初中数学反比例函数综合题(含答案)

合集下载

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)

一、选择题1.函数5y x =的图象位于() . A .第三象限B .第一、三象限C .第二、四象限D .第二象限【答案】B【分析】根据直角坐标系、反比例函数的性质分析,即可得到答案.【详解】 ∵5y x=∴5xy =,即x 和y 符号相同 ∴5y x=的图象位于第一、三象限 故选:B .【点睛】 本题考查了反比例函数、直角坐标系的知识;解题的关键是熟练掌握反比例函数、直角坐标系的性质,从而完成求解.2.如图,在平面直角坐标系中,直线y x =与反比例函数1(0)y x x=>的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若3OA BC =,则k 的值为( )A .2B .32C .3D .83【答案】D【分析】解析式联立,解方程求得A 的横坐标,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C 的坐标,代入y x k =+即可求得k 的值.【详解】 解:直线y x =与反比例函数1(0)y x x=>的图象交于点A , ∴解1x x=求得1x =±(经检验,符合题意) , A ∴的横坐标为1,A ∴的坐标为(1,1),如图,过C 点、A 点作y 轴垂线,垂足为G ,H ,OA//BC ,∠CGB=∠AHO=90°∴CBG AOH ∠=∠,∴OHA BGC ∽,3OA BC =,∴3OA AH BC GC ==, ∴1=3GC, 解得GC =13, C ∴的横坐标为13, 把13x =代入1y x =得,3y =, 1(,3)3C ∴, 将直线y x =沿y 轴向上平移k 个单位长度,得到直线y x k =+,∴把C 的坐标代入得133k =+,求得83k =, 故选择:D .【点睛】 本题考查了反比例函数与一次函数的综合问题,涉及函数的交点、一次函数平移、待定系数法求函数解析式,三角形相似的判定与性质等知识,求得交点坐标是解题的关键.3.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)k y k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y == 【答案】B【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可.【详解】∵k <0,∴反比例函(0)k y k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0,∴312y y y <<,故选B .【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.4.若反比例函数1y k x +=(k 是常数)的图象在第一、三象限,则k 的取值范围是( ) A .0k <B .0k >C .1k <-D .1k >- 【答案】D【分析】先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.5.如图,直线()30y kx k =-≠与坐标轴分别交于点,B C ,与若双曲线()20y x x=-<交于点(),1A m ,则AB 为( )A .5B 13C .213D 26【答案】A【分析】 由A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x(x <0)的交点可求得A 点坐标与一次函数的解析式,可求得B 点坐标,用两点间距离公式可求得AB 的长.【详解】 解:A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x (x <0)的交点,可得A 满足双曲线的解析式, 可得:21m=-, 解得:2m =-,即A 点坐标为(-2,1),A 点在直线上,可得A 点满足y=kx ﹣3(k≠0),可得:123k =--,解得:k=-2,∴一次函数的解析式为:y=-2x ﹣3,B 为直线与y 轴的交点,可得B 点坐标(0,-3),由A 点坐标(-2,1),可得AB 22(20)[1(3)]--+--=5故选:A..【点睛】本题考查一次函数与反比例函数的综合,注意求出A 、B 两点坐标后用距离公式求解.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y (万元)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是( )A .4月份的利润为45万元B .改造完成后每月利润比前一个月增加30万元C .改造完成前后共有5个月的利润低于135万元D .9月份该企业利润达到205万元【答案】D【分析】先根据图象求出反比例函数的解析式,将横坐标为4代入求得利润即可判断A ,根据图象求出一次函数的解析式,即可判断B ,将135代入两个函数求对应的x 的值即可;将x=9代入求利润即可;【详解】A 、由图象得反比例函数经过点(1,180),∴ 反比例函数的解析式为:180y x= , 将x=4代入得:y=45,故该选项不符合题意;B 、将(4,45),(5,75)代入一次函数解析式,45=4755k b k b +⎧⎨=+⎩, 解得3075k b =⎧⎨=-⎩, 求得一次函数解析式为:3075y x =- ,故该选项不符合题意;C 、将y=135代入180y x=和3075y x =-中, 180135x = 解得:x=43; 135=3075x - 解得:x=7,故该选项不符合题意;D 、将x=9代入3075y x =-,求得y=270-75=195≠205,故该选项符合题意; 故选:D .【点睛】本题考查了反比例函数与一次函数的图象的性质,以及函数的解析式的求法;正确理解图是解题的关键;7.若点1(,1)A x -,2(,2)B x ,3(,3)C x 都在反比例函数6y x =的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .231x x x <<D .312x x x << 【答案】B【分析】根据反比例函数的增减性解答.【详解】 ∵6y x=,k=6>0, ∴该反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵点1(,1)A x -,2(,2)B x ,3(,3)C x ,∴点A 在第三象限内,且x 1最小,∵2<3,∴x 2>x 3,∴132x x x <<,故选:B .【点睛】此题考查反比例函数的增减性,掌握反比例函数增减性及判断方法是解题的关键.8.若双曲线5m y x -=在每一个象限内,y 随x 的增大而减小,则m 的取值范围是( ) A .5m <B .5m ≥C .5m >D .5m ≠ 【答案】C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线5m y x -=在每一个象限内,y 随x 的增大而减小, ∴50m ->,解得5m >,故选:C .【点睛】 本题考查了反比例函数的性质,掌握反比例函数k y x=,当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大.9.如图,Rt △AOB 中,∠AOB =90°,且点A 在反比例函数8y x =的图象上,点B 在反比例函数18y x=-的图象上,则tan B 的值是( )A .12B .13C .23D .49【答案】C【分析】过A 、B 作AC y ⊥轴,BD y ⊥轴,根据条件得到:ACO ODB ∽,根据反比例函数比例系数k 的几何意义得出:4:9S ACO S ODB =,利用相似三角形面积比等于相似比的平方即可求解.【详解】过A 、B 作AC y ⊥轴,BD y ⊥轴,∵∠AOB =90°,∴90AOC BOD ∠+∠=︒,∵90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,∵90BDO ACO ∠=∠=︒,∴ACO ODB ∽,∵A 在反比例函数8y x =的图象上,点B 在反比例函数18y x =-的图象上, ∴:4:9S ACO S ODB =,∴2tan 3OA ABO OB ==∠, 故选:C .【点睛】本题考查的是相似三角形的判定和性质,反比例函数、比例函数k 的几何意义,反比例函数图像上点的坐标特征,利用相似三角形的性质得到两边之比是解答本题的关键.10.已知反比例函数6y x=-,下列说法中正确的是( ) A .该函数的图象分布在第一、三象限 B .点()2,3在该函数图象上C .y 随x 的增大而增大D .该图象关于原点成中心对称 【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x 的增大而增大,再逐个判断即可.【详解】解:A .∵反比例函数6y x=-中-6<0, ∴该函数的图象在第二、四象限,故本选项不符合题意;B .把(2,3)代入6y x=-得:左边=3,右边=-3,左边≠右边, 所以点(2,3)不在该函数的图象上,故本选项不符合题意; C .∵反比例函数6y x=-中-6<0, ∴函数的图象在每个象限内,y 随x 的增大而增大,故本选项不符合题意;D .反比例函数6y x =-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D .【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.11.已知反比例函数6y x =-,下列结论中不正确的是( ) A .图象必经过点()3,2-B .图象位于第二、四象限C .若2x <-,则0<3y <D .在每一个象限内,y 随x 值的增大而减小【答案】D【分析】利用反比例函数图象上点的坐标特征对A 进行判断;根据反比例函数的性质对B 、C 、D 进行判断.【详解】解:A 、当x=-3时,y =−6x =2,所以点(-3,2)在函数y =−6x的图象上,所以A 选项的结论正确,不符合题意; B 、反比例函数y =−6x分布在第二、四象限,所以B 选项的结论正确,不符合题意; C 、若x <-2,则0<y <3,所以C 选项的结论正确,不符合题意; D 、在每一个象限内,y 随着x 的增大而增大,所以D 选项的结论不正确,符合题意. 故选:D .【点睛】本题考查了反比例函数的性质:反比例函数y=-k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.12.函数k y x=与y kx k =-(k 为常数且0k ≠)在同一直角坐标系中的图象可能是( ) A . B .C .D .【答案】C【分析】分k >0和k <0两种情况,分别判断反比例函数()0k y k x=≠ 的图象所在象限及一次函数y kx k =-的图象经过的象限.再对照四个选项即可得出结论.【详解】当k >0时, -k <0,∴反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时, -k >0,∴反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第二、三、四象限.故选:C .【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.二、填空题13.如图,菱形OABC 的顶点O 在原点,A 点坐标为(4,0),反比例函数y=k x(k≠0)的图像经过AC 、BO 的交点D ,且与AB 边交于点E ,连接OE 交AD 于点F ,若F 恰为AD 中点,则k=______________;14.如图,点A 在反比例函数k y x=(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC :CD =2:1,S △AD C =53.则k 的值为________.15.如图,点A B 、分别在反比例函数()110k y k x =>和()220k y k x=<的图象上,连接AB 交y 轴于点P ,且点A 与点B 关于P 成中心对称.若AOB ∆的面积为S ,则12k k -=_____.16.如图,反比例函数(0)ky x x=>的图象经过ABC 的顶点A ,点C 在x 轴上,//AB x轴.若点B 的坐标为(1,3),2ABCS=,则k 的值为______.17.双曲线2y x=-经过点A(-1,1y ),B(2,2y ),则1y ________2y (填“>”,“<”或“=”). 18.已知点A 的坐标为()0,2,点B 的坐标为()0,2-,点P 在函数1y x=-的图象上,如果PAB △的面积是6,则点P 的坐标是__________.19.如图,在平面直角坐标系中,直线y =ax +b 交坐标轴于A 、B 点,点C(-4, 2 )在线段AB 上,以BC 为一边向直线AB 斜下方作正方形BCDE .且正方形边长为5,若双曲线y =kx经过点E ,则k 的值为_______.20.如图,边长为1的正方形拼成的矩形如图摆放在直角坐标系里,A ,B ,C ,D 是格点.反比例函数y =kx(x >0,k >0)的图象经过格点A 并交CB 于点E .若四边形AECD 的面积为6.4,则k 的值为_____.三、解答题21.某地建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式;(2)当运输公司平均每天的工作量是15万米3时,完成任务所需的时间是多少? 22.如图,已知点()3,1A -,()2,2B -,反比例函数()0k y x x=<的图象记为L . (1)若L 经过点A . ①求L 的解析式;②L 是否经过点B ?若经过,说明理由;若不经过,请判断点B 在L 的上方,还是下方.(2)若L 与线段AB 有公共点,直接写出k 的取值范围.23.如图,在平面直角坐标系中,点A ,B 是一次函数和反比例函数图象的两个交点,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,画出一个平行四边形,使点A ,B 都是该平行四边形的顶点;(2)在图②中,画出一个菱形,使点A 在该菱形一边所在的直线上. 24.如图,直线y =﹣12x +7与反比例函数y =m x(m ≠0)的图象交于A ,B 两点,与y 轴交于点C ,且点A 的横坐标为2. (1)求反比例函数的表达式;(2)求出点B 坐标,并结合图象直接写出不等式m x<﹣12x +7的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.25.如图,已知(,2)A n -,(1,6)B 是一次函数y kx b =+的图象和反比例函数ky x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求AOB 的面积; (3)若kkx b x+<,直接写出x 的范围. 26.如图,在直角坐标系中,Rt ABC 的直角边AC 在x 轴上,∠ACB =90°,AC =1,点B(3,2),反比例函数y =kx(k >0)的图象经过BC 边的中点D . (1)求这个反比例函数的表达式;(2)若ABC 与EFG 成中心对称,且EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上,①求OF 的长;②连接AF ,BE ,证明:四边形ABEF 是正方形.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】利用菱形的性质可知D为OB的中点设可分别表示F和B点从而可表示出直线OE和直线AB的解析式联立可求得a的值即可表示D点坐标在Rt△OAD中利用勾股定理即可求得k 【详解】解:∵四边形OABC 为解析:12825【分析】利用菱形的性质可知D 为OB 的中点,设(,)k D a a,可分别表示F 和B 点,从而可表示出直线OE 和直线AB 的解析式,联立可求得a 的值,即可表示D 点坐标,在Rt △OAD 中利用勾股定理即可求得k . 【详解】解:∵四边形OABC 为菱形, ∴AC ⊥OB ,2OB OD =,设(,)k D a a,则2(2,)k B a a, ∵A (4,0),F 为AD 中点,∴4(,)22a kF a+, ∴直线OE 的解析式为:242(4)k a a ky x x a a +==+,直线AB 的解析式为:2(4)(4)24(2)k aky x x a a a =-=---,联立得(4)(4)(2)k y x a a k y x a a ⎧=⎪+⎪⎨⎪=-⎪-⎩,解得2(4)323x a k y a ⎧=+⎪⎪⎨⎪=⎪⎩,∴22((4),)33k E a a+, ∴223(4)3k ka a =+,解得165a =,∴165(,)516k D , 在Rt △OAD 中,根据勾股定理222OD AD OA +=,即2222165165()()(4)()16516516k k ++-+=,解得12825k =±, ∵题中反比例函数图象在第一象限,∴12825k =, 故答案为:12825.【点睛】本题考查反比例函数综合,菱形的性质.本题较难,在解题过程中需掌握中点坐标公式和两点之间距离公式.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S=x y k=.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.【分析】作AC⊥y轴于CBD⊥y轴于D如图先证明△ACP≌△BDP得到S△ACP=S△BDP利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=×|k1|+|k2|=S然后利用k1>0解析:2S【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=12×|k1|+12|k2|= S,然后利用k1>0,k2<0可得到k1-k2的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称,∴AP=BP,在△ACP和△BDP中,ACP BDPAPC BPDAP BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BDP(AAS),∴S△ACP=S△BDP,∴S △AOB =S △APO +S △BPO =S △AOC +S △BOD =12×|k 1|+12|k 2|=S , ∵k 1>0,k 2<0, ∴k 1-k 2=2S . 故答案为:2S . 【点睛】本题考查了比例系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是1k 2,且保持不变.也考查了反比例函数的性质.16.7【分析】根据题意可求出A 点坐标为再结合三角形的面积公式即可求出k 的值【详解】由题意可知A 点纵坐标为3∵A 点在反比例函数的图象上∴A 点横坐标为即A ∴AB=∴解得:故答案为:7【点睛】本题考查了反比例解析:7 【分析】根据题意可求出A 点坐标为(3)3k ,,再结合三角形的面积公式即可求出k 的值. 【详解】由题意可知A 点纵坐标为3, ∵A 点在反比例函数的图象上, ∴A 点横坐标为3k,即A (3)3k ,. ∴AB=13k-, ∴1(1)3223ABCk S=⨯-⨯=, 解得:7k =.故答案为:7. 【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,熟练运用反比例函数的性质解决问题是本题的关键.17.【分析】把点AB 的坐标代入函数解析式求出比较大小即可【详解】解:把点AB 的坐标代入函数解析式得∴>故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小本题也可以画出函数图象描点借助图象比较函 解析:>【分析】把点A 、B 的坐标代入函数解析式求出1y ,2y ,比较大小即可. 【详解】解:把点A 、B 的坐标代入函数解析式2y x=-得 122y =x 1=2=---,222y ==1x 1=---,∴1y >2y . 故答案为:> 【点睛】本题考查了根据函数解析式比较函数值的大小,本题也可以画出函数图象,描点,借助图象比较函数值的大小.18.(-3)或(-3)【分析】根据题意可得AB 的长根据△PAB 的面积是6可求得点P 的纵坐标代入反比例函数解析式可得点P 的横坐标从而得点P 的坐标【详解】∵A 的坐标为点B 的坐标为∴AB =4设点P 坐标为(ab解析:(-13,3)或(13,-3). 【分析】根据题意可得AB 的长,根据△PAB 的面积是6可求得点P 的纵坐标,代入反比例函数解析式可得点P 的横坐标,从而得点P 的坐标. 【详解】∵A 的坐标为()0,2,点B 的坐标为()0,2-, ∴AB =4.设点P 坐标为(a ,b),则点P 到x 轴的距离是|b|,又△PAB 的面积是6, ∴12×4|b|=6. ∴|b|=3. ∴b =±3. 当b =3时,a =-13; 当b =-3时,a =13. ∴点P 的坐标为(-13,3)或(13,-3). 故答案为:(-13,3)或(13,-3). 【点睛】本题考查反比例函数与坐标轴围成的几何图形面积问题,数形结合、分类讨论思想是解题常用方法.19.3【分析】作CF ⊥y 轴于FEG ⊥y 轴于G 根据勾股定理求得BF 证得△BCF ≌△EBG (AAS )从而求得E 的坐标然后代入y=即可求得k 的值【详解】解:作CF ⊥y 轴于FEG ⊥y 轴于G 如图∵C(-42)∴C解析:3 【分析】作CF ⊥y 轴于F ,EG ⊥y 轴于G ,根据勾股定理求得BF ,证得△BCF ≌△EBG (AAS ),从而求得E 的坐标,然后代入y=kx,即可求得k 的值. 【详解】解:作CF ⊥y 轴于F ,EG ⊥y 轴于G ,如图.∵C(-4, 2 ) ∴CF=4,OF=2.∵正方形BCDE 的边长为5, ∴BC=BE=5,∴2222543BC CF -=-= ∵∠BFC=90°, ∴∠BCF+∠CBF=90°, ∵∠CBE=90° ∴∠EBG+∠CBF=90°, ∴∠BCF=∠EBG , 在△BCF 与△EBG 中90BCF EBG BFC EGB BC EB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△BCF ≌△EBG (AAS ), ∴BF=EG=3,CF=BG=4, ∴FG=BG-BF=4-3=1 ∴OG=OF-FG=2-1=1 ∴E (3,1) ∴双曲线y=kx经过点E ,∴k=3×1=3.故答案为:3.【点睛】本题考查一次函数与反比例函数的交点,正方形的性质,勾股定理,全等三角形的判定与性质,待定系数法求反比例函数的解析式,解题关键是求得E的坐标.20.6【分析】根据四边形的面积求得CE=54设A(m3)则E(m+441)根据反比例函数系数k的代数意义得出k=3m=m+44解得即可【详解】解:由图象可知AD=1CD=2∵四边形AECD的面积为64∴解析:6【分析】根据四边形的面积求得CE=5.4,设A(m,3),则E(m+4.4,1),根据反比例函数系数k的代数意义得出k=3m=m+4.4,解得即可.【详解】解:由图象可知AD=1,CD=2,∵四边形AECD的面积为6.4,∴12(AD+CE)•CD=6.4,即12⨯(1+CE)×2=6.4,∴CE=5.4,设A(m,3),则E(m+4.4,1),∵反比例函数y=kx(x>0,k>0)的图象经过格点A并交CB于点E.∴k=3m=m+4.4,解得m=2.2,∴k=3m=6.6,故答案为6.6.【点睛】本题考查了反比例函数系数k的代数意义,梯形的面积,表示点A、E点的坐标是解题的关键.三、解答题21.(1)360yx=;(2)24天【分析】(1)根据题意直接写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式;(2)根据题意把x=15代入求出答案;【详解】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式为:360xy =, 故360y x=; (2)当运输公司平均每天的工作量是15万米3时, 完成任务所需的时间是:360=2415y =(天), 答:完成任务所需的时间是24天.【点睛】本题考查了反比例函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的相关知识解答.22.(1)①3y x =-(0x <);②点B 在图象L 上方,理由见解析;(2)43k -≤≤-. 【分析】(1)①将点A 坐标代入图象L 解析式中,解得,即可得出结论;②将x=-2代入图象L 解析式中,求出y ,再与2比较大小,即可得出结论;(2)求出图象L 过点A ,B 时的k 的值,再求出图象L 与线段AB 相切时的k 的值,即可得出结论.【详解】解:(1)①∵L 过点A (-3,1),∴313k =-⨯=-,∴图象L 的解析式为3y x =-(0x <); ②点B 在图象L 上方,理由:由(1)知,图象L 的解析式为3y x=-, 当2x =-时,33222y =-=<-, ∴点B 在图象L 上方;(2)当图象L 过点A 时, 由(1)知,3k =-,当图象L 过点B 时,将点B (-2,2)代入图象L 解析式k y x=中,得224k =-⨯=-, 当线段AB 与图象L 只有一个交点时,设直线AB 的解析式为y mx n =+,将点A (-3,1),B (-2,2)代入y mx n =+中, 3122m n m n -+=⎧⎨-+=⎩,∴14m n =⎧⎨=⎩, ∴直线AB 的解析式为4y x =+,联立图象L 的解析式和直线AB 的解析式得,4k y x y x ⎧=⎪⎨⎪=+⎩,化为关于x 的一元二次方程为240x x k +-=,∴1640k =+=,∴4k =-, 即满足条件的k 的范围为:43k -≤≤-.【点睛】本题是反比例函数综合题,主要考查了待定系数法,找出图象L 与线段AB 有公共点的分界点是解本题的关键.23.(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质对角线互相平分即可得出;(2)根据菱形的性质对角线垂直平分即可得出.【详解】解:(1)连接BO 并延长交反比例函数的第二象限的线于点1B ;连接AO 并延长交反比例函数的第二象限的线于点1A ;根据反比例函数图象性质,两条曲线关于原点中心对称,故1OB OB =,1OA OA =, 因为两条直线互相平分,故四边形11ABA B 为平行四边形;(2)如图,四边形CDEF 为菱形;【点睛】本题考查了反比例函数的图象性质及平行四边形的判定及性质、菱形的判定及性质,熟练掌握性质是解题的关键.24.(1)12yx=;(2)x<0或2<x<12;(3)E(0,6)或(0,8)【分析】(1)由直线y=﹣12x+7求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B的坐标,然后根据图象即可求得不等式mx<﹣12x+7的解集;(3)设E(0,n),求得点C的坐标,然后根据三角形面积公式得到S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得即可.【详解】解:(1)把x=2代入y=﹣12x+7得,y=6,∴A(2,6),∵反比例函数y=mx(m≠0)的图象经过A点,∴m=2×6=12,∴反比例函数的表达式为12yx =;(2)由12172yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,得26xy=⎧⎨=⎩或121xy=⎧⎨=⎩,∴B(12,1),由图象可知,不等式mx<﹣12x+7的解集是:x<0或2<x<12;(3)设E(0,n),∵直线y=﹣12x+7与y轴交于点C,∴C(0,7),∴CE=|7﹣n|,∴S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得,n=6或n=8,∴E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.25.(1)6y x =,24y x =+;(2)8;(3)3x <-或01x << 【分析】(1)根据B 的坐标求出反比例函数的解析式,求出A 点的坐标,再把A 、B 的坐标代入y =kx +b ,求出一次函数的解析式即可;(2)先求出点C 的坐标,再根据三角形的面积公式求出即可;(3)根据A 、B 的坐标和图象得出即可.【详解】解:(1)(1,6)B 在反比例函数上,166m xy ∴==⨯=,6y x∴=. 点A 在反比例函数上,26n ∴-=,解得3n =-,即(3,2)A --.设直线:AB y kx b =+,代入点(3,2)A --,(1,6)B ,326k b k b -+=-⎧⎨+=⎩ 解得:24k b =⎧⎨=⎩∴24y x =+(2)在直线24y x =+中,令0x =,得4y =,即(0,4)C .()114(31)822AOB OCA OCB A B S S S OC x x ∴=+=+=⨯⨯+=△△△ (3)(1,6)B ,(3,2)A --∴当k kx b x+<时,x 的取值范围是3x <-或01x <<. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数与反比例函数的图象和性质等知识点,能求出B 、C 的坐标是解此题的关键.26.(1)见解析;(2)①1;②见解析.【分析】(1)先求出点D 坐标,再代入反比例函数解析式中,即可得出结论;(2)①先判断出△ABC ≌△EFG ,得出GF=BC=2,GE=AC=1,进而得出E (1,3),即可得出结论;②先判断出△AOF ≌△FGE (SAS ),得出∠GFE=∠FAO ,进而得出∠AFE=90°,同理得出∠BAF=90°,进而判断出EF ∥AB ,即可得出结论.【详解】解:(1)∵点B (3,2),BC 边的中点D ,∴点D (3,1),∵反比例函数y =kx (k >0)的图象经过点D (3,1), ∴k=3×1=3,∴反比例函数表达式为y =3x; (2)①∵点B (3,2),∴BC=2,∵△ABC 与△EFG 成中心对称,∴△ABC ≌△EFG (中心对称的性质),∴GF=BC=2,GE=AC=1,∵点E 在反比例函数的图象上,∴E (1,3),即OG=3,∴OF=OG-GF=1;②如图,连接AF 、BE ,∵AC=1,OC=3,∴OA=GF=2,在△AOF 和△FGE 中AO FG AOF FGE OF GE =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△FGE (SAS ),∴∠GFE=∠FAO ,∵∠FAO+∠OFA=90°,∴∠GFE+∠OFA=90°,∴∠AFE=90°,∵∠EFG=∠FAO=∠ABC ,∵∠BAC+∠ABC=90°,∴∠BAC+∠FAO=90°,∴∠BAF=90°,∴∠AFE+∠BAF=180°,∴EF∥AB,∵EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点睛】本题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,正方形的判定,全等三角形的判定和性质,判断出△AOF≌△FGE是解题的关键.。

初中数学反比例函数基础测试题含答案

初中数学反比例函数基础测试题含答案

初中数学反比例函数基础测试题含答案一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误; B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.6.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( )A .3个B .2个C .1个D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x =<,过整点(-1,-2),(-2,-1),当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.7.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.8.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.下列函数:①y=-x ;②y=2x ;③1y x=-;④y=x 2 . 当x<0时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y =-x 中k <0,∴y 随x 的增大而减小,故本选项正确;∵正比例函数y =2x 中,k =2,∴当x <0时,y 随x 的增大而增大,故本选项错误;∵反比例函数1y x=中,k =-1<0,∴当x <0时函数的图像在第二象限,此时y 随x 的增大而增大,故本选项错误; ∵二次函数y =x 2,中a =1>0,∴此抛物线开口向上,当x <0时,y 随x 的增大而减小,故本选项正确.故选B .【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.11.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.12.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.13.反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( )A .3B .5C .6D .8【答案】B【解析】【分析】 根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k 的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.14.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( ) A .0B .1C .2D .3 【答案】D【解析】【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数k y x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a 的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C【解析】【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解.【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<,故选C .【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.17.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.18.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数k yx =在第一象限内的图象经过点D,交BC于点E.若4AB=,2CEBE=,34ADOA=,则线段BC的长度为()A.1 B.32C.2 D.23【答案】B【解析】【分析】设OA为4a,则根据题干中的比例关系,可得AD=3a,CE=2a,BE=a,从而得出点D和点E 的坐标(用a表示),代入反比例函数可求得a的值,进而得出BC长.【详解】设OA=4a根据2CEBE=,34ADOA=得:AD=3a,CE=2a,BE=a∴D(4a,3a),E(4a+4,a)将这两点代入解析得;3444kaakaa⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D、E的坐标,然后代入解析式求解.20.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<2【答案】B【解析】【分析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+2<0,解得m<-2.故选B.。

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析1. 如果反比例函数的图像在每个象限内随的增大而减小,那么的取值范围是 .【答案】k >【解析】∵反比例函数y=的图象在每个象限内y 随x 的增大而减小,∴2k-1>0,解得k >. 故答案为:k >.【考点】反比例函数的性质.2. 已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A .(﹣6,1)B .(1,6)C .(2,﹣3)D .(3,﹣2)【答案】B .【解析】∵反比例函数y=的图象经过点(2,3), ∴k=2×3=6,A 、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B 、∵1×6=6,∴此点在反比例函数图象上;C 、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D 、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上. 故选B .【考点】反比例函数图象上点的坐标特征.3. 如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD=10,则k 的值为 .【答案】﹣16【解析】∵OD=2AD , ∴,∵∠ABO=90°,DC ⊥OB , ∴AB ∥DC ,∴△DCO ∽△ABO , ∴, ∴,∵S 四边形ABCD =10, ∴S △ODC =8, ∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.【考点】1、相似三角形的判定与性质;2、反比例函数系数k的几何意义4.反比例函数的图象在二、四象限,则m的取值范围.【答案】m<1.【解析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.∵反比例函数的图象在二、四象限,∴m-1<0解得:m<1.【考点】反比例函数的性质.5.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.6.若双曲线过两点(-1,y1),(-3,y2),则有y1____y2(可填“”、“”、“”).【答案】<.【解析】将(﹣1,y1),(﹣3,y2),分别代入y=得,y1=﹣2,y2=﹣,y1<y2..故答案是<.【考点】反比例函数图象上点的坐标特征.7.老师给出一个函数,甲、乙、丙、丁四位同学分别指出了这个函数的一个性质: 甲:函数图象不经过第二象限;乙:函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1<y2;丙:函数图象经过第一象限;丁:y随x的增大而减小.老师说这四位同学的叙述都是正确的,请你构造一个满足上述性质的一个函数:____________.【答案】y=(x>0)【解析】函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1>y2,y随x的增大而减小,若是反比例函数则k>0,函数图象不经过第二象限,函数图象经过第一象限,只取第一象限的分支.8.已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.求:(1)y与x之间的函数关系式;(2)当x=2时y的值.【答案】(1)y=-3x2. (2)-9.【解析】(1)y1是x的反比例函数,可设y1=,y2是x2的正比例函数,可设y2=k2x2,则y与x的关系式为y=-k2x2,x=1时y=3;x=-2时y=-15,代入求出k1=6,k2=3.(2)将x=2代入解析式y=-3x2,y=3-3×4=-9.9.反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.【答案】12.【解析】根据y1=,过y1上的任意一点A,得出△CAO的面积为4,进而得出△CBO面积为3,即可得出k的值.试题解析:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×8=4,又∵S△AOB =2,∴△CBO面积为6,∴|k|=6×2=12,∵根据图示知,y2=(k≠0)在第一象限内,∴k>0,∴k=12考点: 反比例函数系数k的几何意义.10.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.11.已知y是x的反比例函数,当x=5时,y=8.(1)求反比例函数解析式;(2)求y=-10时x的值.【答案】(1);(2).【解析】(1)由y是x的反比例函数可设,将x=5,y=8代入可求得k,从而得到反比例函数解析式;(2)把y=-10代入即可求得x的值.试题解析:(1)∵y是x的反比例函数,∴设.∵当x=5时,y="8" ,∴,解得k="40."∴反比例函数解析式为.(2)把y=-10代入得,解得 .【考点】1.待定系数法的应用;2.曲线上点的坐标与方程的关系.12.若反比例函数经过点(1,2),则下列点也在此函数图象上的是()A.(1,-2)B.(-1,﹣2)C.(0,﹣1)D.(﹣1,﹣1)【答案】B【解析】设反比例函数图象的解析式为,∵反比例函数的图象经过点(1,2),∴k=1×2=2,而1×(-2)=-2,-1×(-2)=2,0×(-1)=0,-1×(-1)=1.∴点(-1,-2)在反比例函数图象上.故选B.【考点】反比例函数图像上点的坐标的特征.13.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【答案】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,-3),∴AB=5。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

初中数学反比例函数练习题及答案

初中数学反比例函数练习题及答案

初中数学反比例函数练习题及答案1. 知识回顾反比例函数是指两个变量之间的关系,其中一个变量的值与另一个变量的值成反比。

数学上可以表示为:y = k/x,其中k为常数。

2. 练习题2.1 简答题1.什么是反比例函数?2.如何表示反比例函数?3.反比例函数的图像有什么特点?4.反比例函数中的常数k又叫做什么?2.2 计算题1.若反比例函数y = 3/x,求当x = 2时,y的值。

2.若反比例函数y = k/x,当x = 5时,y = 2。

求k的值。

3.若反比例函数y = 8/x,求当x = 4时,y的值。

4.若反比例函数y = k/x,当x = 6时,y = 3。

求k的值。

2.3 应用题1.若两车以反比例的关系行驶,已知当一辆车行驶80km时,另一辆车行驶120km。

求当一辆车行驶120km 时,另一辆车需要行驶多少公里?2.现有一件工作,16个工人需要7天完成。

如果增加工人的数量,可以缩短工作天数吗?请理论上解释,并举例说明。

3. 答案3.1 简答题1.反比例函数是指两个变量之间的关系,其中一个变量的值与另一个变量的值成反比。

2.反比例函数可以表示为y = k/x,其中k为常数。

3.反比例函数的图像呈现出一条曲线,当x的值增大时,y的值会减小;反之,当x的值减小时,y的值会增大。

4.反比例函数中的常数k又叫做比例系数。

3.2 计算题1.当x = 2时,根据反比例函数y = 3/x,可求得y = 3/2,即y = 1.5。

2.当x = 5时,根据反比例函数y = k/x,代入已知条件y = 2,得2 = k/5,解得k = 10。

3.当x = 4时,根据反比例函数y = 8/x,可求得y = 8/4,即y = 2。

4.当x = 6时,根据反比例函数y = k/x,代入已知条件y = 3,得3 = k/6,解得k = 18。

3.3 应用题1.已知两车行驶的距离成反比例关系,设一辆车行驶x km时,另一辆车行驶y km。

初中数学综合复习反比例函数部分3

初中数学综合复习反比例函数部分3

初中数学综合复习反比例函数部分3一、选择题1.若反比例函数的图象过点(2,1),则这个函数的图象一定过点()A. (2,-1)B. (1,-2)C. (-2,1)D. (-2,-1)答案:D2.如图,正比例函数y=x与反比例函数y=4x的图象交于A(2,2)、B(-2,-2)两点,当y=x的函数值大于y=4x的函数值时,x的取值范围是A.x>2B.x<-2C.-2<x<0或0<x<2D.-2<x<0或x>2【答案】D3. 如图所示,在平面直角坐标系中,反比例函数y1=x2的图象与一次函数y2=kx+b的图象交于A,B两点,若y1<y2,则x的取值范围是A.1<x<3 B.x<0或1<x<3 C.0<x<1 D.x>3或0<x<1【答案】A4. 如图2,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心是点O,点A、D在x轴上,点E在反第10题图比例函数kyx=位于第一象限的图像上,则k 的值是()xy图2B CEFA O D(A). 1 (B). 2(C). 3(D). 2【答案】C5. 如图,正比例函数xky11=和反比例函数xky22=的图像交于A(1,2),B两点,给出下列结论:①21kk<;②当x< - 1 时,21yy<;③当21yy>时,x>1;④当x<0时,y2随x的增大而减小. 其中正确的有()A. 0个B. 1个C. 2个D. 3个【答案】C6.如图,在平面直角坐标系中,点A、B均在函数kyx=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切,若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2) B.(2,3) C.(3,2) D.(4,32)第(8)题【答案】C7. 如图,正比例函数y 1=k 1x 和反比例函数22k y x=的图象交于A (-1,2)、B (1,-2)两点,若y 1>y 2,则x 的取值范围是( ) A .x <-1或x >1 B .x <-1或0<x <1 C .-1<x <0或0<x <1 D .-1<x <0或x >1【答案】B8. 某体育场计划修建一个容积一定的长方体游泳池,设容积为a (m 3),泳池的底面积S (m 2)与其深度x (m )之间的函数关系式为aS x=(x > 0),该函数的图像大致是( )A .B .C .D .【答案】C9.如图,在平面直角坐标系中,梯形OACB 的顶点O 是坐标原点,OA 边在y 轴正半轴上,OB 边在x 轴正半轴上,OA ∥BC ,双曲线y =kx(x >0)经过AC 边的中点,若S 梯形OACB =4,则双曲线y =kx的k 值为 ( )(第10题图)A .5B .4C .3D .2 【答案】 D10. 如图7,点P 1、P 2、P 3分别是双曲线同一支图象上的三点,过这三点分别作y 轴的垂线,垂足分别是A 1、A 1、xSOxSOxSOxSOA 3的,得到的三个三角形△P 1A 1O 、△P 2A 2O 、△P 3A 3O .设它们的面积分别为S 1、S 2、S 3,则它们的大小关系是 A. S 1>S 2>S 3 B. S 3>S 2> S 1 C. S 1=S 2=S 3 D. S 2>S 3>S 1【答案】C 11. 反比例函数xky 与一次函数y=kx -k +2在同一直角坐标系中的图象可能是( ).【答案】D12.如图4,点P (-1,1)在双曲线上,过点P 的直线l 1与坐标轴分别交于A 、B 两点,且tan ∠BAO =1,点M 是该双曲线在第四象限图象上的一动点,过点M 的直线l 2与双曲线只有一个点,并与坐标轴分别交于点C 、点D ,则四边形ABCD 的面积最小值( ).A .10B .8C .6D .不确定【答案】B 二、填空题 1. 如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为___________.y xO CBA【答案】3y x=-2. 如图,点B 1在反比例函数2y x=(x >0)的图象上,过点B 1分别作x 轴和y 轴的垂线,垂足为C 1和A ,点C 1的坐标为(1,0)取x 轴上一点C 2(32,0),过点C 2分别作x 轴的垂线交反比例函数图象于点B 2,过B 2作线段B 1C 1的垂线交B 1C 1于点A 1,依次在x 轴上取点C 3(2,0),C ,4(52,0)…按此规律作矩形,则第n ( 2,n n ≥为整数)个矩形)A n-1C n-1C ,n B n 的面积为________.【答案】21n +3. 如图,正比例函数的图象与反比例函数的图象交于点A(3,1),点M (m ,n)是反比例函数图象上的一动点,其中0<m<3,过点M 作直线MB //x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .连结OM ,当四边形OADM 的面积为9时,线段DM 的长为_______.【答案】944. 如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =ADB =90°,反比例函数ky x=在第一象限的图象经过点B ,若OA 2-AB 2=12,则k 的值为__________.O AB 1B 2B 3B 4A 1A 2A 3C 1C 2C 3C 4(第16题图)【答案】65.如果一个正比例函数的图像与反比例函数7yx=的图像交于11(,)A x y,22(,)B x y两点,那么2121()()x x y y--的值为_____________【答案】28三、解答题1. 如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC-2,将矩形OABC向上平移4个单位得到矩形1111O A B C.(1)若反比例函数1kyx=和2kyx=的图象分别经过点B、1B,求12k k和;(4分)(2)将矩形1111O A B C向左平移得矩形2222O A B C,当点22O B、在反比例函数3kyx=的图象上是,求平移的距离和3k的值.(4分)第22题图【答案】解:(1)根据题意可知点B、B1的坐标分别为(3,2),(3,6),将两点坐标分别代入y=1kx和y=2kx可得k1=6,k2=18;(2)∵矩形O1A1B l C l向左平移得矩形O2A2B2C2,设点O2的坐标为(a,4),则点B2的坐标为(a+3,6),∵点O2、B2在反比例函数y=3kx的图象上,∴4-a=6(a+3),解得a=-9,∵平移的距离是9个单位,∴k3=4×(-9)=-36.OABDCyx21题图2. 一次函数y 1=﹣12x ﹣1与反比例函数y 2= xk的图象交于点A (﹣4,m ). (1)观察图象,在.y .轴的左侧....,当y 1>y 2时,请直接写出x 的取值范围; (2)求出反比例函数的解析式.【答案】解:(1)在y 轴的左侧,当y 1>y 2时,x <﹣4; (2)把点A (﹣4,m )代入y 1=﹣12x ﹣1得m=﹣12×(﹣4)﹣1=1, 则A 点坐标为(﹣4,1),把A (﹣4,1)代入y 2=xk得k=﹣4×1=﹣4, 所以反比例函数的解析式为y 2=﹣4x.3. 如图,在边长为1的正方形组成的网格中,建立平面直角坐标系,若A (-4,2)、B (-2,3)、C (-1,1),将△ABC 沿着x 轴翻折后,得到△DEF ,点B 的对称点是点E .求过点E 的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.【答案】解:由题可知:E (-2,-3),设y =kx,把点E 代入得:6y x =第三象限内该反比例函数图象所经过的格点的坐标有:(-6,-1)、(-3,-2)、(-1,-6)4.如图所示,直线AB 与x 轴交于点A ,与y 轴交于点C (0,2),且与反比例函数xy 8-=的图象在第三象限内相交于点B ,过点B 作BD ⊥x 轴于点D ,OD =2. (1)求直线AB 的解析式;(2)若点P 是线段BD 上一点,且△PBC 的面积等于3,求点P 的坐标.【答案】解:(1)由题意,得:B (-2,4) 设直线AB 的解析式为y =kx +b把点B 、C 代入得:⎩⎨⎧==+-242b b k ,解得:⎩⎨⎧=-=21b k∴直线AB 的解析式为y =-x +2。

初中数学 反比例函数测试题(含答案)

初中数学  反比例函数测试题(含答案)

反比例函数测试题一、填空: 1、如果函数122--=m xm y 是反比例函数,那么=m ____________.2、已知y 与x 成反比例,且当2-=x 时,3=y ,则y 与x 的函数关系是_________, 当3-=x 时,=y _____________。

3、若()2,2M 和()21,nb N --是反比例函数xk y =图象上的两点,则一次函数b kx y +=的图象经过_____________象限。

4、函数xy 32-=的图象在第_____象限,在每个象限内,图象从左向右_________. 5、弹簧挂上物体后会伸长,测得一弹簧的长度()cm y 与所挂物体的质量()kg x 有下面的关系。

那么弹簧总长()cm y 与所挂物体质量()kg x 之间的函数关系为_____________. 6、从A 市向B 市打长途电话,按时收费,3分钟收费2.4元,每加1分钟加收1元,按时间3≥t (时)分时电话费y (元)与t 之间的函数关系式为_________________. 7、某报报道了“养老保险执行标准”的消息,云龙中学数学课外活动小组根据消息中提供的数据给制出某市区企业职工养老保险个人月缴费y (元)随个人月工资x (元)变化的图象,请就图象回答下列问题: ⑴张总工程师五月份工资为3000元,这个月他个人应缴养老保险费______元。

⑵小王五月份工资为500元,这个月他应缴养老保险费________元。

⑶李师傅五月份个人缴养老保险费50元,则他五月份的工资为________元。

二、解答题:y(元)x(元)195.0238.992786557340BA8、杨嫂在再就业中心的扶持下,创办了报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:①每份买进0.2元,每份卖出0.3元;②一个月内(以30天计),有20天每天可以卖出120份,其余10天每天只能卖出80份;③一个月内,每天从报社买进的报纸必须相同,当天卖不掉的报纸,以每份0.1元退回给报社。

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析1.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP =S△ABO,若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)双曲线的函数关系式为y=﹣;(2)当x<﹣1时,0<y<2;(3)存在;点P坐标为(﹣,4).【解析】(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP =S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.试题解析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵yA =yB,∴AB∥x轴,∴S△ABP =S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(yP ﹣2)=5,即×5×(yP﹣2)=5,解得yP=4,∴点P坐标为(﹣,4).【考点】1、相似三角形的判定与性质;2、待定系数法;3、函数大小的比较;4、反比例函数2.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是____________________.【答案】y3<y2<y1.【解析】∵k=6>0,∴图象在一、三象限,且在每一象限内y随x的增大而减小.∵x1<x2,∴y1>y2>0,∵x3<0,∴y3<0,∴y3<y2<y1.故答案是y3<y2<y1.【考点】反比例函数图象上点的坐标特征.3.已知反比例函数y=的图象上有三个点(2,),(3,),(,),则,,的大小关系是()A.>>B.>>C.>>D.>>【答案】A.【解析】试题解析:∵-k2-1<0∴反比例函数y=的图象在第二、四象限∴>>故选A.【考点】反比例函数图象上点的坐标特征.4.已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中的()A.B.C.D.【答案】A【解析】由长方形的面积公式得y=,且x>0,y>0,而B中有x<0,y<0的情况,C,D中有x=0或y=0的情况,据此即可得出结果.解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.已知反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为12,求此函数的解析式.【答案】(1)k<0 (2)y=﹣【解析】(1)直接根据反比例函数的性质求解即可,k<0;(2)直接根据k的几何意义可知:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,所以|k|=12,而k<0,则k=﹣12.解:(1)∵反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,∴k<0;(2)设A(x,y),由已知得,|xy|=|k|=12,∵k<0,∴k=﹣12,所以,反比例函数的解析式为y=﹣.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.在同一平面直角坐标系中,正比例函数y=(m﹣1)x与反比例函数y=的图象的大体位置不可能是()A.B.C.D.【答案】D【解析】根据题意,依次分析选项中的图象,根据图象,求出其参数的范围,并解看有无公共解,若有,则可能是它们的图象,若无解,则不可能是它们的图象;即可得答案.解:依次分析选项可得:A、4m>0,m﹣1>0;解可得m>1;故可能是它们的图象.B、4m>0,m﹣1<0;解可得0<m<1;故可能是它们的图象.C、4m<0,m﹣1<0;解可得m<1;故可能是它们的图象.D、4m<0,m﹣1>0;无解;故不可能是它们的图象.故选D.点评:本题考查正比例函数与反比例函数的图象性质,注意①正比例函数与反比例函数的图象与k的关系,②两个函数中参数的关系.7.若A(,b)、B(-1,c)是函数的图象上的两点,且<0,则b与c的大小关系为()A.b<c B.b>c C.b=c D.无法判断【答案】B【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.解:∵,∴故选B.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.如图,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1,过点B作轴垂线,垂足为C,连接AC、AB.(1)m= ;(2)若△ABC的面积为4,则点B的坐标为【答案】(1)4;(2)【解析】(1)把A的坐标代入反比例函数的解析式,即可求出m和得出反比例函数的解析式;(2)设B的坐标是(a,b),根据B在反比例函数上得出ab的值,再根据△ABC的面积为4求解即可.(1)把A(1,4)代入得;(2)设B的坐标是(a,b),∵B在反比例函数上,∴ab=4∵△ABC的面积为4,∴×a×(4-b)=4,∴2a ab=4,∴2a-2=4,a=3,∵ab=4,∴b=.则点B的坐标为(3,).【考点】反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,三角形的面积点评:待定系数法求函数的解析式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.如图,双曲线在第一象限内如图所示作一条平行y轴的直线分别交双曲线于A、B两点,连OA、OB,则S=。

初中数学中考二轮复习重难突破专题06 反比例函数的综合(含答案)

初中数学中考二轮复习重难突破专题06 反比例函数的综合(含答案)

专题06 反比例函数的综合重点分析在中考中,反比例函数的图象与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。

难点解读难点一:反比例函数的概念一般地,形如,叫做反比例函数,自变量范围是≠0的一切实数难点二:反比例函数的图象与性质一、三二、四难点三:反比例函数系数k的几何意义在反比例函数上任取一点轴的垂线PM、P=难点四:反比例函数解析式的确定设所求反比例函数解析式为:得几何意义,由面积得真题演练1.如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【答案】(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】【详解】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k 的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.2.如图,在平面直角坐标系xOy中,直线l:y=x与反比例函数y=(x>0)的图象交于点A(2,a).(1)求a,k的值;(2)横,纵坐标都是整数的点叫做整点.点P(m,n)为射线OA上一点,过点P作x轴,y轴的垂线,分别交函数y=(x>0)的图象于点B,C.由线段PB,PC和函数y=(x>0)的图象在点B,C之间的部分所围成的区域(不含边界)记为W.①若PA=OA,求区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,直接写出m的取值范围.【答案】(1)3,6;(2)①5个;②或.【解析】(1)先根据直线的解析式可求a的值,从而可得点A的坐标,再将将点A坐标代入反比例函数的解析式可得k的值;(2)①先求出点P坐标,再根据反比例函数的解析式求出点B,C坐标,然后结合函数图象、整点的定义即可得;②分点P在点A下方和点P在点A上方两种情况讨论,结合函数图象列出不等式组求解即可.【详解】(1)∵直线与反比例函数的图象交于点∴∴将代入反比例函数得解得;(2)①∵点P为射线OA上一点,且∴A为OP中点∵,解得∴点P的坐标为将代入得将代入得,解得∵如图,PB,PC分别垂直于x轴和y轴∴结合函数图象可知,区域W内有5个整点;②在射线OA上由题意,分以下两种情况:如图,当点P在点A下方时结合函数图象得:,即解得如图,当点P在点A上方时结合函数图象得:,即解得综上,当或时,区域W内恰有5个整点.【点拨】本题考查了反比例函数与一次函数的综合,掌握反比例函数的性质是解题关键.3.如图,一次函数y=ax+b与反比例函数y=(x>0)的图象在第一象限交于A,B两点,点B的坐标为(4,2),连接OA,过点B作BD⊥y轴,垂足为D,交OA于点C,且OC=CA.(1)求反比例函数和一次函数的解析式.(2)根据图象直接写出关于x的不等式的解集为 .【答案】(1)反比例函数的表达式为,一次函数的表达式为y=-x+6;(2)0<x<2或x>4.【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)观察函数图象即可求解.【详解】解:(1)如图,过点A作AN⊥x轴于点N,交BD于点E,∵点B(4,2)在反比例函数图象上,∴,∴反比例函数的表达式为,∵B(4,2),∴EN=2,∵BD⊥y轴,OC=CA,∴AE=EN=AN,∴AN=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(2,4),∵一次函数的表达式为,∴4a+b=2,2a+b=4,∴a=-1,b=6,∴一次函数的表达式为y=-x+6;(2)观察函数图象知,不等式的解集为:0<x<2或x>4,故答案为:0<x<2或x>4.【点拨】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法,解本题的关键是用待定系数法求出直线AB的解析式.4.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.【答案】(1)y=﹣,y=﹣2x+4;(2)点P的坐标是(﹣2,0)或(2+2,0)或(2﹣2,0)或(﹣3,0).【解析】(1)先把A点坐标代入y=可求出k2的值,从而确定反比例函数解析式;再把B(4,m)代入反比例函数解析式求出m的值,可确定点B的坐标,然后利用待定系数法求一次函数解析式;(2)先根据一次函数的解析式确定M和N的坐标,根据以P,M,N三点为顶点的三角形是等腰三角形分三种情况讨论:①NP=NM;②MP=MN;③PN=PM;前两种直接根据线段的长得出点P的坐标,第三种根据两点的距离列方程可得结论.【详解】解:(1)把,代入反比例函数得:,,,∴反比例函数解析式为,且,把,代入得:,解得,∴一次函数解析式为;(2),当时,,当时,,,,,,,①当时,如图1,,,;②当时,如图2,由勾股定理得:,,或,;③当时,如图3,是轴上一动点,设,,,,,综上,点的坐标是或,或,或.【点拨】本题考查了反比例函数与一次函数的交点问题和等腰三角形的性质和判定,并注意等腰三角形在没确定腰和底边时要分情况讨论,注意利用数形结合的思想.5.如图,一次函数与反比例函数的图象交于,两点.(1)求反比例函数的解析式和的值;(2)根据图象直接写出不等式的的取值范围;(3)求的面积.【答案】(1),2;(2)或;(3)8【解析】(1)把的坐标代入反比例函数解析式即可求得的值,然后把代入即可求得的值;(2)根据一次函数和反比例函数的图象即可直接求解;(3)利用待定系数法求得一次函数的解析式,设直线与轴相交于点,然后根据即可求解.【详解】解:(1)在的图象上,,反比例函数的解析式是.又∵在的图象上,;(2)由图象可知:当或时,;(3),在函数的图象上,,解得:,则一次函数的解析式是,设直线与轴相交于点,则的坐标是.∴.【点拨】本题考查了反比例函数和一次函数的综合,熟练掌握待定系数法求函数的解析式是解决本题的关键.6.如图,一次函数y=x+2的图象与反比例函数y=的图象相交,其中一个交点的横坐标是1.(1)求k的值;(2)若将一次函数y=x+2的图象向下平移4个单位长度,平移后所得到的图象与反比例函数y=的图象相交于A,B两点,求此时线段AB的长.【答案】(1)k=3;(2)4.【解析】(1)将x=1代入y=x+1=3,故其中交点的坐标为(1,3),将(1,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+2的图象向下平移4个单位得到y=x﹣2,一次函数和反比例函数解析式联立,解方程组求得A.B的坐标,然后根据勾股定理即可求解.【解答】解:(1)将x=1代入y=x+2=3,∴交点的坐标为(1,3),将(1,3)代入y=,解得:k=1×3=3;(2)将一次函数y=x+2的图象向下平移4个单位长度得到y=x﹣2,由,解得:或,∴A(﹣1,﹣3),B(3,1),∴AB==4.7.在平面直角坐标系中,一次函数的图象与x轴、y轴分别交于A.B两点,且与反比例函数图象的一个交点为.(1)求m的值;(2)若,求k的值.【答案】(1)4;(2)或【解析】(1)将P点的坐标代入反比例函数解析式,计算即可求得m;(2)分两种情况讨论,当一次函数过一、二、三象限时,画出图象,将转化为两个三角形相似,过过P作轴交x轴于点H,证明,即可求出k和b的值;当一次函数过一、三、四象限时,画出图象,将转化为两个三角形相似,过点P作PQ⊥y轴于点Q,证明即可求出k和b的值.【详解】解:(1)∵P为反比例函数上一点,∴代入得,∴.(2)令,即,∴,,令,∴,∵.由图象得,可分为以下两种情况,①B在y轴正半轴时,,∵,过P作轴交x轴于点H,又,,∴∴,,即,∴,∴,∴.②B在y轴负半轴时,,过P作轴,∵,∴,∴,∴,,∵,∴,代入∴,综上,或.【点拨】本题考查了反比例函数,一次函数的图象与性质和相似三角形,添加辅助线构造相似三角形,将题目中线段的倍数关系转化为相似三角形的相似比是解题关键.8.如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数在第一象限内的图象相交于点,过点作轴于点.(1)求反比例函数的解析式;(2)求的面积.【答案】(1);(2)6【解析】(1)因为一次函数与反比例函数交于点,将代入到一次函数解析式中,可以求得点坐标,从而求得,得到反比例函数解析式;(2)因为轴,所以,利用一次函数解析式可以求得它与轴交点A的坐标,由,,三点坐标,可以求得和的长度,并且轴,所以,即可求解.【详解】解:(1)∵点是直线与反比例函数交点,∴点坐标满足一次函数解析式,∴,∴,∴,∴,∴反比例函数的解析式为;(2)∵轴,∴,轴,∴,令,则,∴,∴,∴,∴的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.9.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【答案】(1)y;(2)15°.(1)根据题意求得A(2,2),然后代入y(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD =15°.【解析】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOE=45°,∴∠EOD=15°.10.如图,在平面直角坐标系中,直线与函数的图象交于点A(1,2).(1)求的值;(2)过点作轴的平行线l,直线与直线l交于点B,与函数的图象交于点,与轴交于点D.①当点C是线段BD的中点时,求的值;②当时,直接写出的取值范围.【答案】(1)m=2;(2)①b=-3, ②b>3.【解析】(1)把A点坐标代入中即可得出m的值;(2)①求出C点坐标为(2,1)代入直线即可得出b的值;②根据图象可得结论.【详解】(1)把A(1,2)代入函数中,∴.∴.(2)①过点C作轴的垂线,交直线l于点E,交轴于点F.当点C是线段BD的中点时,.∴点C的纵坐标为1,把代入函数中,得.∴点C的坐标为(2,1).把C(2,1)代入函数中,得.②由图象可知,当时,。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学反比例函数综合题
一、单选题(共8道,每道12分)
1.下列式子中
①②③④⑤⑥⑦
⑧⑨是反比例函数的个数有()
A.3个
B.4个
C.5个
D.以上答案均不对
答案:A
试题难度:三颗星知识点:反比例函数的定义
2.反比例函数图象上有三个点,,,其中,则,,的大小关系是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:反比例函数增减性
3.若y与z成反比例,z与成正比例,则y与x的关系为()
A.正比例函数
B.反比例函数
C.没有关系
D.无法判断
答案:A
试题难度:三颗星知识点:反比例关系的判定
4.在同一坐标系中,函数和的图像大致是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:反比例函数的图象
5.点A在双曲线上,O为坐标原点,AB⊥x轴于B,且△AOB的面积S△AOB=4,则k=()
A.8
B.4
C. D.
答案:D
试题难度:三颗星知识点:反比例函数图象面积不变性
6.已知一次函数y1=kx+b与反比例函数在同一直角坐标系中的图象如图所示,
则当y1<y2时,x的取值范围是(__)
A.x<-1或0<x<3
B.-1<x<0或x>3
C.-1<x<0
D.x>3
答案:B
试题难度:三颗星知识点:反比例函数与一次函数的交点问题
7.如图,已知A、B两点是反比例函数y=(x>0)的图象上任意两点,过A、B两点分别作y轴的垂线,垂足分别为C、D,连结AB、AO、BO•,•则梯形ABDC•的面积与△AOB的面积
之比是()
A.2:1
B.1:2
C.3:2
D.1:1
答案:D
试题难度:三颗星知识点:反比例函数面积模型1
8.如图,已知反比例函数和一次函数交于P、Q两点,一次函数与x轴、y
轴分别相交于A、B两点,连结OP、OQ,则下列正确的是()
A. B.S△OPQ=2S△OBP
C. D.
答案:C
试题难度:三颗星知识点:反比例函数面积模型2。

相关文档
最新文档