天我们学了哪些内容:1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题.(五)课前预习预习下节课(1.5.1)43页到44页的相关内容。
有理数的乘法教案
课题:有理数的乘法(第一课时)授课人:吴漫教学目标1、掌握有理数的乘法法则,能利用乘法法则正确进行有理数乘法运算;2、经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜想、验证等能力;3、通过学生自己探索出法则,让学生获得成功的喜悦。
重点运用乘法法则正确进行计算。
难点有理数乘法法则的探索过程及对法则的理解。
教学过程一、创设情境师:计算算式并观察规律⨯3=93⨯3=62⨯3=13生:自己总结规律并尝试写出后面几个算式⨯3=()3⨯-=3-1()6⨯-23-=()9⨯-33-=二、共同探究由以上观察和归纳可发现:正数乘以正数,得正数正数乘以0,得0正数乘以负数,得负数师:出示练习巩固以上结论。
那负数乘以负数会得什么数?再次进行观察:()9⨯3-3-=()6-⨯=32-()3-⨯1-=3生:自己总结规律并尝试写出后面几个算式()030=-⨯()()331=-⨯-()()632=-⨯-生口述结论:负数乘以负数,得正数。
三、深入探究师:计算()()[]233⨯++-生:口述两种算法,如果学生只会一种,则提示第二种。
师:两种算法的结果应该一致,可见()623-=⨯-师:计算()()[])2(33-⨯++-生:口述两种算法师:两种算法的结果应该一致,可见()6)2(3=-⨯-师生共同总结乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘。
一个数与零相乘得零。
四、例题讲解例题:计算1、)6()5(-⨯- 2、61)23(⨯- 3、)35()53(-⨯- 4、)25.1(8-⨯师演示解题的基本步骤以及规范性,并说明倒数的概念。
五、练习实践出示练习题,学生口答。
学生独立完成课后练习。
四位同学板演练习2中的四小题。
六、课堂小结通过本节课的学习,你学到了哪些知识?七、作业布置课后习题第1题。
人教版七年级数学上册教案单元1.4
1.4.1 有理数的乘法(一)教学目的:(一)知识点目标:1.使学生在了解乘法意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。
2.使学生会进行有理数的乘法运算。
(二)能力训练要求:1.经历探索有理数乘法法则,发展观察、归纳、猜想、验证的能力。
2.培养学生的运算能力。
(三)情感与价值观要求:激发学生学习数学的兴趣,提高学生认识世界的水平。
教学重点:准确地进行有理数的乘法运算。
教学难点:有理数乘法中的符号法则。
教学方法:启发式教学。
教学过程:创设问题情境,引入新课[活动1]:1。
计算:(1)(一2)十(一2)(2)(一2)十(一2)十(一2)(3)(一2)十(一2)十(一2)十(一2)(4)(一2)十(一2)十(一2)十(一2)十(一2)猜想下列各式的值:(一2)×2,(一2)×3,(一2)×4,(一2)×5。
(比照小学学过的非负数乘法,引导学生进行猜想和计算。
)2.[师]两个有理数相乘有几种情况?[生]和有理数的加法一样,分三种情况:同号两个有理数相乘;异号两个有理数相乘;0和有理数相乘。
[师]这节课我们就是要这样分类研究有理数的乘法法则的。
讲授新课[活动2]问题1:由活动1可知:(1)(一2)×5=一10;(一2)×4=一8;(一2)×3=一6;(一2)×1=;(一2)×0=;(一2)×(一1)=;(一2)×(一2)=;由此你能猜想出有理数的乘法法则吗?[师生共析]猜想:同号的两个数相乘,积的符号是“十”,积的绝对值是是各因数绝对值的积。
异号的两个数相乘,积的符号是“一”,积的绝对值是是各因数绝对值的积。
零乘以任何数都得零。
[问题2]借助于数轴来研究有理数的乘法。
如图,一只蜗牛沿直线爬行,它现在的位置恰在上的点O 。
(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟后,它在什么位置?(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟后,它在什么位置?(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟前,它在什么位置?(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟前,它在什么位置?[师生共析]为区分方向,我们规定:向左为负,向右为正。
人教版初一数学上册有理数乘法第一课时教案
1.4.1《有理数乘法》(第1课时)教学设计及说明昆明市第十中学戴西来一、教材分析(一)本节课在教材中的地位和作用:本节课是人教版《数学》第一章第四节有理数乘法第一课时的内容。
有理数的乘法是继有理数的加减法之后的又一种基本运算,有理数的乘法既是有理数运算的深入,又是进一步学习有理数出发,乘方的基础,对后续的代数学习是至关重要的。
基于以上的分析制定如下教学目标。
(二)教学目标:1.理解有理数的乘法法则,能利用有理数乘法法则计算两个数的乘法;2.能说出有理数乘法的符号法则,能用例子说明法则的合理性;3.让学生在数学学习的过程中获得解决问题的经验;4.逐步养成良好的个性思维品质。
(三)目标解析达成目标1的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,在考虑乘数的绝对值并得出正确的结果。
达成目标2的标志是学生能通过具体的例子说明有理数乘法的符号的归纳过程。
(四)教学重点与难点重点:两个有理数相乘的符号法则;难点:如何观察给定的乘法算式,从哪些角度概括算式的规律。
二、学情分析:基于学生的学习基础,在探究算式的规律和合情推理方面还存在欠缺.本节课是学生在已经掌握了两个正数相乘法则之后,继续探索正数乘负数,负数成正数、负数乘负数以及负数乘0.他们已经了解了一些探究的思路,也经历过一些探究的过程。
因此,本节课的学习,可以引导学生类比前面的研究方法.三、教法:引导探究法教法分析、根据本节课内容的特点,为了更直观、形象地突出重点、突破难点,提高课堂效率,采用以观察、发现为主,多媒体演示为辅的教学组织方式.在教学过程中,通过设置一系列例题变式,创设问题情境,启发学生思考,让学生亲身体验知识的产生、发展和形成过程。
本节课的学习,可以引导学生类比前面的研究方法.学法:自主探究、合作交流四、教具白板、多媒体五、教学过程。
【人教版】七年级数学上册1.4.1有理数的乘法(第一课时)教案及练习(含答案)
有理数的乘法(1)经历研究有理数乘法法例的过程,发展察看、知识与技术归纳、猜想、考证等能力.教课目的过程与方法能运用法例进行简单的有理数乘法运算.培育学生的语言表达能力,经过合作学习调换感情态度价值观学生学习的踊跃性,加强学习数学的自信。
教课要点教课难点乘法法例的推导会利用法例进行简单的有理数乘法运算教课过程(师生活动)设计理念1.计算:(1)(一 2)十(一 2)(2)(一 2)十(一 2)十(一 2)(3)(一 2)十(一 2)十(一 2)十(一 2)(4)(一 2)十(一 2)十(一 2)十(一 2)十(一 2)猜想以下各式的值:惹起学生的学习兴趣.为设置情境(一 2)× 2,(一 2)× 3,(一 2)× 4,(一 2)引入课题下边的学习作铺垫.× 5。
(对比小学学过的非负数乘法,指引学生进行猜想和计算。
)2.两个有理数相乘有几种状况?结论:和有理数的加法同样,分三种状况:同号两个有理数相乘;异号两个有理数相乘;0 和有理数相乘。
学生自学有理数乘法中不一样的形式,达成教科书中 29~30 页的填空.察看以上各式,联合对问题的研究,请同学们回答:培育学生从特别到一般( 1)正数乘以正数积为数,( 2)正数乘的归纳思想.培育学以负数积为数,生的归纳能力和语言表( 3)负数乘以正数积为数,( 4)负数乘达能力,学生的归纳只需以负数积为数。
合理都加以鼓舞.使沟通对话学生明确有理数中包含提出问题:一个数和零相乘怎样解说呢?研究新知正数、负数和 0,培育完有理数乘法法例:两数相乘,同号得正,异号得负,并把绝对值整的分类思想.相乘。
任何数同0 相乘,都得 0。
让学生进一步理解法问题:有理数相乘应分几步达成?则,用归纳出的规律指导结论:两数相乘,应分两步达成:一是确立积的符号;学生正确地进行运算。
二是确立积的绝对值。
口答:确立以下两数的积的符号:(1) 5×(-3)(2) (-4)× 6(3) (-7)×( -9 ) (4)0.5 × 0.7 、对有理数的乘法要点是给出教科书31 页例 1, 让学生以独立思虑的形式确立积的符号实时应用,让学生初步体验成功的加以解决愉悦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘法(第一课时)
教学目标:
知识与技能:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
过程与方法:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
情感态度与价值观:通过学生自己探索出法则,让学生获得成功的喜悦。
教学重点:运用有理数乘法法则正确进行计算。
教学难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
教材分析:
本节课是学生在小学本已学过正有理数的乘法,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。
因此,教材首先对照小学乘法的意义和负有理数的意义,结合在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。
然后通过具体例子说明如何具体运用法则进行计算。
接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。
同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。
最后,通过具体实例,说明了在含有加、减、乘的算式中,没有括号时的运算顺序。
本节课的重点是有理数乘法运算法则。
在实际教学中,要通过讲、练使学生能熟练地、准确地按照法则进行乘法运算。
本节课难点是符号的确定,特别是两负数相乘,积为正。
因而,要让学生牢记同号得正、异号得负。
教具:多媒体课件
教学方法:发现探究法分层递进法
课时安排:1课时
附:板书设计
教学反思:
本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。
在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。
本节课特别注重过程教学,有利于培养学生的分析归纳能力。
教学效果令人比较满意。
如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好.。