年广东省深圳市福田区中考数学一模试卷

合集下载

2020年广东省深圳市福田区中考数学一模试卷(解析版)

2020年广东省深圳市福田区中考数学一模试卷(解析版)

2020年广东省深圳市福田区中考数学一模试卷一.选择题(共12小题)1.2的倒数是()A.B.﹣2C.﹣D.22.如图,该几何体的俯视图是()A.B.C.D.3.一方有难,八方支援!据报道,在新型冠状病毒感染的肺炎疫情在湖北肆虐期间,先后约有42000名来自外省的医护人员勇敢逆行、驰援湖北.将“42000”用科学记数法表示正确的是()A.42×103B.4.2×103C.4.2×104D.4.244.下列图案是中心对称图形的是()A.B.C.D.5.下列计算正确的是()A.x2+x2=x4B.(x+y)2=x2+y2C.D.x2•x3=x66.某市疾控中心在对10名某传染病确诊病人的流行病史的调查中发现,这10人的潜伏期分别为:5,5,5,7,7,8,8,9,11,14(单位:天),则下列关于这组潜伏期数据的说法中不正确的是()A.众数是5天B.中位数是7.5天C.平均数是7.9天D.标准差是2.5天7.如图,已知a∥b,点A在直线a上,点B,C在直线b上,若∠1=125°,∠2=50°,则∠3为()A.55°B.65°C.70°D.75°8.下列选项中的尺规作图(各图中的点P都在△ABC的边上),能推出P A=PC的是()A.B.C.D.9.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4B.最小值为4C.最大值为3.5D.最小值为3.510.如图,是函数y=ax2+bx+c的图象,则函数y=ax+c,y=,在同一直角坐标系中的图象大致为()A.B.C.D.11.如图,一棵珍贵的树倾斜程度越来越厉害了.出于对它的保护,需要测量它的高度,现采取以下措施:在地面上选取一点C,测得∠BCA=37°,AC=28米,∠BAC=45°,则这棵树的高AB约为()(参考数据:sin37°≈,tan37°≈,≈1.4)A.14米B.15米C.17米D.18米12.如图,正方形ABCD中,E是BC延长线上一点,在AB上取一点F,使点B关于直线EF的对称点G落在AD上,连接EG交CD于点H,连接BH交EF于点M,连接CM.则下列结论,其中正确的是()①∠1=∠2;②∠3=∠4;③GD=CM;④若AG=1,GD=2,则BM=.A.①②③④B.①②C.③④D.①②④二.填空题(共4小题)13.因式分解:4a3﹣16a=.14.袋中装有6个黑球和若干个白球,每个球除颜色外都相同.现进行摸球试验,每次随机摸出一个球记下颜色后放回.经过大量的试验,发现摸到黑球的频率稳定在0.75附近,则袋中白球约有个.15.如图,在Rt△ABC中,∠ACB=90°,过点C作△ABC外接圆⊙O的切线交AB的垂直平分线于点D,AB的垂直平分线交AC于点E.若OE=2,AB=8,则CD=.16.如图,函数y=x(x≥0)的图象与反比例函数y=的图象交于点A,若点A绕点B(,0)顺时针旋转90°后,得到的点A'仍在y=的图象上,则点A的坐标为.三.解答题(共7小题)17.计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.18.先化简,再求值:(1﹣)÷,其中x=+1.19.某校组织学生开展了“2020新冠疫情”相关的手抄报竞赛.对于手抄报的主题,组织者提出了两条指导性建议:(1)A类“武汉加油”、B类“最美逆行者”、C类“万众一心抗击疫情”、D类“如何预防新型冠状病毒”4个中任选一个;(2)E类为自拟其它与疫情相关的主题.评奖之余,为了解学生的选题倾向,发掘出最能引发学生触动的主题素材,组织者随机抽取了部分作品进行了统计,并将统计结果绘制成了如下两幅尚不完整的统计图.请根据以上信息回答:(1)本次抽样调查的学生总人数是,并补全条形统计图;(2)扇形统计图中,“C”对应的扇形圆心角的度数是,x=,y﹣z =;(3)本次抽样调查中,“学生手抄报选题”最为广泛的是类.(填字母)20.如图,在△ABC中,AB=AC,D是AB上一点,以点D为圆心,AC为半径画弧交BA 的延长线于点E,连接CD,作EF∥CD,交∠EAC的平分线于点F,连接CF.(1)求证:△BCD≌△AFE;(2)若AC=6,∠BAC=30°,求四边形CDEF的面积S四边形CDEF.21.因“抗击疫情”需要,学校决定再次购进一批医用一次性口罩及KN95口罩共1000只,已知1只医用一次性口罩和10只KN95口罩共需113元;3只医用一次性口罩和5只KN95口罩共需64元.问:(1)一只医用一次性口罩和一只KN95口罩的售价分别是多少元?(2)参照上次购买获得的需求情况后,校长给出了一条建议:医用一次性口罩的购买量不能多于KN95口罩数量的2倍,请你遵循校长建议给出最省钱的购买方案,并说明理由.22.如图,⊙O的直径AB=10,弦BC=,点P是⊙O上的一动点(不与点A、B重合,且与点C分别位于直径AB的异侧),连接P A,PC,过点C作PC的垂线交PB的延长线于点D.(1)求tan∠BPC的值;(2)随着点P的运动,的值是否会发生变化?若变化,请说明理由,若不变,则求出它的值;(3)运动过程中,AP+2BP的最大值是多少?请你直接写出它来.23.如图,抛物线y=ax2+bx+c的图象,经过点A(1,0),B(3,0),C(0,3)三点,过点C,D(﹣3,0)的直线与抛物线的另一交点为E.(1)请你直接写出:①抛物线的解析式;②直线CD的解析式;③点E的坐标(,);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE=45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH时,请你直接写出此时点Q的坐标.参考答案与试题解析一.选择题(共12小题)1.2的倒数是()A.B.﹣2C.﹣D.2【分析】根据倒数的定义进行解答即可.【解答】解:2的倒数是,故选:A.2.如图,该几何体的俯视图是()A.B.C.D.【分析】找到从几何体的上面看所得到图形即可.【解答】解:从上面看得到图形为:,故选:B.3.一方有难,八方支援!据报道,在新型冠状病毒感染的肺炎疫情在湖北肆虐期间,先后约有42000名来自外省的医护人员勇敢逆行、驰援湖北.将“42000”用科学记数法表示正确的是()A.42×103B.4.2×103C.4.2×104D.4.24【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42000=4.2×104,故选:C.4.下列图案是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【解答】解:A、是轴对称出图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:B.5.下列计算正确的是()A.x2+x2=x4B.(x+y)2=x2+y2C.D.x2•x3=x6【分析】直接利用合并同类项法则以及完全平方公式和二次根式的加减运算法则计算得出答案.【解答】解:A、x2+x2=2x2,故此选项错误;B、(x+y)2=x2+2xy+y2,故此选项错误;C、﹣=2﹣=,正确;D、x2•x3=x5,故此选项错误;故选:C.6.某市疾控中心在对10名某传染病确诊病人的流行病史的调查中发现,这10人的潜伏期分别为:5,5,5,7,7,8,8,9,11,14(单位:天),则下列关于这组潜伏期数据的说法中不正确的是()A.众数是5天B.中位数是7.5天C.平均数是7.9天D.标准差是2.5天【分析】根据众数、中位数、平均数以及标准差的定义判断各选项正误即可.【解答】解:A、∵数据中5出现3次,出现的次数最多,∴众数为5,此选项正确;B、把这些数据重新排列为5,5,5,7,7,8,8,9,11,14,则中位数为=7.5天,此选项正确;C、平均数为(5+5+5+7+7+8+8+9+11+14)=7.9,此选项正确;D、方差为×[3×(5﹣7.9)2+2×(7﹣7.9)2+2×(8﹣7.9)2+(9﹣7.9)2+(11﹣7.9)2+(14﹣7.9)2]≠2.5,此选项错误;故选:D.7.如图,已知a∥b,点A在直线a上,点B,C在直线b上,若∠1=125°,∠2=50°,则∠3为()A.55°B.65°C.70°D.75°【分析】利用平行线的性质结合三角形的外角的性质解决问题即可.【解答】解:∵a∥b,∠1=125°,∴∠ACD=125°,∵∠2=50°,∴∠3=125°﹣50°=75°.故选:D.8.下列选项中的尺规作图(各图中的点P都在△ABC的边上),能推出P A=PC的是()A.B.C.D.【分析】根据尺规作图痕迹进行判断,即可得到图形中相等的线段.【解答】解:A.由此作图知CA=CP,不符合题意;B.由此作图知BA=BP,不符合题意;C.由此作图知∠ABP=∠CBP,不能得到P A=PC,不符合题意;D.由此作图知P A=PC,符合题意;故选:D.9.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4B.最小值为4C.最大值为3.5D.最小值为3.5【分析】利用抛物线的焦点和准线方程的定义得到=3,﹣=5,通过解方程组得到a=﹣,b=2或b=﹣2,则抛物线的解析式为y=﹣x2+2x或y=﹣x2﹣2x,然后根据二次函数的性质解决问题.【解答】解:根据题意得=3,﹣=5,解得a=﹣,b=2或b=﹣2,∴抛物线y=ax2+bx(a≠0)的解析式为y=﹣x2+2x或y=﹣x2﹣2x,∵y=﹣x2+2x=﹣(x﹣4)2+4,y=﹣x2﹣2x=﹣(x+4)2+4,∴二次函数y=ax2+bx有最大值4.故选:A.10.如图,是函数y=ax2+bx+c的图象,则函数y=ax+c,y=,在同一直角坐标系中的图象大致为()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a<0,c<0,b2﹣4ac>0,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象交y轴的负半轴,∴c<0,∵二次函数y=ax2+bx+c的图象与x轴有两个交点,∴b2﹣4ac>0,∴一次函数y=ax+c,图象经过第二、三、四象限,反比例函数y=的图象分布在第一、三象限,故选:A.11.如图,一棵珍贵的树倾斜程度越来越厉害了.出于对它的保护,需要测量它的高度,现采取以下措施:在地面上选取一点C,测得∠BCA=37°,AC=28米,∠BAC=45°,则这棵树的高AB约为()(参考数据:sin37°≈,tan37°≈,≈1.4)A.14米B.15米C.17米D.18米【分析】如图,作BH⊥AC于H.设BH=x,构建方程即可解决问题.【解答】解:如图,作BH⊥AC于H.∵∠BCH=37°,∠BHC=90°,设BH=xm,∴CH===,∵∠A=45°,∴AH=BH=x,∴x+x=28,∴x=12,∴AB=AH=×12≈17(m)故选:C.12.如图,正方形ABCD中,E是BC延长线上一点,在AB上取一点F,使点B关于直线EF的对称点G落在AD上,连接EG交CD于点H,连接BH交EF于点M,连接CM.则下列结论,其中正确的是()①∠1=∠2;②∠3=∠4;③GD=CM;④若AG=1,GD=2,则BM=.A.①②③④B.①②C.③④D.①②④【分析】①正确.如图1中,过点B作BK⊥GH于K.想办法证明Rt△BHK≌Rt△BHC (HL)可得结论.②正确.分别证明∠GBH=45°,∠4=45°即可解决问题.③正确.如图2中,过点M作MW⊥AD于W,交BC于T.首先证明MG=MD,再证明△BTM≌△MWG(AAS),推出MT=WG可得结论.④正确.求出BT=2,TM=1,利用勾股定理即可判断.【解答】解:如图1中,过点B作BK⊥GH于K.∵B,G关于EF对称,∴EB=EG,∴∠EBG=∠EGB,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠BCD=90°,AD∥BC,∴∠AGB=∠EBG,∴∠AGB=∠BGK,∵∠A=∠BKG=90°,BG=BG,∴△BAG≌△BKG(AAS),∴BK=BA=BC,∠ABG=∠KBG,∵∠BKH=∠BCH=90°,BH=BH,∴Rt△BHK≌Rt△BHC(HL),∴∠1=∠2,∠HBK=∠HBC,故①正确,∴∠GBH=∠GBK+∠HBK=∠ABC=45°,过点M作MQ⊥GH于Q,MP⊥CD于P,MR⊥BC于R.∵∠1=∠2,∴MQ=MP,∵∠MEQ=∠MER,∴MQ=MR,∴MP=MR,∴∠4=∠MCP=∠BCD=45°,∴∠GBH=∠4,故②正确,如图2中,过点M作MW⊥AD于W,交BC于T.∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠MCD,CM=CM,∴△MCB≌△MCD(SAS),∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BMG=90°,∴∠BMT+∠GMW=90°,∵∠GMW+∠MGW=90°,∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(AAS),∴MT=WG,∵MC=TM,DG=2WG,∴DG=CM,故③正确,∵AG=1,DG=2,∴AD=AB=TM=3,EM=WD=TM=1,BT=AW=2,∴BM===,故④正确,故选:A.二.填空题(共4小题)13.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)14.袋中装有6个黑球和若干个白球,每个球除颜色外都相同.现进行摸球试验,每次随机摸出一个球记下颜色后放回.经过大量的试验,发现摸到黑球的频率稳定在0.75附近,则袋中白球约有2个.【分析】设中白球约有x个,根据黑球的个数÷总球的个数=黑球的频率,列出算式,再进行求解即可.【解答】解:设中白球约有x个,根据题意得:=0.75,解得:x=2,经检验x=2是方程的解,答:袋中白球约有2个;故答案为:2.15.如图,在Rt△ABC中,∠ACB=90°,过点C作△ABC外接圆⊙O的切线交AB的垂直平分线于点D,AB的垂直平分线交AC于点E.若OE=2,AB=8,则CD=3.【分析】连接OC,根据切线的性质得到∠OCD=90°,根据余角的性质得到∠AEO=∠B,得到DE=DC,设DE=DC=x,求得OD=2+x,根据勾股定理列方程即可得到结论.【解答】解:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∵∠ACB=90°,∴∠DCE=∠COB,∵OD⊥AB,∴∠AOE=90°,∴∠A+∠B=∠A+∠AEO=90°,∴∠AEO=∠B,∵OC=OB,∴∠OCB=∠B,∵∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC,设DE=DC=x,∴OD=2+x,∵OD2=OC2+CD2,∴(2+x)2=42+x2,解得:x=3,∴CD=3,故答案为:3.16.如图,函数y=x(x≥0)的图象与反比例函数y=的图象交于点A,若点A绕点B(,0)顺时针旋转90°后,得到的点A'仍在y=的图象上,则点A的坐标为(2,2).【分析】设点A的坐标为(a,a),过A作AC⊥x轴于C,过A′作A′D⊥x轴于D,于是得到∠ACB=∠A′DB=90°,AC=OC=a,求得BC=﹣a,根据全等三角形的性质得到BD=AC=a,A′D=BC=﹣a,列方程组即可得到结论.【解答】解:设点A的坐标为(a,a),过A作AC⊥x轴于C,过A′作A′D⊥x轴于D,∴∠ACB=∠A′DB=90°,AC=OC=a,∴BC=﹣a,∵点A绕点B(,0)顺时针旋转90°后,得到的点A',∴∠ABA′=90°,AB=A′B,∴∠CAB+∠ABC=∠ABC+∠A′BD=90°,∴∠CAB=∠A′BD,∴△ACB≌△BDA′(AAS),∴BD=AC=a,A′D=BC=﹣a,∵点A'在y=的图象上,∴,解得:k=8,a=2,∴点A的坐标为(2,2),故答案为:(2,2).三.解答题(共7小题)17.计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.【分析】直接利用零指数幂的性质以及二次根式的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=1﹣2×﹣4+﹣1=1﹣﹣4+﹣1=﹣4.18.先化简,再求值:(1﹣)÷,其中x=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当x=+1时,原式==.19.某校组织学生开展了“2020新冠疫情”相关的手抄报竞赛.对于手抄报的主题,组织者提出了两条指导性建议:(1)A类“武汉加油”、B类“最美逆行者”、C类“万众一心抗击疫情”、D类“如何预防新型冠状病毒”4个中任选一个;(2)E类为自拟其它与疫情相关的主题.评奖之余,为了解学生的选题倾向,发掘出最能引发学生触动的主题素材,组织者随机抽取了部分作品进行了统计,并将统计结果绘制成了如下两幅尚不完整的统计图.请根据以上信息回答:(1)本次抽样调查的学生总人数是120,并补全条形统计图;(2)扇形统计图中,“C”对应的扇形圆心角的度数是72°,x=30,y﹣z=5;(3)本次抽样调查中,“学生手抄报选题”最为广泛的是B类.(填字母)【分析】(1)利用扇形统计图结合条形统计图,进而得出调查的总人数和C,E两组的人数;(2)根据(1)中所求总人数,进而结合条形统计图可得答案;(3)利用(2)中所求得出B类所占比例最多,进而得出答案.【解答】解:(1)调查的学生总人数:30÷25%=120(人),120×20%=24(人),120﹣30﹣36﹣24﹣18=12(人),如图所示:(2)“C”对应的扇形圆心角的度数是:360°×20%=72°,x%=×100%=30%,y%=×100%=15%,z%=1﹣30%﹣15%﹣25%﹣20%=10%,故x=30,y﹣z=10﹣5=5,故答案为:72°,30,5;(3)由(2)中所求,可得出:“学生手抄报选题”最为广泛的是B类.故答案为:B.20.如图,在△ABC中,AB=AC,D是AB上一点,以点D为圆心,AC为半径画弧交BA 的延长线于点E,连接CD,作EF∥CD,交∠EAC的平分线于点F,连接CF.(1)求证:△BCD≌△AFE;(2)若AC=6,∠BAC=30°,求四边形CDEF的面积S四边形CDEF.【分析】(1)利用三角形外角性质以及平行线的性质,可得∠B=∠1,∠BDC=∠AEF,根据ASA即可判定△BCD≌△AFE;(2)过A作AH⊥CF,垂足为H,先判定四边形CDEF是平行四边形,即可得出CF=AB=AC=6,且CF∥AB,再根据AH=AC=3,即可得到S四边形CDEF=CF×AH=18.【解答】解:(1)∵AB=AC,∴∠B=∠ACB,∵∠EAC=∠B+∠ACB,∴∠EAC=2∠B,∵∠1=∠2,∴∠EAC=2∠1,∴∠B=∠1,∵EF∥CD,∴∠BDC=∠AEF,∵AB=AC=DE,∴BD=AE,∴△BCD≌△AFE(ASA);(2)如图,过A作AH⊥CF,垂足为H,∵△BCD≌△AFE,∴CD=EF,又∵EF∥CD,∴四边形CDEF是平行四边形,∴CF=AB=AC=6,且CF∥AB,∵∠BAC=30°,∴∠ACH=30°,∴AH=AC=3,∴S四边形CDEF=CF×AH=6×3=18.21.因“抗击疫情”需要,学校决定再次购进一批医用一次性口罩及KN95口罩共1000只,已知1只医用一次性口罩和10只KN95口罩共需113元;3只医用一次性口罩和5只KN95口罩共需64元.问:(1)一只医用一次性口罩和一只KN95口罩的售价分别是多少元?(2)参照上次购买获得的需求情况后,校长给出了一条建议:医用一次性口罩的购买量不能多于KN95口罩数量的2倍,请你遵循校长建议给出最省钱的购买方案,并说明理由.【分析】(1)设一只医用一次性口罩的售价为x元,一只KN95口罩的售价为y元,根据“购买1只医用一次性口罩和10只KN95口罩共需113元;购买3只医用一次性口罩和5只KN95口罩共需64元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m只医用一次性口罩,则购买(1000﹣m)只KN95口罩,根据医用一次性口罩的购买量不能多于KN95口罩数量的2倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校再次购进1000只口罩的总费用为w元,根据总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设一只医用一次性口罩的售价为x元,一只KN95口罩的售价为y元,依题意,得:,解得:.答:一只医用一次性口罩的售价为3元,一只KN95口罩的售价为11元.(2)设购买m只医用一次性口罩,则购买(1000﹣m)只KN95口罩,依题意,得:m≤2(1000﹣m),解得:m≤666.设学校再次购进1000只口罩的总费用为w元,则w=3m+11(1000﹣m)=﹣8m+11000.∵﹣8<0,∴w随m的增大而减小,又∵m是整数,∴m的最大值为666,∴当m=666时,w取得最小值,最小值为5672,此时1000﹣m=334.答:最省钱的购买方案是:购买666只医用一次性口罩,334只KN95口罩.22.如图,⊙O的直径AB=10,弦BC=,点P是⊙O上的一动点(不与点A、B重合,且与点C分别位于直径AB的异侧),连接P A,PC,过点C作PC的垂线交PB的延长线于点D.(1)求tan∠BPC的值;(2)随着点P的运动,的值是否会发生变化?若变化,请说明理由,若不变,则求出它的值;(3)运动过程中,AP+2BP的最大值是多少?请你直接写出它来.【分析】(1)连接AC,由AB是直径得出∠ACB=90°,根据勾股定理求得AC=4,再由tan∠BPC=tan∠BAC=可得答案;(2)证△CBD∽△CAP得=,结合=tan∠BPC=,可得==;(3)由(2)知BD=AP,据此知AP+2BP=2(AP+BP)=2(BD+BP)=2PD=,根据tan∠BPC=知cos∠BPC=,从而得AP+2BP=PC≤AB=10,即可得出答案.【解答】解:(1)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,BC=2,∴AC==4,∴tan∠BPC=tan∠BAC==;(2)的值不会发生变化,理由如下:∵∠PCD=∠ACB=90°,∴∠1+∠PCB=∠2+∠PCB,∴∠1=∠2,∵∠3是圆内接四边形APBC的一个外角,∴∠3=∠P AC,∴△CBD∽△CAP,∴=,在Rt△PCD中,=tan∠BPC=,∴==;(3)由(2)知BD=AP,∴AP+2BP=2(AP+BP)=2(BD+BP)=2PD=,由tan∠BPC=,得:cos∠BPC=,∴AP+2BP=PC≤AB=10,∴AP+2BP的最大值为10.23.如图,抛物线y=ax2+bx+c的图象,经过点A(1,0),B(3,0),C(0,3)三点,过点C,D(﹣3,0)的直线与抛物线的另一交点为E.(1)请你直接写出:①抛物线的解析式y=x2﹣4x+3;②直线CD的解析式y=x+3;③点E的坐标(5,8);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE=45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH时,请你直接写出此时点Q的坐标.【分析】(1)①由抛物线经过A(1,0),B(3,0),可以假设抛物线的解析式为y=a (x﹣1)(x﹣3),把C(0,3)代入得到a=1解决问题.②设直线CD的解析式为y=kx+b,利用待定系数法即可解决问题.③构建方程组解决问题即可.(2)如图1中,过点E作EH⊥x轴于H.证明△ECP∽△EPD,可得PE2=EC•ED=80,在Rt△EHP中,可得PH===4由此即可解决问题.(3)延长QH到M,使得HM=1,连接AM,BM,延长QB交AM于N.证明△QHB ∽△AHM,推出∠BQH=∠HAM,推出∠ANB=90°,即QN⊥AM,推出当BM=AB=2时,QN垂直平分线段AM,此时QB平分∠AQH,利用勾股定理求出BH即可解决问题.【解答】解:(1)∵抛物线经过A(1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x﹣1)(x﹣3),把C(0,3)代入得到a=1,∴抛物线的解析式为y=x2﹣4x+3,设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x+3,由,解得或,∴E(5,8).故答案为:y=x2﹣4x+3,y=x+3,5,8.(2)如图1中,过点E作EH⊥x轴于H.∵C(0,3),D(﹣3,0),E(5,8),∴OC=OD=3,EH=8,∴∠PDE=45°,CD=3,DE=8,EC=5,当∠CPE=45°时,∵∠PDE=∠EPC,∠CEP=∠PED,∴△ECP∽△EPD,∴=,∴PE2=EC•ED=80,在Rt△EHP中,PH===4,∴把点H向左或向右平移4个单位得到点P,∴P1(1,0),P2(9,0).(3)延长QH到M,使得HM=1,连接AM,BM,延长QB交AM于N.设Q(t,t2﹣4t+3),由题意点Q只能在点B的右侧的抛物线上,则QH=t2﹣4t+3,BH =t﹣3,AH=t﹣1,∴==t﹣3=,∵∠QHB=∠AHM=90°,∴△QHB∽△AHM,∴∠BQH=∠HAM,∵∠BQH+∠QBH=90°,∠QBH=∠ABN,∴∠HAM+∠ABN=90°,∴∠ANB=90°,∴QN⊥AM,∴当BM=AB=2时,QN垂直平分线段AM,此时QB平分∠AQH,在Rt△BHM中,BH===,∴t=3+,∴Q(3+,3+2).。

2023年广东省深圳市福田区中考一模数学试卷

2023年广东省深圳市福田区中考一模数学试卷

2023年广东省深圳市福田区一模数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.深圳市卫健委2日称,截至4月2日16时,全市指定接种门诊591家,累计接种307万剂次、241万人.将241万用科学记数法表示为()A.24.1×105B.2.41×105C.2.41×106D.0.241×107 3.下列计算,正确的是()A.a3+a3=a6B.a6÷a2=a4C.(a3)2=a9D.(a+b)2=a2+b24. “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班48名同学的视力检查数据如下表:视力 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数236912853则视力的众数和中位数分别是()A. 4.5,4.6B. 4.6,4.6C. 4.7,4.7D. 4.8,4.75. 不等式组21010xx->⎧⎨+≥⎩的解集是( (A. x(12B. (1≤x(12C. x(12D. x≥(16.如图,DE∥BC,BE平分∠ABC,若∠1=68°,则∠CBE的度数为()A.34°B.32°C.22°D.56°7.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°8.下列命题:①有一个角等于100°的两个等腰三角形相似;②对角线互相垂直的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.49.如图,抛物线y1=ax2+bx+c(a≠0)的顶点为A(1,3),且与x轴有一个交点为B(4,0),直线y2=mx+n与抛物线交于A、B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点坐标是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤10.如图,直线y=﹣x﹣4分别交x、y轴于点C、D,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交直线CD于点A、B,且∠AOB =135°.下列结论:①△BCO与△ADO相似;②BP=AP;③BC•AD=16;④k=8.正确的有()A .1个B .2个C .3个D .4个二、填空题(本大题共5小题,每小题3分,共15分)11. 分解因式24ax a -=________.12. 2022年冬奥会的主题口号是“一起向未来”,从5张上面分别写着“一”“起”“向”“未”“来”这5个字的卡片(大小,形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“来”字的概率是______.13. 如图,直角ABC 中,90C ∠=︒,根据作图痕迹,若3cm CA =,3tan 4B =,则DE =________cm .14.如图,一次函数y =x +k (k >0)的图象与x 轴和y 轴分别交于点M ,N ,与反比例函数y =的图象在第一象限内交于点B ,过点B 作BA ⊥x 轴,BC ⊥y 轴.垂足分别为点A ,C .当矩形OABC 与△OMN 的面积相等时,点B 的坐标为 .15.如图,在矩形ABCD中,E为AD上的一点,且BE=BC=10,作∠EBC的平分线交CD于点G,CG=5,F为BC上的一点,H为CG上的一点,且EF⊥BH,给出以下结论,其中正确的结论有.(将你认为正确结论的序号都填上)①GE=GC;②△ABE的面积为24;③EF:BH=3:4;④连接FH,则FH的最小值为.三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.计算:2cos45°+|﹣3|﹣()﹣2+(2021﹣π)0.17.(﹣)÷先化简,再从2、3、4中选一个合适的数作为x的值代入求值.18.如图为某学校门口“测温箱”截面示意图,当身高1.7米的小聪在地面M处时开始显示额头温度,此时在额头B处测得A的仰角为45°,当他在地面N处时,此时在额头C 处测得A的仰角为58°,如果测温箱顶部A处距地面的高度AD为3.3米,求B、C两点的距离.(结果保留一位小数,sin58°≈0.8,cos58°≈0.5,tan58°≈1.6)19.如图,BC是⊙O的直径,A为⊙O上一点,连接AB、AC,AD⊥BC于点D,E是直径CB延长线上一点,且AB平分∠EAD.(1)求证:AE是⊙O的切线;(2)若EC=4,AD=2BD,求EA.20.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?21.【问题提出】如图(1),每一个图形中的小圆圈都按一定的规律排列,设每条边上的小圆圈个数为a,每个图形中小圆圈的总数为S.请观察思考并完成以下表格的填写:a12345…8…s136……【变式探究】请运用你在图(1)中获得的经验,结合图(2)中小圆圈的排列规律,写出第n个图形的小圆圈总数S与n之间的关系式.【应用拓展】生物学家在研究时发现,某种细胞的分裂规律可用图(3)的模型来描述,请写出经过n轮分裂后细胞总数W与n的关系式.并计算经过若干轮分裂后,细胞总数能否达到1261个,若能,求出n的值;若不能,说明理由.22.如图(1),在Rt△ABC中,∠C=90°,边AC=8,BC=6,点M、N分别在线段AC、BC上,将△ABC沿直线MN翻折,点C的对应点是C′.(1)当M、N分别是所在边的中点时,求线段CC′的长度;(2)若CN=2,求点C′到线段AB的最短距离;(3)如图(2),当点C′落在边AB上时,①四边形CMC′N能否成为正方形?若能,求出CM的值;若不能,说明理由.②请直接写出点C′运动的路程长度.。

2023年广东省深圳市福田区中考数学模拟试卷及答案解析

2023年广东省深圳市福田区中考数学模拟试卷及答案解析

2023年广东省深圳市福田区中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.(3分)函数y=中自变量x的取值范围是()A.x≥0B.x>1C.x≥1D.x≠02.(3分)如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)因深圳市委正紧紧围绕打造“志愿者之城”4.0升级版,推动志愿服务事业朝着更专业、更精细、更规范的方向不断迈进,截至2022年底,深圳市注册志愿者已达3510000人,平均每5个深圳市民里就有一个志愿者.其中数据3510000用科学记数法表示为()A.3.51×105B.3.51×106C.3.51×107D.0.351×107 4.(3分)下列所给方程中,没有实数根的是()A.x2+2x=0B.x2﹣x﹣2=0C.3x2﹣4x+1=0D.4x2﹣3x+2=0 5.(3分)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.(3分)在平面直角坐标系中,将抛物线y=﹣x2﹣1先向右平移1个单位长度,再向下平移3个单位长度,得到的新抛物线的解析式为()A.y=﹣(x﹣1)2﹣4B.y=﹣(x+1)2﹣4C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+37.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高BH=()A.4.6B.4.8C.5D.5.28.(3分)如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为()A.B.C.1D.29.(3分)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=bx﹣a在坐标系内的大致图象为()A.B.C.D.10.(3分)如图,反比例函数图象经过正方形OABC的顶点A,BC边与y 轴交于点D,若正方形OABC的面积为12,BD=2CD,则k的值为()A.3B.C.D.二、填空题(本大题共5小题,共15.0分)11.(3分)分解因式:2ab2﹣8ab+8a=.12.(3分)二次函数y=(x+1)2﹣1的图象的顶点坐标为.13.(3分)已知是方程ax+4y=2的一个解,那么a=.14.(3分)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=14.8m.则建筑物CD的高是m.15.(3分)如图,在Rt△ABC中,BC=4,∠ABC=90°,以AB为直径的⊙O交AC于点D,弧AD沿直线AD翻折后经过点O,那么阴影部分的面积为.三、解答题(本大题共7小题,共55.0分。

2024年广东省深圳市宝安中学九年级中考一模数学试题

2024年广东省深圳市宝安中学九年级中考一模数学试题

2024年广东省深圳市宝安中学九年级中考一模数学试题一、单选题1.“人体红细胞的平均直径为,该数据用科学记数法表示为67.710-⨯”.其中墨迹遮盖的“0”的个数为( ) A .1个B .2个C .3个D .4个2.图1是某品牌共享单车放在水平地面的实物图,图2是其示意图,其中AB 、CD 都与地面平行,68=o BCD ∠,52BAC ∠=o ,已知AM 与CB 平行,则MAC ∠的度数为( )A .52oB .60oC .68oD .112o3.如图,已知A ∠,按以下步骤作图,如图1~图3.则可以直接判定四边形ABCD 是菱形的依据是( ) A .一组邻边相等的平行四边形是菱形B .对角线互相垂直平分的四边形是菱形C .对角线互相垂直的平行四边形是菱形D .四条边相等的四边形是菱形 4.下列运算正确的是( ) A .22()()a b b a a b --=- B .2242(2)4a b a b -=- C .32824a b ab a -÷=-D .222222xy x y x y ⋅=5.在平面直角坐标系中,第四象限内的点P 到x 轴的距离是3,到y 轴的距离是2,已知PQ 平行于x 轴且4PQ =,则点Q 的坐标是( ). A .()6,3-或()2,3-- B .()6,3-C .()1,2--D .()1,2--或()7,2-6.下列选项中正确的是( )A .线段既是中心对称图形,又是轴对称图形B .关于x 一元二次方程210x mx +-=可能无实数根C .用反证法证明“在三角形中,至少有一个角不大于60度”,应假设“两个角大于60度”D .一组对角相等的四边形是平行四边形7.明代《算法统宗》有一首饮酒数学诗:“醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生,试问高明能算士,几多醇酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮19瓶酒.试问:其中好酒、薄酒分别是多少瓶?”设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为( )A .1913333x y x y +=⎧⎪⎨+=⎪⎩B .19333x y x y +=⎧⎨+=⎩C .1913333x y x y +=⎧⎪⎨+=⎪⎩D .19333x y x y +=⎧⎨+=⎩8.如图,ABC V 是边长为8的等边三角形,以AC 为底边在右侧作等腰三角形ADC ,连接BD ,交AC 于点O ,过点D 作DF AB ∥交AC 于点E ,交BC 于点F ,若5AD =,则DF 的长为( )A.B.3C.4D.3+9.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH ,连结DH 并延长交AB 于点K ,若DF 平分CDK ∠,则DHHK=( )A B .65C 1D 10.对于一个函数,当自变量x 取a 时,其函数值y 等于2a ,我们称a 为这个函数的二倍数.若二次函数y =x 2+x +c (c 为常数)有两个不相等且小于1的二倍数,则c 的取值范围是( )A .c <14B .0<c <14C .﹣1<c <14D .﹣1<c <0二、填空题11.分解因式:3312m m -+=.12.如图,在平面直角坐标系中,点A (2,m )在第一象限,若点A 关于x 轴的对称点B 在直线y =﹣x+1上,则m 的值为.13.土圭之法是在平台中央竖立一根八尺长的杆子,观察杆子的日影长度.古代的人们发现,夏至时日影最短,冬至日影最长,这样通过日影的长度得到夏至和冬至,确定了四季.如下图,利用土圭之法记录了两个时刻杆的影长,发现第一时刻光线与杆的夹角BAC ∠和第二时刻光线与地面的夹角ADB ∠相等,测得第一时刻的影长为1.6尺,则第二时刻的影长为尺.14.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在轴和y 轴上,6OA =,4OC =,点Q 是AB 边上一个动点,过点Q 的反比例函数(0)ky x x=>与BC 边交于点P .若将PBQ ∆沿PQ 折叠,点B 的对应点E 恰好落在对角线AC 上,则此时反比例函数的解析式是.15.如图,在锐角ABC V 中,cos 2BAC ∠=,AB AC =,AE 平分BAC ∠交BC 于点E ,CD AB ⊥于点D ,AE ,CD 交于点F ,连接DE .则EFDE=.三、解答题16.(1)计算:()0201812 3.142cos30π---︒;(2)解方程:212111x x +=--. 17.2022年3月23日下午,“天宫课堂”再次开讲.神舟十三号飞行乘组三名航天员又一次给全国的青少年带来了精彩的太空实验,传播了载人航天知识和文化.某学校为了解学生对“航空航天知识”的掌握情况,随机抽取了40名学生进行了测试,并对成绩(满分10分,成绩取整数,7分以上(包括7分)为合格,9分以上(包括9分)为优秀)进行了整理,绘制了条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩好于男生,请给出两条支持女生的理由;(3)后面又追加了男女共5名同学(其中女生多于男生)的成绩,这5名同学成绩均为优秀,下面是关于追加后女生成绩信息的统计:请求出追加后女生的人数,并说明理由.18.如图,以▱ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连结BF.过点E作EG⊥CD于点G,EG是⊙O的切线.(1)求证:▱ABCD是菱形;(2)已知EG=2,DG=1.求CF的长.19.某景区商店销售一种纪念品,每件的进货价为40元,经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)物价部门规定,该纪念品每件的利润不允许高于进货价的35%,当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润. 20.根据以下素材,探索完成任务伞不管是张开还是收拢,是完全收拢时伞骨的示意图,,如图且都是小明同21.在菱形ABCD 中,5BC =,4cos 5ABD ∠=,动点M 在射线BD 上运动.(1)如图(1),将点A 绕着点M 顺时针旋转90︒,得到对应点A ',连接MC ,AA '.求证:AA ';(2)如图(2),在(1)条件下,若射线MA '经过CD 边中点E ,求BM 的值;(3)连接AM ,将线段AM 绕着点M 逆时针旋转一个固定角α,BCD α∠=∠,点A 落在点F 处,射线MF 交射线BC 于G ,若BMG △是等腰三角形,求BG 的值.。

2024年广东省深圳福田区中考一模数学答案及评分标准

2024年广东省深圳福田区中考一模数学答案及评分标准

福田区2023-2024学年第二学期九年级中考适应性考试数学参考答案及评分标准二、填空题(每小题3分,共15分)(说明:填空题的结果不化简的不给分)三、解答题16. 解:原式= 1(3)42--+⨯…………4分(每个考点给1分) = . …………5分17. 解:原式=222(2)222(2)x xx x x--⎛⎫+⋅⎪---⎝⎭…………4分=222x xx-⋅-…………5分=2x. …………6分当x=4时,原式=42=2. …………7分18.解:(1)③④…………2分(对一个给1分,多选不给分)(2)事件①:第一天,丁考查B景点;事件②:第一天,戊考查A景点(合理即可给分)……………………4分(3)评价:①小明的解法不对.……………………5分②错误原因是:表格中列举的6种人员分布状态,并非6种等可能结果.丁、戊两名同学与景点的匹配关系,可能形成如下几种等可能结果列表法:丁A B CA AA AB ACB AB BB BCC AC BC CC戊………7分树状图法:说明:第(2)问的答案是开放的;第(3)问,采取开放性评价方式:能指出小明解法错误的,给1分,能正确指出错误原因的,另加2分,但本题总得分不得超过8分.19. 解:(1)设“K 牌甜筒”的进价为元/个,则“文创雪糕”的进价为(+1)元/个. 依题意得,…………1分80012001m m =+.…………2分 解得,=2. …………3分经检验,=2是原方程的解. …………4分 所以,+1=3.答:“K 牌甜筒”的进价为2元/个,“文创雪糕”的进价为3元/个. …………5分 (2)依题意得,(20200)(3)(20020200)(52)w x x x =-+-++--=220320600x x -+-. …………6分当=32082(20)-=⨯-<10时,每天总利润最大. …………7分此时,20820040y =-⨯+=(个), 200-40=160(个) …………8分 答:当文创雪糕销售单价为8元时,每天总利润最大.为获得最大利润,笑笑应购进40个“文创雪糕”,160个“K 牌甜筒”. …………8分20.(1)证明:方法1:如图1,∵ AB 是圆O 的直径, ∴ ∠ADB =90°.所有可能出现的结果:AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC.A B C ABCABCABC开始………7分∵ CE ∥AD ,∴ ∠1=∠ADB =90°. ……………………………1分 ∵ D 为弧AC 的中点, ∴ ∠ABD =∠CBD .又, GB =GB ,∠1=∠BGC =90°.∴ △GBC ≌△GBE (ASA) , ……………………………2分 ∴ EB =CB .又, ∠ABD =∠CBD ,DB =DB ,∴ △DCB ≌△DEB , …………………………3分 ∴ DC =DE . …………………………4分方法2:证△GBC ≌△GBE (ASA),同方法一 ……………………………2分 ∵ △GBC ≌△GBE , ∴ GE=GC ,EB=CB ,∴ DB 垂直平分EC , ……………………………3分 ∴ DE=DC. ……………………………4分 说明:直接由“角平分线与垂线合一”得“等腰”或“垂直平分线”的,建议扣1分. (2)如图2,连接OD ,OC ;OD 交EC 于点K .∵ 弧AC =弧BC , ∴ ∠AOC =90°.又,D 为弧AC 的中点, ∴ ∠AOD =∠COD =45°. ∵ OD =OA ,∴ ∠ADO =∠DAO =245180︒-︒=67.5°. 同理可得, ∠ODC =∠OCD =245180︒-︒=67.5°. ∵ EC ∥AD , ∴ ∠ADO =∠DKF =67.5° . ………………………………………………5分 ∵ DF 是圆O 的切线, ∴ OD ⊥DF , ∴ ∠ODF =90°.∴ ∠FDC =∠ODF -∠ODC =22.5°,且∠F =22.5°, ∴ DC =CF ,∠DCE =45° . ………………………………………………6分图1图2由(1)知,DC =DE , ∴ ∠DEC =∠DCE =45°.∴ △DCE 是等腰直角三角形. ∵ 弧AD 与弧CD 相等, ∴ CD =AD . ∵ AD =2,∴ AD =DE =DC =CF =2. …………………………………………7分在等腰直角三角形DCE 中, EC =22DE DC +=2,∴ EF =EC +CF =2+2. …………………………………………8分21.解:(1)如图3所示: …………………………………………2分(边界线,阴影区域各一分)(2) 填“等比性质”或“等比定理”或“比例的性质”均给分. ………………3分d z 800=…………………………………………5分(3)①抛物线解析式为40545012++-=x x y .…………………………………7分 或写成21(20)4850y x =--+. …………………………………7分解:如图4,M 刚好进入感应区时,05.01=d ,02=d ,此时05.021=-=d d d ,此时,1600005.0800==z (mm )=16(m ). 因CD =10 mm ,f =4 mm ,可得,OP 所在直线解析式为:x y 54-=,图3令y =16,得x =-20,即,P (-20,16). 当M 经过点r O 的正上方时,视差02.0=d 此时,4000002.0800==z (mm )=40(m ), 即,抛物线与y 轴交点的坐标为(0,40), 当d 减小到上述1d 的13时,z =31648⨯=(m ), 之后d 开始变大,z 开始变小, 即,抛物线顶点的纵坐标为48.设抛物线解析式为)0(2≠++=a c bx ax y , 将(-20,16),(0,40)等代入得,2164002040448.4a b c c ac b a ⎧⎪=-+⎪⎪=⎨⎪-⎪=⎪⎩,, 解得,145b =,2125b =-.因为,a <0,对称轴在y 轴右侧,所以,b >0.故,b =54, 此时,a =501-.所以,抛物线解析式为40545012++-=x x y . ② 易知,直线OD 的解析式为x y 54=, …………………………………8分得,2451440.505y x y x x ⎧=⎪⎪⎨⎪=-++⎪⎩,解得,1x =520,2x =520-(舍)此时,y =516.所以,物体M 刚好落入“盲区”时,距离基线的高度为516m. …………………9分图422.(1)D …………3分(2)①22x y +的最小值为40- …………4分 理由如下:如图5,连接BP ,BD .则,BD ==. ………………4分由(1)知,22222x y PD +=+, ………………5分 所以,当PD 最小时,22x y +最小, ………………5分 而,PD ≥BD -BP=2(等号成立时,点P 位于BD 上).所以,22x y +的最小值为()2222+=40- ………………6分 ② x y -的最大值为 ………………8分 此时,PD的长为 ………………10分 略解:求x y -的最大值.解法1:如图6,把△ABP 绕点B 顺时针旋转90,得△CBE ,此时,x y EC PC PE -=-=≤.(等号成立时,P ,E ,C 三点共线,存在两种不同的位置情形,如图6-1,6-2所示)ECCC图5图6图6-1图6-2解法2:如图6-3,在AB ,BC 上分别取点M ,N ,使BM =BN =1,则易得△MBP ∽△PBA ,所以,12MP BP PA AB ==,所以,MP =1122PA x =,同理,1122PN PC y ==, 又MP PN -≤MN =P 在直线MN 与⊙B 的交点上),所以,x y -≤略解:求此时PD 的长.由(1)知,2224PD x y =+-解法1:如图6-1,在△EBC 中,EB =2,BC =4,45BEC ∠=,通过解斜三角形EBC ,可得 ,E C x ==,此时,PC y ==,在图6-2中,同理可得,PC y ==,EC x =,无论哪种情况,12xy ==.而,22224()24PD x y x y xy =+-=-+-, 把上述结果代入,得22212428PD =+⨯-=.所以,此时,PD =解法2:如图6-4,通过构造圆的两条割线,可得,△MCP ∽△ECN ,得,2612xy CP CE CM CN =⋅=⋅=⨯=,又,x y -=所以,222232x y x y xy +=-+=所以,222432428PD x y =+-=-=.所以,此时,PD =CNCC图6-4解法3:如图6-5,连接AC ,由旋转性质,可得AP EC ⊥,此时,222AP PC AC +=,即,(22232x y +==,所以,222432428PD x y =+-=-=.所以,此时,PD =解法4:如图6-6,连接BD ,交MN 于点F ,连接AC ,则BD AC ⊥,又易得MN ∥AC ,所以,BD MN ⊥,易得,BF =,DF = 当M ,N ,P 三点共线时,PF=,所以,PD ==CC图6-5。

2024年广东省深圳市深圳中学共同体中考一模数学试题(解析版)

2024年广东省深圳市深圳中学共同体中考一模数学试题(解析版)

2023-2024 学年第二学期模拟考试九年级数学试卷1.答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上.2.考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效.3.全卷共6页,考试时间90分钟,满分100分.一.选择题(共10小题,每小题3分,共30分)1. 某正方体的平面展开图如图所示,则原正方体中与“祖”字所在的面相对的面上的字是()A. 繁B. 荣C. 昌D. 盛【答案】D【解析】【分析】本题主要考查正方体的展开图,熟练掌握正方形的展开图是解题的关键.根据正方形的展开图找到对立面即可得到答案.【详解】解:正方体中与“祖”字所在的面相对的面上的字是“盛”,故选:D.2. 剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .该图不是轴对称图形,是中心对称图形,不符合题意;B . 该图是轴对称图形,不是中心对称图形,符合题意;C .该图既是轴对称图形,又是中心对称图形,不符合题意;D .该图不是轴对称图形,是中心对称图形,不符合题意.故选:B .3. 某校“校园之声”社团招新时,需考查应聘学生的应变能力、知识储备、朗读水平三个项目,布布的三个项目得分分别为85分、90分、92分.若评委按照应变能力占20%,知识储备占30%,朗读水平占50%计算加权平均数来作为最终成绩,则布布的最终成绩为( )A. 85分B. 89分C. 90分D. 92分【答案】C【解析】【分析】本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,根据加权平均数的求法可以求得布布的最终成绩,本题得以解决.【详解】解:根据题意得:8520%9030%9250%90×+×+×=(分), ∴布布的最终成绩是90分.故选:C .4. 图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,60BCD ∠=°,50BAC ∠=°,当MAC ∠为( )度时,AM BE ∥.A. 15B. 65C. 70D. 115【答案】C【解析】 【分析】本题考查了平行线的性质,三角形内角和定理.根据“两直线平行内错角相等”求得ABC ∠的度数,利用三角形内角和定理求得ACB ∠的度数,再利用“两直线平行内错角相等”即可求解.【详解】解:∵AB 、CD 都与地面l 平行,∴AB CD ∥,∴60ABC BCD ∠=∠=°,∵50BAC ∠=°,∴180506070ACB ∠=°−°−°=°,∵AM BE ∥,∴70MAC ACB ∠=∠=°,故选:C .5. 下列计算正确的是( )A. 3332a a a ⋅=B. ()326ab ab =C. 232(3)6ab ab ab ⋅−=−D. ()321052ab ab b ÷−=− 【答案】D【解析】【分析】本题考查幂的运算,涉及同底数幂的乘除法、积的乘方等知识.根据同底数幂的乘除法、积的乘方法则逐一解答.【详解】解:A 、33632a a a a ⋅=≠,故本选项不符合题意;B 、()32366ab a b ab =≠,故本选项不符合题意; C 、22332(3)66ab ab a b ab ⋅−=−≠−,故本选项不符合题意;D 、()321052ab ab b ÷−=−,故本选项符合题意; 故选:D .6. 下列命题正确的是( )A. 在圆中,平分弦直径垂直于弦并且平分弦所对的两条弧B. 顺次连接四边形各边中点得到的是矩形,则该四边形是菱形C. 若C 是线段 AB 的黄金分割点,2AB =,则1AC =−D. 相似图形不一定是位似图形,位似图形一定是相似图形【答案】D【解析】【分析】此题考查了菱形的判定、命题与定理的知识,解题的关键是了解菱形的判定方法、相似图形、中点的四边形的知识,难度不大根据菱形的判定方法、相似图形、中点四边形和黄金分割点判断即可.【详解】解:A 、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,原命题是假命题,不符合题意;B 、顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相互垂直,原命题是假命题,不符合题意;C 、已知点C 为线段AB 的黄金分割点,若2AB =,则1AC =−或3AC =−不符合题意;D 、位似图形一定是相似图形,但是相似图形不一定是位似图形,原命题是真命题,符合题意; 故选:D .7. 古代数学著作《孙子算经》中有“多人共车”问题:今有五人共车,二车空;三人共车,十人步.问人与车各几何?其大意是:每车坐5人,2车空出来;每车坐3人,多出10人无车坐,问人数和车数各多少?设共有x 人,y 辆车,则可列出方程组为( ) A. ()52310y x y x −= +=B. 52310y x y x −= +=C. ()52310y x y x −= +=D. ()52310y x y x −= −=【答案】A【解析】 【分析】本题考查了二元一次方程组的应用,设共有x 人,y 辆车,根据题意,列出方程组,解方程组即可求解,根据题意,找到等量关系,列出二元一次方程组是解题的关键.【详解】解:设共有x 人,y由题意可得,()52310y x y x −= +=, 故选:A .8. 某露营爱好者在营地搭建一种“天幕”(如图1),其截面示意图是轴对称图形(如图2),对称轴是垂直于地面的支杆AB 所在的直线,撑开的遮阳部分用绳子拉直,分别记为AC ,AD ,且2AC AD ==米,CAD ∠的度数为140°,则此时“天幕”的宽度CD 是( )A. 4sin70° 米B. 4cos70°米C. 2sin20°米D. 2cos20°米【答案】A的【分析】本题考查了解直角三角形,等腰三角形三线合一的性质,解题的关键是掌握相关知识的灵活运用.根据正弦的定义,即可求解.【详解】解:2AC AD == 米,对称轴是垂直于地面的支杆AB 所在的直线,CAD ∠的度数为140°,CE DE ∴=,1702CAE CAD ∠=∠=°,sin CECAE AC∠=, sin 2sin 70CE AC CAE ∴=⋅∠=⋅°24sin 70CD CE ∴°,故选:A .9. 已知二次函数 ()20y ax bx c a ++≠图象的一部分如图所示,该函数图象经过点(50),,对称轴为直线2x =.对于下列结论:0b >①;②a c b +<;③多项式2ax bx c ++可因式分解为(1)(5)x x +−;④无论 m 为何值时,242am bm a b +≤+.其中正确个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题主要考查了二次函数图象与系数的关系,二次函数 图象的性质等等:先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为1222x x x +=可得抛物线与x 轴的另一个交点为(1,0)−,由此可判断②;根据抛物线与x 轴的两个交点坐标可判断③;根据函数的对称轴为2x =可知2x =时y 有最大值,由此可判断④.【详解】解:∵抛物线开口向下,∵对称轴为直线22b x a=−=, ∴40b a =−>,结论①正确;∵抛物线与x 轴一个交点为()50,,且对称轴为直线2x =, ∴抛物线与x 轴的另一个交点为()1,0−,即当=1x −时,0y =,∴0a b c −+=,∴a c b +=,结论②错误;∵抛物线2y ax bx c ++与x 轴的两个交点为()1,0−,()50,, ∴多项式2ax bx c ++可因式分解为()()15a x x +−,结论③错误;∵对称轴为直线2x =,且函数开口向下,∴当2x =时,y 有最大值,由2y ax bx c ++得,当2x =时,42y a b c =++,当x m =时,2y am bm c ++,∴无论m 为何值时,242am bm c a b c ++≤++,∴242am bm a b +≤+,结论④正确;综上:正确的有①④.故选:B .10. 如图,菱形ABCD 的边长为3cm ,60B ∠=°,动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA −−运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm /s 的速度沿着边 BA 向A 点运动,到达点A 后停止运动,设点P 的运动时间为()s x ,BPQ 的面积为y 2cm ,则y 关于x 的函数图象为( )的A. B.C. D.【答案】D【解析】【分析】本题考查动点问题的函数图象.根据拐点得到各个自变量范围内的函数解析式是解决本题的关键.用到的知识点为:30°的直角三角形三边比是:2.易得点P 运动的路程为3x cm ,点Q 运动的路程为x cm .当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上,过点Q 作QE BC ⊥于点E ,求得QE 的长度,然后根据面积公式可得y 与x 关系式;当点P 在线段CD 上时,12x <≤,BQ 边上的高是AB和CD 之间的距离,根据面积公式可得y 与x 之间的关系式;当点Q 在线段AD 上时,23x <≤,作出BQ 边上的高,利用三角形的面积公式可得y 与x 的关系式.然后根据各个函数解析式可得正确选项.【详解】解: 点P 的速度是3cm/s ,点Q 的速度为1cm/s ,运动时间为(s)x ,∴点P 运动的路程为3x cm ,点Q 运动的路程为x cm .①当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上.过点Q 作QE BC ⊥于点E ,90BEQ ∴∠=°.60B ∠=° ,30BQE ∴∠=°.12BE x ∴=cm .QE x ∴cm .22113(cm )22BPQ S BP QE x ∆∴=⋅=×.2(01)y x x ∴=≤≤. ∴此段函数图象为开口向上的二次函数图象,排除B ;②当12x <≤时,点P 在线段CD 上,点Q 在线段AB 上.过点C 作CF AB ⊥于点F ,则CF 为BPQ 中BQ 边上的高.90BFC ∴∠=°.60ABC ∠=° ,30BCF ∴∠=°.3cm BC = ,3cm 2BF ∴=.CF ∴.211(cm )22BPQ S BQ CF x ∆∴=⋅=.(12)y x x ∴=<≤. ∴此段函数图象为y 随x 的增大而增大的正比例函数图象,故排除A ;③当23x <≤时,点P 在线段AD 上,点Q 在线段AB 上.过点P 作PM AB ⊥于点M .90M ∴∠=°.四边形ABCD 是菱形,AD BC ∴∥.60ABC ∠=° ,60MAP ∴∠=°.30APM ∴∠=°.由题意得:(93)cm APx =−. 93cm 2x AM −∴=.PM ∴.211)22BPQ S BQ PM x ∆∴=⋅=.y ∴ ∴此段函数图象为开口向下的二次函数图象.故选:D .二.填空题(共5小题)11. 分解因式:244xy xy x −+=____________________【答案】()221x y −【解析】【分析】先提取公因式x ,再利用完全平方公式进行二次分解即可.【详解】解:244xy xy x −+=()2441x y y −+=()221x y −,故答案为:()221x y −.【点睛】本题考查提公因式法与公式法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12. a 是方程210x x −−=的一个根,则代数式2202422a a −+的值是______.【答案】2022【解析】【分析】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.由题意得21a a −=,根据()2220242220242a a a a −+=−−,利用整体思想即可求解.【详解】解:由题意得:210a a −−=∴21a a −= ∴()22202422202422024212022a a a a −+=−−=−×= 故答案为:202213. 如图,在ABC 中,40B ∠=°,50C ∠=°,通过观察尺规作图的痕迹,可以求得DAE ∠=___________.【答案】25°##25度【解析】【分析】本题主要考查线段垂直平分线的性质、角平分线的定义、三角形内角和定理等知识点,熟练掌握线段垂直平分线的性质、角平分线的定义是解答本题的关键.由题可得,直线DF 是线段AB AE 为DAC ∠的平分线,再根据线段垂直平分线的性质、角平分线的定义以及三角形内角和定理求解即可.【详解】解:由题可得,直线DF 是线段AB 的垂直平分线,AE 为DAC ∠的平分线,∴AD BD DAE CAE =∠=∠,, ∴40B BAD ∠=∠=°, ∴80ADC B BAD ∠=∠+∠=°,∵50C ∠=°,∴180805050DAC ∠=°−°−°=°, ∴1252DAE CAE DAC ∠=∠=∠=°, 故答案为:25°.14. 如图,在平面直角坐标系中,四边形OABC 为菱形,反比例函数()0,0k y k x x =≠>的图象经过点C ,交AB 于点D ,若2sin 3B =,6OCD S =△,则k 值为___________.【答案】【解析】【分析】过点C 作CE OA ⊥于点E ,根据菱形性质,得2sin sin 3CE AOC B OC ∠==∠= ,设2CE a =,则3OC OA a ==,再表示出点C 的坐标,根据26212菱形OCD OABC S S ==×= 列方程即可求出a 的值及k 的值.【详解】解:过点C 作CE OA ⊥于点E ,四边形OABC 为菱形,,OC OA AOC B ∴=∠=∠,2sin sin 3CE AOC B OC ∴∠==∠=, 设2CE a =,则3OC OA a ==,在Rt OEC △中,OE =,,2)C a ∴26212菱形OCD OABC S S ==×= ,又3212菱形OABC S OA CE a a =×=×= ,0a > ,a ∴,C,k =的故答案为:【点睛】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、三角函数等知识,关键是辅助线的作法.15. 如图,矩形ABCD 的长BC =,将矩形ABCD 对折,折痕为PQ ,展开后,再将C ∠ 折到DFE ∠的位置,使点 C 刚好落在线段AQ 的中点 F 处,则折痕DE =___________.【解析】 【分析】本题考查了矩形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解决问题的关键是作辅助线,构造相似三角形.过点F 作GH BC ⊥于H ,交AD 于G ,不妨设CQDQ a ==,可求得AQ ,AD ,DG ,FG ,FH 的值,证明DGF FHE △∽△,从而求得EF ,进而求得CE 和BE 的值,从而求得结果.【详解】解:如图,设DQCQ a ==,则22DF CD DQ a ===, 四边形ABCD 是矩形,90∴∠=∠=°C ADC ,BC AD =,F 是AQ 的中点,24AQ DF a ∴==,AD BC ∴===== ∴1a =∴1DQCQ ==,2DF CD ==,4AQ =, 过点F 作GH BC ⊥于H ,交AD 于G ,90GHC ∴∠=°,∴四边形CDGH 是矩形,2GH CD ∴==,GH CD ∥,AFG AQD ∴△∽△, ∴12AG FG AF AD DQ AQ ===,12AG AD ∴==,1122FG DQ ==, 13222FH GH FG ∴=−=−=, 90DGF FHE ∠=∠=° ,90HFE HEF ∴∠+∠=°,、90DFE C ∠=∠=° ,90DFG HFE ∴∠+∠=°,DFG HEF ∴∠=∠,DGF FHE ∴△∽△, ∴DG DF FH EF=,∴2EF=,EF ∴,CE EF ∴==,DE ∴===. 三.解答题(共7题,共55分)16 计算:4cos30°﹣2|+)0+(﹣13)﹣2. 【答案】8. .【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】4cos30°﹣2|++(﹣13)-2=214(211()3−+−+=219−++−+=8.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.17. 先化简:231(1)224x x x −−÷++,再从1−,0中选取适合的数字求这个代数式的值. 【答案】21x +,当0x =时,值为2 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的减法,再计算除法运算,得到化简的结果,结合分式有意义的条件,把0x =代入计算即可. 【详解】解;231(1)224x x x −−÷++()()()1123222x x x x x +−+−÷++ ()()()221211x x x x x +−⋅++− 21x =+, ∵分式有意义,∴1x ≠±且2x ≠−, ∴当0x =时,原式2201=+; 18. 某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位:min ),并对数据进行了整理,描述,部分信息如下: a .每天在校体育锻炼时间分布情况:每天在校体育锻炼时间x (min ) 频数(人) 百分比6070x ≤<14 14% 7080x ≤<40 m 8090x ≤< 3535% 90x ≥n 11% b .每天在校体育锻炼时间在8090x ≤<这一组的是:80 81 81 81 82 82 83 83 84 84 84 84 84 85 85 85 85 85 85 85 85 86 87 87 87 87 87 88 88 88 89 89 89 89 89根据以上信息,回答下列问题:(1)表中m =______,n =______;(2)若该校共有1000名学生,估计该校每天在校体育锻炼时间不低于80分钟的学生的人数;(3)该校准备确定一个时间标准p (单位:min ),对每天在校体育锻炼时间不低于p 的学生进行表扬.若要使25%的学生得到表扬,则p 的值可以是______.【答案】(1)40%,11(2)460人(3)86(答案不唯一)【解析】【分析】(1)根据所有组别的频率之和为1求出m 即可;用组别6070x ≤<的频数除以频率得到参与调查的学生人数,进而求出n 的值即可;(2)用1000乘以样本中每天在校体育锻炼时间不低于80分钟的学生的人数占比即可得到答案; (3)把每天在校体育锻炼时间从低到高排列,找到处在第75名和第76名的锻炼时间即可得到答案.【小问1详解】解:由题意得,114%35%11%40%m =−−−=,1414%100÷=人,∴这次参与调查的学生人数为100人,∴10011%11n =×=,故答案为:40%,11;【小问2详解】解:()100011%35%460×+=人,∴估计该校每天在校体育锻炼时间不低于80分钟的学生的人数为460人;【小问3详解】解:把每天在校体育锻炼时间从低到高排列,处在第75名和第76名的锻炼时间分别为85min 86min 、, ∵要使25%的学生得到表扬,∴8586p <≤,∴p 的值可以为86,故答案为:86(答案不唯一).【点睛】本题主要考查了频率与频数分布表,用样本估计总体等等,灵活运用所学知识是解题的关键. 19. 如图,在ABC 中,AB BC =,AB 为O 的直径,AC 与O 相交于点 D ,过点D 作DE BC ⊥于点E ,CB 延长线交O 于点F .(1)求证:DE 为O 的切线;(2)若1BE =,2BF =,求【答案】(1)见解析;(2).【解析】【分析】(1)根据已知条件证得OD BC 即可得到结论;(2)如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,构建矩形ODEH ,根据矩形的性质和勾股定理即可得到结论.【小问1详解】证明:OA OD = ,BAC ODA ∴∠=∠,AB BC = ,BAC ACB ∴∠=∠,ODA ACB ∴∠=∠,OD BC ∴ .DE BC ⊥ ,DE OD ∴⊥,OD 是O 的半径,DE ∴是O 的切线;【小问2详解】解:如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,∴四边形ODEH 是矩形,OD EH ∴=,OH DE =,OH BF ⊥ ,2BF =,112BH FH BF ∴===, 2OD EH BH BE ∴==+=,24AB OD ∴==,OH ==DE OH ∴==2BD ∴=,AD ∴【点睛】本题考查了切线的判定,勾股定理,矩形的判定与性质,垂径定理,等腰三角形的性质.解题的关键:(1)熟练掌握切线的判定;(2)利用勾股定理和垂径定理求长度.20. 2024年龙年春晚吉祥物形象“龙辰辰”正式发布亮相,作为中华民族重要的精神象征和文化符号,千百年来,龙的形象贯穿文学、艺术、民俗、服饰、绘画等各个领域,也呈现了吉祥如意、平安幸福的美好寓意.吉祥物“龙辰辰”的产生受到众人的热捧.某工厂计划加急生产一批该吉祥物,决定选择使用A 、B 两种材料生产吉祥物.已知使用B 材料的吉祥物比A 材料每个贵50元,用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍.(1)求售卖一个A 材料、一个B 材料的吉祥物各需多少元?(2)一所中学为了激励学生奋发向上,准备用不超过3000元购买A 、B 两种材料的吉祥物共50个,来奖励学生.恰逢工厂对两种材料吉祥物的价格进行了调整:使用A 材料的吉祥物的价格按售价的九折出售,使用B 材料的吉祥物比售价提高了20%,那么该学校此次最多可购买多少个用B 材料的吉祥物?【答案】(1)购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元(2)该学校此次最多可购买10个B 材料的吉祥物【解析】【分析】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.(1)设使用A 材料生产的吉祥物的单价为x 元/个,则使用B 材料生产的吉祥物的单价为(50)x +元/个,利用数量=总价÷单价,结合用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍,可列出关于x 的分式方程,解之经检验后,可得出使用A 材料生产的吉祥物的单价,再将其代入(50)x +中,即可求出使用B 材料生产的吉祥物的单价;(2)设该学校此次购买m 个使用B 材料生产的吉祥物,则购买()50m −个使用A 材料生产的吉祥物,利用总价=单价×数量,结合总价不超过3000元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.【小问1详解】解:设购买一个A 材料的吉祥物需x 元,则购买一个B 材料的吉祥物需()50x +元, 依题意,得:30001500450x x =×+, 解得:50x =,经检验,50x =是原方程的解,且符合题意,∴50100x ,答:购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元;【小问2详解】设该学校此次购买m 个B 材料的吉祥物,则购买()50m −个A 材料的吉祥物,依题意,得:()()5090%50100120%3000m m ×−+×+≤,解得:10m ≤.∴m 的最大值为10,答:该学校此次最多可购买10个B 材料的吉祥物.21. 【项目式学习】【项目主题】自动旋转式洒水喷头灌溉蔬菜【项目背景】寻找生活中的数学,九(1)班分四个小组,开展数学项目式实践活动,获取所有数据共享,对蔬菜喷水管建立数学模型,菜地装有1个自动旋转式洒水喷头,灌溉蔬菜,如图1所示,观察喷头可顺、逆时针往返喷洒.【项目素材】素材一:甲小组在图2中建立合适的直角坐标系,喷水口中心O 有一喷水管OA ,从A 点向外喷水,喷出的水柱最外层的形状为抛物线.以水平方向为x 轴,点O 为原点建立平面直角坐标系,点A (喷水口)在y 轴上,x 轴上的点D 为水柱的最外落水点.素材二:乙小组测得种植农民的身高为1.75米,他常常往返于菜地之间.素材三:丙小组了解到需要给蔬菜大鹏里拉一层塑料薄膜用来保温保湿,以便蔬菜更好地生长.【项目任务】任务一:丁小组测量得喷头的高OA =23米,喷水口中心点O 到水柱的最外落水点D 水平距离为8米,其中喷出的水正好经过一个直立木杆EF 的顶部F 处,木杆高3EF =米,距离喷水口4OE =米,求出水柱所在抛物线的函数解析式.任务二:乙小组发现这位农民在与喷水口水平距离是p 米时,不会被水淋到,求 p 的取值范围. 45°,截面如图3,求薄膜与地面接触点与喷水口的水平距离是多少米时,喷出的水与薄膜的距离至少是10厘米?(直接写出答案,精确到0.1米).【答案】任务一:2152643y x x =−++;任务二:1 6.5p <<;任务三:8.4米. 【解析】 【分析】任务一:运用待定系数法求解即可;任务二:求出当 1.75y =时x 的值,则p 的取值在这两根之间;(3)设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MN GQ m ==,则直线GM 与直线y x =−平行,则MP =,直线GM 的解析式是:y x b =−+,联立方程组得到关于x 的一元二次方程,利用Δ0=求出b 的值,从而求出OM ,继而求出OP ,从而得解. 【详解】解:任务一:由题意得抛物线过点203A,,()80D ,,()43F ,, 设抛物线的解析式为2y ax bx c ++, 将点203A ,,()80D ,,()43F ,代入得:2364801643c a b c a b c = ++= ++=, 解得:165423a b c =− = =, ∴水柱所在抛物线的函数解析式为2152643y x x =−++;; 任务二:当 1.75y =时,2152 1.75643x x −++= 解得121 6.5x x ==, ∴ p 的取值范围是:1 6.5p <<;任务三:∵薄膜所在平面和地面的夹角是45°,∴薄膜所在的直线与直线y x =−平行,如下图所示:设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MNGQ m ==,则直线GM 与直线y x =−平行.又∵薄膜所在平面和地面的夹角是45°,即45MPN ∠=°,∴MN NP =,MP =, 设直线GM 的解析式是:y x b =−+, 直线GM 的解析式与抛物线解析式联立得:2152643y x x y x b =−++ =−+∵这个到薄膜最近的点是G , ∴方程2152643x x x b −++=−+,即有20192643x x b −+=−两个相等得实数根, ∴2912Δ40463b =−−××−=, 解得:79396b =, ∴直线GM 的解析式是:79396y x =−+, 令793096y x =−=+, 解得: 79396x =∴793096M,,793m 96OM =,∴793968.4m OP OM MP =+=≈, 答:求薄膜与地面接触点与喷水口的水平距离是8.4米时,喷出的水与薄膜的距离至少是10厘米【点睛】本题考查待定系数法求二次函数解析式,二次函数的图象与性质,等腰直角三角形的判定与性质,二次函数与几何综合等知识,利用数形结合思想解题是关键.22. 【综合与实践】【问题背景】在四边形ABCD 中,E 是CD 边上一点,延长BC 至点F 使得CF CE =,连接DF ,延长BE 交DF 于点G .【特例感知】(1)如图1,若四边形ABCD 是正方形时.①求证:BCE DCF ≌;②当G 是DF 中点时,F ∠=__________度; 【深入探究】(2)如图2,若四边形ABCD 是菱形,2AB =,当G 为DF 的中点时,求CE 的长;【拓展提升】(3)如图3,若四边形ABCD 是矩形,3AB =,4AD =,点H 在BE 的延长线上且满足5BE EH =,当EFH 是直角三角形时,请直接写出CE 的长.【答案】(1)①见解析;②67.5;(2)2;(3)411,43或2. 【解析】【分析】(1)①运用正方形的性质和SAS 即可证明; ②连接BD ,则1452CBD ABC ∠=∠=°,运用全等三角形的性质和三角形的内角和推导90BGF ∠=°,从而得出BG 垂直平分DF ,继而求出CBE ∠,从而得解;(2)点G 作GM BC ∥交CD 于M ,设GM x =,则2CE CF x ==,12ME x =−,证明MGE CBE ∽得到MG ME CB CE=,从而列出方程求解即可; (3)说明90FEH ∠<°,从而分当90H ∠=°时和当90EFH ∠=°时两种情况,运用相似三角形对应边成比例列出方程求解即可.【详解】(1)①∵四边形ABCD 是正方形,∴BC DC =,90BCE DCF ∠=∠=°.又∵CE=CF ,∴()SAS BCE DCF ≌.②连接BD ,∵四边形ABCD 是正方形, ∴1452CBD ABC ∠=∠=°, 由①得:BCE DCF ≌,∴BEC F ∠=∠,又∴90CBE F CBE BEC ∠+∠=∠+∠=° ∴()18090BGFCBE F ∠=°−∠+∠=°, 又∵G 是DF 中点,∴BG 垂直平分DF ,∴BD BF =,∴BG 平分CBD ∠,122.52CBE CBD ∠=∠=°, ∴9067.5F CBE ∠=°−∠=°,故答案为:67.5;(2)过点G 作GM BC ∥交CD 于M ,∵DG FG =,∴1DM CM ==,12MG CF =. 设GM x =,则2CE CF x ==,12ME x =−.∵GM BC ∥,∴MGE CBE ∠=∠,GME BCE ∠=∠.∴MGE CBE ∽. ∴MG ME CB CE=.即1222x x x −=,解得11x =−,21x −(舍去).∴CE=2−.(3)CE 的长为411,43或2. 理由如下: ∵四边形ABCD 是矩形,3AB =,4AD =∴3AB CD ==,4AD BC ==,∴CE BC <,BEC CBE ∠>∠,∴45BEC ∠>°,又∵CE CF =,∴45FEC CFE ∠=∠=°,∴18090FEH FEC BEC ∠=°−∠−∠<°,当90H ∠=°时,如下图所示:设CE CF a ==,则BE ,4BF BC CF a =+=+, 又∵5BE EH =,∴65BH BE ==, ∵90H BCE ∠=∠=°,FBH EBC ∠=∠,∴BFH BEC △∽△, ∴BF BH BE BC == 解得:2a =或43,即2CE =或43当90EFH ∠=°时,过点H 作HN BC ⊥于M ,如下图所示:则CE HN ∥,∴BCE BNH △∽△ ∴56BCCE BE BN NH BH ===,即456CE BN NH ==, ∴245BN =,45CN BN BC =−=,65NH CE =,∵45CFE ∠=°,90EFH ∠=°,∴45HFN ∠=°,FN HN =, ∴6455CN CF FN CE CE =+=+=, ∴411CE =, 综上所述:CE 的长为411,43或2. 【点睛】本题考查正方形的性质,菱形的性质,矩形的性质,相似三角形的判定与性质,等腰三角形的判定与性质,直角三角形存在性问题等知识,灵活运用相似三角形的判定和性质解决问题是解题的关键.。

2023深圳市宝安区福民学校中考一模数学试题及答案

2023深圳市宝安区福民学校中考一模数学试题及答案

2023年广东省深圳市福民学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 比-1小2的数是( )A. 3B. 1C. -2D. -32. 学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:h ),分别为:4,5,5,6,10.这组数据的平均数、方差是( )A. 6,4.4B. 5,6C. 6,4.2D. 6,53. 把下列图标折成一个正方体的盒子,折好后与“中”相对的字是( )A 祝 B. 你C. 顺D. 利4. 用配方法解方程2210x x +-=时,配方结果正确的是( )A. 212()x +=B. 222()x +=C. 213()x +=D. 223()x +=5. 如图,CO 是ABC 的角平分线,过点B 作//BD AC 交CO 延长线于点D ,若45A ∠=︒,80AOD ∠=︒,则CBD ∠的度数为( )A. 100°B. 110°C. 125°D. 135°6. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子.长y 尺,那么可列方程组为( )A. 4.50.51y x y x =+⎧⎨=-⎩ B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.51y x y x =-⎧⎨=+⎩ D. 4.521y x y x =-⎧⎨=-⎩7. 如图,要测定被池塘隔开的A 、B 两点的距离,可以在AB 外选一点C ,连接AC 、BC ,并分别找出它们的中点D 、E ,连接DE .现测得30m AC =,40m BC =,24m DE =,则A 、B 两点间的距离为( )A. 35mB. 45mC. 48mD. 50m8. 已知在Rt ACB 中,90,75C ABC ∠=︒∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是( )A.B. 52 C. D. 9. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( )A. 2017B. 2016C. 191D. 19010. 如图,已知菱形ABCD 的边长为2,对角线AC BD 、相交于点O ,点M ,N 分别是边BC CD 、上的动点,60BAC MAN ∠=∠=︒,连接MN OM 、.以下四个结论正确的是( )①AMN 是等边三角形;②MN MN 最小时18CMN ABCD S S =△菱形;④当OM BC ⊥时,2OA DN AB =⋅.A. ①②③B. ①②④C. ①③④D.①②③④二、填空题(本大题共5小题,每小题3分,共15分)11. 如图,已知//a b ,175∠=︒,则2∠=_____.12. 全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C 处测得塑像底部B 处的俯角为1848'︒,测得塑像顶部A 处的仰角为45︒,点D 在观测点C 正下方城墙底的地面上,若10CD =米,则此塑像的高AB 约为________米(参考数据:tan 7812 4.8'︒≈).13. 如图,已知在ABC ∆和DEF ∆中,B E ∠=∠,BF CE =,点B 、F 、C 、E 在同一条直线上,若使ABC DEF ∆≅∆,则还需添加一个条件是_______(只填一个即可).14. 如图,将面积为的矩形ABCD 沿对角线BD 折叠,点A 的对应点为点P ,连接AP 交BC 于点E .若,则AP 的长为_____.15. 设a ,b 是实数,定义@的一种运算如下:a @b =(a +b )2﹣(a ﹣b )2,则下列结论:①若a @b =0,则a =0或b =0;②a @(b +c )=a @b +a @c ;③不存在实数a ,b ,满足a @b =a 2+5b 2;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,a @b 最大.其中正确的是_____.三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16. (1)计算:22|1|3-⎛⎫-+- ⎪⎝⎭;的(2)已知m 是小于0的常数,解关于x 的不等式组:41713142x x x m ->-⎧⎪⎨-<-⎪⎩.17. 如图是由边长为1的小正方形构成的64⨯的网格,点A ,B 均在格点上.(1)在图1中画出以AB 为边且周长为无理数的ABCD Y ,且点C 和点D 均在格点上(画出一个即可).(2)在图2中画出以AB 为对角线的正方形AEBF ,且点E 和点F 均在格点上.18. 某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.19. 如图,一次函数y kx b =+的图象与y 轴的正半轴交于点A ,与反比例函数4y x =的图像交于,P D 两点.以AD 为边作正方形ABCD ,点B 落在x 轴的负半轴上,已知BOD 的面积与AOB 的面积之比为1:4.(1)求一次函数y kx b =+的表达式:(2)求点P 的坐标及CPD △外接圆半径的长.20. 如图,在Rt △ABC 中,∠B =90°,AE 平分∠BAC 交BC 于点E ,O 为AC 上一点,经过点A 、E ⊙O 分别交AB 、AC 于点D 、F ,连接OD 交AE 于点M .(1)求证:BC 是⊙O 的切线.(2)若CF =2,sin C =35,求AE 的长.21. 2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面,某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空.该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m 个(m 为正整数)经过连续15天的销售统计,得到第x 天(115x ≤≤,且x 为正整数)的供应量1y (单位:个)和需求量2y (单位:个)的部分数据如下表,其中需求量2y 与x 满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)的第x 天12...6...11 (15)供应量1y (个)150150m +…1505m +…15010m +…15014m+需求量2y (个)220229…245…220…164(1)直接写出1y 与x 和2y 与x 的函数关系式;(不要求写出x 的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m 的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m 取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.22. 抛物线2y ax bx c =++过A (2,3),B (4,3),C (6,﹣5)三点.(1)求抛物线表达式;(2)如图①,抛物线上一点D 在线段AC 上方,DE ⊥AB 交AC 于点E ,若满足DE AE =,求点D 的坐标;(3)如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似,若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.的的2023年广东省深圳市福民学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 比-1小2的数是( )A. 3B. 1C. -2D. -3【答案】D【解析】【分析】根据题意可得算式,再计算即可.【详解】解:-1-2=-3,故选:D .【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.2. 学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:h ),分别为:4,5,5,6,10.这组数据的平均数、方差是( )A. 6,4.4B. 5,6C. 6,4.2D. 6,5【答案】A【解析】【分析】分别利用求平均数和方差的公式计算,即可求解.【详解】解:平均数为()145561065++++=;方差为()()()()()22222146565666106 4.45⎡⎤-+-+-+-+-=⎣⎦.故选:A【点睛】本题主要考查了求平均数和方差,熟练掌握求平均数和方差的方法是解题的关键.3. 把下列图标折成一个正方体的盒子,折好后与“中”相对的字是( )A. 祝B. 你C. 顺D. 利【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“祝”与面“利”相对,面“你”与面“考”相对,面“中”与面“顺”相对.故选:C .【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4. 用配方法解方程2210x x +-=时,配方结果正确的是( )A. 212()x +=B. 222()x +=C. 213()x +=D. 223()x +=【答案】A【解析】【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.【详解】解:∵2210x x +-=,∴2212x x ++=,∴2(1)2x +=.故选:A .【点睛】本题主要考查了配方法在解一元二次方程中的应用,要熟练掌握.5. 如图,CO 是ABC 的角平分线,过点B 作//BD AC 交CO 延长线于点D ,若45A ∠=︒,80AOD ∠=︒,则CBD ∠的度数为( )A. 100°B. 110°C. 125°D. 135°【答案】B【解析】【分析】先根据三角形的外角性质可求出35OCA ∠=︒,再根据角平分线的定义、平行线的性质可得35,35D BCD ∠=︒∠=︒,然后根据三角形的内角和定理即可得.【详解】45A ∠=︒ ,80AOD ∠=︒35AO O A D C A ∠-∠∴∠==︒CO 是ABC 的角平分线35BCD OCA ∠∴∠==︒//BD AC35D OCA ∠∴∠==︒则在BCD △中,180110CBD D BCD ∠=︒-∠-∠=︒故选:B .【点睛】本题考查了三角形的外角性质、角平分线的定义、平行线的性质、三角形的内角和定理,熟练运用各定理与性质是解题关键.6. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. 4.50.51y x y x =+⎧⎨=-⎩ B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.51y x y x =-⎧⎨=+⎩ D. 4.521y x y x =-⎧⎨=-⎩【答案】A【解析】【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:12绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x 尺,绳子长y 尺,那么可列方程组为: 4.50.51y x y x =+⎧⎨=-⎩,故选:A .【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.7. 如图,要测定被池塘隔开的A 、B 两点的距离,可以在AB 外选一点C ,连接AC 、BC ,并分别找出它们的中点D 、E ,连接DE .现测得30m AC =,40m BC =,24m DE =,则A 、B 两点间的距离为( )A. 35mB. 45mC. 48mD. 50m【答案】C【解析】【分析】根据三角形中位线的性质求解即可.【详解】∵D 、E 分别是AC 、BC 的中点,∴DE 是三角形ABC 的中位线,∴AB =2DE =48cm .故选:C .【点睛】此题考查了三角形中位线的性质,解题的关键是熟练掌握三角形中位线的性质.8. 已知在Rt ACB 中,90,75C ABC ∠=︒∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是( )A. B. 52 C. D. 【答案】B【解析】【分析】作点F 关于直线AB 的对称点F’,如下图所示,此时EF+EB = EF’+EB ,再由点到直线的距离垂线段长度最短求解即可.【详解】解:作点F 关于直线AB 的对称点F’,连接AF’,如下图所示:由对称性可知,EF=EF’,此时EF+EB= EF’+EB ,由“点到直线的距离垂线段长度最小”可知,当BF’⊥AF’时,EF +EB 有最小值BF 0,此时E 位于上图中的E 0位置,由对称性知,∠CAF 0=∠BAC =90°-75°=15°,∴∠BAF 0=30°,由直角三角形中,30°所对直角边等于斜边的一半可知,BF 0=12AB =15522⨯=,故选:B .【点睛】本题考查了30°角所对直角边等于斜边的一半,垂线段最短求线段最值等,本题的核心思路是作点F 关于AC 的对称点,将EF 线段转移,再由点到直线的距离最短求解.9. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( )A. 2017B. 2016C. 191D. 190【答案】D【解析】【详解】解:找规律发现(a +b )3的第三项系数为3=1+2;(a +b )4第三项系数为6=1+2+3;(a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+19=190,故选 D .10. 如图,已知菱形ABCD 的边长为2,对角线AC BD 、相交于点O ,点M ,N 分别是边BC CD 、上的动点,60BAC MAN ∠=∠=︒,连接MN OM 、.以下四个结论正确的是( )①AMN 是等边三角形;②MNMN 最小时18CMN ABCD S S =△菱形;④当OM BC ⊥时,2OA DN AB =⋅.A. ①②③B. ①②④C. ①③④D.①②③④的【答案】D【解析】【分析】①依据题意,利用菱形的性质及等边三角形的判定与性质,证出MAC DAN∠=∠,然后证CAM DAN(ASA)△≌△,AM=AN,即可证出.②当MN最小值时,即AM为最小值,当AM BC⊥时,AM值最小,利用勾股定理求出AM===,即可得到MN的值.③当MN最小时,点M、N分别为BC、CD中点,利用三角形中位线定理得到AC MN⊥,用勾股定理求出12CE===,1122CMNS=⨯=△而菱形ABCD的面积为:2=,即可得到答案.④当OM BC⊥时,可证OCM BCO△∽△,利用相似三角形对应边成比例可得2OC CM BC=⋅,根据等量代换,最后得到答案.【详解】解:如图:在菱形ABCD中,AB=BC=AD=CD,AC BD⊥,OA=OC,∵60BAC MAN∠=∠=︒,∴60ACB ADC∠=∠=︒,ABC与ADC△为等边三角形,又60MAC MAN CAN CAN∠=∠-∠=︒-∠,60DAN DAC CAN CAN∠=∠-∠=︒-∠,∴MAC DAN∠=∠,在CAMV与DAN中CAM DANAC ACACM ADN∠=∠⎧⎪=⎨⎪∠=∠⎩∴CAM DAN(ASA)△≌△,∴AM=AN,即AMN为等边三角形,故①正确;∵AC BD⊥,当MN最小值时,即AM为最小值,当AM BC⊥时,AM值最小,∵1212AB,BM BC===,∴AM===即MN=,故②正确;当MN最小时,点M、N分别为BC、CD中点,∴MN BD∥,∴AC MN⊥,在CMN中,12CE===,∴1122CMNS=⨯=△而菱形ABCD的面积为:2=,∴18⨯=,故③正确,当OM BC⊥时,90BOC OMCOCM BCO∠=∠=︒⎧⎨∠=∠⎩∴OCM BCO△∽△∴OC CMBC OC=∴2OC CM BC=⋅∴2OA DN AB=⋅故④正确;故选:D.【点睛】此题考查了菱形的性质与面积,等边三角形的判定与性质,全等三角形的判定,勾股定理,三角形中位线定理等相关内容,熟练掌握菱形的性质是解题关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 如图,已知//a b ,175∠=︒,则2∠=_____.【答案】105°【解析】【分析】如图,根据邻补角的定义求出∠3的度数,继而根据平行线的性质即可求得答案.【详解】∵∠1+∠3=180°,∠1=75°,∴∠3=105°,∵a//b ,∴∠2=∠3=105°,故答案为105°.【点睛】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.12. 全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C 处测得塑像底部B 处的俯角为1848'︒,测得塑像顶部A 处的仰角为45︒,点D 在观测点C 正下方城墙底的地面上,若10CD =米,则此塑像的高AB 约为________米(参考数据:tan 7812 4.8'︒≈).【答案】58【解析】【分析】直接利用锐角三角函数关系得出EC 的长,进而得出AE 的长,进而得出答案.【详解】解:如图,过点C 作CE AB ⊥于点E ,则10BE DC ==米,∵1848ECB '∠=︒,∴7812EBC '∠=︒,在Rt BCE 中,tan 7812 4.810EC EC BE '︒==≈, 解得:48EC =米, ∵45AEC ∠=︒,∴45A AEC ∠=∠=︒,∴48AE EC ==米,∴此塑像的高AB 约为:58AE EB +=米.故答案为:58【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.13. 如图,已知在ABC ∆和DEF ∆中,B E ∠=∠,BF CE =,点B 、F 、C 、E 在同一条直线上,若使ABC DEF ∆≅∆,则还需添加的一个条件是_______(只填一个即可).【答案】AB DE=【解析】【分析】添加AB DE =,由BF CE =推出BC EF =,由SAS 可证ABC DEF ∆≅∆.【详解】解:添加AB DE =;∵BF CE =,∴BC EF =,在ABC ∆和DEF ∆中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆≅∆;故答案为AB DE =.【点睛】本题主要考查三角形的全等证明,这是几何的重点知识,必须熟练掌握.14. 如图,将面积为的矩形ABCD 沿对角线BD 折叠,点A 的对应点为点P ,连接AP 交BC 于点E .若,则AP 的长为_____.【解析】【详解】【分析】设AB=a ,AD=b ,则,构建方程组求出a 、b 值即可解决问题.【详解】设AB=a ,AD=b ,则,由ABE ∽DAB 可得:BE AB AB AD=,∴2b =,∴3a 64=,∴a 4=,b =设PA 交BD 于O ,在Rt ABD 中,BD 12==,∴AB AD OP OA BD ⋅===∴AP =.【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.15. 设a ,b 是实数,定义@的一种运算如下:a @b =(a +b )2﹣(a ﹣b )2,则下列结论:①若a @b =0,则a =0或b =0;②a @(b +c )=a @b +a @c ;③不存在实数a ,b ,满足a @b =a 2+5b 2;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,a @b 最大.其中正确的是_____.【答案】①②④.【解析】【分析】根据新定义可以计算出各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【详解】解:①根据题意得:a @b =(a +b )2﹣(a ﹣b )2∴(a +b )2﹣(a ﹣b )2=0,整理得:(a +b +a ﹣b )(a +b ﹣a +b )=0,即4ab =0,解得:a =0或b =0,正确;②∵a @(b +c )=(a +b +c )2﹣(a ﹣b ﹣c )2=4ab +4aca @b +a @c =(a +b )2﹣(a ﹣b )2+(a +c )2﹣(a ﹣c )2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,正确;③a @b =a 2+5b 2,a @b =(a +b )2﹣(a ﹣b )2,令a 2+5b 2=(a +b )2﹣(a ﹣b )2,22450,a ab b ∴-+=显然:当0,0a b ==时,上式成立,故③错误;④∵a @b =(a +b )2﹣(a ﹣b )2=4ab ,a ,b 是矩形的长和宽,若矩形的周长固定,则周长为:22,c a b =+,2c b a ∴=- 244()42,2c ab a a a ca ∴=-=-+ 40,- <4ab ∴有最大值,∴当14a c =时, 4ab 有最大值,此时:1,4b c = 即:a =b ,∴a @b 最大时,a =b ,故④正确.故答案为:①②④.【点睛】本题考查因式分解的应用、整式的混合运算、一元二次方程的解法,二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16 (1)计算:22|1|3-⎛⎫-+- ⎪⎝⎭;.(2)已知m 是小于0的常数,解关于x 的不等式组:41713142x x x m ->-⎧⎪⎨-<-⎪⎩.【答案】(1)54-;(2)x >4-6m 【解析】【分析】(1)先分别化简各项,再作加减法;(2)分别解两个不等式得到x >-2,x >4-6m ,再根据m 的范围得出4-6m >0>-2,最后得到到解集.【详解】解:(1)原式9124--++-=54-;(2)41713142x x x m ->-⎧⎪⎨-<-⎪⎩①②解不等式①得:x >-2,解不等式②得:x >4-6m ,∵m 是小于0常数,∴4-6m >0>-2,∴不等式组的解集为:x >4-6m.【点睛】本题考查了实数的混合运算,解一元一次不等式组,解题的关键是掌握运算法则和解法.17. 如图是由边长为1的小正方形构成的64⨯的网格,点A ,B 均在格点上.(1)在图1中画出以AB 为边且周长为无理数的ABCD Y ,且点C 和点D 均在格点上(画出一个即可).(2)在图2中画出以AB 为对角线的正方形AEBF ,且点E 和点F 均在格点上.的【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题意,只要使得AB 的邻边AD 的长是无理数即可;(2)如图,取格点E 、F ,连接EF ,则EF 与AB 互相垂直平分且相等,根据正方形判定方法,则四边形AEBF 为所作.【详解】.解:(1)如图四边形ABCD 即为所作,答案不唯一.(2)如图,四边形AEBF 即为所求作的正方形.【点睛】本题考查了在网格中作特殊四边形,熟练掌握平行四边形和正方形的判定方法是准确作图的关键.18. 某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中的有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.【答案】(1)50,18;(2)选择的市民均来自甲区的概率为16.【解析】【分析】(1)用满意的人数除以其所占百分比即可得到调查中接受调查的人数,用调查的总人数乘以非常满意所占的百分比即可得到“非常满意”的人数;(2)画树状图可得共有12种等可能的结果,选择的市民均来自甲区的有2种情况,即可得到结果.【详解】(1)解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数为:20÷40%=50(人);此次调查中结果为非常满意人数为:50×36%=18(人);(2)画树状图得:共有12种等可能的结果,选择的市民均来自甲区的有2种情况,选择的市民均来自甲区的概率为:212=16.【点睛】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.19. 如图,一次函数y kx b =+的图象与y 轴的正半轴交于点A ,与反比例函数4y x =的图像交于,P D 两点.以AD 为边作正方形ABCD ,点B 落在x 轴的负半轴上,已知BOD 的面积与AOB 的面积之比为1:4.的(1)求一次函数y kx b =+的表达式:(2)求点P 的坐标及CPD △外接圆半径的长.【答案】(1)344y x =-+;(2)点P 的坐标为4(,3)3;CPD △【解析】【分析】(1)过D 点作DE ∥y 轴交x 轴于H 点,过A 点作EF ∥x 轴交DE 于E 点,过B 作BF ∥y 轴交EF 于F 点,证明△ABF ≌△DAE ,4(,)(0)D a a a >,BOD 的面积与AOB 的面积之比为1:4得到16OA a=,进而得到16=a a ,求出A 、D 两点坐标即可求解;(2)联立一次函数与反比例函数解析式即可求出P 点坐标;再求出C 点坐标,进而求出CP 长度,Rt △CPD 外接圆的半径即为CP 的一半.【详解】解:(1)过D 点作DE ∥y 轴交x 轴于H 点,过A 点作EF ∥x 轴交DE 于E 点,过B 作BF ∥y 轴交EF 于F 点,如下图所示:∵BOD 与AOB 有公共的底边BO ,其面积之比为1:4,∴DH :OA =1:4,设4(,0)D a a a >,则416=DH OA OH AE a a a ===,,∵ABCD 为正方形,∴AB=AD ,∠BAD =90°,∴∠BAF +∠EAD =90°,∵∠BAF +∠FBA =90°,∴∠FBA =∠EAD ,在△ABF 和△DAE 中:==90=F E FBA EAD AB AD⎧∠∠⎪∠∠⎨⎪=⎩,∴△ABF ≌△DAE (AAS ),∴BF AE OA a === 又16OA a =,∴16=a a ,解得4a =(负值舍去),∴(0,4)(4,1)A D ,,代入y kx b =+中,∴4014b k b =+⎧⎨=+⎩ ,解得344k b ⎧=-⎪⎨⎪=⎩,∴一次函数的表达式为344y x =-+;(2)联立一次函数与反比例函数解析式:3444y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,整理得到:2316160x x -+=,解得143x =,24x =,∴点P 的坐标为4(,3)3;D 点的坐标为(4,1)∵四边形ABCD 为正方形,∴5DC AD ==,且2224100(4)(31)39PD =-+-=,在Rt PCD ∆中,由勾股定理:2221003252599PC DC PD =+=+=,∴PC ,又△CPD 为直角三角形,其外接圆的圆心位于斜边PC 的中点处,∴△CPD.【点睛】本题考查了反比例函数与一次函数的综合应用,三角形全等的判定与性质,勾股定理求线段长,本题属于综合题,解题的关键是正确求出点A 、D 两点坐标.20. 如图,在Rt △ABC 中,∠B =90°,AE 平分∠BAC 交BC 于点E ,O 为AC 上一点,经过点A 、E 的⊙O 分别交AB 、AC 于点D 、F ,连接OD 交AE 于点M .(1)求证:BC 是⊙O的切线.(2)若CF=2,sin C=35,求AE的长.【答案】(1)见解析(2【解析】【分析】(1)连接OE,方法一:根据角平分线的性质及同弧所对的圆周角是圆心角的一半得出∠OEC=90°即可;方法二:根据角平分线的性质和等腰三角形的性质得出∠OEC=90°即可;(2)连接EF,根据三角函数求出AB和半径的长度,再利用三角函数求出AE的长即可.【小问1详解】连接OE,方法一:∵AE平分∠BAC交BC于点E,∴∠BAC=2∠OAE,∵∠FOE=2∠OAE,∴∠FOE=∠BAC,∴OE∥AB,∵∠B=90°,∴OE⊥BC,又∵OE是⊙O的半径,∴BC是⊙O的切线;方法二:∵AE平分∠BAC交BC于点E,∴∠OAE=∠BAE,∵OA=OE,∴∠OAE=∠OEA,∴∠BAE=∠OEA,∴OE ∥AB ,∵∠B =90°,∴OE ⊥BC ,又∵OE 是⊙O 的半径,∴BC 是⊙O 的切线;【小问2详解】连接EF ,∵CF =2,sin C =35,∴35OEOF CF =+,∵OE =OF ,∴OE =OF =3,∵OA =OF =3,∴AC =OA +OF +CF =8,∴AB =AC •sin C =8×35=245,∵∠OAE =∠BAE ,∴cos ∠OAE =cos ∠BAE ,即AB AEAE AF =,∴24533AE AE =+,解得AE (舍去负数),∴AE .【点睛】本题主要考查切线的判定和三角函数的应用,熟练掌握切线的判定定理和三角函数是解题的关键.21. 2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面,某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空.该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m 个(m 为正整数)经过连续15天的销售统计,得到第x 天(115x ≤≤,且x 为正整数)的供应量1y (单位:个)和需求量2y (单位:个)的部分数据如下表,其中需求量2y 与x 满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)第x 天12...6...11 (15)供应量1y (个)150150m +…1505m +…15010m +…15014m+需求量2y (个)220229…245…220…164(1)直接写出1y 与x 和2y 与x 的函数关系式;(不要求写出x 的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m 的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m 取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.【答案】(1)1150y mx m =+-,()226245y x =--+(2)m 的值为20或21(3)第4天的销售额为21000元,第12天的销售额为20900元【解析】【分析】(1)根据题意“从第二天起,每天比前一天多供应m 个(m 为正整数)经过连续15天的销售统计,得到第x 天(115x ≤≤,且x 为正整数)的供应量1y ”得到1y 与x 的函数关系式;2y 与x 满足某二次函数关系,设22y ax bx c =++,利用表格,用待定系数法求得2y 与x 的函数关系式;(2)用含m 的式子表示前9天的总供应量和前10天的总供应量,根据“前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量”列出不等式,求解即可;(3)在(2)的条件下,m 的最小值为20,代入(1)中1y 与x 和2y 与x 的函数关系式求得第4天的销售量和第12天的销售量,即可求得销售额.【小问1详解】解:由题意可知,()11501y m x =+-,即1150y mx m =+-,2y 与x 满足某二次函数关系,设22y ax bx c =++,由表格可知,22022942245366a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得:112209a b c =-⎧⎪=⎨⎪=⎩,即()222122096245y x x x =-++=--+.【小问2详解】前9天的总供应量为:()()()15015015021508135036m m m m +++++++=+ ,前10天的总供应量为:()1350361509150045m m m +++=+,第10天的需求量与第2天需求量相同,为229个,故前10天的总需求量为;21362292365+=(个),依题意可得13503621361500452365m m +<⎧⎨+≥⎩,解得25192196m <≤,因为m 为正整数,故m 的值为20或21.【小问3详解】在(2)的条件下,m 的最小值为20,第4天的销售量即为供应量:()14120150210y =-⨯+=(个),故第4天的销售额为:10021021000⨯=(元),第12天的销售量即需求量.()22126245209y =--+=(个),故第12天的销售额为:10020920900⨯=(元),答:第4天的销售额为21000元,第12天的销售额为20900元.【点睛】本题考查关于销售的实际问题,是一次函数和二次函数的综合问题.解题的关键在于正确理解题中的相等和不等关系.22. 抛物线2y ax bx c =++过A (2,3),B (4,3),C (6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D 在线段AC 的上方,DE ⊥AB 交AC 于点E ,若满足DE AE =,求点D 的坐标;(3)如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似,若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)D (72,154);(3)P (2,﹣2),Q (﹣3,0),S △BPQ =292或P (2,2),Q (3,0),S △BPQ =52或P (2,﹣5),Q (﹣1,0),S △BPQ =17或P (2,﹣1),Q (5,0),S △BPQ =5.【解析】【分析】(1)由对称性和A (2,3),B (4,3),可知抛物线的对称轴是:x=3,利用顶点式列方程组解出可得抛物线的表达式;(2)如图1,先利用待定系数法求直线AC 的解析式,设点D (m ,﹣m+6m ﹣5),则点E (m ,﹣2m+7),根据解析式表示DE 和AE 的长,由已知的比例式列式得结论;(3)根据题意得:△BPQ 为等腰直角三角形,分三种情况:①若∠BPQ=90°,BP=PQ ,如图2,作辅助线,构建全等三角形,证明△BAP ≌△QMP ,可得结论;如图3,同理可得结论;②若∠BQP=90°,BQ=PQ ,如图4,证得:△BNQ ≌△QMP ,则NQ=PM=3,NG=1,BN=5,从而得出结论;如图5,同理易得△QNB ≌△PMQ ,可得结论;③若∠PBQ=90°,BQ=BP ,如图6,由于AB=2≠NQ=3,此时不存在符合条件的P 、Q .【详解】解:(1)根据题意,设抛物线表达式为y=a (x ﹣3)2+h .把B (4,3),C (6,﹣5)代入得:395a h a h +=⎧⎨+=-⎩,解得:14a h =-⎧⎨=⎩,故抛物线的表达式为:y=﹣(x ﹣3)2+4=﹣x 2+6x ﹣5,即:265y x x =-+-;(2)设直线AC 的表达式为y=kx+n ,则:2365k n k n +=⎧⎨+=-⎩,解得:k=﹣2,n=7,∴直线AC 的表达式为y=﹣2x+7,设点D (m ,﹣m 2+6m ﹣5),2<m <6,则点E (m ,﹣2m+7),∴DE=(﹣m 2+6m ﹣5)﹣(﹣2m+7)=﹣m 2+8m ﹣12,设直线DE 与直线AB 交于点G ,∵AG ⊥EG ,∴AG=m ﹣2,EG=3﹣(﹣2m+7)=2(m ﹣2),m ﹣2>0,在Rt △AEG 中,∴m ﹣2),由DE AE =2,化简得,2m 2﹣11m+14=0,解得:m 1=72,m 2=2(舍去),则D(72,154).(3)根据题意得:△ABF为等腰直角三角形,假设存在满足条件的点P、Q,则△BPQ为等腰直角三角形,分三种情况:①若∠BPQ=90°,BP=PQ,如图2,过P作MN∥x轴,过Q作QM⊥MN于M,过B作BN⊥MN于N,证得:△BAP≌△QMP,∴AB=QM=2,PM=AP=3+2=5,∴P(2,﹣2),Q(﹣3,0),在Rt△QMP中,PM=5,QM=2,由勾股定理得:,∴S△BPQ=12PQ•PB=292;如图3,证得:△BAP≌△PMQ,∴AB=PM=2,AP=MQ=3﹣2=1,∴P(2,2),Q(3,0),在Rt△QMP中,PM=2,QM=1,由勾股定理得:。

2020年深圳市福田区中考数学一模试卷 (含答案解析)

2020年深圳市福田区中考数学一模试卷 (含答案解析)

2020年深圳市福田区中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.−3的倒数是()A. 3B. −3C. 13D. −132.由六个小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.3.银河系中大约有恒星160000000000颗,数据160000000000用科学记数法表示为()A. 0.16×1012B. 1.6×1011C. 16×1010D. 160×1094.下列四种图案中,不是中心对称图形的为()A. 中国移动B. 中国联通C. 中国网通D. 中国电信5.下列各式中,计算正确的是()A. √4=±2B. √5+√5=√10C. a⋅a3=a4D. (a−b)2=a2−b26.在一次引体向上的测试中,小强等5位同学引体向上的次数分别为:6,8,9,8,9,那么关于这组数据的说法正确的是()A. 平均数是8.5B. 中位数是8.5C. 众数是8.5D. 众数是8和97.如图,直线a//b,∠1=85°,∠2=35°,则∠3=()A. 35°B. 50°C. 60°D. 85°8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.9.已知抛物线y=ax2+bx+c(a<0)经过点(−1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②−a+b+c>0;③b2−2ac>5a2.其中,正确结论的个数是()A. 0B. 1C. 2D. 310.一次函数y=ax+b和反比例函数y=c在同一个平面直角坐标系中的图象x如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.11.如图,斜坡AB坡度为1:2.4,长度为52米,在坡顶B所在的平台上有一座高楼EF,已知在A处测得楼顶F的仰角为60°,在B处测得楼顶F的仰角为77°,则高楼EF的高度是()(精确到米,参考数据:sin77°≈0.97,tan77°≈4.33,√3≈1.73)A. 125米B. 105米C. 85米D. 65米12.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=√2EC;④△APD一定是等腰三角形.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.因式分解:3a3−27a=______.14.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有______个.15.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF//AB,连接OC交EF于H点,连接CF,若CF=8,则EF的长为______.16.设反比例函数y=3x 与一次函数y=x+2的图象交于点(a,b),则1a−1b的值为_____.三、解答题(本大题共7小题,共52.0分)17.计算:|−2|+√8+(2017−π)0−4cos45°18.先化简,再求值:1−x2−1x2+2x+1÷x−1x,其中x=√5−1.19.九年级一班为推选学生参加“中国古诗词大会的海选活动在班级内举行一次选拔赛成绩分为A,B,C,D四个等级,并将收集到的数据绘制成了如图所示的两幅不完整的统计图请你根据图中所给出的信息解答下列各题.(1)求九年级一班共有______人.(2)在扇形统计图中等级为“D”的部分所对应扇形的圆心角为______度.(3)补全条形统计图和扇形统计图.20.如图,四边形ABCD是平行四边形,BE//DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.21.某学校为了改善办学条件,计划购置一批A型电脑和B型电脑.经投标发现,购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元.(1)购买1台A型电脑和1台B型电脑各需多少元?(2)根据学校实际情况,需购买A、B型电脑的总数为50台,购买A、B型电脑的总费用不超过145250元.①请问A型电脑最多购买多少台?②从学校教师的实际需要出发,其中A型电脑购买的台数不少于B型电脑台数的3倍,该校共有几种购买方案?试写出所有的购买方案.22.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若DE=1,则AC=2√5,求tan∠ABD的值.23.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(−2,0)、B(4,0)、C(0,−8),与直线y=x−4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.【答案与解析】1.答案:D)=1,解析:解:∵(−3)×(−13∴−3的倒数是−1.3故选:D.直接根据倒数的定义进行解答即可.本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.答案:A解析:解:所给图形的俯视图是两排正方形,第一排3个,第二排2个.故选A.俯视图是从物体上面看,所得到的图形.本题考查了简单组合体的三视图,注意掌握:俯视图是从物体上面看所得到的图形.3.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:160 000 000 000=1.6×1011,故答案为:B.4.答案:D解析:本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后能够和原来的图形重合.根据中心对称图形的概念求解.解:A、是中心对称图形,故A选项不符合题意;B、是中心对称图形,故B选项不符合题意;C、是中心对称图形,故C选项不符合题意;D、不是中心对称图形,故D选项符合题意;故选D.5.答案:C解析:解:A、√4=2,故此选项错误;B、√5+√5=2√5,故此选项错误;C、a⋅a3=a4,故此选项正确;D、(a−b)2=a2−2ab+b2,故此选项错误;故选:C.直接利用同底数幂的乘法运算法则、二次根式的加减运算法则、完全平方公式分别计算得出答案.此题主要考查了同底数幂的乘法运算、二次根式的加减运算、完全平方公式,正确掌握相关运算法则是解题关键.6.答案:D=8,此选项错误;解析:解:A、平均数=6+8+9+8+95B、6,8,8,9,9中位数是8,此选项错误;C、6,8,9,8,9众数是8和9,此选项错误;D、正确;故选D.根据平均数、中位数、众数的定义判断各选项正误即可.本题主要考查了平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.7.答案:B解析:本题主要考查了平行线的性质和三角形的外角定理,比较简单,熟练掌握这些知识是解题的关键,先利用三角形的外角性质,求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°−35°=50°,∵a//b,∴∠3=∠4=50°.故选B.8.答案:B解析:本题考查了作图−基本作图.解决此类题目的关键是熟悉基本几何图形的性质.过点A作BC的垂线,垂足为D,则AD即为所求.解:过点A作BC的垂线,垂足为D,故B正确,ACD错误.故选B.9.答案:D解析:解:如图,∵抛物线过点(−1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=−b2a >12,∴b>−a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴−a+b+c>0,所以②正确;∵a−b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2−2ac−5a2=(a+c)2−2ac−5a2=−(2a+c)(2a−c),而2a+c>0,2a−c<0,∴∴b2−2ac−5a2>0,即b2−2ac>5a2.所以③正确.故选:D.利用题意画出二次函数的大致图象,利用对称轴的位置得到−b2a >12,则可对①进行判断;利用a<0,b>0,c>0可对②进行判断;由a−b+c=0,即b=a+c,则4a+2(b+c)+c>0,所以2a+c> 0,变形b2−2ac−5a2=−(2a+c)(2a−c),则可对③进行判断.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.10.答案:A解析:解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=−b2a>0,与y轴的交点在y轴负半轴.故选:A.根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=−b2a>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和一次函数图象经过的象限,找出a<0、b>0、c<0是解题的关键.11.答案:A解析:解:∵BG⊥AC,BH⊥EF,∴四边形BGEH是矩形,∴BH=EG,BG=EH,由题意BG:AG=1:2.4,在Rt△ABG中,∵AB=52米,由勾股定理可得BG=20米,AG=48米,在Rt△BHF中,∵∠DBF=77°,∴tan77°=FHBH,∴FHBH≈4.33,∴FH=4.33BH,在△Rt△AEF中,∵∠CAF=60°,∴EF=√3AE,∴√3(48+BH)=20+4.33BH,解得BH≈24.25,∴EF=√3(48+BH)≈125米.故选:A.首先证明四边形BGEH是矩形,由题意BG:AG=1:2.4,在Rt△ABG中,根据AB=52米,由勾股定理可得BG=20米,AG=48米,在Rt△BHF中,可知tan77°=FHBH ,推出FHBH≈4.33,推出FH=4.33BH,在Rt△AEF中,由∠CAF=60°,可知EF=√3AE,可得√3(48+BH)=20+4.33BH,解方程求出BH即可解决问题.本题考查解直角三角形−仰角、坡度问题、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.12.答案:C解析:解:作PH⊥AB于H,∴∠PHB=90°,∵PE⊥BC,PF⊥CD,∴∠PEB=∠PEC=∠PFC=90°.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠1=∠2=∠BDC=45°,∠ABC=∠C=90°,∴四边形BEPH和四边形PECF是矩形,PE=BE,DF=PF,∴四边形BEPH为正方形,∴BH=BE=PE=HP,∴AH=CE,∴△AHP≌△FPE,∴AP=EF,∠PFE=∠BAP,故①、②正确,在Rt△PDF中,由勾股定理,得PD=√2PF,∴PD=√2CE.故③正确.∵点P在BD上,∴当AP=AD、PA=PD或DA=DP时△APD是等腰三角形.∴△APD是等腰三角形只有三种情况.故④错误,∴正确的个数有3个.故选C.由四边形ABCD是正方形可以得出AB=BC=CD=AD,∠1=∠2=45°,作PH⊥AB于H,可以得出四边形BEPH为正方形,可以得出AH=CE,由条件可以得出四边形PECF是矩形,就有CE=PF,利用三角形全等可以得出AP=EF,∠PFE=∠BAP,由勾股定理可以得出PD=√2PF,可以得出PD=√2EC,点P在BD上要使△APD一定是等腰三角只有AP=AD、PA=PD或DA=DP时才成立,故可以得出答案.本题考查了正方形的性质,正方形的判定,矩形的性质,勾股定理的运用,全等三角形的运用等多个知识点.13.答案:3a(a+3)(a−3)解析:解:原式=3a(a2−9)=3a(a+3)(a−3),故答案为:3a(a+3)(a−3)原式提取3a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.答案:18解析:用袋中球的总个数乘以摸到白球的频率,据此可得.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.解:估计袋中白球有50×36%=18个,故答案为:18.15.答案:8√3解析:解:∵直线AB切⊙O于C点,∴OC⊥AB,∵EF//AB,∴OH⊥EF,∴EH=HF,由圆周角定理得,∠F=∠EDC=30°,CF=4,∴HC=12∴HF=√CF2−CH2=4√3,∴EF=2HF=8√3,故答案为:8√3.根据切线的性质得到OC⊥AB,根据平行线的性质得到OH⊥EF,根据垂径定理得到EH=HF,根据圆周角定理、勾股定理计算即可.本题考查的是切线的性质、垂径定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.16.答案:23解析:此题考查反比例函数和一次函数的交点问题,先将点(a,b)代入,得到关于a和b的代数式,然后代入所求的代数式即可.解:由题意得:{ab =3b =a +2,∴ab =3,b −a =2. ∴1a −1b =b−a ab=23. 故答案为23.17.答案:解:原式=2+2√2+1−4×√22=2+2√2+1−2√2=3.解析:直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.18.答案:解:1−x 2−1x 2+2x+1÷x−1x=1−(x +1)(x −1)(x +1)2⋅x x −1 =1−x x +1 =x +1−x x +1=1x+1,当x =√5−1时,原式=√5−1+1=√5=√55.解析:根据分式的除法和减法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.答案:(1)60;(2)108;(3)由题意C 组人数为60×15%=9(人)D 组人数为60−3−30−9=18(人),D 占30%,A 占5%,条形统计图和扇形统计图如图所示:解析:解:(1)由题意B组人数为30人,占50%,所以九年级一班共有30÷50%=60人.故答案为60.(2)由题意C组人数为60×15%=9(人),D组人数为60−3−30−9=18(人),则D占18÷60=30%,“D”的部分所对应扇形的圆心角为360°×30%=108°,故答案为108.(3)见答案.(1)根据B组人数为30人,占50%即可解决问题.(2)先算出D组所占百分比,然后根据圆心角=360°×百分比,计算即可.(3)根据A,C,D的人数以及百分比补全统计图即可.本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.答案:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD.∴∠BAE=∠DCF.又∵BE//DF,∴∠BEF=∠EFD,∵∠BEF+∠AEB=180°,∠EFD+∠DFC=180°,∴∠AEB=∠CFD.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BFDE是平行四边形.∴DE//BF .∴∠1=∠2.解析:本题考查的是利用平行四边形的性质结合三角形全等来解决有关角相等的证明.根据平行四边形的对边平行且相等,得AB =CD ,AB//CD ,再根据平行线的性质,得∠BAE =∠DCF ,∠AEB =∠CFD ,由AAS 证明△ABE≌△CDF ,根据全等三角形的对应边相等,得BE =DF ,从而得出四边形BFDE 是平行四边形,根据两直线平行内错角相等证得∠1=∠2.21.答案:解:(1)设购买1台A 型电脑需要x 元,购买1台B 型电脑需要y 元,根据题意得:{x −y =5002x +3y =13500, 解得:{x =3000y =2500. 答:购买1台A 型电脑需要3000元,购买1台B 型电脑需要2500元.(2)①设购买A 型电脑m 台,则购买B 型电脑(50−m)台,根据题意得:3000m +2500(50−m)≤145250,解得:m ≤40.5,∵m 为整数,∴m ≤40.答:A 型电脑最多购买40台.②设购买A 型电脑m 台,则购买B 型电脑(50−m)台,根据题意得:m ≥3(50−m),解得:m ≥37.5,∵m 为整数,∴m ≥38.∴有3种购买方案,方案一:购买A 型电脑38台,B 型电脑12台;方案二:购买A 型电脑39台,B 型电脑11台;方案三:购买A 型电脑40台,B 型电脑10台.解析:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.(1)设购买1台A 型电脑需要x 元,购买1台B 型电脑需要y 元,根据“购买1台A 型电脑比购买1台B 型电脑贵500元;购买2台A 型电脑和3台B 型电脑共需13500元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)①设购买A型电脑m台,则购买B型电脑(50−m)台,根据总价=单价×数量结合购买A、B型电脑的总费用不超过145250元,即可得出关于m的一元一次不等式,解之取其中的最大整数即可得出结论;②设购买A型电脑m台,则购买B型电脑(50−m)台,根据A型电脑购买的台数不少于B型电脑台数的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论即可得出各购买方案.22.答案:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,又∵∠ADC+∠EDC=180°∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:∠A=∠A,∠ACE=∠ACD,∴△ACE∽△ADC,AC2=AD×AE∵DE=1,AC=2√5,∴20=AD(AD+1)∴AD =4或−5(舍去)∵DC 2=AC 2−AD 2∴DC =2,∴tan∠ABD =tan∠ACD =ADDC =2.解析:本题主要考查了圆的综合以及切线的判定、相似三角形的判定与性质、勾股定理等知识.(1)直接利用圆周角定理得出∠CDE 的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF =∠ODC +∠FDC =∠OCD +∠DCF =90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD ,DC 的长,再利用圆周角定理得出tan∠ABD 的值.23.答案:解:(1)∵抛物线y =ax 2+bx +c(a ≠0)与x 轴的交点坐标是A(−2,0)、B(4,0), ∴设该抛物线解析式为y =a(x +2)(x −4),将点C(0,−8)代入函数解析式代入,得a(0+2)(0−4)=−8,解得a =1,∴该抛物线的解析式为:y =(x +2)(x −4)或y =x 2−2x −8.联立方程组:{y =x 2−2x −8y =x −4, 解得{x =4y =0(舍去)或{x =−1y =−5, 即点D 的坐标是(−1,−5);(2)如图所示:过点P 作PE//y 轴,交直线AB 与点E ,设P(x,x 2−2x −8),则E(x,x −4).∴PE =x −4−(x 2−2x −8)=−x 2+3x +4.∴S △BDP =S △DPE +S △BPE =12PE ⋅(x p −x D )+12PE ⋅(x B −x E )=12PE ⋅(x B −x D )=52(−x 2+3x +4)=−52(x −32)2+1258. ∴当x =32时,△BDP 的面积的最大值为1258.∴P(32,−354).(3)设直线y =x −4与y 轴相交于点K ,则K(0,−4),设G 点坐标为(x,x 2−2x −8),点Q 点坐标为(x,x −4).∵B(4,0),∴OB =OK =4.∴∠OKB =∠OBK =45°.∵QF ⊥x 轴,∴∠DQG =45°.若△QDG 为直角三角形,则△QDG 是等腰直角三角形.①当∠QDG =90°时,过点D 作DH ⊥QG 于H ,∴QG =2DH ,QG =−x 2+3x +4,DH =x +1,∴−x 2+3x +4=2(x +1),解得:x =−1(舍去)或x =2,∴Q 1(2,−2).②当∠DGQ =90°,则DH =QH .∴−x2+3x+4=x+1,解得x=−1(舍去)或x=3,∴Q2(3,−1).综上所述,当△QDG为直角三角形时,点Q的坐标为(2,−2)或(3,−1).解析:本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的性质、待定系数法求二次函数的表达式,等腰直角三角形的判定,合理运用分类讨论思想是解答本题的关键.(1)设抛物线的解析式为y=a(x+2)(x−4),将点C的坐标代入可求得a的值,然后将y=x−4与抛物线的解析式联立方程组并求解即可;(2)过点P作PE//y轴,交直线AB与点E,设P(x,x2−2x−8),则E(x,x−4),则PE═−x2+3x+4,然后依据S△BDP=S△DPE+S△BPE,列出△BDP的面积与x的函数关系式,然后依据二次函数的性质求解即可;(3)设直线y=x−4与y轴相交于点K,则K(0,−4),设G点坐标为(x,x2−2x−8),点Q点坐标为(x,x−4),先证明△QDG为等腰直角三角形,然后根据∠QDG=90°和∠DGQ=90°两种情况求解即可.。

2022学年深圳市福田区中考数学全真模拟试题(含答案解析)

2022学年深圳市福田区中考数学全真模拟试题(含答案解析)

2022学年深圳市福田区中考数学全真模拟测试卷注意事项1.考生要认真填写考场号和座位序号。

2.测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(共10小题,每小题3分,共30分)1.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩2.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩3.下列实数0,23,3,π,其中,无理数共有()A.1个B.2个C.3个D.4个4.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.5.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90D.绕原点顺时针旋转906.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B.明天下雪的概率为12,表示明天有半天都在下雪C .甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .了解一批充电宝的使用寿命,适合用普查的方式 7.若关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34 C .43D .43-8.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( ) A .42,41B .41,42C .41,41D .42,459.2(3)-的化简结果为( ) A .3B .3-C .3±D .910.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°二、填空题(本大题共6个小题,每小题3分,共18分)11.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.12.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.13.当2≤x ≤5时,二次函数y =﹣(x ﹣1)2+2的最大值为_____.14.如图,已知在△ABC 中,∠A =40°,剪去∠A 后成四边形,∠1+∠2=______°.15.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.16.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.三、解答题(共8题,共72分)17.(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).18.(8分)解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集.19.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.20.(8分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?21.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.23.(12分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.24.如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.(1) 若,求证:;(2) 若AB=BC.①如图2,当点P与E重合时,求的值;②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.2、B【答案解析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【题目详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A、不等式组53xx≥-⎧⎨>-⎩的解集为x>-3,故A错误;B、不等式组53xx>-⎧⎨≥-⎩的解集为x≥-3,故B正确;C 、不等式组53x x <⎧⎨<-⎩的解集为x <-3,故C 错误;D 、不等式组53x x <⎧⎨>-⎩的解集为-3<x <5,故D 错误.故选B . 【答案点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键. 3、B 【答案解析】根据无理数的概念可判断出无理数的个数. 【题目详解】解:无理数有:3,π. 故选B. 【答案点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 4、A 【答案解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可. 【题目详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2, 由②,得x <1,所以不等式组的解集是:2≤x <1. 不等式组的解集在数轴上表示为:.故选A . 【答案点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、C 【答案解析】分析:根据旋转的定义得到即可.详解:因为点A (4,3)经过某种图形变化后得到点B (-3,4), 所以点A 绕原点逆时针旋转90°得到点B , 故选C .点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角. 6、C 【答案解析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可. 【题目详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误; C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误; 故选:C 【答案点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大. 7、B 【答案解析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值. 【题目详解】解:59x y k x y k +=⎧⎨-=⎩①②,①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-, 将7x k =,2y k =-代入236x y +=得:1466k k -=,解得:34k =.故选:B.【答案点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.8、C【答案解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【题目详解】从小到大排列此数据为:40,1,1,1,42,44,45,数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.【答案点睛】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9、A【答案解析】==.故选A.3考点:二次根式的化简10、D【答案解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分) 11、5 【答案解析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张. 【题目详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3, 所以根据相似三角形的性质可设从顶点到这个正方形的线段为x , 则=,解得x=3, 所以另一段长为18-3=15, 因为15÷3=5,所以是第5张. 故答案为:5. 【答案点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答. 123. 【答案解析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式ky x=中,即可求出k 的值. 【题目详解】过点B 作BC 垂直OA 于C , ∵点A 的坐标是(2,0), ∴AO=2,∵△ABO 是等边三角形, ∴OC=1,3 ∴点B 的坐标是(3, 把(3代入ky x=,得3k =.3【答案点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标; 13、1. 【答案解析】先根据二次函数的图象和性质判断出2≤x ≤5时的增减性,然后再找最大值即可. 【题目详解】 对称轴为1x = ∵a =﹣1<0,∴当x >1时,y 随x 的增大而减小,∴当x =2时,二次函数y =﹣(x ﹣1)2+2的最大值为1, 故答案为:1. 【答案点睛】本题主要考查二次函数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键. 14、220. 【答案解析】测试卷分析:△ABC 中,∠A =40°,18040B C ∠+∠=-=140;如图,剪去∠A 后成四边形∠1+∠2+B C ∠+∠=360;∠1+∠2=220° 考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键 15、5 【答案解析】测试卷分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=12AB=5. 考点:直角三角形斜边上的中线. 16、6 【答案解析】本题可根据比例线段进行求解.【题目详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm ,所以,甲、乙的实际距离x 满足12:x=1:50000,即x=1250000⨯=600000cm=6km.故答案为6.【答案点睛】本题主要考查比例尺和比例线段的相关知识.三、解答题(共8题,共72分)17、(1)2m (2)27m【答案解析】(1)首先构造直角三角形△AEM ,利用0AM tan22ME =,求出即可. (2)利用Rt △AME 中,0ME cos22AE=,求出AE 即可. 【题目详解】解:(1)过点E 作EM ⊥AB ,垂足为M .设AB 为x .在Rt △ABF 中,∠AFB=45°,∴BF=AB=x ,∴BC=BF +FC=x +1.在Rt △AEM 中,∠AEM=22°,AM=AB -BM=AB -CE=x -2,又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt △AME 中,0ME cos22AE =, ∴AE=MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m .18、﹣12<x≤0,不等式组的解集表示在数轴上见解析.【答案解析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【题目详解】解不等式2x+1>0,得:x>﹣12,解不等式2323x x-+≥,得:x≤0,则不等式组的解集为﹣12<x≤0,将不等式组的解集表示在数轴上如下:【答案点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.19、(1)详见解析;(2)83.【答案解析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.【题目详解】(1)如图,DE、DF为所作;(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF 为平行四边形,而FB =FD ,∴四边形BEDF 为菱形.∵∠DFC =∠FBD +∠FDB =30°+30°=10°,∴∠FDC =90°-10°=30°.在Rt △BDC 中,∵BC =1,∠DBC =30°,∴DC=Rt △FCD 中,∵∠FDC =30°,∴FC =2,∴FD =2FC =4,∴BF =FD =4,∴四边形BFDE 的面积=4×.故答案为:【答案点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20、第一次买14千克香蕉,第二次买36千克香蕉【答案解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <3时,则3<y <2.【题目详解】设张强第一次购买香蕉xkg ,第二次购买香蕉ykg ,由题意可得0<x <3.则①当0<x≤20,y≤40,则题意可得5065264x y x y +⎧⎨+⎩==. 解得1436x y ⎧⎨⎩==. ②当0<x≤20,y >40时,由题意可得5064264x y x y +⎧⎨+⎩==. 解得3218x y ⎧⎨⎩==.(不合题意,舍去) ③当20<x <3时,则3<y <2,此时张强用去的款项为5x+5y=5(x+y )=5×50=30<1(不合题意,舍去);④当20<x≤40 y >40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【答案点睛】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.21、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【答案解析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【题目详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.22、(1)50,360;(2)23.【答案解析】测试卷分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.测试卷解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率23、(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【答案解析】测试卷分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.24、(1)证明见解析;(2)①;②3.【答案解析】(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB=,根据勾股定理得到,根据等腰直角三角形的性质得到.【题目详解】解:(1) 过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴∴BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴②延长BF、AD交于点G,过点A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵∴PG=,BG=∵AB2=BH·BG∴AB=∴∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴【答案点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.。

福田区一模中考数学试卷

福田区一模中考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. -√3D. 0.1010010001……2. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 等腰梯形3. 若a=3,b=-2,则a²+b²的值为()A. 1B. 5C. 7D. 94. 已知一元二次方程x²-5x+6=0,则它的两个根分别是()A. 2和3B. 3和2C. 1和4D. 4和15. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°6. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 77. 下列各式中,正确的是()A. a²=b² → a=bB. a²=b² → a=±bC. a²=b² → a²-b²=0D. a²=b² → a+b=08. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点是()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)9. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √2510. 若a、b是方程x²-3x+2=0的两根,则a+b的值为()A. 2B. 3C. 4D. 5二、填空题(本大题共10小题,每小题3分,共30分)11. 若a、b、c是△ABC的三边,且a+b>c,b+c>a,c+a>b,则△ABC是______三角形。

12. 已知一元二次方程x²-4x+3=0,则它的两个根分别是______和______。

13. 若函数y=kx+b(k≠0)的图象经过点(1,2),则k+b=______。

2020年广东深圳福田区深圳市高级中学初三一模数学试卷

2020年广东深圳福田区深圳市高级中学初三一模数学试卷

2020年广东深圳福田区深圳市高级中学初三一模数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1. A.B.,C.,D.一元二次方程的根是( ).2. A. B. C. D.如图所示的几何体,它的左视图是( ).3. A.B.C.D.若点在反比例函数上,则的值是( ).4. A. B. C. D.如图,已知一组平行线,被直线、所截,交点分别为、、和、、,且,,,则( ).5.A. B. C. D.如图,菱形中,交于点,于点,连接,若,则( ).6. A.B.C.D.若,,面积为,则的面积为( ).7. A.先向右平移个单位,再向上平移个单位 B.先向右平移个单位,再向下平移个单位C.先向左平移个单位,再向上平移个单位D.先向左平移个单位,再向下平移个单位将抛物线平移,使它平移后图象的顶点为,则需将该抛物线( ).8. A. B. C. D.在一幅长宽的庆祝建国周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为,设纸边的宽为,则可列出方程为( ).9. A.米 B.米 C.米 D.米如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是( ).10.A.B.C.以下说法正确的是( ).小明做了次掷图钉的实验,发现次钉尖朝上,由此他说钉尖朝上的概率是一组对边平行,另一组对边相等的四边形是平行四边形点,都在反比例函数图象上,且,则D.对于一元二元方程,若,则方程的两个根互为相反数11.A.B.是关于的方程的一个根C.当时,的值随值的增大而减小D.当时,二次函数(,,为常数,且)中的与的部分对应值如表:下列结论错误的是( ).12.A.个 B.个 C.个 D.个如图,在正方形中,对角线、相交于点,以为边向外作等边, , 连接,交于,若点为的延长线上一点,连接,连接且平分,下列选项正确的有( ).① ;②;③;④二、填空题(本大题共4小题,每小题3分,共12分)13.一元二次方程的一个根是,则常数的值是 .14.若,则的值为 .15.如图,点是矩形的对角线的中点,菱形的边长为,则 .16.如图,点是双曲线上的一个动点,连接并延长交双曲线于点,将线段绕点逆时针旋转得到线段,若点在双曲线上运动,则 .三、解答题(本大题共7小题,共52分)17.计算:.18.解方程:.19.(1)(2)五一期间,甲、乙两人在附近的景点游玩,甲从、两个景点中任意选择一个游玩,乙从、、三个景点中任意选择一个游玩.乙恰好游玩景点的概率为 .用列表或画树状图的方法列出所有等可能的结果.并求甲、乙恰好游玩同一景点的概率.20.如图,某校有一教学楼,其上有一避雷针为米,教学楼后面有一小山,其坡度为,山坡上有一休息亭供爬山人员休息,测得山坡脚与教学楼的水平距离为米,与休息亭的距离为米,从休息亭测得教学楼上避雷针顶点的仰角为,求教学楼的高度.(结果保留根号)(注:坡度是指坡面的铅直高度与水平宽度的比)21.(1)(2)如图,已知平行四边形,对角线与交于点,以、边分别为边长作正方形、正方形,连接.求证.若,,,请求出的面积.22.(1)(2)(3)深圳某百果园店售卖赣南脐橙,已知每千克脐橙的成本价为元,在销售脐橙的这天时间内,销售单价(元千克)与时间第(天)之间的函数关系式为(且为整数),日销售量(千克)与时间第(天)之间的函数关系式为(,且为整数)请你直接写出日销售利润(元)与时间第(天)之间的函数关系式.该店有多少天日销售利润不低于元?在实际销售中,该店决定每销售千克脐橙,就捐赠元给希望工程,在这天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求的取值范围.23.如图,在平面直角坐标系中,直线 与轴交于点,与轴交于点,抛物线 的对称轴是直线,与轴的交点为点,且经过点、两点.(1)(2)(3)xyO求抛物线的解析式.点为抛物线对称轴上一动点,当的值最小时,请你求出点的坐标.抛物线上是否存在点,过点作轴于点,使得以点、、为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.。

2022年广东省深圳市福田区侨香外国语学校中考一模数学试卷

2022年广东省深圳市福田区侨香外国语学校中考一模数学试卷

2022年广东省深圳市福田区侨香外国语学校一模数学试卷一、选择题(每小题3分,共30分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应位置上)1.在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2B.﹣1C.0D.12.今年是中国共产党建党100周年,过去的100年是奋斗的100年,中国在各个方面都取得了巨大的成就.2020年GDP同比增长2.3%,GDP总量达到约102万亿元,其中102万用科学记数法表示为()A.10.2×105B.1.02×106C.1.02×105D.10.2×1043.如图是由若干个大小相同的小立方体搭成的几何体,其俯视图是()A.B.C.D.4.下列运算正确的是()A.x2•x3=x6B.3x2+x2=4x4C.(﹣x2)3=﹣x6D.x6÷x2=x3 5.关于数据3,﹣2,﹣1,0,5的说法正确的是()A.平均数为﹣1B.中位数为1C.众数为5D.方差为6.8 6.如图,AB∥CE,∠A=40°,CE=DE,则∠C=()A.40°B.30°C.20°D.15°7.如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠ABD等于()A.20°B.30°C.40°D.50°8.如图,在平面直角坐标系中,以坐标原点O为圆心,适当的长为半径作弧,分别交x轴、y轴于点M、点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P(a,b),则a与b的数量关系为()A.a+b=0B.a+b>0C.a﹣b=0D.a﹣b>09.如图,抛物线y1=ax2+bx+c(a≠0)的顶点为A(1,3),且与x轴有一个交点为B(4,0),直线y2=mx+n与抛物线交于A、B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点坐标是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤10.如图,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,连接BD分别交AE,AF于点M,N,下列说法:①∠EAF=45°;②连接MG,NG,则△MGN为直角三角形;③△AMN~△AFE;④若BE=2,FD=3,则MN的长为.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题3分,共15分,请把答案填到答题卡相应位置上)11.分解因式:x2﹣4=.12.在一个不透明的袋子里装有独立包装的口罩,其中粉色口罩有3个、蓝色口罩有2个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口罩都是粉色的概率是.13.在平面直角坐标系中,点P(m,m﹣2)在第一象限内,则m的取值范围是.14.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B 的坐标为.15.如图,Rt△OAB的边AB延长线与反比例函数y=在第一象限的图象交于点C,连接OC,且∠AOB=30°,点C的纵坐标为1,则△OBC的面积是.三、解答题(第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分。

中考强化训练2022年广东省深圳市福田区中考数学一模试题(含答案解析)

中考强化训练2022年广东省深圳市福田区中考数学一模试题(含答案解析)

2022年广东省深圳市福田区中考数学一模试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列式子运算结果为2a 的是( ). A .a a ⋅ B .2a + C .a a + D .3a a ÷ 2、如图,AB 与CD 交于点O ,AOE ∠与AOC ∠互余,20AOE ∠=︒,则BOD ∠的度数为( ) A .20︒ B .70︒ C .90︒ D .110︒3、如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是( ) ·线○封○密○外A .40︒B .80︒C .50︒D .45︒4、下列运算中,正确的是( )A 6 B5 C =4 D5、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( )A .50cmB .35cmC .25cmD .20cm6、如图,点D 是线段AB 的中点,点E 是AC 的中点,若6cm AB =,14cm AC =,则线段DE 的长度是( )A .3cmB .4cmC .5cmD .6cm7、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).A .该组数据的众数是28分B .该组数据的平均数是28分C .该组数据的中位数是28分D .超过一半的同学体育测试成绩在平均水平以上 8、如图,表中给出的是某月的月历,任意选取“U ”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( ) A .78B .70C .84D .105 9、下列方程中,解为5x =的方程是( )A .22x x -=B .23x -=C .35x x =+D .23x 10、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( ) A .B .C .D . 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、一个实数的平方根为3x +3与1x -,则这个实数是________.2、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在xx △xxx 中,∠xxx =90°,点A 在边BP 上,点D 在边CP 上,如果xx =11,xxx ∠xxx =·线○封○密○外125,13AB ,四边形ABCD 为“对等四边形”,那么CD 的长为_____________.3、一杯饮料,第一次倒去全部的23,第二次倒去剩下的 23 ……如此下去,第八次后杯中剩下的饮料是原来的________.4、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).5、如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是___.三、解答题(5小题,每小题10分,共计50分)1、如图,AB 为⊙O 的直径,C 、D 为圆上两点,连接AC 、CD ,且AC =CD ,延长DC 与BA 的延长线相交于E 点.(1)求证:△EAC ∽△ECO ;(2)若3tan 4EOC ∠=,求EC EO的值. 2、对于平面直角坐标系xOy 中的任意一点(,)P x y ,给出如下定义:记a x y =+,b y =-,将点(,)M a b 与(,)N b a 称为点P 的一对“相伴点”.例如:点(2,3)P 的一对“相伴点”是点(5,3)-与(3,5)-. (1)点(4,1)Q -的一对“相伴点”的坐标是______与______; (2)若点(8,)A y 的一对“相伴点”重合,则y 的值为______; (3)若点B 的一个“相伴点”的坐标为(1,7)-,求点B 的坐标; (4)如图,直线l 经过点(0,3)-且平行于x 轴.若点C 是直线l 上的一个动点,点M 与N 是点C 的一对“相伴点”,在图中画出所有符合条件的点M ,N 组成的图形. 3、已知:二次函数y =x 2﹣1. (1)写出此函数图象的开口方向、对称轴、顶点坐标; ·线○封○密○外(2)画出它的图象.4、计算:()()3211232⎛⎫⎡⎤----÷- ⎪⎣⎦⎝⎭. 5、如图,在平面直角坐标系中,点M 在x 轴负半轴上,⊙M 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于C 、D 两点(点C 在y 轴正半轴上),且CD =,点B 的坐标为()3,0,点P 为优弧CAD 上的一个动点,连结CP ,过点M 作ME CP ⊥于点E ,交BP 于点N ,连结AN .(1)求⊙M 的半径长;(2)当BP 平分∠ABC 时,求点P 的坐标;(3)当点P 运动时,求线段AN 的最小值.-参考答案-一、单选题1、C【分析】由同底数幂的乘法可判断A ,由合并同类项可判断B ,C ,由同底数幂的除法可判断D ,从而可得答案.【详解】解:2,a a a ⋅=故A 不符合题意;2a +不能合并,故B 不符合题意;2,a a a +=故C 符合题意; 23,a a a ÷=故D 不符合题意; 故选C 【点睛】 本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键. 2、B 【分析】 先由AOE ∠与AOC ∠互余,求解70,AOC 再利用对顶角相等可得答案. 【详解】 解:AOE ∠与AOC ∠互余, 90AOE AOC ∴∠+∠=︒, 20AOE ∠=︒, 70AOC ∴∠=︒, 70BOD AOC ∴∠=∠=︒, 故选:B . 【点睛】 本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键. 3、C 【分析】 在等腰三角形OCB 中,求得两个底角∠OBC 、∠OCB 的度数,然后根据三角形的内角和求得·线○封○密○外∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在OCB∆中,OB OC=,OBC OCB∴∠=∠;40OCB∠=︒,180COB OBC OCB∠=︒-∠-∠,100COB∴∠=︒;又12A COB ∠=∠,50A∴∠=︒,故选:C.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.4、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:B.-5,故不正确;4,正确;8,故不正确;故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根. 5、C 【分析】由垂径定理,可得出BC 的长;连接OB ,在Rt △OBC 中,可用半径OB 表示出OC 的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】 解:设圆心为O ,连接OB .Rt △OBC 中,BC =12AB =20cm , 根据勾股定理得: OC 2+BC 2=OB 2,即: (OB -10)2+202=OB 2, 解得:OB =25; 故轮子的半径为25cm .故选:C .【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.·线○封○密○外6、B【分析】根据中点的定义求出AE和AD,相减即可得到DE.【详解】解:∵D是线段AB的中点,AB=6cm,∴AD=BD=3cm,∵E是线段AC的中点,AC=14cm,∴AE=CE=7cm,∴DE=AE-AD=7-3=4cm,故选B.【点睛】本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.7、B【分析】由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C,从而可得答案. 【详解】解:由28分出现14次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;该组数据的平均数是1253+265+2710+2814+2912+306 50175+130+270+392+348+180=27.950故B符合题意;50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,所以中位数为:28+28=282(分),故C 不符合题意; 因为超过平均数的同学有:14+12+6=32, 所以超过一半的同学体育测试成绩在平均水平以上,故D 不符合题意; 故选B【点睛】本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.8、A【分析】设“U ”型框中的最下排正中间的数为x ,则其它6个数分别为x -15,x -8,x -1,x +1,x -6,x -13,表示出这7个数之和,然后分别列出方程解答即可. 【详解】 解:设“U ”型框中的最下排正中间的数为x ,则其他6个数分别为x -15,x -8,x -1,x +1,x -6,x -13, 这7个数之和为:x -15+x -8+x -1+x +1+x -6+x -13=7x -42. 由题意得: A 、7x -42=78,解得x =1207,不能求出这7个数,符合题意; B 、7x -42=70,解得x =16,能求出这7个数,不符合题意; C 、7x -42=84,解得x =18,能求出这7个数,不符合题意;D 、7x -42=105,解得x =21,能求出这7个数,不符合题意.故选:A .【点睛】本题考查一元一次方程的实际运用,掌握“U ”型框中的7个数的数字的排列规律是解决问题的关·线○封○密·○外键.9、B【分析】把x =5代入各个方程,看看是否相等即可【详解】解:A . 把x =5代入22x x -=得:左边=8,右边=5,左边≠右边,所以,5x =不是方程22x x -=的解,故本选项不符合题意;B . 把x =5代入23x -=得:左边=3,右边=3,左边=右边,所以,5x =是方程23x -=的解,故本选项符合题意;C . 把x =5代入35x x =+得:左边=15,右边=10,左边≠右边,所以,5x =不是方程35x x =+的解,故本选项不符合题意;D . 把x =5代入23x +=得:左边=7,右边=3,左边≠右边,所以,5x =不是方程23x +=的解,故本选项不符合题意;故选:B【点睛】本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键10、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:A 、三视图分别为正方形,三角形,圆,故A 选项符合题意;B 、三视图分别为三角形,三角形,圆及圆心,故B 选项不符合题意;C 、三视图分别为正方形,正方形,正方形,故C 选项不符合题意;D 、三视图分别为三角形,三角形,矩形及对角线,故D 选项不符合题意;故选:A . 【点睛】 本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图. 二、填空题 1、94 【分析】 根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果. 【详解】 解:根据题意得: ①这个实数为正数时:3x +3+x -1=0,∴x =-12, ∴(x -1)2=94, ②这个实数为0时: 3x +3=x -1, ∴x =-2, ∵x -1=-3≠0,∴这个实数不为0.故答案为:94. 【点睛】·线○封○·密○外本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.2、13或12-√85或12+√85【分析】根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.【详解】解:如图,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,,∵xxx∠xxx=125x,∴AE=125在Rt△ABE中,AE2+BE2=AB2,x)2=132,即x2+(125解得:x1=5,x2=-5(舍去),∴BE=5,AE=12,∴CE =BC -BE =6, 由四边形AECF 为矩形,可得AF =CE =6,CF =AE =12,在Rt △AFD 2中,FD 2∴CD 2=CF -FD 2=12-√85, CD 3=CF +FD 2=12+√85, 综上所述,CD 的长度为13、12-√85或12+√85. 故答案为:13、12-√85或12+√85. 【点睛】本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用. 3、 (13)8【分析】 采用枚举法,计算几个结果,从结果中寻找变化的规律. 【详解】 设整杯饮料看成1,列表如下:·线○封○密○外)8.故第8次剩下的饮料是原来的(13)8.故答案为:(13【点睛】本题考查了有理数幂的运算,正确寻找变化的规律是解题的关键.4、10、11【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】-=、25−30=−5、15−25=解:根据图中的信息可得,相邻两个月销售额的变化分别为:30237−10、19−15=4,∵4<|−5|<7<|−10|,∴该店手机销售额变化最大的相邻两个月是10、11,故答案为:10、11【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.5、(0,-5)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,xx=√xx2−xx2=5,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.三、解答题1、(1)见解析(2【分析】(1)由题意可证得△AOC≌△DOC,从而可得对应边、对应角都相等,再由△ECO、△EDO的内角和定理,可证得∠=∠ECA EOC,从而可得△EAC∽△ECO;(2)过点C作CF⊥EO,由3tan4EOC∠=,可设CF=3x,则可得OF=4x,OC=5x=OA,故可得AF=x,可·线○封○密·○外求AC,,从而可得=AC OC ,即为EC EO 的值. (1) 证明:∵AB 为⊙O 的直径,C 、D 为圆上两点,连接AC 、CD ,且AC =CD ,∴在△CAO 与△CDO 中:OD OA OC OC CD CA =⎧⎪=⎨⎪=⎩∴△CAO ≌△CDO ,∴,∠=∠∠=∠=∠=∠AOC DOC ODC OAC OCA OCD ,在△ECO 与△EDO 中,180∠+∠+∠+∠=︒E ECA OCA EOC ,180∠+∠+∠+∠=︒E EOC ODC DOC ,∴∠=∠=∠ECA DOC AOC ,在△EAC 与△ECO 中,∠=∠ECA EOC ,E E ∠=∠,∴△EAC ∽△ECO .(2)解:过点C 作CF ⊥EO ,∵3tan 4EOC ∠=, ∴34=CF OF , 设CF =3x ,则OF =4x , ∴OC5x =OA , ∴AF =5x -4x = x ,∴AC,∴=AC OC 由(1)得△EAC ∽△ECO , ∴=EC ACEOOC , ∴=EC EO 【点睛】 本题考查了三角形相似的判定及性质,三角函数的应用,解题的关键是作出辅助线,利用好数形结合的思想.2、 (1)(1,3),(3,1) (2)-4 (3)(6,7)B -或(6,1) (4)见解析 【分析】 (1)根据相伴点的含义可得4(1)3a =+-=,(1)1b --=,从而可得答案; ·线○封○密○外(2)根据相伴点的含义可得8y y +=-,再解方程可得答案;(3)由点B 的一个“相伴点”的坐标为(1,7)-,则另一个的坐标为7,1, 设点(,)B x y ,再根据相伴点的含义列方程组,再解方程组即可;(4)设点(,3)C m -,可得3a m =-,3b =,可得点C 的一对“相伴点”的坐标是(3,3)M m -与(3,3)N m -,再画出,M N 所在的直线即可.(1)解:(4,1)Q -,4(1)3a ∴=+-=,(1)1b --=,∴点(4,1)Q -的一对“相伴点”的坐标是(1,3)与(3,1),故答案为:(1,3),(3,1);(2) 解:点(8,)A y ,8a y ∴=+,b y =-,∴点(8,)A y 的一对“相伴点”的坐标是(8,)y y +-和(,8)y y -+,点(8,)A y 的一对“相伴点”重合,8y y ∴+=-,4y ∴=-,故答案为:4-;(3)解:设点(,)B x y ,点B 的一个“相伴点”的坐标为(1,7)-,则另一个的坐标为7,1,∴17x y y +=-⎧⎨-=⎩或17y x y -=-⎧⎨+=⎩, ∴67x y =⎧⎨=-⎩或61x y =⎧⎨=⎩, (6,7)B ∴-或(6,1);(4)解:设点(,3)C m -,3a m ∴=-,3b =, ∴点C 的一对“相伴点”的坐标是(3,3)M m -与(3,3)N m -, 当点C 的一个“相伴点”的坐标是(3,3)M m -, ∴点M 在直线:3m y =上, 当点C 的一个“相伴点”的坐标是(3,3)N m -, ∴点N 在直线:3n x =上, 即点M ,N 组成的图形是两条互相垂直的直线m 与直线n ,如图所示, 【点睛】 本题考查的是新定义情境下的坐标与图形,平行线于坐标轴的直线的特点,二元一次方程组的应用,·线○封○密·○外理解新定义再进行计算或利用新定义得到方程组与图形是解本题的关键.3、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).(2)图像见解析.【分析】(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x 轴的交点与y 轴的交点以及顶点的坐标. 4、15-【详解】解:原式()11292⎛⎫=---÷- ⎪⎝⎭ 1172⎛⎫ ⎪⎝=-+÷⎭- 114=-- 15=-. 【点睛】 本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行. 5、 (1)M 的半径长为6; ·线○封○密·○外(2)点(P -;(3)线段AN 的最小值为3.【分析】(1)连接CM ,根据题意及垂径定理可得CO OD ==,2CM OM =,由直角三角形中30角的逆定理可得30MCO ∠=︒,60CMO ∠=︒,得出CMB 为等边三角形,利用等边三角形的性质可得2MB OB =,即可确定半径的长度; (2)连接AP ,过点P 作PF AB ⊥,交AB 于点F ,由直径所对的圆周角是90︒可得APB △为直角三角形,结合(1)中CMB 为等边三角形,根据BP 平分ABC ∠,可得30ABP ∠=︒,在Rt APB △与Rt PFB △中,分别利用含30角的直角三角形的性质和勾股定理计算结合点所在象限即可得;(3)结合图象可得:当B 、N 、A 三点共线时,利用三角形三边长关系可得此时PN 取得最小值,即可得出结果.(1)解:如图所示:连接CM ,∵CD =,∴CO OD ==,∵CD MB ⊥,∴2CM OM =,∴30MCO ∠=︒,60CMO ∠=︒,∵MC MB =,∴△xxx 为等边三角形, ∵()3,0B , ∴3OB =, ∴26MB OB ==, ∴⊙x 的半径长为6; (2) 解:连接AP ,过点P 作PF AB ⊥,交AB 于点F ,如(1)中图所示: ∵AB 为M 的直径,212AB MB ==, ∴90APB ∠=︒, ∴APB △为直角三角形, 由(1)得CMB 为等边三角形, ∵BP 平分ABC ∠, ∴30ABP ∠=︒, ∴162AP AB ==,∴BP = 在Rt PFB △中,30ABP ∠=︒,∴12PF PB ==, ·线○封○密·○外∴9BF ==,∴6OF BF OB =-=,∴6OF =,PF =点(P -;(3)结合图象可得:当B 、N 、A 三点共线时,AN NB AB +=,PN 取得最小值,∵在ABN '中,AN N B AB +''>,∴当B 、N 、A 三点共线时,PN 取得最小值,此时点P 与点A 重合,点N 与点M 重合,132AN AB ==,∴线段AN 的最小值为3.【点睛】题目主要考查垂径定理,含30角的直角三角形的性质和勾股定理,直径所对的圆周角是90︒,等边三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.。

广东省深圳市福田外国语学校2022-2023学年九年级上学期第一次质检数学试卷(解析版)

广东省深圳市福田外国语学校2022-2023学年九年级上学期第一次质检数学试卷(解析版)

2022-2023学年广东省深圳市福田外国语学校九年级(上)第一次质检数学试卷一.选择题(共10小题,每小题3分,共30分)1. 若23a b =,则a b b +的值为( ) A. 25 B. 52 C. 35 D. 53【答案】D【解析】【分析】根据比例的性质:內项之积等于外项之积进行解答即可. 【详解】解:由23a b =得:32a b =,则23a b =, ∴a b b +=23b b b+=53,故D 正确. 故选:D .【点睛】本题考查比例的性质、代数式求值,解答的关键是熟练掌握比例的性质:內项之积等于外项之积.2. 若关于x 的一元二次方程22(2)40k x x k −++−=有一个根是0,则k 的值是( )A. -2B. 2C. 0D. -2或2【答案】A【解析】【分析】先把x =0代入22(2)40k x x k −++−=得240k −=,解关于k 的方程得1222k k ==−,,然后根据一元二次方程的定义可确定k 的值.【详解】解:把x =0代入22(2)40k x x k −++−=得: 240k −=,解得1222k k ==−,,而k -2≠0,所以k =-2.故选:A .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3. 如图,直线123l l l ∥∥,已知AE =1,BE =2,DE =3,则CD 的长为( )A. 32B. 92C. 6D. 152【答案】B【解析】分析】根据平行线分线段成比例求解即可.【详解】解:∵直线l 1∥l 2∥l 3, ∴AE BE CE DE=, ∵AE =1,BE =2,DE =3, ∴123CE =, ∴CE =32, ∴CD =CE +DE =39322+=. 故选B . 【点睛】本题考查平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的对应线段成比例.4. 如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,AB =5,AC =8,则菱形ABCD 的面积为( )A. 12B. 20C. 24D. 48【【答案】C【解析】【分析】根据菱形的性质得出AC ⊥BD ,AO =OC =4,BO =DO ,AD =DC =BC =AB =5,根据勾股定理求出OB ,可得BD 的长,进而可得菱形ABCD 的面积.【详解】解:∵四边形ABCD 是菱形,AB =5,AC =8,∴AC ⊥BD ,AO =OC =4,BD =2BO =2DO ,AD =DC =BC =AB =5,在Rt △AOB 中,由勾股定理得:3OB, ∴BD =2OB =6, ∴11862422ABCD S AC BD =××=××=菱形. 故选:C .【点睛】本题考查了菱形的性质,勾股定理,求出OB 的长是解题的关键.5. 如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若30ACB °∠=,10AB =,则MN 的长为( )A.B. 5C.D. 4【答案】B【解析】 【分析】首先利用矩形的性质说明△ABO 是等边三角形,得OB =AB =10,再利用三角形中位线定理可得答案.【详解】解:∵四边形ABCD 是矩形,∴AC =BD ,AO =OC ,OB =OD ,∴AO =BO ,∠AOB =∠ACB +∠OBC =30°+30°=60°,∴△ABO 是等边三角形,∴OB =AB =10,∵M 、N 分别为BC 、OC 的中点,∴MN 是△BOC 的中位线,∴MN =12OB =5,故选:B .【点睛】本题主要考查了矩形的性质,三角形中位线定理等知识,证明△ABO 是等边三角形是解题的关键.6. 如图,点D 在ABC 的边AC 上,添加一个条件,使得ADB ABC ∽,下列不正确的是( ).A. ABD C ∠=∠B. ADB ABC ∠=∠C. AB BD AC CB =D. AD AB AB AC= 【答案】C【解析】【分析】利用相似三角形的判定方法依次判断即可.【详解】解:A 、若ABD C ∠=∠,A A ∠=∠,则ADB ABC ∽,故此选项不符合题意;B 、若ADB ABC ∠=∠,A A ∠=∠,则ADB ABC ∽,故此选项不符合题意;C 、若AB BD AC CB =,其夹角不相等,则不能判定ADB ABC ∽,故此选项符合题意; D 、若AD AB AB AC=,A A ∠=∠,则ADB ABC ∽,故此选项不符合题意. 故选:C .【点睛】本题考查了相似三角形的判定.证明三角形相似是解题的关键.7. 下列说法中,不正确的是( )A. 四个角都相等的四边形是矩形B. 对角线互相平分且平分每一组对角的四边形是菱形C. 正方形的对角线所在的直线是它的对称轴D.点P 是线段AB 的一个黄金分割点(AP >PB ),若AB =2,则AP =3【答案】D【解析】【分析】根据黄金分割,平行四边形的判定与性质,菱形的判定,矩形的判定,正方形的性质,逐一判断即可解答.【详解】解:A 、四个角都相等的四边形是矩形,故A 选项正确,不符合题意;B 、对角线互相平分且平分每一组对角的四边形是菱形,故B 正确,不符合题意;C 、正方形的对角线所在的直线是它的对称轴,故C 选项正确,不符合题意;D 、点P 是线段AB 的一个黄金分割点(AP >PB ),若AB =2,则AP ﹣1,故D 选项错误,符合题意;故选:D .【点睛】本题考查了黄金分割,平行四边形的判定与性质,菱形的判定,矩形的判定,正方形的性质,熟练掌握这些数学概念是解题的关键.8. 某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为( )A. 5B. 6C. 7D. 8 【答案】C【解析】【分析】设有x 个班级参加比赛,根据题目中的比赛规则,可得一共进行了12x (x −1)场比赛,即可列出方程,求解即可.【详解】解:设有x 个班级参加比赛,12x (x −1)=21,2420x x −−= ,解得:127,6x x ==−(舍),则共有7个班级参加比赛,故选:C .【点睛】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系. 9. 若关于x 的一元二次方程ax 2﹣4x +2=0有两个实数根,则a 的取值范围是( )A. a ≤2B. a ≤2且a ≠0C. a <2D. a <2且a ≠0 【答案】B【解析】【分析】根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a 的不等式,解不等式再结合一元二次方程的定义即可得答案【详解】解:根据题意得a ≠0且Δ=(−4)2−4•a •2≥0,解得a ≤2且a ≠0.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.10. 如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连接EN 、EF .有以下结论:①AMN BME ∽△△②AN =EN ③BE +DF =EF ④当AE =AF时,BE EC = )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】①根据正方形的性质和对顶角的性质找出两组角对应相等,则可证明△AMN ∽△BME ;②利用①的结果证明△AMB ∽△NME 利用相似三角形的性质可得∠NAE =∠AEN =45°,则可作出判断;③将△ADF 绕点A 顺时针旋转90°得到△ABH ,证明△AEF ≌△AEH (SAS ),则EF =EH =BE +BH =BE +DF ,可作判断;④先证明CE =CF ,假设正方形边长为1,设CE =x ,则BE =1-x ,用含x 的代数式表示出AC的长,根据AO OC +建立方程求解,即可解答.【详解】① ∵四边形ABCD 正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN =45°,∴∠MAN =∠EBM =45°,∵∠AMN =∠BME ,∴△AMN ∽△BME ,故①正确;②由①得AMN BME ∽,是∴AM MN BM EM=, ∵∠AMB =∠EMN ,∴△AMB ∽△NME ,∴∠AEN =∠ABD =45°,∴∠NAE =∠AEN =45°,∴AN =EN ,故②正确;③如图,将ADF 绕点A 顺时针旋转90°得到ABH ,则AF =AH ,∠DAF =∠BAH ,∴45EAF DAF BAE BAH BAE HAE ∠=°=∠+∠=∠+∠=∠,∵∠ABE =∠ABH =90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,AE AE EAF HAE AF AH = ∠=∠ =, ∴△AEF ≌△AEH (SAS ),∴EF =EH =BE +BH =BE +DF ,故③正确;④在Rt △ABE 和Rt △ADF 中,∵AB AD AE AF= = , ∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴CE =CF ,设正方形边长为1,则AC =,设CE =x ,则BE =1-x ,如图,连接AC ,交EF 于O,∵AE =AF ,CE =CF ,∴AC 是EF 的垂直平分线,∴AC EF OE OF ⊥=,,122.52EAO FAO BAC BAE ∠=∠=°=∠=∠, 在Rt △CEF中,12OC EF x ==, 在ABE 和AOE 中,EAO BAE ABC AOE AE AE ∠=∠ ∠=∠ =∴ABE AOE AAS ≌(), ∴AO =AB =1,AC AO OC =+ ,∴1x +,2x =− , ∴BE EC = 综上,正确的有3个.故选:B .【点睛】本题考查正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形.二.填空题(共5小题,每小题3分,共15分)11. 已知43a c eb d f ===.若6b d f ++=.则ac e ++的值为______. 【答案】8【解析】【分析】根据等比性质,可得答案. 【详解】解:43a c eb d f ===, 由等比性质,得463a c e a c eb d f ++++==++, 所以8ac e ++=.故答案为:8. 【点睛】本题主要考查了等比性质,即如果a c m b d n=== (0)b d n +++≠ ,则a c m a b d n b +++=+++ .解题关键是掌握并运用等比性质. 12. 若1x 、2x 是一元二次方程2980x x +−=的两个根,则12x x +的值是 _____.【答案】-9【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵1x 、2x 是一元二次方程2980x x +−=的两个根,∴129x x +=-.故答案为:-9. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握12bx x a +=−,12c x x a=,是解题的关键. 13. 如图,为了测量一栋楼的高度,小王在他的脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到楼的顶部.如果小王身高1.55m ,他的眼睛距地面1.50m ,同时量得BC =0.3m ,CE =2m ,则楼高DE 为______m .【答案】10【解析】【分析】如图,根据镜面反射的性质,△ABC ∽△DEC ,再根据相似三角形对应边成比例列式求解即可.【详解】解:根据题意,∵∠ABC =∠DEC =90°,∠ACB =∠DCE (反射角等于入射角,它们的余角相等),∴△ABC ∽△DEC , ∴AB DE =BC CE ,即1.5DE =0.32, ∴DE =10(m )故答案为:10.【点睛】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.14. 如图,四边形ABCD 是菱形,其中A ,B 两点的坐标为()0,3A ,()4,0B ,则点D 的坐标为__________.【答案】(0,−2)【解析】【分析】在Rt △AOB 中,由勾股定理可求AB =5,由菱形的性质可得AB =AD =5,即可求解.【详解】解:∵A (0,3),B (4,0),∴OA =3,OB =4,∴AB 5,∵四边形ABCD 是菱形,∴DA =AB =5,∴OD =5-3=2,∴点D (0,−2),故答案为:(0,−2).【点睛】本题考查了菱形的性质,勾股定理,坐标与图形,求出AB 的长是解题的关键.15. 如图,在△ABC 中,∠ACB =45°,AD AC ⊥交BC 于D ,DE AB ⊥于E ,连接CE ,DE =2,CE =10,BC 的长度是_____.【答案】【解析】【分析】作辅助线,根据角之间的关系得AD =AC ,利用AAS 可证△ADE ≌△CAF ,得DE =AF ,AE =CF ;在Rt CEF 中设AE =x ,由勾股定理求得FC =6,同理可求AD =,DC =DC CF ∥得BDE BCF ∽△△,由相似三角形的性质求得BD =3BC BD ==【详解】解:如图所示,过点C 作CF AB ⊥交AB 的延长线于点F ,设BD =m ,∵AD AC ⊥,∴∠DAC =90°,又∵∠DAE +∠DAC +∠CAF =180°,∴∠DAE +∠CAF =90°,又∵DE AB ⊥,CF AB ⊥,∴∠DEA =∠CF A =90°,又∵∠CAF +∠ACF =90°,∴∠DAE =∠ACF ,又∵∠ACB =45°,∴∠ADC =45°,∴AD =AC ,在△ADE 和△CAF 中,DAE ACF DEA CFA AD AC ∠=∠ ∠=∠ =∴ADE CAF ≌△△(AAS ), ∴DE =AF ,AE =CF ,在Rt CEF 中,设AE =x ,由勾股定理得:222EF CF CE +=,又∵DE =2,CE =10,EF =AE +AF ,∴222(2)10x x ++=,解得:16x =,28x =−(舍去),在Rt ADE 中,由勾股定理得:222AD AE ED +=,∴AD在Rt ADC 中,由勾股定理得:222AD AC DC +=∴CD∵DC CF ∥,∴BDE BCF ∽△△,∴BD DE BC CF=,13=,解得:m =又∵BC =3BD ,∴BC =.故答案为【点睛】本题综合考查了全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,线段的和差和解方程,难点是构造直角三角形证明全等.三.解答题(共7小题,共55分.其中第16题12分,第17题5分,第18题5分,第19题7分,第20题8分,第21题9分,第22题9分)16. 按要求解下列方程:(1)2420x x −−=;(配方法) (2)()()24540x x +−+=;(因式分解法) (3)268x x −=;(公式法) (4)22150x x −−=.(因式分解法)【答案】(1)12x =+,22x +(2)1241x x =−=,(3)13x =,23x =+(4)1253x x ==−,【解析】【分析】(1)利用配方法得到()226x −=,然后利用直接开平方法解方程即可;(2)利用因式分解法解方程即可;(3)把方程化为一般式,再计算根的判别式的值,然后利用公式法解方程即可;(4)利用因式分解法解方程先即可.【小问1详解】解:2420x x −−=2446x x −+=()226x −=2x −∴12x =+,22x +;【小问2详解】解:()()24540x x +−+= ()()4450x x ++−=40x +=或x +4-5=0∴1241x x =−=,; 【小问3详解】解:268x x −=2680x x −−=a =1,b =-6,c =-8∵()()2246418680b ac ∆=−=−−××−=>,∴3x =±,∴13x =,23x =【小问4详解】解:22150x x −−=()()530−+=x x x -5=0或x +3=0∴1253x x ==−,.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17. 已知234x y z ==,且2x +3y ﹣z =18,求x +y +z 的值. 【答案】18【解析】 【分析】设234x y z k ===,得出x =2k ,y =3k ,z =4k ,再根据2x +3y -z =18,求出k 的值,然后得出x ,y ,z 的值,从而得出x +y +z 的值. 【详解】解:设234x y z k ===,则x =2k ,y =3k ,z =4k , ∵2x +3y -z =18,∴4k +9k -4k =18,∴k =2,∴x =4,y =6,z =8,∴x +y +z =4+6+8=18. 【点睛】本题考查比例的性质,关键是设234x y z k ===,得出k 的值. 18. 如图,O 是菱形ABCD 对角线的交点,DE ∥AC ,CE ∥BD ,连接OE .求证:四边形OCED 是矩形.【答案】证明见解析.【解析】【分析】先证明四边形ABCD 是菱形,再由AC ⊥BD ,即可得到结果;【详解】证明:∵DE ∥AC,CE ∥BD ,∴四边形OCED 平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC=90°,∴平行四边形OCED 是矩形.【点睛】本题主要考查了矩形的判定,准确分析是解题的关键.19. 如图,AD 为△ABC 的角平分线,AD 的垂直平分线交BC 的延长线于E ,交AB 于F ,连接AE .求证:2AE CE BE = .是【答案】见解析【解析】【分析】根据角平分线的定义得到∠BAD =∠CAD ,根据线段垂直平分线的性质得到AE =DE ,由等腰三角形的性质得到∠EAD =∠EDA ,根据三角形的外角的性质证明∠CAE =∠B ,证明△BAE ∽△ACE ,根据相似三角形的性质证明结论.【详解】证明:∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD ,∵EF 是AD 的垂直平分线,∴AE =DE ,∴∠EAD =∠EDA ,∵∠EAC =∠EAD ﹣∠CAD ,∠B =∠ADE ﹣∠BAD ,∴∠CAE =∠B ,∴△BAE ∽△ACE , ∴AE BE CE AE=, ∴2AE CE BE = .【点睛】本题考查的是相似三角形的判定、三角形的外角性质,角平分线定义,线段垂直平分线性质,解题的关键是推出∠CAE =∠B .20. “玫瑰香”葡萄品种是农科院研制的优质新品种,在被广泛种植,某葡萄种植基地2019年种植64亩,到2021年的种植面积达到100亩.(1)求该基地这两年“玫瑰香”种植面积的平均增长率.(2)某超市调查发现,当“玫瑰香”的售价为8元/千克时,每周能售出400千克,售价每上涨1元,每周销售量减少20千克,已知该超市“玫瑰香”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过15元.若使销售“玫瑰香”每周获利2240元,则售价应上涨多少元?【答案】(1)该基地这两年“玫瑰香”种植面积的平均增长率为25%(2)售价应上涨6元【解析】【分析】(1)设该基地这两年“玫瑰香”种植面积的平均增长率为x ,根据该基地2019年及2021年“玫瑰香”的种植面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设售价应上涨y 元,则每天可售出(400-20y )千克,根据总利润=每千克的利润×销售数量,即可得出关于y 的一元二次方程,解之取其较大值即可得出结论.【小问1详解】解:(1)设该基地这两年“玫瑰香”种植面积的平均增长率为x ,依题意,得()2641100x +=,解得:10.2525%x ==,2 2.25x =-(不合题意,舍去).答:该基地这两年“玫瑰香”种植面积的平均增长率为25%. 小问2详解】解:设售价应上涨y 元,则每天可售出(400-20y )千克,依题意,得(8-6+y )(400-20y )=2240,整理,得218720y y +−=,解得112y =,26y =, ∵该水果售价不能超过15元,8122015+=>,681415+=<,∴12y =不符合题意舍去,y =6符合题意.答:售价应上涨6元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程,是解题的关键. 21. 【问题情境】如图1,在等腰直角三角形ABC 中,∠ACB =90°,F 是AC 边上一动点(点F 不与点A ,C 重合),以CF 为边在△ABC 外作正方形CDEF ,连接AD ,BF .(1)【探究展示】①猜想:图1中,线段BF ,AD 的数量关系是 ,位置关系是 .②如图2,将图1中的正方形CDEF 绕点C 顺时针旋转α,BF 交AC 于点H ,交AD 于点O ,①中的结论是否仍然成立?请说明理由.(2)【拓展延伸】如图3,将【问题情境】中的等腰直角三角形ABC 改为直角三角形ABC ,【∠ACB =90°,正方形CDEF 改为矩形CDEF ,连接BF 并延长,交AC 于点H ,交AD 于点O ,连接BD ,AF .若AC =4,BC =3,CD =43,CF =1,求22BD AF +的值. 【答案】(1)①BF =AD ,BF ⊥AD ;②BF =AD ,BF ⊥AD 仍然成立,理由见解析(2)2509【解析】【分析】(1)①证明△BCF ≌△ACD (SAS ),由全等三角形的性质可得出BF =AD ,延长BF 交AD 于点G ,求出∠AGF =90°,可得BF ⊥AD ;②证明△BCF ≌△ACD (SAS ),可得BF =AD ,求出∠AOH =90°,可得BF ⊥AD ;(2)连接DF ,证明△BCF ∽△ACD ,进而得到∠AOH =90°,则BF ⊥AD ,由222BD OB OD +=,222222222AF OA OF AB OA OB DF OF OD =+=+=+,,,可得2222BD AF AB DF +=+,再分别求出AB ,DF 即可求解.【小问1详解】解:①∵△ABC 为等腰直角三角形,∠ACB =90°,∴AC =BC ,∵四边形CDEF 是正方形,∴CF =CD ,∵∠ACB =∠ACD =90°,在△BCF 和△ACD 中90CF CD ACB ACD AC CB = ∠=∠=° =, ∴△BCF ≌△ACD (SAS ),∴BF =AD ,延长BF 交AD 于点G ,∴∠CAD +∠AFG =∠FBC +∠BFC =90°,∴∠AGF =90°,∴BF ⊥AD ;故答案为:BF =AD ,BF ⊥AD ;②BF =AD ,BF ⊥AD 仍然成立,理由如下:证明:∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∵四边形CDEF 是正方形,∴CD =CF ,∠FCD =90°,∴∠ACB +∠ACF =∠FCD +∠ACF ,即∠BCF =∠ACD ,在△BCF 和△ACD 中CF CD BCF ACD BC AC = ∠=∠ =∴△BCF ≌△ACD (SAS ),∴BF =AD ,∠CBF =∠CAD ,又∵∠BHC =∠AHO ,∠CBH +∠BHC =90°,∴∠CAD +∠AHO =90°,∴∠AOH =90°,∴BF ⊥AD ;【小问2详解】证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD =90°,又∵∠ACB =90°,∴∠ACB +∠ACF =∠FCD +∠ACF ,即∠BCF =∠ACD ,∵AC =4,BC =3,CD =43,CF =1, ∴34BCCF AC CD ==, ∴△BCF ∽△ACD ,∴∠CBF =∠CAD ,又∵∠BHC =∠AHO ,∠CBH +∠BHC =90°,∴∠CAD +∠AHO =90°,∴∠AOH =90°,∴BF ⊥AD ,∴∠BOD =∠AOB =90°,∴222222222222BD OB OD AF OA OF AB OA OB DF OF OD =+=+=+=+,,,,∴22222222BD AF OB OD OA OF AB DF +=+++=+,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴222223425AB AC BC =+=+=,在Rt △FCD 中,∠FCD =90°,CD =43,CF =1, ∴22222425139DF CD CF =+=+= , ∴2222252502599BD AF AB DF +=+=+=. 【点睛】本题是四边形的综合题,考查了正方形的性质,矩形的性质,勾股定理,旋转的性质,三角形全等的判定及性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键. 22. 矩形ABCD 中,2AB k BC =(k >1),点E 是边BC 的中点,连接AE ,过点E 作AE 的垂线EF ,与矩形的外角平分线CF 交于点F .(1)【特例证明】如图(1),当k=2时,求证:AE=EF;小明不完整的证明过程如下,请你帮他补充完整.(2)【类比探究】如图(2),当k≠2时,求AEEF的值(用含k的式子表示);(3)【拓展运用】如图(3),当k=3时,P为边CD上一点,连接AP,PF,∠P AE=45°,PF BC的长为.【答案】(1)∠5=∠6,CE(2)k﹣1 (3)【解析】【分析】(1)由“ASA”可证△AHE≌△ECF,即可求解;(2)在BA上截取BH=BE,连接EH.证明△AHE∽△ECF,即可求解;(3)由“AAS”可证△ABE≌△EMQ,可得EM=AB=3a,MC=EM﹣EC=2a,由“AAS”可证△ADP≌△QNP,可证AP=PQ,即可求解.【小问1详解】解:证明:如图,在BA上截取BH=BE,连接EH,∵k=2,∴AB=BC,∵∠B=90°,BH=BE,∴∠1=∠2=45°,∴∠AHE=180°﹣∠1=135°,∵CF平分∠DCG,∠DCG=90°,∴∠3=12∠DCG=45°,∴∠ECF=∠3+∠4=135°,∵AE⊥EF,∴∠6+∠AEB=90°,∵∠5+∠AEB=90°,∴∠5=∠6,∵AB =BC ,BH =BE ,∴AH =EC ,∴△AHE ≌△ECF (ASA ),∴AE =EF ;故答案为:∠5=∠6,CE ;小问2详解】解:在BA 上截取BH =BE ,连接EH .∵∠B =90°,BH =BE ,∴∠BHE =∠BEH =45°,∴∠AHE =135°,∵CF 平分∠DCG ,∠DCG =90°,∴∠DCF =12∠DCG =45°.∴∠ECF =135°,∵AE ⊥EF ,∴∠FEC +∠AEB =90°,∵∠BAE +∠AEB =90°,∴∠BAE =∠FEC ,∴△AHE ∽△ECF , ∴AE AH EF CE =, ∵2AB k BC =,E 是BC 边的中点, ∴EC =HB =12BC ,∴AH =AB ﹣12BC =(122k −)BC ,【∴1AE k EF=− ; 【小问3详解】解:解:连接AE ,延长AP 、EF 交于Q ,设BE =EC =a ,则3AB a =,∴AE ,∵∠P AE =45°,AE ⊥EF ,∴△AEQ 是等腰直角三角形,∴AE =EQ ,过点Q 作QM ⊥BC 交BC 延长线于M ,∵∠AEB +∠QEM =90°,∠AEB +∠BAE =90°,∴∠BAE =∠QEM ,又∵AE =EQ ,∠B =∠M =90°,∴△ABE ≌△EMQ (AAS ),∴EM =AB =3a ,∴MC =EM ﹣EC =2a ,过点Q 作QN ⊥CD 于N ,则四边形NCMQ 是矩形,∴QN =CM =AD =2a ,∵∠APD =∠QPN ,∠D =∠PNQ ,∴△ADP ≌△QNP (AAS ),∴AP =PQ ,由(2)得12AE k EF =−=, ∴EF =12AE =12EQ ,∴EF =FQ ,∴PF=12EQ=12AE,=,∴a=∴BC=故答案为:【点睛】本题是四边形综合题,考查了矩形的性质与判定,全等三角形的判定及性质,相似三角形是判定及性质,正方形的判定及性质,等腰直角三角形的判定及性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档