2014——2015高三二模理科数学及答案
数学_2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)(含答案)
2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)一、选择题(每小题5分,共60分)1. 已知实数R 为全集,集合A ={x|y =log 2(x −1)},B ={y|y =√4x −x 2},则(∁R A)∩B 等于( )A (−∞, 1]B (0, 1)C [0, 1]D (1, 2] 2. 复数3−i2+i 的实部与虚部之和为( )A 0B 1C 2D 33. 设随机变量ξ服从正态分布N(1, σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为( ) A 0.6 B 0.4 C 0.3 D 0.24. 下列有关命题的说法正确的是( )A 命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B “x =−1”是“x 2−2x −3=0”的必要不充分条件C 命题“∃x ∈R 使得x 2+x −1<0”的否定是“∀x ∈R ,均有x 2+x −1>0”D 命题“已知x ,y ∈R ,若x +y ≠5,则x ≠1或y ≠4”为真命题 5. 执行如图所示的程序框图,如果输入的N 是195,则输出的P =( )A 11B 12C 13D 146. 已知四棱锥P −ABCD 的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是( )A 3B 2√5C 6D 87. △ABC 中,∠A =60∘,∠A 的平分线AD 交边BC 于D ,已知AB =3,且AD →=13AC →+λAB →(λ∈R),则AD 的长为( ) A 1 B √3 C 2√3 D 38. 若函数y =2x图象上存在点(x, y)满足约束条件{x +y −3≤0x −2y −3≤0x ≥m,则实数m 的最大值为( )A 12 B 1 C 32 D 29. 已知θ为锐角,且sin(θ−π4)=√210,则tan2θ=( ) A 43 B 34 C −247 D 24710. 设等差数列{a n }的前n 项和为S n ,已知(a 8−1)3+2015(a 8−1)=1,(a 2008−1)3+2015(a 2008−1)=−1,则下列结论正确的是( )A S 2015=2015,a 2008<a 8B S 2015=2015,a 2008>a 8C S 2015=−2015,a 2008≤a 8D S 2015=−2015,a 2008≥a 811. 已知函数f(x)=sinx ,将函数f(x)图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到函数g(x)的图象,则关于f(x)g(x)有下列命题,其中真命题的个数是( ) ①函数y =f(x)⋅g(x)是偶函数; ②函数y =f(x)⋅g(x)是周期函数;③函数y =f(x)⋅g(x)的图象关于点(π2, 0)中心对称;④函数y =f(x)⋅g(x)的最大值为4√39. A 1 B 2 C 3 D 412. 已知定义在R 上的可导函数f(x)满足:f′(x)+f(x)<0,θ的终边不落在第一象限的角平分线上,则e √2−sinθ−cosθ与f(√2)的大小关系是( )Ae √2−sinθ−cosθ>f(√2) B e √2−sinθ−cosθ<f(√2) Ce √2−sinθ−cosθ=f(√2) D 不确定二、填空题(本大题有4小题,每小题5分,共20分)13. 若(x +a)6的展开式中x 3的系数为160,则∫x a a1dx 的值为________.14. 已知双曲线3y 2−mx 2=3m(m >0)的一个焦点与抛物线y =18x 2的焦点重合,则此双曲线的离心率为________.15. 已知三棱锥D −ABC 中,AB =BC =1,AD =2,BD =√5,AC =√2,BC ⊥AD ,则三棱锥的外接球的表面积为________.16. △ABC 中,BC =1,AB =√3,AC =√6,点P 是△ABC 的外接圆上的一个动点,则BP →⋅BC →的最大值为________.三、解答题(本大题共5小题,共70分)17. 已知数列{a n}的前n项和S n满足S n=a(S n−a n+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.(1)求{a n}的通项公式;(2)设b n=a n log2a n,求数列{b n}的前n项和T n.18. 衡水市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括9的则被淘汰.若现有500人参加测试,学生成绩的频率分布直方图如图:(Ⅰ)求获得参赛资格的人数;(Ⅱ)根据频率直方图,估算这500名学生测试的平均成绩;(Ⅲ)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为19,求甲在初赛中答题个数的分布列及数学期望.19. 在斜三棱柱ABC−A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1A⊥A1C;(2)若A1A=A1C,求二面角B−A1C−B1的余弦值.20. 已知动圆M过定点F(1, 0)且与直线x=−1相切,圆心M的轨迹为H.(1)求曲线H的方程;(2)一条直线AB经过点F交曲线H于A、B两点,点C为x=−1上的动点,是否存在这样的点C,使得△ABC是正三角形?若存在,求点C的坐标;否则,说明理由.21. 已知函数f(X)的定义域为(0, +∞)且满足2f(x)+f(1x )=2lnx+a(2x+1)x+1.(1)若a=−8,判断f(x)在定义域上的单调性;(2)若f(x)在定义域上有两个极值点x1,x2(x1≠x2),求证:f(x1)+f(x2)≥f(x)+2x−2.选考题(在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧BĈ的中点,连接AD 并延长,与过C 点的切线交于P ,OD 与BC 相交于点E . (1)求证:OE =12AC ;(2)求证:PDPA =BD 2AC 2.【选修4-4:坐标系与参数方程】23. 在直角坐标系xoy 中,以原点O 为极点,以x 轴正半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系,设曲线C 参数方程为{x =√3cosθy =sinθ(θ为参数),直线l 的极坐标方程为ρcos(θ−π4)=2√2.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 的最大距离,并求出这个点的坐标.【选修4-5:不等式选讲】24. 已知不等式|t +3|−|t −2|≤6m −m 2对任意t ∈R 恒成立. (1)求实数m 的取值范围.(2)若(1)中实数m 的最大值为λ,且3x +4y +5z =λ,其中x ,y ,z ∈R ,求x 2+y 2+z 2的最小值.2014-2015学年河南省某校高三(上)第二次联考数学试卷(理科)答案1. C2. A3. C4. D5. D6. C7. C8. B 9. C 10. A 11. D 12. A 13. 7314. 2 15. 6π 16. 2 17. 解:(1)根据S n =a(S n −a n +1),分别令n =1,2,3,可求得: a 1=a ,a 2=a 2,a 3=a 3; ∴ 6a +a 2=a 3; ∵ a >0;∴ 6+a =a 2,解得a =3; ∴ S n =3(S n −a n +1)①;∴ n >1时,S n−1=3(S n−1−a n−1+1)②; ∴ ①-②得:a n =3a n−1; ∴ a nan−1=3;∴ {a n }是首项为3,公比为3的等比数列; ∴ a n =3n ;(2)b n =3n log 23n =n ⋅3n log 23;∴ T n =b 1+b 2+...+b n =log 23(1⋅31+2⋅32+...+n ⋅3n ) ①; ∴ 3T n =log 23(1⋅32+2⋅33+⋯+n ⋅3n+1) ②; ∴ ①-②得:−2T n =log 23(3+32+⋯+3n −n ⋅3n+1)=log 23⋅[3(1−3n )1−3−n ⋅3n+1]=32−(n +12)3n+1; ∴ T n =−34+2n+14⋅3n+1.18. (I )获得参赛资格的人数m =(0.005+0.0043+0.032)×20×500=125 (II)平均成绩:X ¯=(40×0.0065+60×0.0140+80×0.0170+100×0.0050+120×0.0043+140×0.0032)×20=(0.26+0.84+1.36+0.5+0.516+0.448)×20=78.48 (III)设甲答对每一道题的概率为.P 则(1−p)2=19,∴ p =23, ∴ ξ可能取得值为3,4,5, P(ξ=3)=P 3+(1−P)3=13,P(ξ=4)=C 32P 2(1−p)P +C 32(1−p)p(1−p)=1027,P(ξ=5)=1−13−1027=827,∴ ξ的分布列为Eξ=3×13+4×1027+5×827=10727.19. 解:(1)∵ 平面A 1ACC 1⊥平面ABC ,AC ⊥BC , ∴ BC ⊥平面A 1ACC 1, ∴ A 1A ⊥BC ,∵ A 1B ⊥C 1C ,A 1A // CC 1 ∴ A 1A ⊥A 1B ,∴ A 1A ⊥平面A 1BC , ∴ A 1A ⊥A 1C ;(II)建立如图所示的坐标系C −xyz .设AC =BC =2, ∵ A 1A =A 1C ,则A(2, 0, 0),B(0, 2, 0),A 1(1, 0, 1),C(0, 0, 0).CB →=(0, 2, 0),CA1→=(1, 0, 1),A1B1→=AB →=(−2, 2, 0).设n 1→=(a, b, c)为面BA 1C 的一个法向量,则n 1→⋅CB →=n 1→⋅CA1→=0,则{2b =0a +c =0取a =1,n 1→=(1, 0, −1). 同理,面A 1CB 1的一个法向量为n 2→=(1, 1, −1).∴ cos <n 1→,n 2→>=|n 1→||n 2|˙=√63, ∴ 二面角B −A 1C −B 1的余弦值为√63.20. 解:(1)由题意圆心为M 的动圆M 过点(1, 0),且与直线x =−1相切, 所以圆心M 的轨迹是以(1, 0)为焦点的抛物线, ∴ 圆心M 的轨迹方程为y 2=4x .F(1, 0) 故曲线H 的方程为:y 2=4x .(2)假设存在点C ,使得△ABC 为正三角形,设A(x 1, y 1),B(x 2, y 2),C(−1, m), 直线AB 的方程.{y 2=4x x =ty +1,化简得:y 2−4ty −4=0,y 1+y 2=4t ,y 1y 2=−4 x 1+x 2=4t 2+2,得AB 的中点坐标M(2t 2+1, 2t),①当直线的斜率不存在时,t =0,A(1, 2),B(1, −2),可能C(−1, 0), AB =4,AC =BC =2√2,不可能为正三角形,②当直线的斜率存在时,M(2t 2+1, 2t),A(x 1, y 1),B(x 2, y 2),C(−1, m), |AB|=x 1+x 2+2=4t 2+2+2=4t 2+4 ∵ △ABC 是正三角形, ∴ K CM ⋅K AB =−1, 即−m−2t 2t 2+2⋅1t=−1,得m =2t 3+4t∴ C(−1, 2t 3+4t),∵ |CM|=√(2t +2t 3)2+(2t 2+2)2=(2t 2+2)√t 2+1, ∴ √32(4t 2+4)=(2t 2+2)√t 2+1,解得:t =±√2,m =2(√2)3+4√2=8√2所以存在这样的点C(−1, ±8√2),使得△ABC 是正三角形 21. 解:令1x=t ,x =1t,则:2f(1t )+f(t)=2ln 1t +a(2t +1)1t+1=−2lnt +a(t+2)t+1;∴ f(x)+2f(1x )=−2lnx +a(x+2)x+1①;又2f(x)+f(1x )=2lnx +a(2x+1)x+1②; ∴ ①②联立得f(x)=2lnx +axx+1;∴ (1)a =−8时,f(x)=2lnx −8xx+1,f′(x)=2x−8(x+1)2=(x−1)2x(x+1)2>0;∴ 函数f(x)在定义域(0, +∞)上单调递增; (2)f′(x)=2x 2+(4+a)x+2x(x+1)2;若f(x)在定义域上有两个极值点x 1,x 2(x 1≠x 2),则方程2x 2+(4+a)x +2=0有两个不等实根,且: x 1+x 2=−4+a 2,x 1x 2=1;∴ f(x 1)+f(x 2)=2lnx 1+ax 1x 1+1+2lnx 2+ax 2x 2+1=a ;∵ a =f(x)−2lnxx⋅(x +1);∴ 要证明原不等式成立,只要证明f(x)−2lnxx⋅(x +1)≥f(x)+2x−2=f(x)−2(x−1)x;也就是证明对任意的x >0,lnx ≤x −1; 令g(x)=lnx −x +1,g′(x)=1x −1=1−x x;∴ x ∈(0, 1)时,g′(x)>0,x ∈(1, +∞)时,g′(x)<0;∴ g(1)=0是g(x)的最大值,∴ g(x)≤0,即lnx −x +1≤0,lnx ≤x −1; ∴ f(x 1)+f(x 2)≥f(x)+2x−2.22. (1)证明:因为AB 为⊙O 直径,所以∠ACB =90∘,即 AC ⊥BC ,因为D 是弧BĈ的中点,由垂径定理 得OD ⊥BC ,因此OD // AC又因为点O 为AB 的中点,所以点E 为 BC 的中点,所以OE =12AC(2)证明:连接CD ,因为PC 是⊙O 的切线, 所以∠PCD =∠CAP , 又∠P 是公共角,所以△PCD ∽△PAC . 得PC PA =PD PC =CD AC,∴ PCPA ×PDPC =CDAC ×CDAC , ∴ PDPA =CD 2AC 2.因为D 是弧BC ̂的中点,所以CD =BD ,因此PD PA =BD 2AC 2. 23. 解:(1)由ρcos(θ−π4)=2√2, 得ρ(cosθ+sinθ)=4,∴ l:x +y −4=0,∵ {x =√3cosθy =sinθ,(θ为参数),∴ 消去参数得x 23+y 2=1,∴ 曲线C 的普通方程为x 23+y 2=1和直线l 的直角坐标方程为x +y −4=0; (2)在C:{x =√3cosθy =sinθ上任取一点(√3cosθ, sinθ),则点P 到直线l 的距离为d =√3cosθ+sinθ−4|√2=|2sin(θ+π3)−4|√2≤3√2,∴ 当sin(θ+π3)=−1时,d max =3√2,此时这个点的坐标为(−32,−12).24. 解:(1)∵ |t +3|−|t −2|≤|(t +3)−(t −2)|=5, 不等式|t +3|−|t −2|≤6m −m 2对任意t ∈R 恒成立, 可得6m −m 2≥5,求得1≤m ≤5, 即实数m 的取值范围为{m|1≤m ≤5}. (2)由题意可得 λ=5,3x +4y +5z =5.∵ (x 2+y 2+z 2)(32+42+52)≥(3x +4y +5z)2=25, 当且仅当x3=y4=z5时,等号成立, 即x =310,y =25,z =12 时,取等号. ∴ 50(x 2+y 2+z 2)≥25,∴ x 2+y 2+z 2≥12,即x 2+y 2+z 2的最小值为12.。
高三2014-2015学年度第二次联考(参考答案)(4月28日定稿)
江西省新八校2014-2015学年度第二次联考高三数学理科试题卷参考答案一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
ACADA BCDAD CA二、填空题:本大题共4个小题,每小题5分,共20分.请把答案填在答题卡上.13.7114.023=+-y x 15.π10 16.),21[+∞-三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.请把答案做在答题卡上.17.解:(1)()1cos(2)3cos 21sin 23cos 212sin(2).23f x x x x x x ππ⎡⎤=-+-=+-=+-⎢⎥⎣⎦----3分 又,42x ππ⎡⎤∈⎢⎥⎣⎦,则32326πππ≤-≤x ,故当232x ππ-=, 即512x πα==时,max () 3.f x = -------------------------------------------------------------------------------6分(2)由(1)知123A ππα=-=,由2sin sin sin B C A =即2bc a =,又222222cos a b c bc A b c bc =+-=+-, 则22b c bc bc +-=即2()0b c -=,故0.b c -= c b =∴ 又123A ππα=-=所以三角形为等边三角形. 12分18.解:(1)依题意可得,任意抽取一位市民会购买口罩的概率为41, 从而任意抽取一位市民不会购买口罩的概率为43. 设“至少有一位市民会购买口罩”为事件A ,则,()6437642714313==⎪⎭⎫⎝⎛=--A P ,故至少有一位市民会购买口罩的概率6437. --------------------- 5分 (2)X 的所有可能取值为:0,1,2,3,4.-------------------------------6分()25681430404=⎪⎭⎫ ⎝⎛==C X P ,()642725610841431314==⨯⎪⎭⎫ ⎝⎛⨯==C X P ()1282725654414322224==⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P ,()6432561241433334==⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P ,()25614144=⎪⎭⎫⎝⎛==X P 所以X 的分布列为:X0 1 234P256816427 12827 643 2561 ---------------------------------------------------------------- 10分 ()125614643312827264271256810=⨯+⨯+⨯+⨯+⨯=X E 12分 或⎪⎭⎫ ⎝⎛414,B ~X ,1==∴np EX -----------------------------12分19.【解析】【方法一】(1)证明:由题意知23,D C = 则222B C D B D C B D D C+∴⊥=,, P D A B C D B D P D P D C D D ⊥∴⊥= 面而,,,..B D P DC P C PD C B D P C ∴⊥∴⊥ 面在面内,(6分) (2)过E 作EH CD ⊥交CD 于H ,再过H 作HN ⊥AB 交AB 于N ,连结EN ,则AB EN ⊥,故ENH ∠为所求角。
高考数学 2014-2015朝阳高三二模理答案
北京市朝阳区高三年级第二次综合练习数学试卷答案(理工类)2015.5一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题满分13分)解:(Ⅰ)在ACDD中, 因为cos14CAD?,所以sin14CAD?,由正弦定理得,sin sinAC CDADC CAD=行,即2sinsin14CD ADCACCAD´仔===Ð……………………………………6分(Ⅱ)在ACDD中, 由余弦定理得,22422cos120AC AD AD=+-⨯⨯o,整理得22240AD AD+-=,解得4AD=(舍负).过点D作DE AB⊥于E,则DE为梯形ABCD的高.因为AB P CD,120ADC?o,所以60BAD?o.在直角ADED中,sin60DE AD==o即梯形ABCD的高为……………………………………………………13分(16)(本小题满分13分) 解:(Ⅰ)由题意可得:4分(Ⅱ)记事件M :被抽取的,,A B C 三种答卷中分别再各任取1份,这3份答卷恰有1份得优,可知只能C 题答卷为优.依题意131()1355P M =⨯⨯=.………………………………………………8分 (Ⅲ)由题意可知,B 题答卷得优的概率是13.显然被抽取的B 题的答卷中得优的份数X的可能取值为0,1,2,3,4,5,且X :1(5,)3B .00551232(0)()()33243P X C ===;11451280(1)()()33243P X C ===; 22351280(2)()()33243P X C ===;33251240(3)()()33243P X C ===;44151210(4)()()33243P X C ===;5505121(5)()()33243P X C ===. 随机变量X 的分布列为所以0123452432432432432432433EX =⨯+⨯+⨯+⨯+⨯+⨯=.…………………………………………………………13分(17)(本小题满分14分)证明:(Ⅰ)由已知得90FAB ∠=︒,所以FA AB ⊥,因为平面ABEF ⊥平面ABCD ,且平面ABEF I 平面ABCD AB =,所以FA⊥平面ABCD ,由于BC ⊂平面ABCD ,所以FA BC ⊥.………………………………………………………………………4分 (Ⅱ)由(Ⅰ)知FA ⊥平面ABCD ,所以,FA AB FA AD ⊥⊥, 由已知DA AB ⊥,所以,,AD AB AF 两两垂直.以A 为原点建立空间直角坐标系(如图). 因为112AD DC AB ===, 则(0,2,0),(1,1,0),(1,0,0),(0,1,1)B C D E ,所以(1,1,0),(0,1,1)BC BE =-=-u u u r u u u r,设平面BCE 的一个法向量为()x,y,z n =.所以0,0,BC BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n即0,0.x y y z -=⎧⎨-+=⎩令1x =,则(1,1,1)n =.设直线BD 和平面BCE 所成角为θ,因为(1,2,0)BD =-u u u r,所以sin cos ,BD BD BDθ⋅=〈〉===⋅u u u r u u u r u u u r n n n .所以直线BD 和平面BCE 9分 (Ⅲ)在A 为原点的空间直角坐标系A xyz -中,AD HC BENM(0,0,0)A ,(1,0,0)D ,(0,0,1)F ,(0,2,0)B ,H 1(,1,0)2.设()01DM k k DF =<?, 即DM k DF =uuu u r uuu r .(),0,DM k k =-uuu u r,则(1,0,)M k k -, 1(,1,)2MH k k =--uuu r ,(1,0,1)FD =-u u u r .若FD ^平面MNH ,则FD MH ^.即0FD MH ?uu u r uuu r. 102k k -+=,解得14k =. 则11(,1,)44MH =--uuu r,4MH =uuur .…………………………………………………14分(18)(本小题满分13分)解:(Ⅰ)椭圆C 的方程可化为22143x y +=,则2a =,b =,1c =. 故离心率为12,焦点坐标为(1,0),(1,0)-. ……………………………………4分 (Ⅱ)由题意,直线AB 斜率存在.可设直线AB 的方程为y kx m =+,11(,)A x y ,22(,)B x y ,则11y kx m =+,22y kx m =+.由22,3412y kx m x y =+⎧⎨+=⎩得222(34)84120k x kmx m +++-=. 判别式2222=644(34)(412)k m k m D -+-=2248(43)0k m -+>. 所以122834km x x k -+=+,212241234m x x k -=+,因为直线MA 与直线MB 斜率之积为14, 所以12121224y y x x ⋅=--, 所以12124()()(2)(2)kx m kx m x x ++=--.化简得221212(41)(42)()440k x x km x x m -++++-=, 所以22222412(8)(41)(42)4403434m km k km m k k---+++-=++,化简得22280m km k --=,即4m k =或2m k =-.当4m k =时,直线AB 方程为(4)y k x =+,过定点(4,0)-.4m k =代入判别式大于零中,解得1122k -<<. 当2m k =-时,直线AB 方程为(2)y k x =-,过定点(2,0)M ,不符合题意舍去.故直线AB 过定点(4,0)-.………………………………………………………13分(19)(本小题满分14分)解:(Ⅰ)当0a =时,2()e x f x x =,2()e (2)x f x x x '=+.由2e (2)0x x x +=,解得0x =,2x =-. 当(,2)x ∈-∞-时,f '(x )>0,f (x )单调递增; 当(2,0)x ∈-时,f '(x )<0,f (x )单调递减;当(0,)x ∈+∞时,f '(x )>0,f (x )单调递增.所以函数()f x 的单调增区间为(,2)-∞-,(0,)+∞,单调减区间为(2,0)-.…………4分 (Ⅱ)依题意即求使函数2()e ()xf x x a =-在()1,2上不为单调函数的a 的取值范围.2()e (2)x f x x x a '=+-.设2()2g x x x a =+-,则(1)3g a =-,(2)8g a =-.因为函数()g x 在()1,2上为增函数,当(1)30(2)80g a g a ì=-<ïïíï=->ïî,即当38a <<时,函数()g x 在()1,2上有且只有一个零点,设为0x .当0(1,)x x Î时,()0g x <,即()0f x ¢<,()f x 为减函数; 当0(,2)x x Î时,()0g x >,即()0f x ¢>,()f x 为增函数,满足在()1,2上不为单调函数.当3a £时,(1)0g ³,(2)0g >,所以在()1,2上()g x 0>成立(因()g x 在()1,2上为增函数),所以在()1,2上()0f x '>成立,即()f x 在()1,2上为增函数,不合题意. 同理8a ³时,可判断()f x 在()1,2上为减函数,不合题意.综上38a <<. …………………………………………………………9分(Ⅲ) 2()e (2)x f x x x a '=+-.因为函数()f x 有两个不同的极值点,即()f x ¢有两个不同的零点,即方程220x x a +-=的判别式440a ∆=+>,解得1a >-.由220x x a +-=,解得1211x x =-=- 此时122x x +=-,12x x a =-. 随着x 变化时,()f x 和()f x '的变化情况如下:所以1x 是函数()f x 的极大值点,2x 是函数()f x 的极小值点.所以1()f x 为极大值,2()f x 为极小值.所以12221212()()e ()e ()xxf x f x x a x a =-⨯-因为1a >-,所以224e4e a ---<.所以212()()4e f x f x -<.……………………………………………………………… 14分(20)(本小题满分13分) 解:(Ⅰ)满足条件的数列有两个:3,1,4,2,5;与2,4,1,3,5.…… 3分 (Ⅱ)由(Ⅰ)知数列5A :2,4,1,3,5满足55=a ,把其各项分别加5后,所得各数依次排在后,因为65||2a a -=,所得数列10A 显然满足12--=k k a a 或3,{}2,3,,10k ∈L ,即得H 数列10A :2,4,1,3,5,7,9,6,8,10.其中10,5105==a a .如此下去,即可得一个满足)403,,2,1(55Λ==k k a k 的H 数列2015A 为{}121222222121222221212122222=e [()]=e [()2]=e [(42]=4e .x x x x x x a x x a x x a x x x x a a a a a a )++---++-+-+-++-⎪⎪⎩⎪⎪⎨⎧=-=--=--=+-=+=kn n k n n k n n k n n k n n a n 5,15,125,235,245,1,(其中)403,,3,2,1Λ=k (写出此通项也可以:2,541,531,522,51,5n n n k n n k a n n k n n k n n k+=-⎧-=-⎪⎪=+=-⎨-=-⎪=⎪⎩(其中)403,,3,2,1Λ=k )…… 8分(Ⅲ)不妨设0d >.(1)若6d ≥,则20154031402140262413a b b d ==+≥+⨯=,与20152015≤a 矛盾.(2)若14d ≤≤.(i )若1001≤b ,则1(1)10040241708k b b k d =+-≤+⨯=,403.,2,1⋅⋅⋅=k . 不妨设052015l i a -=,其中0{1,2,,403},{1,2,3,4}l i ∈⋅⋅⋅∈. 于是000000555515(1)5||||||312.l l i l l l i l i a a a a a a i ------≤-+⋅⋅⋅+-≤≤ 即05|2015|12l a -≤,可得2003005≥=l l a b ,与17080≤l b 矛盾. (ii )若1011≥b ,则1011≥≥b b k ,403,,2,1⋅⋅⋅=k . 不妨设051l i a -=,其中0{1,2,,403},{1,2,3,4}l i ∈⋅⋅⋅∈. 于是000000555515(1)5||||||312l l i l l l i l i a a a a a a i ------≤-+⋅⋅⋅+-≤≤ 即05|1|12l a -≤,可得13005≤=l l a b ,与1010≥l b 矛盾.因为d 为整数,所以综上可得5d =.由(Ⅱ)可知存在使55k k b a k ==(其中403,,2,1⋅⋅⋅=k )的H 数列2015A . 把上述H 数列2015A 倒序排列,即有5d =-.所以5d =或5-. …… 13分。
2014-2015学年度第二学期综合练习(二)高三数学(理科)附答案
7 83 5 5 72 38 9 4 5 5 6 1 2 9 7 8 乙甲2014-2015学年度第二学期综合练习(二)高三数学(理科)学校_____________班级_______________姓名______________考号___________ 本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项) (1)23sin()6π-= (A )2-(B )12-(C )12(D (2)设4log a =π,14log b =π,4c =π,则a ,b ,c 的大小关系是(A ) b c a >> (B )a c b >> (C ) a b c >> (D )b a c >>(3)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=(A )4 (B )8 (C )16 (D )64(4)甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有(A )12x x >,12s s < (B )12x x =,12s s <(C )12x x =,12s s = (D )12x x <,12s s >(5)已知p ,q 是简单命题,那么“p q ∧是真命题”是“p ⌝是真命题”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是(A )[1,3]- (B )[1,11] (C )]3,1[ (D )]11,1[-(7)定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++=(A )336 (B )355 (C )1676 (D )2015(8)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012a a a ,其中{0,1}i a ∈(0,1,2i =),传输信息为00121h a a a h ,001h a a =⊕,102h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如原信息为111,则传输信息为01111.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是(A )11010 (B )01100 (C )10111 (D )00011(p ,q )第二部分(非选择题 共110分)二、 填空题(共6小题,每小题5分,共30分)(9)若1)nx的二项展开式中各项的二项式系数的和是64,则n = ,展开式中的常数项为 .(用数字作答)(10)已知正数,x y 满足x y xy +=,那么x y +的最小值为 .(11)若直线12(32x t t y t =-+⎧⎨=-⎩,为参数)与曲线4cos (sin x a y a θθθ=+⎧⎨=⎩,为参数,0a >)有且只有(12)若双曲线22221(0,0)x y a b a b-=>>截抛物线24y x =的准线所得线段长为b ,则a = .(13)已知非零向量,a b 满足||1=b ,a 与-b a 的夹角为120,则||a 的取值范围是 .(14)如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”. 给出下列四个命题:① 若0p q ==,则“距离坐标”为② 若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个. ③ 若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个. ④ 若p q =,则点M 的轨迹是一条过O 点的直线. 其中所有正确命题的序号为 .EFA三、解答题(共6小题,共80分。
2014级高三二诊数学(理)参考答案及评分意见
( 一㊁ 选择题 : 每小题 5 分 , 共6 0 分) 1. D; 2. A; 3. B; 4. A; 5. D; ; ; ; ; 7. B 8. C 9. D 1 0. C 1 1. D; ) 第 Ⅱ 卷( 非选择题 , 共9 分 0 ( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分) 2 n 1 3. ㊀㊀1 4. 3 2. 8; ㊀㊀1 5. 4; ㊀㊀1 6. . -2; n +1 ( 三㊁ 解答题 : 共7 0 分) B E C E ( 解: 在 әB 据正弦定理 , 有 1 7. Ⅰ) E C 中, . = s i n øB C E s i n B 2 π , ȵ øB = B E =1, C E= 7, 3 3 B E ������s i n B 2 2 1 ʑ s i n øB C E= . = = C E 1 4 7 ( 由平面几何知识 , 可知 øD Ⅱ) E A = øB C E. π 在R t әA E D中, ȵ øA = , A E =5, 2 3 57 2 ʑc o s øD E A = 1-s i n øD E A = 1- = . 2 8 1 4 第 Ⅰ 卷( 选择题 , 共6 0 分) 6. C; 1 2. A.
ɡ ɡ ɡ
C D2 = C E2 +D E2 -2 C E������D E������ c o s øC E D = 7+2 8-2ˑ 7 ˑ2 7 ˑ ( -
当 x =5 7 0时, 3ˑ5 7 0+4 3 3. 2=6 0 4. 2. y =0.
������������������������1 0分
高三数学 ( 理科 ) 二诊测试参考答案第 ㊀ 共 5页) 1 页(
������������������������1 特征量 y 的估计值为 6 ʑ 当 x =5 7 0时, 0 4. 2. 2分 ( 解: 如图 , 作 GM ʊ C 交B 连接 MF . 1 9. Ⅰ) D, C 于点 M , 作 BH ʊ AD , 交 GM 于 N , 交D C 于H. ȵE F ʊC D ,ʑGM ʊ E F. ʑGN =A B =3, HC =9. ȵA B ʊ GM ʊ D C, NM BM A G 2 ʑ = = = . HC B C AD 3 ʑNM =6. ʑGM =GN + NM =9. ������������������������4 分 ʑGM ������E F. ʑ 四边形 GMF E 为平行四边形 . ʑG E ʊ MF . 又 MF ⊂ 平面 B C F, G E ⊄ 平面 B C F, ������������������������6 分 ʑG E ʊ 平面 B C F. ( Ⅱ )ȵ 平面 AD E ʅ 平面 C D E F, AD ʅ D E, AD ⊂ 平面 AD E, ʑAD ʅ 平面 C D E F. 以 D 为坐标原点 , D C 为x 轴 , D E 为y 轴 , DA 为z 轴建立如图所示的空间直角坐标 系D x z. y ʑ E (0, 4, 0) , F (9, 4, 0) , C (1 2, 0, 0) , B (3, 0, 4 3) . ң ң , , , ( ) ʑE F = 900 E B = (3, 4 3) . -4, 设平面 E B F 的法向量n1 = (x1 , z1 ) . y1 , ң x1 =0 n ������E F =0, 9 由 1 得 . ң 3 x1 -4 z1 =0 ������ y1 +4 3 n1 E B =0 ������������������������8 分 取 y1 = 3 , 得 n1 = (0,3, 1) . ң ң 同理 , F C = (3, 0) , F B = ( -6, -4, 4 3) . -4, , ) 设平面 B C F 的法向量n2 = ( x2 , z . y2 2 ң 3 x 4 ������ - =0 2 2 y n F C =0, 由 2 得 . ң x2 -4 z2 =0 -6 y2 +4 3 n2 ������F B =0 ������������������������1 取 x2 =4, 得 n2 = (4, 0分 3, 3 3) . n1 ������ n2 0ˑ4+ 3 ˑ3+1ˑ3 3 63 3 3 9 ʑ c o s< n1 , n2 >= . = = = n1 | n2 | 2 6 | | 2ˑ 1 6+9+2 7 2ˑ2 1 3 ������������������������1 1分 ȵ 二面角 E -B F -C 为钝二面角 ,
2014-2015年高三上学期第二次诊断性检测数学理科试题
2014-2015年高三上学期第二次诊断性检测数学理科试题一、 选择题:本大题10个小题,每小题5分,共50分.1.已知集合 ,则 等于 ( ) A . {-1,0,1}B .{1}C .{-1,1}D .{0,1}2.命题“所有能被2整除的整数都是偶数”的否定是 ( )A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数 3.(周练变式)设函数,则满足的x 的取值范围是( )A .,2]B .[0,2]C .[1,+)D .[0,+)4.若函数2()()af x x a x=+∈R ,则下列结论正确的是 ( ) A .a ∀∈R ,()f x 在(0,)+∞上是增函数 B .a ∀∈R ,()f x 在(0,)+∞上是减函数 C .a ∃∈R ,()f x 是偶函数 D .a ∃∈R ,()f x 是奇函数 5. 设0<x <π2,则“x sin 2x <1”是“x sin x <1”的 ( )A.充分不必要条件 B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件6. 设函数2,0,()2,0.x bx c x f x x ⎧++≤=⎨>⎩若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =的解的个数为 ( )A .1B .2C .3D .47. 已知幂函数f (x )的图象经过点(18,24),P (x 1,y 1),Q (x 2,y 2)(x 1<x 2)是函数图象上的任意不同两点,给出以下结论:其中正确结论的序号是 ( )A > ; ②< ; ③>; ④<.A .①③B .①②C .②④D .②③⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x 2)(≤x f 1[-∞∞()11x f x ()22x f x ()11x f x ()22x f x ()11x x f ()22x x f ()11x x f ()22x x f8.(周练变式)函数||||ln x x x y =的图像可能是 ( )9. 函数的图像如图所示,在区间上可找到个不同的 数使得则的取值范围是( ) A . B. C. D.10. 定义在R 上的函数)(x f ,如果存在函数b kx x g +=)((k ,b 为常数),使得)()(x g x f ≥对一切实数x 都成立,则称)(x g 为函数)(x f 的一个承托函数.现有如下命题: ①对给定的函数)(x f ,其承托函数可能不存在,也可能有无数个. ②函数x x g 2)(=为函数x x f 2)(=的一个承托函数. ③定义域和值域都是R 的函数)(x f 不存在承托函数.其中正确命题的序号是: ( )A .①B .②C .①③D .②③ 二、填空题:本大题5个小题,每小题5分,共25分.11.已知函数1)1ln()(-+-=x x x f ,则()f x 零点的个数是__________. 12.已知函数∈++-=b a bx x x x f ,()(23αR )的图象如图所示,它与x 轴 在原点处相切,且x 轴与函数图象所围成的区域(如图阴影部分)的 面积为121,则a =_____________. =()y f x [],a b (2)n n ≥12,...,,n x x x 1212()()()==,n nf x f x f x x x x n {}3,4{}2,3{}3,4,5{}2,3,413. 已知定义在R 上的函数的图象关于点对称,且满足,又,,则_______________.14. 已知函数()f x 的自变量取值区间为A ,若其值域也为A ,则称区间A 为()f x 的保值区间.若()ln g x x m x =+-的保值区间是[2,)+∞,则m 的值为_______________.15. 设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集。
2015北京西城高考二模数学理(含解析)
北京市西城区2014—2015学年度第二学期高三综合练习数学(理科) 2015.5第一部分(选择题 共40 分)一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)1.设集合{}10A x x =->,集合{}3B x x =≤,则AB =( ).A .()1,3-B .(]1,3C .[)1,3D .[]1,3-2.已知平面向量a ,b ,c 满足()1,1a =-,()2,3b =,()2,c k =-,若()//a b c +,则实数k =( ). A .4 B .4- C .8 D 8-3.设命题p :函数()1x f x e -=在R 上为增函数;命题q :函数()()cos πf x x =+为奇函数.则下列命题中真命题是:( ).A .p q ∧B .()p q ⌝∨C .()()p q ⌝∧⌝D .()p q ∧⌝ 4.执行如图所示的程序框图,若输入的{}1,2,3n ∈,则输出的s 属于( ). A .{}1,2 B .{}1,3 C .{}2,3 D .{}1,3,95.某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y (万元)与x 满足函数关系2464y x =+,若欲使此设备的年平均花费最低,则此设备的使用年限x 为( ). A .3 B .4 C .5 D .66.数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 的前21项的和等于( ).A .212B .21C .42D .84 7.若“1x >”是“不等式2x a x >-成立”的必要而不充分条件,则实数a 的取值范围是:( ). A .3a > B .3a < C .4a > D .4a <8.在长方体1111ABCD A B C D -中,AB 11BC AA ==,点M 为1AB 的中点,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点,(点P Q 、可以重合),则MP PQ +的最小值为( ).A B C .34 D .1第二部分(非选择题 共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分.9.复数10i3i=+______. 10.双曲线22:184x y C -=的离心率为_________;渐近线的方程为_________.11.已知角α的终边经过点()3,4-,则cos α=______;cos 2α=_________.12.如图,P 为O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于B C 、,且2PC PA =,D 为线段PC 的中点,AD 的延长线交O 于E ,若34PB =,则PA =_____;AD DE =________.13.现有6人要排成一排照相,其中①②,则不同的排法有______种.(用数字作答)14.如图,正方形ABCD 的边长为2,O 为AD 中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为x []()0,πx ∈,OP 所经过的在正方形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:①π3f ⎛⎫= ⎪⎝⎭;②任意π0,2x ⎡⎤∈⎢⎥⎣⎦,都有ππ422f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭; ③任意12π,π2x x ⎛⎫∈ ⎪⎝⎭、且12x x ≠,都有()()12120f x f x x x --< 其中所有正确结论的序号是________.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13 分)在锐角ABC △中,角A B C 、、所对的边分别为a b c 、、,已知a =3b =sin B A +=. (Ⅰ)求角A 的大小. (Ⅱ)求ABC △的面积.某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图:为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)当3a b ==时,记甲型号电视机的“星级卖场”数量为m ,乙型号电视机的“星级卖场”的数量为n ,比较m n 、的大小关系.(Ⅱ)在这10个卖场中,随机选取2个卖场,记X 为其中甲型号电视机的“星级卖场”的个数,求X 的分布列和数学期望.(Ⅲ)若1a =,记乙型号电视机销售量的方差为2s ,根据茎叶图推断b 为和值时,2s 达到最小值.(只需写出结论)如图,在边长为4的菱形ABCD 中,60BAD ∠=︒,DE AB ⊥于点E ,将ADE △沿DE 折起到1A DE △的位置,使1A D DC ⊥,如图2. (Ⅰ)求证:1A E ⊥BCDE .(Ⅱ)求二面角1E A B C --的余弦值;(Ⅲ)判断在线段EB 上是否存在点P ,使平面1A DP ⊥1A BC ?若存在,求出EPPB的值;若不存在,说明理由.18.(本小题满分13 分)已知函数()211xf x ax -=+,其中R a ∈.(Ⅰ)当14a =-时,求()f x 的单调区间;(Ⅱ)当0a >时,证明:存在实数0m >,使得对于任意的实数x ,都有()f x m ≤成立.19.(本小题满分14 分)设1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且2AB =.(Ⅰ)若椭圆E E 的方程; (Ⅱ)设P 为椭圆E 上一点,且在第一象限内,直线2F P 与y 轴相交于点Q ,若以PQ 为直径的圆经过点1F ,证明:OP >20.(本小题满分13 分)无穷数列12:,,,,n P a a a ,满足i a N *∈,且1()i i a a i N *+∈≤.对于数列P ,记{}()m i n ()k n T P na k k N *=∈≥,其中{}min n n a k ≥表示集合{}n n a k ≥中最小的数. (Ⅰ)若数列:1,3,4,7,P ,写出1()T P ,2()T P ,,()s T P ;(Ⅱ)若()21k T P k =-,求数列P 前n 项的和; (Ⅲ)已知2046a =,求12201246()()()s a a a T P T P T P =+++++++的值.北京市西城区高三年级二模数学试卷(理工类) 2015.5一、选择题:二、填空题:三、解答题:15.(本小题满分13分) (Ⅰ)在ABC △中,由正弦定理sin sin a bA B=,3sin B=3sin B A =,解得sin A =, 因为ABC △为锐角三角形,所以π3A =. (Ⅱ)在ABC △中,由余弦定理222cos 2b c a A bc+-=,得219726c c+-=,即2320c c -+=,解得1c =或2c =,当1c =时,因为222cos 02a c b B ac +-==<,所以角B 为钝角,不符合题意,舍去.当2c =时,因为222cos 02a c b B ac +-==>.且b c >,b a >.所以ABC △为锐角三角形,符合题意.所以ABC △的面积11sin 3222S bc A ==⨯⨯=.16.(本小题满分13分)(Ⅰ)根据茎叶图,得甲组数据的平均数为101014182225273041432410+++++++++=,乙组数据的平均数为1018202223313233334326.510+++++++++=.由茎叶图,知甲型号电视机的“星级卖场”的个数5m =, 乙型号电视机的“星级卖场”的个数5n =. 所以m n =.(Ⅱ)由题意,X 的所有可能取值为0,1,2,且02552102(0)9C C P X C ===,11552105(1)9C C P X C ===,20552102(2)9C C P X C ===,所以X 的分布列:所以252()0121999E X =⨯+⨯+⨯=.(Ⅲ)当0b =时,2s 达到最小值. 17.(本小题满分14分)(Ⅰ)因为DE BE ⊥,BE DC ∥, 所以DE DC ⊥,又因为1A D DC ⊥,1A D DE D =I , 所以DC ⊥平面1A DE , 所以1DC A E ⊥,又因为1A E DE ⊥,DC DE D =I , 所以1A E ⊥平面BCDE .(Ⅱ)因为1A E ⊥平面BCDE ,DE BE ⊥,所以1A E ,DE ,BE 两两垂直,以EB ,ED ,1EA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系.易知DE =则1(0,0,2)A ,(2,0,0)B,C,D ,所以1(2,0,2)BA =-u u u r,BC =u u u r, 平面1A BE 的一个法向量为(0,1,0)n =r, 设平面1A BC 的法向量为(,,)m x y z =u r, 由10BA m ⋅=u u u r u r ,0BC m ⋅=u u u r u r,得22020x z x -+=⎧⎪⎨+=⎪⎩,令1y =,得(,m =u r,所以cos ,m n m n m n⋅<>==⋅u r ru r r u r r 由图,得二面角1E A B C --的平面角为钝二面角, 所以二面角1E A B C --的余弦值为.(Ⅲ)结论:在线段EB 上不存在一点P ,使得平面1A DP ⊥平面1A BC . 假设在线段EB 上存在一点P ,使得平面1A DP ⊥平面1A BC .设(,0,0)P t (02t ≤≤),则1(,0,2)A P t =-u u u r,12)A D =-u u u r , 设平面1A DP 的法向量为111(,,)p x y z =u r,由10A D p ⋅=u u u r u r ,10A P p ⋅=u u u r u r,得11112020z tx z ⎧-=⎪⎨-=⎪⎩,令12x =,得)p t =u r , 因为平面1A DP ⊥平面1A BC ,所以0m p ⋅=u r u r,即0+=, 解得3t =-, 因为02t ≤≤,所以在线段上EB 不存在点P ,使得平面1A DP ⊥平面1A BC . 18.(本小题满分13分)(Ⅰ)当14a =-时,函数21()114xf x x -=-. 其定义域为{|2}x x ∈≠±R ,求导,得22222224(1)3()0114(1)4(1)44x x x f x x x -+----'==<--,所以函数()f x 在区间(,2)-∞-,(2,2)-,(2,)+∞上单调递减. (Ⅱ)当0a >时,21()1xf x ax -=+的定义域为R ,求导,得22221()(1)ax ax f x ax --'=+,令()0f x '=,解得110x =-,211x =+, 当x 变化时,()f x '与()f x 的变化情况如下表:所以函数()f x 在1(,)x -∞,2(,)x +∞上单调递增,在12(,)x x 上单调递减, 又因为(1)0f =,当1x <时,21()01x f x ax -=>+;当1x >时,21()01xf x ax -=<+, 所以当1x ≤时,10()()f x f x ≤≤;当1x >时,2()()0f x f x <≤,记12max{(),()}M f x f x =,其中12max{(),()}f x f x 为两数1()f x ,2()f x 中最大的数 综上,当0a >时,存在实数[),m M ∈+∞,使得对任意的实数x ,不等式()f x M ≤恒成立. 19.(本小题满分14分)(Ⅰ)设由题意,得224a b +=,且c a =解得a 1b =,c =所以椭圆E 的方程为2213x y +=.(Ⅱ)由题意,的224a b +=,所以椭圆E 的方程为222214x y a a+=-,则1(,0)F c -,2(,0)F c ,c ,设00(,)P x y , 由题意,知0x c ≠,则直线1F P 的斜率100F P y k x c=+, 直线2F P 的斜率200F P y k x c=-,所以直线2F P 的方程为00(c)y y x x c=--, 当0x =时,00y c y x c -=-,即点00(0,)y cQ x c--, 所以直线1F Q 的斜率为10F Q y k c x =-, 因为以PQ 为直径的圆经过点1F , 所以1100001F P F Q y yk k x c c x ⨯=⨯=-+-, 化简,得22200(24)y x a =--,①又因为P 为椭圆E 上一点,且在第一象限内, 所以22002214x y a a+=-,00x >,00y >,② 由①②,解得202a x =,20122y a =-,所以22222001(2)22OP x y a =+=-+,因为22242a b a +=<,所以22a >,OP > 20.(本小题满分13分)(Ⅰ)1()1T P =,2()2T P =,3()2T P =,4()3T P =,5()4T P =. (Ⅱ)由题意,1()1T P =,2()3T P =,3()5T P =,4()7T P =,L 因为2()3T P =,且()min{|}k n T P n a k =≥, 所以32a ≥,且22a <,同理,由3()5T P =,()min{|}k n T P n a k =≥, 得53a ≥,且43a <,以此类推,得74a ≥,64a <;L ;21n a n -≥,22n a n -<;L 因为1()i i a a i +∈*N ≤,i a ∈*N ,所以121a a ==,342a a ==,L ,212n n a a n -==,L当n 为奇数时,21211(1)2(12)224n n n n a a a -+++++=++++=L L ,当n 为偶数时,21222(12)24n n n na a a ++++=+++=L L ,所以数列{}n a 前n 项的和22(1),21,42,2,4n n n k S k n n n k ⎧+=-⎪⎪=∈⎨+⎪=⎪⎩*N (Ⅲ)解法一:考察符合条件的数列P 中,若存在某个(119)i i ≤≤满足1i i a a +<,对应可得()k T P , 及12201246()()()s a a a T P T P T P =+++++++L L . 因为()min{|}k n T P n a k =≥,所以1()1i a T P i +=+.下面将数列P 略作调整,仅将第i a 的值增加1,具体如下:设1j j a a '=+,对于任何(1)j j ≠,令j j a a '=,可得数列P '及其对应数列()k T P ', 根据数列()k T P '的定义,可得1()i a T P i +'=,且()()(1)j j i T P T P j a '=≠+. 显然11()()1i i a a T P T P ++'=-.所以12201246()()()s a a a T P T P T P '''''''=+++++++L L121120121246(1)()()(1)()i i i i i a a a a a a a a T P T P T T T P -+++=++++++++++++-+++L L L L 12201246()()()a a a T P T P T P s =+++++++=L L . 即调整后得s s '=,如果数列{}n a '还有存在相邻两项不相等,继续做以上的操作,最终一定可以经过有限次的操作,使得{}n a 中的每一项变为相等,且操作中保持s 的值不变, 而当122046a a a ====L 时,1246()()()1T P T P T P ====L , 所以12201246()()()966s a a a T P T P T P =+++++++=L L .解法二:将问题一般化,下面求1212()()()n n a s a a a T P T P T P =+++++++L L . 当1n =时,1()1T P =,2()1T P =,L ,()1i a T P =,故11112s a a a =+⨯=.当2n =时,1()1T P =,2()1T P =,L ,()1i a T P =,1()2i a T P +=,2()2i a T P +=,L ,2()2a T P =, 故1242421()23s a a a a a a =++⨯+-⨯=,猜想(1)n s n a =+,下面用数学归纳法证明:(1)当1n =时,由以上叙述可知,命题成立. (2)假设当n k =时,命题成立,即4(1)s k a =+. 当1n k =+时, 若1k k a a +=,则12112()()()k k a s a a a a T P T P T P +=++++++++L L 11(1)(2)k k k k a a k a ++=++=+,命题成立. 若1k k a a +>,则11211212()()()()()()k k k k k k a a a a s a a a a T P T P T P T P T P T P ++++=++++++++++++L L L112112()()()(1)(1)(1)k k k k k a a a a a a a T P T P T P k k k ++-=+++++++++++++++L L L 144444444444424444444444443共个11(1)(1)(1)(1)k k k k a a k a a k k k ++-=+++++++++L 144444444444424444444444443共个11(1)(1)()k k k k k a a k a a ++=++++-1(2)k k a +=+,命题成立.由(1)和(2),得(1)()n s n a n =+∈*N . 所以当2046a =时,(201)46966s =+⨯=.北京市西城区2014—2015学年度第二学期高三综合练习数学(理科)选填解析1. 【答案】B【解析】{}1A x x =>,{}3B x x =≤,所以(]1,3A B =. 故答案为B .2. 【答案】D【解析】()1,4a b +=,且()//a b c +,所以有4812k k =⇒=--. 故答案为D .3. 【答案】D【解析】由题意得命题p 为真,命题q :函数()()cos πcos f x x x =+=-为偶函数,命题q 为假命题,则q ⌝为真命题,从而()p q ∧⌝为真命题. 故答案为D .4. 【答案】A【解析】当1n =时,经过判断得31n s =⇒=,所以输出1s =,当2n =时,经过判断得92n s =⇒=,所以输出2s =,当3n =时,经过判断得1s =,所以输出1s =,综上输出的s 满足的集合为{}1,2. 故答案为A .5. 【答案】B【解析】设平均费用为y ,则246464432x y x x x+==+≥,当且仅当644x x =,即4x =时取到最小值.故答案为B .6. 【答案】B【解析】由数列{}n a 为等差数列,根据等差数列的性质得2420a a a +++()2205a a =+()121510a a =+=,所以()1212a a +=,则()1212121212a a S +⨯==.故答案为B .7. 【答案】A【解析】由于1x >是2x a x >-的必要而不充分条件,所以2x a x >-,即2x x a +>的解集是{}1x x > 的子集,令()2xf x x =+,则()f x 为增函数,那么()()13f x f >=,则3a >,此时满足2x x a +>条件的x 一定是{}1x x >的子集. 故答案为A .8. 【答案】C【解析】对角线1AC 上的动点P 到底面ABCD 上的Q 点的最小值为点P 在底面ABCD 上的投影,即直线AC 上,所以选择确定点Q ,点1B 沿着线1AC 旋转,使得11ACC B 在一个平面上,过1AB 的中点M 做AC 的垂线,垂足为Q ,MQ 与1AC 的交点为P ,线段MQ 的长度为我们求的最小值.由题意长方体1111ABCD A B C D -,11AB BC AA ===可得111π6B AC CAC ∠=∠=,则1π3MAC ∠=,另外1AB =则AM =π334MQ ==. 故答案为C .9. 【答案】13i +【解析】()()()()10i 3i 10i 3i 10i13i 3i 3i 3i 10--===+++-. 故答案为13i +.10. y =【解析】由题意得,2228,412a b c ==⇒=,所以离心率c e a ===,渐近线为b y x a =±==.y x =.11. 【答案】35-,725-【解析】由题意得3cos 5α=-,所以2237cos 22cos 121525αα⎛⎫=-=⋅--=- ⎪⎝⎭.故答案为35-,725-.12. 【答案】32, 98【解析】由切割线定理得22PA PB PC PB PA =⋅=⋅,所以32PA =3PC =;再根据相交弦定理得AD DE BD DC ⋅=⋅,由D 是PC 的中点,所以32DC =,34BD PD PB =-=,则339248AD DE BD DC ⋅=⋅=⋅=.故答案为32,98.13. 【答案】288【解析】所有甲乙不相邻的排法为4245A A ,排除甲与乙两人不相邻,但甲站在两端的情况为114244C C A ,故所以满足条件的排法为4211445244288A A C C A -= 故答案为288.14. 【答案】①②【解析】①如图,当π3AOP ∠=时,OP 与AM 相交于点M ,因为1AO =,则AM =,π132f ⎛⎫∴= ⎪⎝⎭正确;②由于对称性ππ22f x f x ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭恰好是正方形的面积,所以ππ422f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭正确; ③显然()f x 是增函数,所以()()12120f x f x x x ->-,错误.故答案为①②.。
2014二模理科数学答案-推荐下载
一、1.D
二、1. x
三、1.(1)1 (2)10
§21.3 二次根式的加减(一)
一、1.C 2.A
2.A
2 2.
3.C
3
3
,
3.B
3 2x ,
2. x 3 3
二、1.(答案不唯一,如: 20 、 45 ) 2. 3 < x < 3 3 3. 1
三、1.(1) 4 3 (2) 16 2 (3)2 (4) 3 3
一、1.B
二、1. 1
2.D
2. -3 3. -2
3.B
∴
x1
三、1.(1) x1 5 , x2 5 (2) x 1 2 (3) x1 x2 1 (4)没有实数
根
2.(1) 2x 1 4, 2x 1 4 4x. x 1 . 经检验 x 1 是原方程的解.
(3) y1 1,y2 13 (6) x1 9 , x2 2
2m 112 4m 1 3m2 2 ,整理得 3m2 6m 0
(2) x1 2- 1,x- 12 2
(4) x1 7,x2 2
2.∵ x1 x2 2 ∴ m 2 原方程为 x2 2x 3 0 解得 x1 3 , x2 1
(2)∵ x1 x2 k , x1 x2 1,又 x1 x2 x1 x2 ∴ k 1 ∴ k 1 §22.3 实际问题与一元二次方程(一)
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年高三数学二模试卷(理科含答案)
1 / 42014年高考模拟考试试卷高三数学(理科)(考试时间120分钟,满分150分)考生注意:1. 每位考生应同时领到试卷与答题纸两份材料,所有解答必须写在答题纸上规定位置,写在试卷上或答题纸上非规定位置一律无效;2. 答卷前,考生务必将姓名、准考证号码等相关信息在答题纸上填写清楚; 3. 本试卷共23道试题,满分150分,考试时间120分钟。
一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、经过点 (1, 0)A 且法向量为(2, 1)n =-的直线l 的方程是 .2、已知集合1|1, A x x R x ⎧⎫=<∈⎨⎬⎩⎭,集合B 是函数lg (1)y x =+的定义域,则A B = .3、方程22124x y m +=+表示焦点在y 轴上的双曲线,则实数m 取值范围是 .4、已知数列{}n a 是首项为1,公差为2的等差数列,()n S n N *∈表示数列{}n a 的前n 项和,则2lim1nn S n →∞=- .5、在261)x x-(的展开式中,含3x 项的系数等于 .(结果用数值作答) 6、方程sin cos 1x x +=-的解集是 . 7、实系数一元二次方程20x ax b ++=的一根为131ix i+=+(其中i 为虚数单位),则 a b += .8、某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在 全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,现采用分层抽样(按年级分层) 在全校抽取100人,则应在高三年级中抽取的人数等于 .9、已知()2x f x =的反函数为111(), ()(1)(1)y f x g x f x f x ---==--+,则不等式()0g x <的解集是.10、已知圆柱M 的底面圆的半径与球O 的半径相同,若圆柱M 与球O 的表面积相等,则它们的体积之比V V 圆柱球:= (结果用数值作答). 11、在极坐标系中,圆4sin ρθ=的圆心到直线 ()6R πθρ=∈的距离等于 .12、如果函数(]()210,1()311,ax x f x ax x ⎧-∈⎪=⎨-∈+∞⎪⎩,2()log g x x =,关于x 的不等式()()0f x g x ⋅≥ 对于任意(0, )x ∈+∞恒成立,则实数a 的取值范围是 .2 / 413、已知二次函数2() ()f x x ax a x R =-+∈同时满足:①不等式()0f x ≤的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项 和为n S ,且()n S f n =.规定:各项均不为零的数列{}n b 中,所有满足10i i b b +⋅<的正整数i 的个数称为这个数列{}n b 的变号数.若令1n nab a =-(*n N ∈),则数列{}n b 的变号数等 于 .14、已知圆22: (01)O x y c c +=<≤,点 (, )P a b 是该圆面(包括⊙O 圆周及内部)上一点,则a b c ++的最小值等于 .二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
2015年普通高中高三第二次联合考试理科数学附答案
(Ⅰ)求实数 的值;
(Ⅱ)若函数 存在单调递减区间,求实数b的取值范围;
(3)设 是函数 的两个极值点,若 ,求 的最小值.
请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多图均按所答第一题评分;多答按所答第一题评分。
(Ⅰ)设函数 .证明: ;
(Ⅱ)若实数 满足 ,求证: .
理科数学(答案)
一、选择题:本大题共12小题,每小题5分,共60分,
(1)A(2)B(3)B(4)C(5)D(6)B
(7)C(8)C(9)C(10)D(11)B(12)B
二、填空题:本大题共4小题,每小题5分。
(13) (14)-2(15) (16)k=或k=
A. B. C. D.
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分。
(13)若复数 为纯虚数,则 的值为
(14)设 , ,则 .
(15)当输入的实数 时,执行如图所示的程序框图,则输出的
(
(
(
(
已知曲线 的参数方程为 ( 为参数),
以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为 =2.
(Ⅰ)分别写出 的普通方程, 的直角坐标方程;
(Ⅱ)已知M,N分别为曲线 的上、下顶点,点P为曲线 上任意一点,求 的最大值.
(24)(本小题满分10分)选修4—5:不等式选讲.
(Ⅰ)求 的值;
(Ⅱ)若 ,求sin( + )的值
2014—2015学年度第二学期阶段检测高三数学(理)附答案
2014—2015学年度第二学期阶段检测高三数学(理)一.选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一选项是符合题目要求的)1. 已知集合⎭⎬⎫⎩⎨⎧=2121,,A , {}A x x y yB ∈==,|2, 则B A = ( )A. ⎭⎬⎫⎩⎨⎧21 B. {}2 C. {}1 D. Φ 2. 在复平面内,复数iiz 212+-=的共轭复数的虚部为 ( )A .- 25B . 25C .25 iD .- 25 i3.将函数)sin(ϕ+=x y 2的图象沿x 轴向左平移8π个 单位后,得到一个偶函数的图象,则ϕ的一个可能取 值为( )A.43π B. 4π C. 0 D. - 4π 4.阅读程序框图,若输入64==n m ,, 则输出i a ,分别是( )A .312==i a ,B .412==i a ,C .38==i a ,D .48==i a ,5.某校在一次期中考试结束后,把全校文、理科总分前10名学生的数学成绩(满分150分)抽出来进行对比分析,得到如图所示的茎叶图. 若从数学成绩高于120分的学生中抽取3人, 分别到三个班级进行数学学习方法交流, 则满足理科人数多于文科人数的情况有( )种A . 3081B . 1512C . 1848D . 20146.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为 ( )A .34πB .23πC .πD .π37.下列说法正确的是( )A .命题“若1<x , 则 11<≤-x ”的逆否命题是“若1≥x , 则1-<x 或1≥x ”;正视图侧视图俯视图理科 文科1413 1211 8 6 6 9 8 810 9 8 9 80 1 2 6 8 8 6 9 9 6 第(5)题 图B .命题“R x ∈∀, 0>x e ”的否定是“R x ∈∀, 0≤xe ”;C .“0>a ”是“函数x ax x f )()(1-=在区间),(0-∞上单调递减”的充要条件;D .已知命题x x R x p lg ln ,:<∈∀;命题203001x x R x q -=∈∃,: , 则 “)()(q p ⌝∨⌝为真命题”. 8. 已知点M 是AB C 的重心,若A =60°,3=⋅AC AB ,则||的最小值为( )A B C .3D .2 9.设21x x ,分别是方程1=⋅xa x 和1=⋅x x a log 的根(其中1>a ), 则212x x +的取值范围是( )A. ),(+∞3B. ),[+∞3C. ),(+∞22D. ),[+∞2210.已知数列{}n a 的前n 项和为n S ,且)(,*N n S a a n n ∈+==+12111,在等差数列{}n b 中,52=b ,且公差2=d .使得n b a b a b a n n 602211>+++ 成立的最小正整数n 为( ) A .2 B .3 C .4 D .511.已知F 为抛物线x y =2的焦点,点A 、B 在该抛物线上且位于x 轴两侧,且 6=⋅OB OA (O 为坐标原点),则ABO ∆与AOF ∆面积之和的最小值为( ) A. 4 B.3132 C. 1724 D.1012.已知函数;)(201543212015432x x x x x x f ++-+-+= ;)(201543212015432x x x x x x g --+-+-= 设函数),()()(43-⋅+=x g x f x F 且函数)(x F 的零点均在区间),,](,[Z b a b a b a ∈<内,则a b -的最小值为( )8.A 9.B 10.C 11.D二.填空题(本题共4个小题,每小5分,满分20分)13.已知11(1a dx -=+⎰,则61[(1)]2a x xπ---展开式中的常数项为_____ 14.任取],[11-∈k ,直线)(2+=x k y 与圆422=+y x 相交于N M ,两点,则32≥||MN 的概率是15. 已知数列{}n a 的前n 项和为n S , 满足322211-=≥=++a n a S S n n n ),(, 则=n S第18题图16.已知)()(02≠+=a bx ax x f , 若,)(,)(412211≤≤≤-≤-f f 且02=-+b bc ac (a,b,c R ),则实数c 的取值范围是三.解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.( 本小题满分12分) 在ABC ∆中,若32=||AC ,且.sin cos cos B C A ⋅=⋅+⋅ (1)求角B 的大小;(2)求ABC ∆的面积S .18. ( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示. (1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.(2)从该班中任意选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.(3)从该班中任意选两名学生,用η表示 这两人参加活动次数之和,记“函数2()1f x x x η=--在区间(3,5)上有且只有一个零点”为事件A ,求事件A 发生的概率.19.(本题满分12分)已知四棱锥ABCD P -中,ABCD PC 底面⊥,2=PC ,且底面ABCD 是边长为1的正方形,E 是侧棱PC 上的一点(如图所示).(1)如果点F 在线段BD 上,BF DF 3=,且PAB EF 平面//,求ECPE的值; (2)在(1)的条件下,求二面角C EF B --的余弦值.20.(本题满分12分)已知椭圆)(:0122221>>=+b a b y a x C 的离心率为23=e ,且过点),(231,抛物线)(:0222>-=p py x C 的焦点坐标为),(210-.P C D A BEF 第19题图(1)求椭圆1C 和抛物线2C 的方程;(2)若点M 是直线0342=+-y x l :上的动点,过点M 作抛物线2C 的两条切线,切点分别是B A ,,直线AB 交椭圆1C 于Q P ,两点.(i)求证:直线AB 过定点,并求出该定点的坐标; (ii)当OPQ ∆的面积取最大值时,求直线AB 的方程.21.(本小题满分12分)已知函数.ln )(x x f = (1)若直线m x y +=21是曲线)(x f y =的切线,求m 的值; (2)若直线b ax y +=是曲线)(x f y =的切线,求ab 的最大值;(3)设),(),,(),,(332211y x C y x B y x A 是曲线)(x f y =上相异三点,其中.3210x x x <<< 求证:.)()()()(23231212x x x f x f x x x f x f -->--选做题:请考生在22,23,24题中任选一题作答,如果多选则按所做的第一题记分,作答时,请涂明题号.22.(本小题满分10分)选修4-1:几何证明选讲 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE =AC ,DE 交AB 于点F ,且42==BP AB , (I )求PF 的长度.(II )若圆F 与圆O 内切,直线PT 与圆F 切于点T ,求线段PT 的长度 23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 24.(本小题满分10分)选修4-5:不等式选讲AC PDOE F B第20 题图已知函数()|2|,()|3|.f x x g x x m =-=-++ (1) 解关于x 的不等式()10()f x a a R +->∈;(2) 若函数()f x 的图象恒在函数()g x 图象的上方,求m 的取值范围.高三数学参考答案一.CBBAC BDBAC BC 二.13. __-20___ ;14. 33;15.- n+1n+2 ;16. [-3-212 , -3+212 ]三.解答题17. 解:(1)由题可知:在∆ABC 中,⎪AC uuu r⎪ = 2 3 , AB uuu r⋅cosC + BC uuu r⋅cosA = AC uuu r⋅sinB ,因为: AC = + ,AB uuu r⋅cosC + BC uuu r ⋅cosA = (AB uuu r +BC uuur )⋅sinB , 即:(cosC - sinB )AB uuu r+ (cosA - sinB )BC uuu r= 0-------2分而AB uuu r 、BC uuu r是两不共线向量,所以:⎩⎨⎧==B A BC sin cos sin cos ⇒ cosC = cosA ,0 < A,C < π , ∴ A = C , ∆ABC 为等腰三角形.在等腰∆ABC 中,A + B + C = π , ∴ 2A + B = π , A = π2 - B 2 ;由上知:cosA = cos( π2 - B2 )= sin B 2 = sinB, ∴sin B 2 = 2sin B 2 cos B 2 , ∴ cos B 2 = 12 , 0 < B 2 < π2,∴ B 2 = π3 , B = 2π3,-------------6分 (2)由(1)知:则A = C = π6 , 由正弦定理得:⎪AC ⎪sin 2π3= ⎪BC ⎪sin π6 ,∴⎪⎪ = 2 , S ∆ABC = 12 ⎪AC uuu r⎪⋅⎪⎪sin π6 = 12 ×2 3 ×2 ×12 = 3 --12分18.解:(1)从该班任取两名学生,他们参加活动的次数恰好相等的概率:P = 25022022525C C C C ++ = 2049 ,故P = 1 - 2049 = 2949 .-----4分 (2) 从该班中任选两名学生,用ξ表示这两学生参加活动次数之差的绝对值,则ξ的可能取值分别为:0 ,1,2,于是P(ξ = 0)= 2049 , P(ξ = 1)= 25012512012515CC C C C += 2549 ,P(ξ = 2)= 25012015C C C = 449 , 从而ξ的分布列为: E ξ = 0⨯2049 + 1⨯ 2549 + 2⨯ 449 = 3349.---------------8分(3) 因为函数f(x) = x 2- ηx – 1 在区间(3,5)上有且只有一个零点,则 f(3)⋅f(5) < 0 , 即:(8 - 3η)(24- 5η) < 0 , ∴83 < η < 245 -------10分又由于η的取值分别为:2,3,4,5,6,故η = 3或4,故所求的概率为:P(A)= 2502251512012515C C C C C C ++ = 37 .------------------12分 19.解:(1)连接CF 并延长交AB 于K ,连接PK ,因为:EF//平面PAB ,EF ⊂ 平面PCK ,平面PCK ⋂平面PAB = PK , ∴ EF// PK ,因为DF=3FB ,AB//CD ,∴ CF=3KF , 又因为:EF// PK ,∴ CE= 3PE, ∴ PE EC = 13-----4分(2) 以C 为原点,CD ,CB ,CP 所在直线为x 轴,y 轴,z 轴建立空间坐标系 (如图所示)则有:C(0,0,0) , D(1,0,0),A(1,1,0)B(0,1,0),P(0,0,2), E(0,0, 32 ),F(14 ,34 ,0)故EFuu u r= (14 ,34 ,- 32),BF uu u r= (14 ,- 14,0) zCFuu r= (14 ,34,0)-----------6分 设1n u r= (x 1,y 1,z 1)是平面BEF 的一个法向量则有:11113044211044n EF x y z n BF x y ìïï?+-=ïïíïï?-=ïïîu r uu u r u r uu u r ,取x=1得:1n u r = (1,1,23) ----------------------------------8分 同理:平面CEF 的一个法向量为:2n ur= (3,-1,0) -----------------10分cos<1n u r ,2n ur > = 1n u r ⋅2n ur|1n u r |⋅|2n ur | = 35555 所以:二面角B —EF —C 的余弦值为:- 35555 .-----------12分20.解:(1)椭圆C 1:x 24+ y 2=1;C 2:x 2=-2y ----4分(2)(i)设点M(x 0,y 0),且满足2x 0-4y 0+3=0,点A(x 1,y 1) ,B(x 2 ,y 2), 对于抛物线y= - x22 ,y ' = - x , 则切线MA 的斜率为-x 1 ,从而切线MA 的方程为:y –y 1=-x 1(x-x 1),即:x 1x+y+y 1=0 ,同理:切线MB 的方程为:x 2x+y+y 2=0 ,又因为同时过M 点,所以分别有:x 1x 0+y 0+y 1=0和x 2x 0+y 0+y 2=0,因此A ,B 同时在直线x 0x+y+y 0=0上,又因为:2x 0-4y 0+3=0,所以:AB 方程可写成:y 0(4x+2)+(2y-3x)= 0,显然直线AB 过定点:(- 12 ,- 34 ).---------6分(ii)直线AB 的方程为:x 0x+y+y 0=0,代入椭圆方程中得:(1+4x 02)x 2+8x 0y 0x+4y 02-4=0令P(x 3,y 3),Q(x 4,y 4) , ∆ = 16(4x 02- y 02+1)>0, x 3+x 4 = - 8x 0y 04x 02+1 ;x 3x 4 = 4y 02-44x 02+1|PQ | = 1+x 02·(x 3+x 4)2-4x 3x 4 = 1+x 02·16(4x 02-y 02+1)1+4x 02-------8分 点O 到PQ 的距离为:d= |y 0|1+x 02从而S ∆OPQ = 12 ·|PQ |·d = 12 ×1+x 02·16(4x 02-y 02+1)1+4x 02 ×|y 0|1+x 02= 2×y 02(4x 02-y 02+1)1+4x 02 ≤ y 02+(4x 02- y 02+1)1+4x 02=1 ---------10分A C PDOE F B 当且仅当y 02 = 4x 02- y 02+1时等号成立,又2x 0-4y 0+3=0联立解得:x 0= 12 ,y 0= 1或x 0= - 114 ,y 0= 57 ;从而所求直线AB 的方程为:x+2y+2=0 或x-14y-10=0------------12分 21.解:(1)设切点为(x 0,lnx 0), k=f '(x)= 1x 0 = 12 ,x 0 = 2 ,∴切点为(2,ln2),代入y= 12x + m 得:m = ln2-1.----------------4分(2)设y = ax+b 切f(x)于(t,lnt)(t>0), f '(x)= 1x , ∴ f '(t)= 1t ,则切线方程为:y = 1t (x-t)+lnt ,y = 1t x+lnx-1 , a= 1t ,b= lnt-1∴ab= 1t (lnt-1), 令g(t)= 1t (lnt-1), g '(t)= - 1t 2 (lnt-1)+ 1t 2 = 2-lntt2若t ∈(0,e 2)时,g '(t)>0,∴ g(t)在(0,e 2)上单调增;t ∈(e 2,+∞)时,g '(t)<0, ∴ g(t)在(e 2,+∞)上单调递减;所以,当t= e 2时,ab 的最大值为:g(e 2)= 1e 2 (lne 2-1)= 1e 2 ------------------------8分(3)先证:1x 2 <f(x 2)-f(x 1)x 2-x 1 < 1x 1 ,即证:1x 2 <lnx 2-lnx 1x 2-x 1 < 1x 1,只证:1- x 1x 2 <ln x 2x 1 < x 2x 1 - 1 , 令x 2x 1= t >1, 设h(m) =lnt –t +1 ,h '(m)= 1t - 1<0 , 所以:h(t)在(1,+ ∞)上单调递减,则h(t)<h(1)=ln1-1+1=0,即证:ln x 2x 1 < x 2x 1 – 1. 以下证明:1- x 1x 2 <ln x 2x 1令p(t)= lnt+1t -1 , p '(t)= 1t - 1t 2 >0 , 所以:p(t)= lnt+1t -1在(1,+ ∞)上单调递增,即:p(t)>p(1)=0 ,即有:lnt+1t -1>0, ∴1- x 1x 2 <ln x 2x 1获证.故1x 2 <f(x 2)-f(x 1)x 2-x 1 < 1x 1 成立 ,同理可证:1x 3 <f(x 3)-f(x 2)x 3-x 2 < 1x 2 ,综上可知::f(x 2)-f(x 1)x 2-x 1 > f(x 3)-f(x 2)x 3-x 2 成立------------12分选做题:请考生在22,23,24题中任选一题作答,如果多选则按所做的第一题记分,作答时,请涂明题号. 22.解:(I )连结,,OC OD OE ,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长AE 等于弧长AC 可得CDE AOC ∠=∠,又CDE P PFD ∠=∠+∠,AOC P OCP ∠=∠+∠, 从而PFD OCP ∠=∠,故PFD ∆∽PCO ∆,∴PF PD PC PO=, …………4分 由割线定理知12PC PD PA PB ⋅=⋅=,故1234PC PD PF PO ⋅===. …………6分 (II )若圆F 与圆O 内切,设圆F 的半径为r ,因为21OF r =-=即1r =所以OB 是圆F 的直径,且过P 点圆F 的切线为PT则2PT 248PB PO =⋅=⨯=,即PT = …………10分 23.解:(I )θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴, ………(2分) 02222=+-+∴y x y x C 的直角坐标方程为圆, …………(3分) 即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为.…………(5分) (II ):直线l 上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t , …………(8分) ∴直线l 上的点向圆C 引的切线长的最小值是62 ………(10分) 24.解:(1)不等式()10f x a +->,即210x a -+->。
2014长春二模理科数学试题及答案
2014长春高三二模 数 学(理科)第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选填涂在答题卡上).1.设集合{}2|<=x x M ,集合{}10|<<=x x N ,则下列关系中正确的是A .MN =R B .()MN =R R ð C .()N M =R R ð D .M N M =2.设i 是虚数单位,则i2i 1--等于 A .0B .4C .2D .23.已知向量(1,2)=a ,b (1,0)=,c (3,4)=,若λ为实数,()λ⊥b +a c ,则λ的值为A .311-B .113- C .12 D .354.已知命题p :函数12+-=x a y 的图象恒过定点)2,1(;命题q :若函数y =)1(-x f 为偶函数,则函数y =)(x f 的图象关于直线1=x 对称,则下列命题为真命题的是 A .p q ∨ B .p q ∧ C . p q ⌝∧ D. p q ∨⌝5. 运行如图所示的程序框图,若输出的S 是254,则①应为A .n ≤5?B .n ≤6?C .n ≤7?D .n ≤8?6.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品 进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③在某项测量中,测量结果ξ服从正态分布2(1,)N σ(0)σ>,若ξ位于区域(0,1)内的概率为0.4,则ξ位于区域(0,2)内的概率为0.8;④对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大.其中真命题的序号为 A .①④B .②④C .①③D .②③7.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 AB .2C .115D .38.计划将排球、篮球、乒乓球3个项目的比赛安排在4个不同的体育馆举办,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2个的安排方案共有 A .60种 B .42种 C .36种 D .24种 9.某几何体的三视图如图所示,则它的表面积为A. B. C.(2+π D. 10.已知函数2()212xf x x x =++-,则()y f x =的图象大致为第9题图第5题图11.已知直线l 与双曲线C 交于A ,B 两点(A ,B 在同一支上),21,F F 为双曲线的两个焦点,则21,F F 在A .以A ,B 为焦点的椭圆上或线段AB 的垂直平分线上 B .以A ,B 为焦点的双曲线上或线段AB 的垂直平分线上C .以AB 为直径的圆上或线段AB 的垂直平分线上D .以上说法均不正确12.设函数()f x 是定义在(0)-∞,上的可导函数,其导函数为()f x ',且有22()()f x xf x x '+>,则不等式2(2014)(2014)4(2)0x f x f ++-->的解集为 A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
唐山市2014---2015学年度高三年级第二次模拟考试理科数学
唐山市2014—2015学年度高三年级第二次模拟考试理科数学参考答案一、选择题:CBDAD CBADA BC二、填空题:(13)150°;(14)2027;(15)20π;(16)16.三、解答题:(17)解:(Ⅰ)因为2ac cos B =a 2+c 2-b 2,所以2(a 2-b 2)=a 2+c 2-b 2+bc . …2分整理得a 2=b 2+c 2+bc ,所以cos A =- 1 2,即A =2π3.…4分 (Ⅱ)因为∠DAB = π 2,所以AD =BD ·sin B ,∠DAC = π6.…6分在△ACD 中,有AD sin C =CD sin ∠DAC,又因为BD =3CD , 所以3sin B =2sin C ,…9分 由B =π3-C 得332cos C -32sin C =2sin C ,…11分 整理得tan C =337.…12分(18)解: (Ⅰ)证明:取PD 中点E ,连AE ,EM , 则EM ∥AN ,且EM =AN ,四边形ANME 是平行四边形,MN ∥AE . …2分 因为MN ⊥CD ,所以AE ⊥CD .取AD 中点O ,连PO ,则PO ⊥AD . 又因为平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD ,PO ⊥CD . …4分 故CD ⊥平面P AD ,AD ⊥CD . …5分(Ⅱ)由AB =AD ,AD ⊥CD ,得□ABCD 是正方形, 建立如图所示空间直角坐标系,设AB =2,则A (1,0,0),B (1,2,0),D (-1,0,0),P (0,0,3),E (- 12,0,32).DB →=(2,2,0),DP →=(1,0,3),…7分 设平面PBD 的法向量m =(x ,y ,z ),则⎩⎨⎧2×x +2×y +0×z =0,1×x +0×y +3×z =0, 取m =(3,-3,-1).…9分MN →=EA →=(32,0,-32),…10分设直线MN 与平面PBD 所成的角为θ,则sin θ=| cos 〈MN →,m 〉|=|MN →·m ||MN →||m |=277 .…12分(19)解:(Ⅰ)K 2=560(80×200-40×240)2120×440×320×240≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关. …4分(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3, 按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m 家和n 家,则(m ,n )可能为 (0,9),(1,8),(2,7),(3,6).与之对应, X 的可能取值为90,130,170,210. …6分P (X =90)=C 30C 99C 129=1220, P (X =130)=C 31C 98C 129=27220,P (X =170)=C 32C 97C 129=108220, P (X =210)=C 33C 96C 129=84220, …10分分布列表如下:期望EX =90×1220+130×27220+170×108220+210×84220=180. …12分(20)解:(Ⅰ)m :y +1=k (x -a ),n :y +1=-k (x -a ),分别代入x 2=4y ,得 x 2-4kx +4ka +4=0 (1), x 2+4kx -4ka +4=0 (2),由Δ1=0得k 2-ka -1=0, 由Δ2>0得k 2+ka -1>0,故有2k 2-2>0,得k 2>1,即k <-1,或k >1. …5分 (Ⅱ)假设存在常数λ,使得|AC |·|AD |=λ|AB |2, B (x 0,y 0),C (x 1,y 1),D (x 2,y 2), 则(y 1+1)(y 2+1)=λ(y 0+1)2. …7分 将y 1+1=-k (x 1-a ),y 2+1=-k (x 2-a ),y 0+1=k (x 0-a )代入上式,得 (x 1-a )(x 2-a )=λ(x 0-a )2,即 x 1x 2-a (x 1+x 2)+a 2=λ(x 0-a )2. …9分 由(2)得x 1+x 2=-4k ,x 1x 2=-4ka +4, 由(1)得x 0=2k ,代入上式,得 4+a 2=λ(4k 2-4ka +a 2). …11分 又Δ1=0得k 2-ka -1=0,即4k 2-4ka =4, 因此4+a 2=λ(4+a 2),λ=1.故存在常数λ=1,使得|AC |·|AD |=λ|AB |2. …12分(21)解:(Ⅰ)因为g(1x)=1x+x+(x-1x)ln1x=x+1x+(1x-x)ln x,所以g(x)=g(1x).…2分则g'(x)=-(1+1x2)ln x,…3分当x∈(0,1)时,g'(x)>0,g(x)单调递增;当x∈(1,+∞)时,g'(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)=2.…5分(Ⅱ)f'(x)=1-1x2+ax=x2+ax-1x2.…6分不妨取t=a2+4-a2>0,由此得:t2+at-1=0或写为:a=1t-t.当x∈(0,t)时,f'(x)<0,f(x)单调递减;当x∈(t,+∞)时,f'(x)>0,f(x)单调递增.f(x)的最小值为f(t)=t+1t+a ln t=t+1t+(1t-t)ln t…8分即h(a)=t+1t+(1t-t)ln t=g(t)(或h(a)=a2+4+a ln a2+4-a2).由(Ⅰ)可知g(1e2)=g(e2)=3e2-e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g(d)=0,且cd=1,…10分因为a=1t-t(t>0)是t的减函数,所以y=h(a)有两个零点a1=1d-d和a2=1c-c,又1d-d+1c-c=c+dcd-(c+d)=0,所以y=h(a)有两个零点且互为相反数.…12分(22)解:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…4分(Ⅱ)由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…10分(23)解:(Ⅰ)曲线C是以(a,0)为圆心,以a为半径的圆;l的直角坐标方程为x+3y-3=0.由直线l与圆C相切可得|a-3|2=a,解得a=1.…4分(Ⅱ)不妨设A的极角为θ,B的极角为θ+π3,则|OA|+|OB|=2cosθ+2cos(θ+π3)=3cosθ-3sinθ=23cos(θ+π6),当θ=-π6时,|OA|+|OB|取得最大值23. …10分(24)解:(Ⅰ)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x≥1时,f(x)=-x-3≤-4.故当x=-1时,f(x)取得最大值m=2.…4分(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=22时,等号成立.此时,ab+bc取得最大值1.…10分。
2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类)附答案
2014~2015学年度第二学期高三年级总复习质量检测(二)数学试卷(理工类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至9页.祝各位考生考试顺利!第 Ⅰ 卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上;2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么 ·如果事件A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ). P (AB )=P (A )•P (B ).·棱柱的体积公式V 柱体=Sh , ·球的体积公式V 球=34πR 3,其中S 表示棱柱的底面积, 其中R 表示球的半径. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设i 是虚数单位,则复数ii65-=( ). (A )6–5i (B )6+5i (C )–6+5i (D )–6–5i (2)已知命题p :x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≥0,则⌝p 是( ).(A )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≤0 (B )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)≤0 (C )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)<0 (D )x 1,x 2∈R ,(f (x 2)–f (x 1))(x 2–x 1)<0(3)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).(A )10 (B )11(C )12(D )13(4)如图所示的程序框图表示求算式“2×4×8×16×32×64”的值,则判断框内可以填入( ).(A )k <132? (B )k <70? (C )k <64? (D )k <63?(5)已知双曲线C :22x a –22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ).(A )220x –25y =1 (B )25x –220y =1(C )280x –220y =1 (D )220x –280y =1(6)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b=5c ,C=2B ,则cos C=( ). (A )725 (B )725- (C )725± (D )2425(7)由曲线y=x 2,y=x 围成的封闭图形的面积为( ). (A )61 (B )31(C )32(D )1(8)在△ABC 中,若|AB +|=|AB –|,AB=2,AC=1,E ,F 为BC 边的三等分点,则AE •AF =( ).(A )98 (B )910(C )925(D )926南开区2014~2015学年度第二学期高三年级总复习质量检测(二)答 题 纸(理工类)第 Ⅱ 卷注意事项:1.用黑色墨水的钢笔或签字笔答题; 2.本卷共12小题,共110分.二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上。
2014-2015学年普通高中高三教学质量监测 (理科数学解析版)
2014-2015学年普通高中高三教学质量监测理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.第Ⅰ卷一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( )A. [0,1]B. [0,1)C. (0,1]D. (0,1)[解析] ∵N =(-1,1),∴M ∩N =[0,1),故选B. [答案] B2. 设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A. (0,34) B. [34,43) C. [34,+∞)D. (1,+∞)[解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},∵函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (0)=-1<0,根据对称性可知要使A ∩B 中恰含有一个整数,则这个整数解为2,∴有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,∴⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[答案] B3. 下列函数中,在区间(0,+∞)上为增函数的是( ) A. y =x +1 B. y =(x -1)2 C. y =2-xD. y =log 0.5(x +1)[解析] y =(x -1)2仅在[1,+∞)上为增函数,排除B ;y =2-x=⎝ ⎛⎭⎪⎫12x为减函数,排除C ;因为y =log 0.5t 为减函数,t =x +1为增函数,所以y =log 0.5(x +1)为减函数,排除D ;y =t 和t =x +1均为增函数,所以y =x +1为增函数,故选A.[答案] A4. 定积分⎰10(2x +e x )d x 的值为( ) A . e +2 B . e +1 C . eD . e -1[解析]⎰1(2x +e x )d x =(x 2+e x)⎪⎪⎪1=1+e 1-1=e ,故选C .[答案] C5. 已知函数f(x)的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,设a =f(-12),b =f(2),c =f(3),则a ,b ,c 的大小关系为( )A . c>a>bB . c>b>aC . a>c>bD . b>a>c[解析] 由于函数f(x)的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f(x)的图象本身关于直线x =1对称,所以a =f(-12)=f(52).当x 2>x 1>1时,[f(x 2)-f(x 1)](x 2-x 1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c.故选D .[答案] D6. 图中阴影部分的面积S 是h 的函数(0≤h ≤H),则该函数的大致图象是( )[解析] 由图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B .[答案] B7. 函数y =log a (x +3)-1(a>0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上(其中m ,n>0),则1m +2n 的最小值等于( )A . 16B . 12C . 9D . 8[解析] 依题意,点A 的坐标为(-2,-1),则-2m -n +1=0,即2m +n =1(m>0,n>0),所以1m +2n =(1m +2n )(2m +n)=4+(n m +4mn )≥4+2n m ×4m n =8,当且仅当n m =4m n ,即n =2m =12时取等号,即1m +2n 的最小值是8,选D .[答案] D8. 若a>b>0,c<d<0,则一定有( ) A . a c >b d B . a c <b d C . a d >b cD . a d <b c[解析] 解法一:⎭⎬⎫c<d<0⇒cd>0 c<d<0⇒c cd <d cd <0⇒1d <1c <0⇒⎭⎬⎫-1d >-1c >0a>b>0⇒-a d >-bc ⇒ad <b c .解法二:依题意取a =2,b =1,c =-2,d =-1,代入验证得A 、B 、C 均错,只有D 正确.[答案] D9. 已知直线y =mx 与函数f(x)=⎩⎪⎨⎪⎧2-(13)x,x ≤012x 2+1,x>0的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A .(3,4)B .(2,+∞)C .(2,5)D .(3,22)[解析]作出函数f(x)=⎩⎪⎨⎪⎧2-(13)x,x ≤012x 2+1,x>0的图象,如图所示.直线y =mx 的图象是绕坐标原点旋转的动直线.当斜率m ≤0时,直线y =mx 与函数f(x)的图象只有一个公共点;当m>0时,直线y =mx 始终与函数y =2-(13)x(x ≤0)的图象有一个公共点,故要使直线y =mx 与函数f(x)的图象有三个公共点,必须使直线y =mx 与函数y =12x 2+1(x>0)的图象有两个公共点,即方程mx =12x 2+1有两个不相等的正实数根,由⎩⎨⎧y =mx y =12x 2+1,可得x 2-2mx +2=0,即⎩⎨⎧Δ=4m 2-4×2>02m>0,解得m> 2.故选B . [答案] B10.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A . 5B . 6C . 7D . 8[解析]画出可行域如右图所示, 由z =2x +y 得y =-2x +z.当直线y =-2x +z 经过点A 时,z 取得最小值n =-3; 当直线y =-2x +z 经过点C 时,z 取得最大值m =3. ∴m -n =6,故选B . [答案] B11.已知函数f(x)=x 3+ax 2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则( )A . c ≤3B . 3<c ≤6C . 6<c ≤9D . c>9[解析] 由⎩⎪⎨⎪⎧ f (-1)=f (-2),f (-1)=f (-3)得⎩⎪⎨⎪⎧ 3a -b =7,4a -b =13,解得⎩⎪⎨⎪⎧a =6,b =11.则有f(-1)=f(-2)=f(-3)=c -6,由0<f(-1)≤3,得6<c ≤9. [答案] C12. 设函数f(x)=3sin πx m .若存在f(x)的极值点x 0满足x 20+[f(x 0)]2<m 2,则m 的取值范围是( )A . (-∞,-6)∪(6,+∞)B . (-∞,-4)∪(4,+∞)C . (-∞,-2)∪(2,+∞)D . (-∞,-1)∪(1,+∞) [解析] f ′(x)=3πm cos πx m , ∵f(x)的极值点为x 0,∴f ′(x 0)=0,∴3πm cos πx 0m =0, ∴πm x 0=k π+π2,k ∈Z , ∴x 0=mk +m2,k ∈Z ,又∵x 20+[f (x 0)]2<m 2,∴⎝ ⎛⎭⎪⎫mk +m 22+⎣⎢⎡⎦⎥⎤3sin ⎝ ⎛⎭⎪⎫k π+π22<m 2,k ∈Z , 即m 2⎝⎛⎭⎪⎫k +122+3<m 2,k ∈Z ,∵m ≠0,∴⎝ ⎛⎭⎪⎫k +122<m 2-3m 2,k ∈Z , 又∵存在x 0满足x 20+[f (x 0)]2<m 2,即存在k ∈Z 满足上式,∴m 2-3m 2>⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k +122min ,∴m 2-3m 2>⎝ ⎛⎭⎪⎫122,∴m 2-3>m 24,CBFAOyx∴m 2>4,∴m >2或m <-2,故选C. [答案] C第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答.二、填空题(本大题共4小题.请把正确答案填在题中的横线上)13. 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.[解析] ∵U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8}, ∴∁U A ={4,6,7,9,10},又∵B ={1,3,5,7,9}, ∴(∁U A )∩B ={7,9}. [答案] {7,9}14. 曲线y =x e x -1在点(1,1)处切线的斜率等于________.[解析] 由题意可得y ′=ex -1+x ex -1,所以曲线在点(1,1)处切线的斜率等于2.[答案] 215. 已知不等式ax 2+bx +c <0的解集为{x |-2<x <1},则不等式cx 2+bx +a >c (2x -1)+b 的解集为________.[解析] 由题意可知a >0,且-2,1是方程ax 2+bx +c =0的两个根,则⎩⎪⎨⎪⎧-b a =-1ca =-2,解得⎩⎪⎨⎪⎧b =ac =-2a ,所以不等式cx 2+bx +a >c (2x -1)+b 可化为-2ax 2+ax +a >-2a (2x -1)+a ,整理得2x 2-5x +2<0, 解得12<x <2.∴原不等式的解集为(12,2). [答案] (12,2)16. 已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8.以上命题中所有正确命题的序号为________.[解析] 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0;根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )的图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确;由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④.[答案] ①②④三、解答题(本大题共6小题.解答时应写出必要的文字说明、证明过程或演算步骤)17. 已知全集U =R ,集合M ={x |log 2(3-x )≤2},集合N ={x |y =(12)x 2-x -6-1}. (1)求M ,N ; (2)求(∁U M )∩N .[解] (1)由已知得log 2(3-x )≤log 24,所以⎩⎪⎨⎪⎧3-x ≤4,3-x >0,解得-1≤x <3,所以M ={x |-1≤x <3}. N ={x |(12)x 2-x -6-1≥0} ={x |(x +2)(x -3)≤0} ={x |-2≤x ≤3}.(2)由(1)可得∁U M ={x |x <-1或x ≥3}. 故(∁U M )∩N ={x |-2≤x <-1或x =3}.18. 已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :函数f (x )=x 2+2ax +2a 的值域为[0,+∞).若命题“p 或q ”是假命题,求实数a 的取值范围.[解] 若命题p 为真,(ax +2)(ax -1)=0,显然a ≠0, ∴x =-2a 或x =1a ,∵x ∈[-1,1],故有|-2a |≤1或|1a |≤1, ∴|a |≥1,若命题q 为真,就有(2a )2-4×2a =0, ∴a =0或a =2,∴命题“p 或q ”为假命题时,a ∈(-1,0)∪(0,1).19. 已知函数f (x )=x 2+2m ln x (m ∈R ). (1)求函数f (x )的单调区间;(2)若函数g (x )=2x +f (x )在[1,3]上是减函数,求实数m 的取值范围.[解] (1)由条件知函数f (x )的定义域为(0,+∞),f ′(x )=2x +2mx . ①当m ≥0时,f ′(x )>0,故f (x )的单调递增区间为(0,+∞); ②当m <0时,f ′(x )=2(x +-m )(x --m )x . 当x 变化时,f ′(x ),f (x )的变化情况如下:由上表可知,函数f (x )的单调递减区间是(0,-m ],单调递增区间是[-m ,+∞).(2)对g (x )=2x +x 2+2m ln x 求导,得g ′(x )=-2x 2+2x +2m x . 由已知函数g (x )在[1,3]上是减函数,则g ′(x )≤0在[1,3]上恒成立,即-2x 2+2x +2m x ≤0在[1,3]上恒成立,即m ≤1x -x 2在[1,3]上恒成立.令h (x )=1x -x 2,当x ∈[1,3]时,h ′(x )=-1x 2-2x =-(1x 2+2x )<0,由此知h (x )在[1,3]上为减函数,所以h (x )min =h (3)=-263,故m ≤-263.于是实数m 的取值范围为(-∞,-263].20. 旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为16000元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过35人,则飞机票每张收费800元;若旅行团的人数多于35人,则予以优惠,每多1人,每个人的机票费减少10元,但旅行团的人数最多不超过60人.设旅行团的人数为x 人,飞机票价格为y 元,旅行社的利润为Q 元.(1)写出飞机票价格y 与旅行团人数x 之间的函数关系式; (2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.[解] (1)依题意得,当1≤x ≤35时,y =800; 当35<x ≤60时,y =800-10(x -35)=-10x +1150; ∴y={ 800(1≤x ≤35,且x ∈N *)-10x +1150(35<x ≤60,且x ∈N *).(2)当1≤x ≤35,且x ∈N *时,Q =yx -16000=800x -16000. 则Q max =800×35-16000=12000,当35<x ≤60,且x ∈N *时,Q =yx -16000=-10x 2+1150x -16000=-10(x -1152)2+341252,所以当x =57或x =58时,Q 取得最大值,即Q max =17060. 因为17060>12000,所以当旅游团人数为57或58时,旅行社可获得最大利润,为17060元.21. 已知函数f (x )=e x-12x 2-ax (a ∈R ).(1)若函数f (x )的图象在x =0处的切线方程为y =2x +b ,求a ,b 的值;(2)若函数f (x )在R 上是增函数,求实数a 的取值范围; (3)如果函数g (x )=f (x )-(a -12)x 2有两个不同的极值点x 1,x 2,证明:a >e2.[解] (1)∵f ′(x )=e x -x -a , ∴f ′(0)=1-a .∴由题知1-a =2,解得a =-1, ∴f (x )=e x -12x 2+x . ∴f (0)=1,∴1=2×0+b ,解得b =1.(2)由题意知,f ′(x )≥0即e x -x -a ≥0恒成立, ∴a ≤e x -x 恒成立.设h (x )=e x -x ,则h ′(x )=e x -1.当x 变化时,h ′(x ),h (x )的变化情况如下表:x (-∞,0)0 (0,+∞)h ′(x ) - 0 + h (x )单调递减极小值单调递增∴h (x )min =h (0)=1, ∴a ≤1.(3)由已知g (x )=e x-12x 2-ax -ax 2+12x 2=e x -ax 2-ax ,∴g ′(x )=e x -2ax -a .∵x 1,x 2是函数g (x )的两个不同极值点(不妨设x 1<x 2),∴e x -2ax -a =0 (*)有两个不同的实数根x 1,x 2.当x =-12时,方程(*)不成立,则a =e x 2x +1,令p (x )=e x2x +1,则p ′(x )=e x (2x -1)(2x +1)2,令p ′(x )=0,解得x =12.当x 变化时,p (x ),p ′(x )的变化情况如下表: x (-∞,-12)(-12,12) 12 (12,+∞)p ′(x ) - - 0 + p (x )单调递减单调递减极小值单调递增若方程(*)有两个不同的实数根,则a >p (12)=e2, ∴a >e 2.22. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +3(x ≤0)x 2e ax (x >0).(1)若a =-1,求函数f (x )的单调递增区间;(2)对任意的正实数m ,关于x 的方程f (x )=m 恒有实数解,求实数a 的取值范围.[解] (1)当x ≤0时,f (x )=x 2+2x +3,其单调递增区间为[-1,0];当x >0时,∵a =-1,∴f (x )=x 2e -x ,∴f ′(x )=2x e -x +x 2·(-1)e -x =-x e -x (x -2), 令f ′(x )>0,得x <2,∴f (x )的单调递增区间为(0,2).综上,函数f (x )的单调递增区间为[-1,0],(0,2).(2)“方程f (x )=m 对任意正实数m 恒有实数解”等价转化为“函数f (x )的值取遍每一个正数”,注意到当x ≤0时,f (x )=x 2+2x +3=(x +1)2+2≥2, 因此,当x >0时,f (x )的值域必须包含(0,2), 以下研究x >0时的函数值域情况,当x >0时,f (x )=x 2e ax ,∴f ′(x )=2x e ax +x 2·a e ax =x e ax (ax +2),①若a ≥0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增,f (x )的值域为(0,+∞),满足要求;②若a <0,令f ′(x )>0,得0<x <-2a ,令f ′(x )<0,得x >-2a , ∴f (x )在(0,-2a )上单调递增,在(-2a ,+∞)上单调递减, ∴f (x )max =f (-2a )=(-2a )2·e -2=4a 2e 2, ∴f (x )的值域为(0,4a 2e 2],由(0,4a 2e 2]⊇(0,2)得,4a 2e 2≥2,解得-2e ≤a <0. 综上,所求实数a 的取值范围是[-2e ,+∞).。
2014届XXX等XXX高三第二次联合模拟考试理科数学试题(含答案解析)
2014届XXX等XXX高三第二次联合模拟考试理科数学试题(含答案解析)XXX2014年高三第二次联合模拟考试(XXX、XXX、XXX)数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.若$U=\{1,2,3,4,5,6,7,8\}$,$A=\{1,2,3\}$,$B=\{5,6,7\}$,则$(C\cup A)\cap(C\cup B)$=A。
{4,8} B。
{2,4,6,8} C。
{1,3,5,7} D。
{1,2,3,5,6,7}2.已知复数$z=-\frac{1}{3}+i$,则$z+|z|$=A。
$-\frac{13}{22}-i$ B。
$-\frac{13}{22}+i$ C。
$\frac{3}{22}+i$ D。
$\frac{4}{22}-i$3.设随机变量$\xi$服从正态分布$N(2,9)$,若$P(\xi>c)=P(\xi<c-2)$,则$c$的值是A。
1 B。
2 C。
3 D。
44.已知$p:x\geq k$,$q:\frac{x+1}{3}<1$,如果$p$是$q$的充分不必要条件,则实数$k$的取值范围是A。
$(2,+\infty)$ B。
$(2,+\infty)$ C。
$[1,+\infty)$ D。
$(-\infty,-1]$5.已知$\triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,且$\frac{c-b\sin A}{c\sin C+\sin B}$,则$\angle B=$A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{3\pi}{4}$6.已知函数$f(x)=\ln(x+1)$的值域为$\{y|y\leq 1\}$,则满足这样条件的函数的个数为A。
2014年高三数学二模理科试题(邯郸市含答案)
2014年高三数学二模理科试题(邯郸市含答案)邯郸市2014届高三第二次模拟考试理科数学第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个是符合要求的.1.已知集合,,则A.B.C.D.2.复数满足,则A.B.C.D.3.下列说法不正确的是A.命题“对,都有”的否定为“,使得”B.“”是“”的必要不充分条件;C.“若,则”是真命题D.甲、乙两位学生参与数学模拟考试,设命题是“甲考试及格”,是“乙考试及格”,则命题“至少有一位学生不及格”可表示为4.函数,若,则的取值范围是A.B.C.D.5.如图所示的程序框图,运行相应的程序,若输出的值为4,则输入的值可能为A.6B.-7C.-8D.76.过抛物线焦点的直线交抛物线于两点,若,则直线的倾斜角为A.B.C.D.7.如图是一个几何体的三视图,则该几何体的体积是A.54B.27C.188.在各项均为正数的等比数列中,若,数列的前项积为,若,则的值为A.4B.5C.6D.79.已知函数,且,,则函数图象的一条对称轴的方程为A.B.C.D.10.某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得-30分;选乙题答对得10分,答错得-10分.若4位同学的总分为0,则这4位同学不同得分情况的种数是A.24B.36C.40D.4411.已知三棱锥中,,直线与底面所成角为,则此时三棱锥外接球的表面积为A.B.C.D.12.若函数有两个零点,则的取值范围A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分13.已知,,,则_________________.14.若实数,满足条件,则的最大值为_______.15.已知数列的前项为,据此可写出数列的一个通项公式为____.16.已知是双曲线的右焦点的右焦点,点分别在其两条渐进线上,且满足,(为坐标原点),则该双曲线的离心率为____________.三、解答题:本大题共6小题,共70分17.(本小题满分12分)已知函数(I)求函数的最小正周期及在区间的最大值(II)在中,所对的边分别是,,求周长的最大值.18.(本小题满分12分)从天气网查询到邯郸历史天气统计(2011-01-01到2014-03-01)资料如下:自2011-01-01到2014-03-01,邯郸共出现:多云507天,晴356天,雨194天,雪36天,阴33天,其它2天,合计天数为:1128天。
数学_2014-2015学年福建省福州某校高考数学二模试卷(理科)(含答案)
2014-2015学年福建省福州某校高考数学二模试卷(理科)一、选择题(每小题5分,共50分,在每个小题给出的四个选项中,只有一项是符合要求的)1. 设全集为R,集合A={x|x2−9<0},B={x|−1<x≤5},则A∩(∁R B)=()A (−3, 0)B (−3, −1)C (−3, −1]D (−3, 3)2. 下列有关命题的说法错误的是()A 命题“若x2−3x+2=0则x=1”的逆否命题为:“若x≠1,则x2−3x+2≠0” B “x=1”是“x2−3x+2=0”的充分不必要条件 C 若p∧q为假命题,则p、q均为假命题 D 对于命题p:∃x∈R,使得x2+x+1<0.则¬p:∀x∈R,均有x2+x+1≥03. 函数f(x)=ln(x+1)−2x(x>0)的零点所在的大致区间是()A (0, 1)B (1, 2)C (2, e)D (3, 4)4. 若a∈R,m∈R且m>0.则“a≠m”是“|a|≠m”的()A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件5. 实数a=0.3√2,b=log√20.3,c=(√2)0.3的大小关系正确的是()A a<c<bB a<b<cC b<a<cD b<c<a6. 已知函数f(x)={2x+1,x<1x2+ax,x≥1,若f[f(0)]=4a,则∫ax21dx=()A 2ln2B 13ln2 C ln2 D 9ln27. 若函数f(x)=2cos(2x+ϕ)是奇函数,且在(0,π4)上是增函数,则实数ϕ可能是()A −π2 B 0 C π2D π8. 已知函数y=f(x)(x∈R)满足f(x+3)=f(x+1),且x∈[−1, 1]时,f(x)=|x|,则函数y=f(x)−log5x,(x>0)的零点个数是()A 3B 4C 5D 69. 已知函数y=f(x)是偶函数,y=f(x−2)在[0, 2]上是单调减函数,则()A f(0)<f(−1)<f(2)B f(−1)<f(0)<f(2)C f(−1)<f(2)<f(0) D f(2)<f(−1)<f(0)10. 已知函数f(x)={2|x|+1,x≤2,−12x+6,x>2,若a,b,c互不相等,且满足f(a)=f(b)=f(c),则a+b+c的取值范围是()A (1, 10)B (5, 6)C (2, 8)D (0, 10)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置.11. 已知幂函数f(x)=(m2−3m+3)x m+1为偶函数,则m=________.12. 函数f(x)=2√1−x+√lg(3x+1)的定义域是________.13. 定义在R上的奇函数f(x),当x<0时,f(x)=xe−x,则当x>0时,f(x)=________.14. 函数f(x)=x3+32x2−6x+m的图象不过第II象限,则m的取值范围是________15. 某同学在研究函数f(x)=ax1+|x|(x∈R,a>0)时,分别给出下面几个结论:①等式f(−x)+f(x)=0对x∈R恒成立;②函数f(x)的值域为[−a, a];③函数f(x)为R的单调函数;④若x1≠x2,则一定有f(x1)≠f(x2);⑤函数g(x)=f(x)−ax在R上有三个零点.其中正确结论的序号有________.(请将你认为正确的结论的序号都填上)三、解答题:本大题共5小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. 已知函数f(x)=sinx+bcos2x2,b为常数,b∈R,且x=π2是方程f(x)=0的解.(1)求函数f(x)的最小正周期;(2)当x∈[0, π]时,求函数f(x)值域.17. 已知命题P:函数f(x)为(0, +∞)上单调减函数,实数m满足不等式f(m+1)<f(3−2m).命题Q:当x∈[0, π2],函数m=sin2x−2sinx+1+a.若命题P是命题Q的充分不必要条件,求实数a的取值范围.18. 某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出x(n∈N∗)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a−3x500)万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余与员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余与员工创造的年总利润,则a的取值范围是多少?19. 已知函数f(x)=ax−lnx(a∈R).(1)当a=1时,求曲线y=f(x)在x=2处切线的斜率;(2)求f(x)的单调区间;(3)当a>0时,求f(x)在区间(0, e]上的最小值.20. 已知函数f(x)=ax2+bx+1,a,b为实数,a≠0,x∈R,F(x)={f(x),x>0−f(x),x<0,(1)若f(−1)=0,且函数f(x)的值域为[0, +∞),求F(x)的表达式;(2)在(1)的条件下,当x∈[−1, 1]时,g(x)=f(x)+kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且函数f(x)为偶函数,判断F(m)+F(n)是否大于0.选修4-2:矩阵与变换四、本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分21分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.21. 二阶矩阵M对应的变换将点(1, −1)与(−2, 1)分别变换成点(−1, −1)与(0, −2).(1)求矩阵M的逆矩阵M−1;(2)设直线l在变换M作用下得到了直线m:2x−y=4,求l的方程.选修4-4:极坐标与参数方程22. 在极坐标系中,已知直线l的极坐标方程为ρsin(θ+π4)=1+√2,圆C的圆心是C(√2,π4),半径为√2.(1)求圆C的极坐标方程;(2)求直线l被圆C所截得的弦长.选修4-5:不等式选讲23. 设函数f(x)=|2x+1|−|x−2|.(1)解不等式f(x)>0;(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.2014-2015学年福建省福州某校高考数学二模试卷(理科)答案1. C2. C3. B4. B5. C6. A7. A8. B9. A10. C11. 112. [0, 1)13. xe x14. (−∞, −10]15. ①③④16. 解:(1)f(π2)=sinπ2+bcos2π4=0,则1+12b=0,解得b=−2;所以f(x)=sinx −2cos 2x 2=sinx −cosx −1, 则f(x)=√2sin(x −π4)−1.所以函数f(x)的最小正周期为2π.(1)由x ∈[0, π],得x −π4∈[−π4,3π4],则sin(x −π4)∈[−√22,1], 则√2sin(x −π4)∈[−1,√2],√2sin(x −π4)−1∈[−2,√2−1], 所以y =f(x)值域为[−2,√2−1].17. 解:命题P :根据已知条件得:{m +1>03−2m >0m +1>3−2m,解得23<m <32,即m ∈(23,32);命题Q:x ∈[0,π2],∴ sinx ∈[0, 1],m =sin 2x −2sinx +1+a =(sinx −1)2+a ; ∴ 当sinx =1时,m 取最小值a ,当sinx =0时,m 取最大值1+a ,所以m ∈[a, 1+a]; ∵ 命题P 是Q 的充分不必要条件,所以(23,32)⊆[a,1+a]; ∴ {a ≤231+a ≥32,解得12≤a ≤23; ∴ a 的取值范围为[12,23]. 18. 由题意得:10(1000−x)(1+0.2x%)≥10×1000,即x 2−500x ≤0,又x >0,所以0<x ≤500.即最多调整500名员工从事第三产业.从事第三产业的员工创造的年总利润为10(a −3x 500)x 万元,从事原来产业的员工的年总利润为10(1000−x)(1+1500x)万元,则10(a −3x 500)x ≤10(1000−x)(1+0.2x%) 所以ax −3x 2500≤1000+2x −x −1500x 2,所以ax ≤2x 2500+1000+x ,即a ≤2x 500+1000x +1恒成立, 因为2500x +1000x ≥2√2x 5001000x =4, 当且仅当2x 500=1000x ,即x =500时等号成立.所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0, 5].19. 解:(1)当a =1时,f(x)=x −lnx,f′(x)=x−1x (x >0), 故曲线y =f(x)在x =2处切线的斜率为12.(2)f′(x)=a −1x =ax−1x (x >0).①当a ≤0时,由于x >0,故ax −1<0,f ′(x)<0.所以,f(x)的单调递减区间为(0, +∞).②当a >0时,由f ′(x)=0,得x =1a .在区间(0,1a )上,f ′(x)<0,在区间(1a ,+∞)上,f ′(x)>0. 所以,函数f(x)的单调递减区间为(0,1a ), 单调递增区间为(1a ,+∞).综上,当a ≤0时,f(x)的单调递减区间为(0, +∞);当a >0时,函数f(x)的单调递减区间为(0,1a ),单调递增区间为(1a ,+∞). (3)根据(2)得到的结论,当1a >e ,即0<a <1e 时,f(x)在区间(0, e]上的最小值为f(e),f(e)=ae −1.当1a≤e ,即a ≥1e 时,f(x)在区间(0, e]上的最小值为f(1a ), f(1a )=1−ln 1a =1+lna . 综上,当0<a <1e 时,f(x)在区间(0, e]上的最小值为ae −1, 当a ≥1e ,f(x)在区间(0, e]上的最小值为1+lna .20. 解:(1)依题意,有{a −b +1=0△=b 2−4a =0, 解得{a =1b =2,∴ f(x)=x 2+2x +1, ∴ F(x)={x 2+2x +1,(x >0)−x 2−2x −1,(x <0).(2)由(1)得g(x)=f(x)+kx =x 2+2x +1+kx =x 2+(k +2)x +1, ∴ 函数g(x)的对称轴x =−k+22,∵ g(x)在区间[−1, 1]上是单调函数,∴ −k+22≤−1,或−k+22≥1.解得 k ≥0,或k ≤−4.∴ 实数k 的取值范围为(−∞, −4]∪[0, +∞),(3)∵ f(x)=ax 2+bx +1为偶函数,∴ b =0,即f(x)=ax 2+1(a >0), ∴ F(x)={ax 2+1,(x >0)−ax 2−1,(x <0).∵ mn <0,m +n >0,a >0,不妨设n <0<m ,则有0<−n <m , ∴ m −n >0,m +n >0.∵ F(m)+F(n)=am 2+1−an 2−1=a(m +n)(m −n),∴ F(m)+F(n)>0.21. 解:(1)设[a b c d ],则有[a b c d ][1−1]=[−1−1],[a b c d ][−21]=[0−2], 所以{a −b =−1c −d =−1且{−2a +b =0−2c +d =−2, 解得{a =1b =2c =3d =4所以M =[1234], 从而M −1=[−2132−12](2)因为[x′y′]=[1234][x y ]=[x +2y 3x +4y ]且m:2x′−y′=4, 所以2(x +2y)−(3x +4y)=4,即x +4=0,这就是直线l 的方程.22.(1)解:将圆心,化成直角坐标为(1, 1),半径r =√2,故圆C 的方程为(x −1)2+(y −1)2=2.即x 2+y 2=2x +2y .再将C 化成极坐标方程,得ρ2=2ρcosθ+2ρsinθ.化简,得ρ=2√2sin(θ+π4). 此即为所求的圆C 的极坐标方程.(2)∵ 直线l 的极坐标方程为ρsin(θ+π4)=1+√2,可化为x +y =2+√2,∴ 圆C 的圆心C(1, 1)到直线l 的距离为:d =√2|√2=1,又∵ 圆C 的半径为r =√2,∴ 直线l 被曲线C 截得的弦长l =2√r 2−d 2=2.23. 解:(1)等式f(x)>0即|2x +1|−|x −2|>0, ∴ {x <−12−2x −1−(2−x)>0①,或{−12≤x <22x +1−(2−x)>0, 或 {x ≥22x +1−(x −2)>0. 解①求得 x <−3,解②求得13<x <2,解③求得x ≥2, 故不等式的解集为(−∞, −3)∪(13, +∞).(2)由题意可得,a +1<f min (x),而由(1)可得f min (x)=f(−12)=−52, ∴ a +1<−52,解得a <−72.。