Intersecting a freeform surfaces with a general swept surface

合集下载

HP Elite Dragonfly轻薄本说明书

HP Elite Dragonfly轻薄本说明书

Starting under 1kg 4, the HP Elite Dragonfly gives a new level of freedom to those onthe go. It features a stunning dragonfly bluefinish, an optional UHD HDR display 3, andadvanced security to keep you safe and productive wherever the day takes you.HP recommends Windows 10 Pro.Starting under 1kg 4, the HP Elite Dragonfly provides mobility beyond expectation in an exquisitely crafted x360 touch laptop. Striking finishes and accents highlight the design that incorporates recycled materials, including ocean-bound plastics and recycled magnesium.Connect from almost anywhere with optional 5G 5 on the incredibly light, compact, and flexible HP Elite Dragonfly. Collaborate in any environment with crisp, clear Audio by Bang & Olufsen and an ultrabright display.Security features from HP work together to create an always on, always-acting, resilient defense. From the BIOS to the browser, above and below the OS, these constantly evolving solutions help protect your PC from threats.Instantly block prying eyes’ ability to view your screen with optional HP Sure View Reflect 8 that makes your screen unreadable from the side.Never wonder if someone is watching you with the added peace-of-mind that comes from the built-in HP Privacy Camera, with an integrated physical shutter to protect from malicious surveillance.9Not sure w here you last saw your HP Elite Dragonfly? With the optional Tile™ solution, you can use an intuitive app to help you find your device near or far even when your PC is turned off.14Your “office” can be where you need it, letting you connect almost anywhe re with optional support for up to 5G wireless broadband technology with 4x4 antennas.5Technologies in the optional UHD HDR 400 panel help improve your 4K viewing experience by increasing the contrast between light and dark images. The result is an image that most resembles the view in a natural state.11Advanced malware attacks can destroy your OS and disrupt your business. HP Sure Recover with Embedded Reimaging Gen315 ensures fast, secure, and automated recovery —anywhere, anytime —so you can get back to business fast.Sustainability is a priority in our product design. Over 82 percent of mechanical parts on the HP Elite Dragonfly are made from recycled material, including ocean-bound plastics in the speaker boxes. Even the chassis is made from 90 percent recycled magnesium.16Malware is evolving rapidly, and traditional antivirus can’t always recognize new attacks. Protect your PC against never-before-seen attacks with HP Sure Sense 10, which uses deep-learning AI to provide exceptional protection against advanced malware.Capture ideas and annotate documents with the high-pressure sensitivity and low- activation force of the optional HP Rechargeable Active Pen G3. It sends a proximity alert if it’s left behind.11So quiet that it won’t disturb people around you and backlit for use in low light, the quiet keyboard provides a crisp key response for a remarkable balance of comfort and feedback while typing. HP Elite Dragonfly G2 Notebook PC Media Spec SheetWindows 10 Pro 641 Windows 10 Home 64 (National Academic only)2 Windows 10 Home 64 – HP recommends Windows 10 Pro.1Windows 10 Home Single Language 641Windows 10 Pro (Windows 10 Enterprise available with a Volume Licensing Agreement)1FreeDOS10th Generation Intel® Core™ i7;10th Generation Intel® Core™ i5; 10th Generation Intel® Core™ i3 processors16 GB LPDDR3-2133 SDRAMMemory soldered down. Supports dual channel memory.128 GB SATA-3 SS TLC 256 GB PCIe® NVMe™ SS Value 256 GB PCIe® Gen3x4 NVMe™ SS TLC 256 GB SATA TLC SED OPAL 2 256 GB Intel® PCIe® NVMe™ QLC M.2 SSD with 16 GB Intel® Optane™ memory H10 512 GB PCIe® NVMe™ SS Value 512 GB PCIe® Gen3x4 NVMe™ SS TLC 512 GB SATA TLC SED OPAL 2 512 GB SATA-3 SS TLC FIPS-140-2 512 GB Intel® PCIe® NVMe™ QLC M.2 SSD with 32 GB Intel® Optane™ memory H10 1 TB PCIe® Gen3x4 NVMe™ SS TLC 2 TB PCIe® Gen3x4 NVMe™ SS TLC13.3" d iagonal F HD I PS e DP + P SR B rightView W LED-backlit u ltraslim d irect b onded t ouch s creen w ith C orning® G orilla® G lass 5, 400 n its, 72% NTSC (1920 x1080)13.3" d iagonal F HD I PS e DP + P SR B rightView W LED-backlit u ltraslim d irect b onded t ouch s creen w ith C orning® G orilla® G lass 5 a nd H P S ure V iew Reflect IntegratedPrivacy Screen, 1000 nits, 72% NTSC (1920 x 1080)13.3" d iagonal 4K I PS e DP + P SR B rightView W LED-backlit u ltraslim d irect b onded t ouch s creen w ith C orning® G orilla® G lass 5, 550 n its, 95% s RGB (3840 x 2160)Integrated: Intel® UHD Graphics, Premium 16Intel® XMM™ 7360 LTE -Advanced Cat 9Qualcomm X55 LTE+5G (coming soon)Intel® AX200 Wi-Fi 6 (2x2) and Bluetooth® 5 Combo, non-vPro™Intel® AX200 Wi-Fi 6 (2x2) and Bluetooth® 5 Combo, vPro™(Compatible with Miracast-certified devices.)2 T hunderbolt™ (USB T ype-C™ c onnector, P ower d elivery 3.0 s upport); 1 U SB 3.1 G en 1 (charging); 1 h eadphone/microphone c ombo; 1 H DMI 1.4; 1 External Nano SIMslot for WWAN 15(HDMI cable sold separately.)HP Premium Collaboration Keyboard, spill-resistant, backlit and DuraKeys; Glass ClickPad, Microsoft Precision Touchpad, gestures support asdefault; Accelerometer; Magnetometer; Gyroscope; Ambient light sensor; Hall sensorH P Connection Optimizer; HP Image Assistant; HP Hotkey Support; HP JumpStart; HP Noise Cancellation Software; HP Support Assistant; Buy Office(Sold separately); HP WorkWellAbsolute persistence module; HP DriveLock and Automatic DriveLock; HP Secure Erase; Power-on authentication; Preboot authentication; TPM 2.0embedded security chip shipped with Windows 10 (Common Criteria EAL4+ Certified); HP Sure Click; HP Sure Start; HP Sure Run; HP Sure Recover; HPBIOSphere; HP Sure Sense; 32GB eMMC Onboard Sure Recover module (optional), built-in Tile (optional)HP L ong Life 4-cell, 56.2 Wh Li-ion polymer; HP Long Life 2-cell, 38 Wh Li-ionBattery is internal and not replaceable by customer. Serviceable by warranty.HP Driver Packs; HP System Software Manager (SSM); HP BIOS Config Utility (BCU); HP Client Catalog; HP Manageability Integration KitHP Smart 65 W USB Type-C™ adapterStarting at 2.2 lb; Starting at 0.99 kgENERGY STAR® certified; EPEAT® 2019 Gold in U.S. Low halogen; TCO 8.0 Certified3 year limited warranty (optional Care Packs available, sold separately).11.98 x 7.78 x 0.63 i n; 30.43 x 19.75 x 1.61 c mAccessories and services (not included)Lock y our n otebook o r t ablet d own i n t he o ffice a nd h igh-traffic p ublic a reas b y t ethering i t t o a s ecuresurface with t he t hin p rofile H P Nano K eyed C able L ock.Run p resentations a nd g uide o nscreen c ontent w ith a v irtual l aser1f rom t he p alm o f y our hand,anywhere i n t he r oom, o r n avigate y our P C’s a pplications a t y our d esk, w ith t he sophisticated HP ElitePresenter Mouse. It’s an ultra-modern, multi-functional accessory that’s a pointer and mouse in one.Reinvent docking and boost productivity with our most versatile Thunderbolt™ dock, the small,sophisticated HP Thunderbolt Dock G2. Designed for workspace flexibility and network manageability1,it delivers USB-C™2 device connectivity and optional integrated audio.3Use o ne a dapter t o p ower a nd c harge y our n otebook o r m obile d evice1a nd a U SB a ccessory a t the s ametime, i n t he o ffice o r o n t he g o, w ith t he s urprisingly c ompact H P 65W U SB-C S lim Travel Power A dapter.Take o n t he w orld i n s tyle w ith a n H P E xecutive S eries n otebook c ase t hat p rovides a p olished, professionallook. T he s leek p rofile a nd p remium m aterials m ake a b old s tatement a nd k eep your d evices a nd d ata o nlockdown. T raveling i s a b reeze a nd d evice-charging i s e asy—even from outside the bag.Experience o ptimal u ptime w hen w orking i n t he o ffice, r emotely, a nd o n t he r oad w ith t he H P EssentialCare s uite o f c overage, p rotection, a nd s upport s ervices.2 Based on competitors as of August 2019 of convertible, non-detachable with Windows Pro OS and 8th Gen U series Intel® vPro™ processors. Lightest based on weight.3 1000 nit display is an optional feature that must be configured at the factory. Touch-enabled display and Sure View privacy panel will lower actual brightness.4 Starting weight less than 1kg is only available in certain configurations.5 5G module is optional and must be configured at the factory. Module designed for 5G networks up to 3.8 Gbps download speeds as carriers deploy Evolved-Universal Terrestrial Radio Access New Radio Dual Connectivity (ENDC) with both 100Mhz of 5G NR and LTE channel bandwidth, using 256QAM 4x4, requires activation and separately purchased service contract. Check with service provider for coverage and availability in your area. Connection, upload and download speeds will vary due to network, location, environment, network conditions, and other factors. 5G LTE not available on all products, in all regions. Backwards compatible to 4G LTE and 3G HSPA technologies. 5G LTE module planned to be available in US, Germany, Italy, Spain, UK and France at launch, where carrier supported.6 Wireless a ccess p oint a nd i nternet s ervice r equired a nd s old s eparately. A vailability o f p ublic w ireless a ccess p oints l imited. W i-Fi 6i s b ackwards c ompatible w ith p rior 802.11 s pecs. T he s pecifications f or W i-Fi 6(802.11ax) a re d raft a nd a re not f inal. I f t he f inal specifications d iffer f rom t he d raft s pecifications, i t m ay a ffect t he a bility o f t he l aptop t o c ommunicate w ith o ther 802.11ax d evices. O nly a vailable i n c ountries w here 802.11ax i s s upported.7 Wi-Fi® s upporting g igabit s peeds i s a chievable w ith W i-Fi 6(802.11ax) w hen t ransferring f iles b etween t wo d evices c onnected t o t he s ame r outer. R equires a w ireless r outer, s old s eparately, t hat s upports 160MHz c hannels.8 HP Sure View integrated privacy screen is an optional feature that must be configured at purchase and is designed to function in landscape orientation.9 HP Privacy Camera only available PCs equipped with HD or IR camera and must be installed at the factory.10 HP Sure Sense requires Windows 10. See product specifications for availability.11 Sold separately or as an optional feature.13 HP WorkWell requires Windows 10, is not available in all countries, and can be downloaded from the Windows Store.14 Tile is an optional feature that must be configured at the factory and requires Windows 10. Some features require optional subscription to Tile Premium. Not available on models with WWAN M.2 module. Tile application for Windows 10 available for download from the Windows Store. Mobile phone app available for download from App Store and Google Play. Requires iOS 11 and greater or Android 6.0 and greater see https:///hc/en-us/articles/200424778 for more information. HP Tile will function as long as the PC has battery power.15 HP Sure Recover with Embedded Reimaging Gen3 is an optional feature which must be configured at purchase. See product specifications for av ailability. Not available on platforms with multiple internal storage drives or Intel® Optane™. You must back up important files, data, photos, videos, etc. before use to avoid loss of data.16 By weight. Mechanical parts include chassis, speaker box, keycap mechanism, battery frame and other small mechanical parts. Applies to Dragonfly Family starting January 2020. 5% ocean-bound plastics by weight and 90% recycled magnesium by weight.1 Not a ll f eatures a re a vailable i n a ll e ditions o r v ersions o f W indows. S ystems m ay r equire u pgraded a nd/or s eparately p urchased h ardware, d rivers, s oftware o r B IOS u pdate t o t ake f ull a dvantage o f W indows f unctionality. W indows 10 i s automatically updated, which is always enabled. ISP fees may apply and additional requirements may apply o ver time for updates. See /.2 Some d evices f or a cademic u se w ill a utomatically b e u pdated t o W indows 10 P ro E ducation w ith t he W indows 10 A nniversary U pdate. F eatures v ary; s ee h ttps://aka.ms/ProEducation f or W indows 10 P ro E ducation f eature i nformation.3 Multicore i s d esigned t o i mprove p erformance o f c ertain s oftware p roducts. N ot a ll c ustomers o r s oftware a pplications w ill n ecessarily b enefit f rom u se o f t his t echnology. P erformance a nd c lock f requency w ill v ary d epending o n a pplication workload and y our hardware and software configurations. Intel’s numbering, branding and/or n aming is not a measurement of higher p erformance.4 Processor speed denotes maximum performance mode; processors will run at lower speeds in battery optimization mode.5 Intel® Turbo Boost performance varies depending on hardware, software and overall system configuration. See /technology/turboboost for more information.6 Some f unctionality o f v Pro, s uch a s I ntel A ctive m anagement t echnology a nd I ntel V irtualization t echnology, r equires a dditional 3rd p arty s oftware i n o rder t o r un. A vailability o f f uture "virtual a ppliances" a pplications f or I ntel v Pro technology is dependent on3rd party software providers. Compatibility with future "virtual appliances" is y et to be determined.7 For storage drives, GB = 1 billion bytes. TB = 1 trillion bytes. Actual formatted capacity is less. Up to 30 GB (for Windows 10) is reserved for system recovery software.8 Intel® Optane™ memory system acceleration does not replace or increase the DRAM in your system. Requires 8th Gen or higher Intel® Core™ processor, BIOS version with Intel® Optane™ supported, Windows 10 64-bit, and an Intel® Rapid Storage Technology (Intel® RST) driver.9 Not available with eMMC Base Units.10 Wireless a ccess p oint a nd i nternet s ervice r equired a nd s old s eparately. A vailability o f p ublic w ireless a ccess p oints l imited. W i-Fi 6i s b ackwards c ompatible w ith p rior 802.11 s pecs. T he s pecifications f or W i-Fi 6(802.11ax) a re d raft a nd a re not final. If the final specifications differ f rom the draft specifications, it may affect the ability of the notebook to communicate with other 802.11ax devices.11 WWAN module is an optional feature, requires factory configuration and requires separately purchased service contract. Check with service provider for coverage and availability in your area. Connection speeds will vary due to location, environment, network conditions, and other factors. 4G LTE not available on all products, in all regions.12 Gigabit c lass C ategory 16 4G L TE m odule i s o ptional a nd m ust b e c onfigured a t t he f actory. M odule d esigned f or u p t o 1G bps d ownload s peeds a s c arriers d eploy 5c arrier a ggregation a nd 100Mhz c hannel b andwidth, r equires a ctivation and separately purchased service contract. Backwards compatible to HSPA 3G technologies. Check with service provider for coverage and availability in your area. Connection, upload and download speeds will v ary due to network, location, environment, n etwork conditions, and other factors.4G LTE not available on all products, in all regions.13 Miracast is a wireless technology your PC can use to project your screen to TVs, projectors, and streaming.14 Sold separately or as an optional feature.15 SIM slot is not user accessible without WWAN configuration.16 HD content required to view HD images.17 Resolutions are dependent upon monitor capability, and resolution and color depth settings.18 HP Sure View integrated privacy screen is an optional feature that must be configured at purchase and is designed to function in landscape orientation.19 HP Support Assistant requires Windows and Internet access.20 HP Driver Packs not preinstalled, however available for download at /go/clientmanagement.21 HP Manageability Integration Kit can be downloaded from /go/clientmanagement.22 Absolute a gent i s s hipped t urned o ff, a nd w ill b e a ctivated w hen c ustomers a ctivate a p urchased s ubscription. S ubscriptions c an b e p urchased f or t erms r anging m ultiple y ears. S ervice i s l imited, c heck w ith A bsolute f or a vailability o utside the U.S. T he A bsolute Recovery G uarantee i s a l imited w arranty. C ertain c onditions a pply. F or f ull d etails v isit: h ttp:///company/legal/agreements/ c omputrace-agreement. D ata D elete i s a n o ptional s ervice p rovided b y Absolute S oftware. I f u tilized, t he R ecovery Guarantee i s n ull a nd v oid. I n o rder t o u se t he D ata D elete s ervice, c ustomers m ust f irst s ign a P re-Authorization A greement a nd e ither o btain a P IN o r p urchase o ne o r m ore R SA S ecurID t okens from Absolute S oftware.23 HP Drive Lock & Automatic Drive Lock is not supported on NVMe drives.24 For the methods outlined in the National Institute of Standards and Technology Special Publication 800-88 "Clear" sanitation method. HP Secure Erase does not support platforms with In tel® Optane™.25 HP Sure Click i s available on most HP PCs and supports Microsoft® Internet Explorer and Chromium™. Supported attachments i nclude Microsoft Office (Word, Excel, PowerPoint) and PDF files i n read only mode, when Microsoft Office or Adobe Acrobat are installed.26 HP Sure Start Gen5 is available on select HP PCs with Intel processors. See product specifications for availability.27 HP Sure Run Gen2: See product specifications for availability.28 HP S ure R ecover G en2: S ee p roduct s pecifications f or a vailability. R equires a n o pen, w ired n etwork c onnection. N ot a vailable o n p latforms w ith m ultiple i nternal s torage d rives. Y ou m ust b ack u p i mportant f iles, d ata, p hotos, v ideos, e tc. before u sing HP Sure Recover to avoid loss of data. HP Sure Recover (Gen1) does not support p latforms with Intel® Optane™.29 HP BIOSphere Gen5 is available on select HP Pro and Elite PCs. See product specifications for details. Features may vary depending on the platform and configurations.30 HP Sure Sense requires Windows 10. See product specifications for availability. On units with WWAN shipping to China, HP Sure Sense is only available via Softpaq download.31 Recharges t he b attery u p t o 50% w ithin 30 m inutes w hen t he s ystem i s o ff o r i n s tandby m ode. P ower a dapter w ith a m inimum c apacity o f 65 w atts i s r equired. A fter c harging h as r eached 50% c apacity, c harging w ill r eturn t o n ormal. Charging time may vary +/-10% due to System tolerance.32 Availability may vary by country.33 HP C are P acks a re s old s eparately. S ervice l evels a nd r esponse t imes f or H P C are P acks m ay v ary d epending o n y our g eographic l ocation. S ervice s tarts o n d ate o f h ardware p urchase. R estrictions a nd l imitations a pply. F or d etails, v isit /go/cpc. H P services a re g overned b y t he a pplicable H P t erms a nd c onditions o f s ervice p rovided o r i ndicated t o C ustomer a t t he t ime o f p urchase. C ustomer m ay h ave a dditional s tatutory r ights a ccording t o a pplicable l ocal l aws, and such r ights are not in any w ay a ffected by the HP terms and conditions of service or the HP Limited Warranty provided with y our HP Product.34 Based on US EPEAT® registration according to IEEE 1680.1-2018 EPEAT®. Status varies by country. Visit for more i nformation.35 External power supplies, power cords, cables and peripherals are not Low Halogen. Service parts obtained after purchase may not be Low Halogen.36 In a ccordance w ith M icrosoft’s s upport p olicy, H P d oes n ot s upport t he W indows 8o r W indows 7o perating s ystem o n p roducts c onfigured w ith I ntel a nd A MD 7th g eneration a nd f orward p rocessors o r p rovide a ny W indows 8o r W indows 7drivers on.37 For full Intel® vPro™ functionality, Windows, a vPro supported processor, vPro enabled chipset, vPro enabled WLAN card and discrete TPM 2.0 are required. See https:///content/www/us/en/architecture-and-technology/vpro/vpro-platform-general.html38 Intel® Optane™ memory H10 only for Intel® PCIe® NVMe™ QLC M.2 SSD.Copyright ©2019 H P D evelopment C ompany, L.P. T he i nformation c ontained h erein i s s ubject t o c hange w ithout n otice. T he o nly w arranties f or H P p roducts a re s et f orth i n t he e xpress l imited warranty s tatementsaccompanying s uch p roducts. N othing h erein s hould b e c onstrued a s c onstituting a n a dditional w arranty. H P s hall n ot b e l iable f or t echnical o r e ditorial e rrors o r o missions contained herein.Intel, C ore, O ptane, T hunderbolt a nd I ntel v Pro a re t rademarks o r r egistered t rademarks o f I ntel C orporation o r i ts s ubsidiaries i n t he U nited S tates a nd o ther c ountries. B luetooth i s a t rademark owned b y i ts p roprietor a ndused by HP I nc. under license. USB Type-C™ and U SB-C™a re t rademarks o f U SB I mplementers F orum. ENERGY S TAR is a r egistered t rademark of t he U.S. E nvironmental Protection Agency. All other trademarks are theproperty of their respective owners.。

freeform教材

freeform教材
在編輯線或 2D 平面時可 鎖定 XYZ 軸向
在執行 Shape,Loft 時按 Z 可控制斷面的方向
執行 Shape 時解開鎖定斷 面的方向
繪制或編輯曲線時鎖定平 面
鎖定一個平面畫 3D 線
結合手柄可平移,縮放
Ctrl+N
新建檔案
顯示\隱藏所有載有圖片的 平面
Ctrl+O
開啟舊檔
反選
Ctrl+S
保存檔案
鍵)
旋轉,平移(按住 Ctrl 鍵),滾轉(按住 Shift
鍵)
帶 號爲常用快捷鍵 .
Ctrl Ctrl Delete Shift
選擇物件時按住 Ctrl 可一 次多選
於 2D 模式下防止吸附網 格中心線
刪除
微調
Shift+ 2D 模式下增加曲線控制點
Shift- 2D 模式下減少曲線控制點
/
激活選擇物件
J
鎖定 X\Y 軸旋轉視角
Ctrl+Z
退回上一步
Ctrl+Y
K
切入所選平面的 2D 模式
返回
M O 空格鍵
開啟\關閉將手柄代替鼠標 使用
顯示\隱藏物件清單
按空格鍵彈出選項菜單可 設定某些參數等
+(=) -
Ctrl+Q
增大工具 減小工具
退出
1
粘土軟硬度—最硬
2
粘土軟硬度
3
粘土軟硬度
4
粘土軟硬度
5
粘土軟硬度
F1
幫助
F2
前視
F3
右視
F4
左視
F5
上視
F6
顯示主視窗的右視輔助窗
F7

FreeFrom软件操作说明

FreeFrom软件操作说明

Construct Clay-造型功能Construct Clay-工具栏一、-Basic Shapes 基本形狀Basic Shapes 指令是创建某个简单的图形,如:圆;椭圆;圆柱等。

二、Wire Cut Clay形体切割功能01.当2D 平面上有绘制任何的2D线段,我们可以使用Wire Cut Clay来挖除所需的深度。

02.点选Wire Cut Clay后,再点选2D Sketch上的线条。

03.请在下列的对应工具栏中,输入所要挖除的深度。

输入所要挖除的深度Raise Lower04.再点选Lower指令,即可完成挖除的动作。

※亦可选择Raise来长出对象。

使用Wire Cut Clay設定深度,完成切割動作。

05.选择距离的计算方式。

边界的斜度依据两个平面的距离计算依据第一个平面与粘土之间的距离计算06.Wire Cut Clay除了可以切割深度外,也可以切割对象外观。

Create Inside在线段范围内长出材料Cut Inside切除线段范围内的材料Cut Outside切除线段范围外的材料三、Spin Clay依2D线旋转粘土功能制作在另外一个层制作在当前层长出粘土切除粘土隐藏/显示2D平板01.开启新的绘图平板,并在上面绘制欲建构模型的断面线及中轴线。

02.点选Spin Clay功能,选择Create Inside选项,以建构出所要的模型。

※斷面線必須為封閉線段,中心轴必须是直线。

四、Loft造型功能點選繪圖平板載入導引線預覽載入斷面調整導引線取消01. 使用Loft功能時,必須先使用2張以上的繪圖平板繪製出輪廓斷面線,並設定距離。

02. 點選Select Ste p,選擇上一步驟所定義的輪廓線,將出現下圖的預覽結果。

03. 點選Section Ste p,可在模型任意位置載入新的斷面線。

04. 點選Guide Ste p,可在斷面線之間載入導引線。

05. 點選Shape Ste p ,可根據所需造型進行斷面線和導引線的調整。

FreeFrom软件操作说明

FreeFrom软件操作说明

Detail Clay-工具栏Detail Clay工具欄一、定義溝槽圓型斷面菱形斷面溝槽寬度使用上一次的設定值切除材料矩形斷面自訂斷面溝槽深(高)度長出材料01.於模型表面繪製3D曲線路徑。

※繪製時3D曲線時,需貼覆於模型表面。

02. 點選Groove定義溝槽功能,選擇上一步驟的3D曲線,並設定所需的寬度、深度或高度。

03. 選擇Create Inside(長出材料)或Cut Inside (切除材料),設定結果是要長出溝槽或是挖除溝槽。

上圖為Cut Inside (切除材料)的結果上圖為Create Inside(長出材料)的結果二、 Ridge 击条三、 倒R 角Variable Round Edge 指令是依據參數的控制倒不等R 角,同時可任意增加斷面來控制中間部分。

四、倒直角Bevel Edge 指令是依據參數的控制倒45°的斜角。

1、不勾選此選項:2、勾選此選項:五 、模型外觀OffsetOffset 高度或深度設定 往下Offset 沿著模型法線方向Offset往上Offset 沿著模型法線平均方向Offset02. 於模型表面繪製3D 曲線範圍。

※繪製時3D 曲線時,需貼覆於模型表面。

2. 點選Raise(往上Offset)或Lower(往下Offset)進行曲線範圍的Offset,並可選擇Normal To Surface或Average Surface Normal設定不同的結果。

上圖為設定成Normal To Surface(沿著模型法線方向Offset)的結果上圖為設定成Average Surface Norma(沿著模型法線平均方向Offset)的結果六、依照顏色長高或降低粘土(Emboss Area)Apply Texture to Rendering Plane指令是在Render Image 時設定背景圖片。

調整Falloff調整Opacity使用FreeForm 製作浮雕有兩種方法: 方式一:Emboss With Image工具栏方式二:Emboss With Wrapped Image 依曲线定义边界制作浮雕此種浮雕製作方式和上一種是不同的,此方式是先將影像貼附在3D模型表面上,之後再計算3D 立體浮雕。

operation would result in non-manifold bodies

operation would result in non-manifold bodies

operation would result in non-manifold bodies在计算机图形学和几何建模领域,非流形体是指在三维空间中形状的一种特殊类型。

一个非流形体具有一个或多个不符合流形特性的区域。

流形是指一个无边界、表面光滑、内部无孔洞的物体,而非流形体则违反了这些性质。

非流形体在计算机图形学中经常出现,因为在建模和形状编辑过程中,一些操作可能会导致这种类型的物体。

下面是一些可能导致非流形体的操作:1. 重叠面:当一个物体的两个面共享相同的边或边集时,就会出现重叠面。

这可能是由于复制、移动或变形等操作导致的,会导致一个或多个非流形体形成。

2. 孔洞:一个非流形体可能有一个或多个孔洞,即在物体内部形成的空心区域。

这可能是由于布尔运算(如取交集、取并集)或其他形状编辑操作导致的。

3. 自交:自交是指一个物体的某个部分与其它部分相交。

这可能是由于旋转、拉伸、挤压等操作导致的,会导致非流形体的产生。

4. 嵌塞:嵌塞是指一个物体的某个部分被另一个物体或其自身部分所包围。

这可能是由于复制、移动、布尔运算等操作导致的。

5. 物体边界:非流形体的边界可能会有额外的不连续部分,即在其中一个顶点出现了一个无界的半边。

这种情况可以由于顶点的合并、分裂、删除等操作引起。

非流形体的存在可能会影响后续的计算和渲染过程。

例如,非流形体在进行体现场计算(CSG)和有限元分析时可能会导致错误的结果。

此外,在图形渲染过程中,非流形体可能会导致阴影、光照、纹理映射等效果的不准确或意外变化。

为了处理非流形体,通常需要进行修复操作,将其转换为流形体。

修复非流形体的方法有很多,一些常用的方法包括:1. 网格替代:通过重新生成一个流形网格替代非流形网格。

这可能涉及到重建表面或拓扑结构,以确保生成的网格符合流形特性。

2. 清理操作:通过一系列操作,例如顶点合并、边合并、面合并等,来清理非流形体中的不连续和重叠部分。

3. 网格修剪:通过删除非流形体中的不规则部分或孔洞,使其成为一个流形体。

FreeForm缠绕型工件分模线设定

FreeForm缠绕型工件分模线设定

一、本实例的目的是使用FreeForm创建缠绕型工件,并在工件上建立共面的分模线,以方
便后续的分模开模。

二、制作流程如下:
1、新建一个Plane,在Plane上创建一个圆(具体尺寸可根据实际工件计算得到),如下图:
2、将圆的2D轮廓线复制为3D线,并利用Helix建立此圆的螺旋线,如下图:
3、利用pipe指令沿着螺旋线创建下图中的clay形状,copy一个,然后沿着Z轴旋转一定角度,使两个piece的clay缠绕形成下图中的效果。

4、将创建的两个piece合并到一个piece,并利用smooth命令将clay光顺一下,如下图:
5、利用slice指令,点击我们最初创建的Plane,得到需要的分模型,如下图:
6、使用fit curve指令,点击两个分模线,将分模线紧密贴附到clay上,如下图:
设置注意:要选择use global settings选项,将fit control points和edit points都设定为150。

7、在parting line curve指令中,设定如下:(不需要点击apply)
8、在fix draft指令中,设定如下:(需要点选draft front等选项)
9、在fix draft指令中,设定如下:(需要点选draft back等选项)
10、使用smooth指令光顺一次,即可得到缠绕工件的共面分模线。

End!。

FreeFrom软件操作说明

FreeFrom软件操作说明

8. 由於上一步驟順化後的分模線,已 經不是完全貼附於模型表面上,請 點選 Fit Curve to Clay 指令,將
順化後的分模線貼附投影至模型 上,投影後將可發現分模線控制點 已被增加。
9. 點選
Fix Draft 指令,並設定拔
模角為 2.5 度。 10.請點選 Draft Front,然後再點選
马路科技顾问股份有限公司

FreeForm 功能说明
17.點選
Create Component 指
令,先點選分模線,然後點選設定 工具列的 Seed Point,最後點選
母模面的部份,即可將上模拆解成 公母模面 2 筆資料。 18.請重複上一步驟,將下模亦拆解成 公母模面 2 筆資料。
除後產生菱線的部分修整平順,使 其美觀漂亮。
13.點選 Shell 指令 設定薄殼厚度 , 為 2mm 將模型內部掏空製作薄殼 , 。 ※如果要製作實心的公仔,則可省略 這個步驟。
马路科技顾问股份有限公司

FreeForm 功能说明
14.點選 Split Joint 指令,製作模型 的止口。
19.拆解完畢後即可在物件清單中 (Object List) ,看見共有 4 筆公母 模面資料。
马路科技顾问股份有限公司

FreeForm 功能说明
二、設定模材尺寸 01.點選 Mold Insert,進入模材
設定功能。 在設定工具列中選取 Set Extents 圖標,設定模材的尺寸為 100*120*100。
06.母模面: 提示:橙色的是 STL 資料,藍 色的是 IGES 曲面,可分別輸出 STL 和 IGES 給後續的模具制作
FreeForm 功能说明
三、手动產生分模面流程 01.點選 Offset Curve 進行分

FreeForm软件教程-V10新增功能详解

FreeForm软件教程-V10新增功能详解
自动决定,宽度任意修改。
Taper Ends:
Width 1 - Width 2 – 渐变效果:输入起始点和终止点宽 度不一致的数值,得到渐变效果。
Swap Ends - 反转起始点和终止点宽度的数值。
Offset Above Surface:
Thickness - 设定凸条距离粘土表面间隔一个厚度。
一、FreeForm V10.0 新增指令如下:
1、Sketch 2D 平面线 1. Extend/Retract Sketch Curve 延伸 2D 曲线
2、Construct Clay 构建粘土 1. Layer 涂层
3、Sculpt Clay 雕刻黏土 1. Linit to Depth 限制深度
缝合
不勾选时将在当前的参考粘土上进行缝合;勾选时将 Copy 一个参考粘土层 第 8 页,共 20 页
广东博泰科技有限公司
Example
FreeForm 功能中文说明
2、
Slice Deform Reference 依剖面变形“参考粘土”
注:(此指令用法同上,区别只是在于一个针对粘土,一个针对“参考粘土”,
二、新增指令功能详细说明:
第 2 页,共 20 页
广东博泰科技有限公司
FreeForm 功能中文说明
Sketch:
1、
Extend/Retract Sketch Curve 延伸 2D 曲线
曲线的延伸方式
延长现有的曲线 延长的部分成另一条曲线
曲线长度
细部说明:
Tangent Reflection Curvature Tangent(to point)
Example
Mold:
第 9 页,共 20 页

NEMA 1000

NEMA 1000

NEMA MW 1000 M AGNET W IRENEMA Standards Publication MW 1000-2003Magnet WirePublished byNational Electrical Manufacturers Association1300 North 17th Street, Suite 1847Rosslyn, Virginia 22209© Copyright 2003 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.NOTICE AND DISCLAIMERThe information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.MW1000-2003Page iCONTENTSPage Foreword (xi)How to Use this Publication (xii)Part 1 GENERAL1.1 Scope (1)1.2 Normative References and Authorized Engineering Information (AEI) (1)1.3 Definitions (2)1.4 Materials (4)1.4.1 Conductors – Round, Square, and Rectangular, Copper and Aluminum (4)1.4.2 Insulating Materials (4)1.5 Manufacturing (5)of Insulation (5)1.5.1 Application1.5.2 Intermediate Sizes (5)1.5.3 Joints (5)1.5.4 Packaging (6)Conditions and Parameters (6)1.6 Test1.6.1 Safety Statement (6)of Specimens (6)1.6.2 Selection1.6.3 AmbientConditions of Test (6)Frequency (6)1.6.4 Power1.6.5 Mandrels (7)and Square Wire (7)1.6.6 Rectangular1.6.7 Round Wire (7)Conformance (8)1.6.8 Periodic1.6.9 Retests (8)1.7 Unitsof Measure (8)Class of Magnet Wire (8)1.8 Thermal1.9 OrderingInformation (8)Identification Number (8)1.9.1 ProductOrdering Data (9)1.9.2 MinimumTables1-1 Dimensions for Bare and Film Insulated Round Magnet Wire (10)1-2 Round Copper Wire, Ultra Fine Sizes by Resistance (14)1-3 Dimensions for Round Film Insulated Self-Bonding Magnet Wire (15)1-4 Dimensions for Single Glass Fiber Covered Round Bare,Single Film Coated and Heavy Film Coated Wire (17)1-5 Dimensions for Double Glass Fiber Covered Round Bare,Single Film Coated and Heavy Film Coated Wire (19)1-6 Dimensions for Single Polyester Glass Fiber Covered Round Bare,Single Film Coated and Heavy Film Coated Wire (21)1-7 Dimensions for Double Polyester Glass Fiber Covered Round Bare,Single Film Coated and Heavy Film Coated Wire (23)1-8 Dimensions and Radii for Rectangular Bare Wire (25)Conductor Tolerances (25)Rectangular1-9 BareMW 1000-2003Page ii1-10 Film Insulated Rectangular Magnet WireIncrease in Thickness and Width Due to Film Coating (25)of Square Bare Wire (26)1-11 Dimensions1-12 Heavy and Quadruple Film Insulated Square Magnet WireIncrease in Dimensions Due to Film Coating (27)1-13 Range of Increase in Dimensions, InchesSingle Glass Fiber Covered Heavy Film Insulated Rectangular Copper Wire (28)1-14 Range of Increase in Dimensions, InchesDouble Glass Fiber Covered Bare Rectangular Copper Wire (29)1-15 Range of Increase in Dimensions, InchesDouble Glass Fiber Covered Heavy Film Coated Rectangular Copper Wire (30)1-16 Range of Increase in Dimensions, InchesSingle Polyester Glass Fiber Covered Heavy Film Insulated Rectangular Copper Wire (31)1-17 Range of Increase in Dimensions, InchesDouble Polyester Glass Fiber Covered Bare Rectangular Copper Wire (32)1-18 Range of Increase in Dimensions, InchesDouble Polyester Glass Fiber Covered Heavy Film Coated Rectangular Copper Wire (33)1-19 Single Glass Fiber Covered, Heavy Film Insulated Square Copper Magnet Wire– Minimum Increase and Maximum Overall Dimensions Due to Insulation (34)1-20 Single Polyester Glass Fiber Covered Heavy Film Insulated Square Copper Magnet Wire-Minimum Increase and Maximum Overall Dimensions Due to Insulation (35)1-21 Double Glass Fiber Covered, Bare or Heavy Film Insulated Square Copper Magnet Wire–Minimum Increase and Maximum Overall Dimensions Due to Insulation (36)1-22 Double Polyester Glass Fiber Covered, Bare or Heavy Film Insulated Square Copper Magnet Wire–Minimum Increase and Maximum Overall Dimensions Due to Insulation (37)1-23 Comparison Between AWG and IEC R-40 Series Bare Wire Diameters (38)1-24 Comparison Between NEMA and IEC Increases and Overall Diameters (40)MW1000-2003Page iiiCONTENTS (continued)Part 2 PROPERTIES AND REQUIREMENTSSpecification Number ThermalClassRound Rectangularand SquarePageNo.MW 2-C Polyurethane for solderable applications(Single and Heavy)105 X — 2MW 3-C Polyurethane with self-bonding overcoat forsolderable applications (Types 1 and 2)105 X — 3 MW 5-C Polyester (Single and Heavy) 155 X — 4MW 6-C Polyamide (Single and Heavy) 105 X — 5MW 9-C Epoxy (Single, Heavy, and Triple) 130 X — 6MW 14-C Epoxy (Heavy and Quadruple) 130 — X 7MW 15-A Polyvinyl Acetal (Single and Heavy) 105 X — 8MW 15-C Polyvinyl Acetal (Single, Heavy, and Triple) 105 X — 9MW 16-C Polyimide (Single Heavy, Triple, andQuadruple)240 X — 10–17MW 17-C Polyvinyl acetal overcoated with polyamide(Single and Heavy)105 X — 18 MW 18-A Polyvinyl acetal (Heavy and Quadruple) 105 — X 19MW 18-C Polyvinyl acetal (Heavy and Quadruple) 105 — X 20MW 19-C Polyvinyl acetal with self-bonding overcoat(Types 1, 2 and 3)105 X — 21 MW 20-C Polyimide (Heavy and Quadruple) 240 — X 22MW 24-A Polyester (amide) (imide) overcoated withpolyamide (Single and Heavy)155 X — 23MW 24-C Polyester (amide) (imide) overcoated withpolyamide (Single, Heavy and Triple)155 X — 24MW 26-C Polyester (imide) for solderable applications(Single and Heavy)155 X — 25MW 27-C Polyester (imide) overcoated with polyamidefor solderable applications (Single and Heavy)155 X — 26MW 28-A Polyurethane overcoated with polyamide forsolderable applications (Single and Heavy)130 X — 27MW 28-C Polyurethane overcoated with polyamide forsolderable applications (Single and Heavy)130 X — 28MW 29-C Polyurethane overcoated with polyamide andself-bonding overcoated for solderableapplications (Types 1 and 2)105 X — 29MW 30-C Polyester (amide) (imide) (Single, Heavy, andTriple)180 X — 30MW 31-C Paper covered 90 or105X — 31MW 32-C Double paper single cotton covered 90 or105— X 32–33MW 33-C Paper covered 90 or105— X 34MW 1000-2003Page ivPart 2 PROPERTIES AND REQUIREMENTSSpecification Number ThermalClassRound Rectangularand SquarePageNo.MW 35-A Polyester (amide)(imide) overcoated withpolyamideimide (Single and Heavy)220 X — 35MW 35-C Polyester (amide)(imide) overcoated withpolyamideimide (Single, Heavy and Triple)200 X — 36MW 36-A Polyester (amide)(imide) overcoated withpolyamideimide (Heavy and Quadruple)220 — X 37MW 36-C Polyester (amide)(imide) overcoated withpolyamideimide (Heavy and Quadruple)200 — X 38 MW 41-C Glass fiber covered (Single and Double) 155 X — 39MW 42-C Glass fiber covered (Single and Double) 155 — X 40MW 43-C Glass fiber covered silicone treated(Single and Double)200 — X 41MW 44-C Glass fiber covered silicone treated(Single and Double)200 X — 42MW 45-C Polyester glass fiber covered(Single and Double)155 X — 43MW 46-C Polyester glass fiber covered(Single and Double)155 — X 44MW 47-C Polyester glass fiber covered silicone treated(Single and Double)200 X — 45MW 48-C Polyester glass fiber covered silicone treated(Single and Double)200 — X 46 MW 50-C Glass fiber covered, High Temperatureorganic varnish treated (Single and Double)180 X — 47MW 51-C Polyester glass fiber covered, HighTemperature organic varnish treated (Singleand Double)180 X — 48MW 52-C Glass fiber covered, High Temperatureorganic varnish treated (Single or Double)180 — X 49MW 53-C Polyester glass fiber covered, HighTemperature organic varnish treated (Singleand Double)180 — X 50MW 60-A Aromatic polyamide paper covered (Paper) 220 — X 52–53MW 60-C Aromatic polyamide paper covered (Paper) 220 — X 54–55MW 61-A Aromatic polyamide paper covered (Paper) 220 X — 56–57MW 61-C Aromatic polyamide paper covered (Paper) 220 X — 58–59MW 62-C Aromatic Polyimide tape covered 220 — X 60MW 63-C Aromatic Polyimide tape covered 220 X — 61MW 72-C Polyester (amide)(imide) for HermeticApplications (Heavy)180 X — 62MW 73-A Polyester (amide)(imide) overcoated withpolyamideimide for Hermetic Applications220 X — 63MW 73-C Polyester (amide)(imide) overcoated withpolyamideimide for Hermetic Applications200 X — 64 MW 74-A Polyester (amide)(imide) (Single and Heavy) 220 X — 65(continued)MW1000-2003Page v Part 2 PROPERTIES AND REQUIREMENTSSpecification Number ThermalClassRound Rectangularand SquarePageNo.MW 74-C Polyester (amide)(imide) (Single and Heavy) 200 X — 66MW 75-C Polyurethane for solderable applications(Single and Heavy)130 X — 67MW 76-A Polyester (amide)(imide) overcoated withpolyamide (Single and Heavy)180 X — 68MW 76-C Polyester (amide)(imide) overcoated withpolyamide (Single, Heavy and Triple)180 X — 69MW 77-C Polyester (imide) for solderable applications(Single and Heavy)180 X — 70MW 78-C Polyester (imide) overcoated with polyamidefor solderable applications (Single and Heavy)180 X — 71MW 79-C Polyurethane for solderable applications(Single, Heavy and Triple)155 X — 72MW 80-A Polyurethane overcoated with polyamide forsolderable applications (Single and Heavy)155 X — 73MW 80-C Polyurethane overcoated with polyamide forsolderable applications (Single, Heavy, Triple)155 X — 74 MW 81-C Polyamideimide (Single and Heavy) 220 X — 75MW 82-C Polyurethane for solderable applications(Single, Heavy and Triple)180 X — 76MW 83-C Polyurethane overcoated with polyamide forsolderable applications (Single, Heavy,Triple)180 X — 77MW 102-A Polyester (Amide) (Imide) overcoated withpolyamideimide and self-bonding overcoat(Type 1 and Type 2)180 X — 78MW 102-C Polyester (Amide) (Imide) overcoated withpolyamideimide and self-bonding overcoat(Type 1 and Type 2)180 X — 79TablesS (MW 16-C) Polyimide Single Film Insulated Round Copper Magnet Wire, Thermal Class 240 (11)H (MW 16-C) Polyimide Heavy Film Insulated Round Copper Magnet Wire, Thermal Class 240 (13)T (MW 16-C) Polyimide Triple Film Insulated Round Copper Magnet Wire, Thermal Class 240 (15)Q (MW 16-C) Polyimide Quadruple Film Insulated Round Copper Magnet Wire, Thermal Class 240..17PC (MW 32-C) Range of Increase in Dimensions (Inches) Due to Double Paper Single Cotton Covering (33)PR (MW 60-A) Increase in Dimensions of Rectangular Wire Due to Paper Covering (53)PSQ (MW 60-A) Dimensions 1–4/0 AWG (53)PR (MW 60-C) Increase in Dimensions of Rectangular Wire Due to Paper Covering (55)PSQ (MW 60-C) Dimensions 1–4/0 AWG (55)PR (MW 61-A) Dimensions 4/0–9 AWG (57)PR (MW 61-C) Dimensions 4/0–9 AWG (59)TR (MW 63-C) Insulated Wire Dimensions (61)(continued)MW 1000-2003Page viCONTENTS (continued)Part 2PROPERTIES AND REQUIREMENTS LISTING BY THERMAL CLASS, INSULATION, COATING AND FORMThermal Class Insulation, Covering and Form See Part 2, SectionAluminumCopperPageNo. FILM INSULATED ROUND MAGNET WIRE105 Polyamide -MW6-C 5105 Polyvinyl acetal MW 15-A MW 15-C 8, 9105 Polyvinyl acetal overcoated with polyamide - MW 17-C 18105 Solderable Polyurethane - MW 2-C 2105 Solderable Polyurethane and self-bonding overcoat - MW 3-C 3105 Solderable Polyurethane overcoated with polyamide and self-bonding overcoat -MW29-C 29105 Polyvinyl acetal and self-bonding overcoat - MW 19-C 21 130 Epoxy -MW9-C 6 130 Solderable Polyurethane overcoated with polyamide MW 28-A MW 28-C 27, 28 130 Solderable Polyurethane - MW 75-C 67 155 Polyester -MW5-C 4 155 Polyester (amide)(imide) overcoated with polyamide MW 24-A MW 24-C 23, 24 155 Solderable Polyester (imide) - MW 26-C 25 155 Solderable Polyester (imide) overcoated with polyamide - MW 27-C 26 155 Solderable Polyurethane - MW 79-C 72 155 Solderable Polyurethane overcoated with polyamide MW 80-A MW 80-C 73, 74 180 Polyester(amide)(imide) -MW30-C30 180 Polyester (amide)(imide) overcoated with polyamide MW 76-A MW 76-C 68, 69 180 Polyester (amide)(imide) overcoated withpolyamideimide and self-bonding overcoatMW 102-A MW 102-C 78, 79 180 Solderable Polyester (imide) - MW 77-C 70 180 Solderable Polyester (imide) overcoated with polyamide - MW 78-C 71 180 Hermetic Polyester (amide)(imide) - MW 72-C 62 180 Solderable Polyurethane - MW 82-C 76 180 Solderable Polyurethane overcoated with Polyamide - MW 83-C 77200 Polyester (amide)(imide) overcoated withpolyamideimide -MW35-C 36200 Polyester(amide)(imide) -MW74-C66200 Hermetic Polyester (amide)(imide) overcoated withpolyamideimide -MW73-C 64220 Polyester (amide)(imide) overcoated withpolyamideimideMW 35-A - 37 220 Polyester(amide)(imide) MW74-A- 65 220 Hermetic Polyester (amide)(imide) overcoated withpolyamideimideMW 73-A - 64 220 Polyamideimide MW81-C75 240 Hermetic Polyimide - MW 16-C 10–17FILM INSULATED RECTANGULAR AND SQUARE WIREMW1000-2003Page viiPart 2PROPERTIES AND REQUIREMENTS LISTING BY THERMAL CLASS, INSULATION, COATING AND FORMThermal Class Insulation, Covering and Form See Part 2, SectionAluminumCopperPageNo. 105 Polyvinyl acetal MW 18-A MW 18-C 19, 20130 Epoxy -MW14-C7200 Polyester (amide)(imide) overcoated withpolyamideimide -MW36-C 38220 Polyester (amide)(imide) overcoated withpolyamideimideMW 36-A - 37 240 Polyimide -MW20-C22 FIBROUS COVERED ROUND MAGNET WIRE90 or 105 Paper covered - MW 31-C 31 155 Glass fiber covered - MW 41-C 39 155 Polyester glass fiber covered - MW 45-C 43180 Glass fiber covered, High temperature organicvarnish treated -MW50-C 47180 Polyester glass fiber covered, High temperatureorganic varnish treated -MW51-C 48200 Glass fiber covered, silicone treated - MW 44-C 42 200 Polyester glass fiber covered, Silicone treated - MW 47-C 45 220 Aromatic polyamide paper covered MW 61-A MW 61-C 56–59 220 Aromatic polyimide tape covered - MW 63-C 61FIBROUS COVERED RECTANGULAR & SQUARE MAGNET WIRE90 or 105 Double paper, Single cotton covered - MW 32-C 32–33 90 or 105 Paper covered - MW 33-C 34 155 Glass fiber covered - MW 42-C 40 155 Polyester glass fiber covered - MW 46-C 44180 Glass fiber covered, High temperature organicvarnish treated -MW52-C 49180 Polyester glass fiber covered, High temperatureorganic varnish treated -MW53-C 50200 Glass fiber covered, Silicone treated - MW 43-C 41 200 Polyester glass fiber covered, Silicone treated - MW 48-C 46 220 Aromatic polyamide paper covered MW 60-A MW 60-C 52–55 220 Aromatic polyimide tape covered - MW 62-C 60MW 1000-2003Page viiiCONTENTS (continued)Part 3 TEST PROCEDURES3.1 Safety Statement (1)ROUTINE TESTS3.2 Dimensions (1)3.2.1 Round Wire (1)and Square Wire (3)3.2.2 Rectangularand Flexibility (3)3.3 Adherence3.3.1 Elongation and Mandrel Wrap Method (3)Wrap Method (4)3.3.2 Mandrel3.3.3 Elongation Method (4)Cut and Elongation Method (4)3.3.4 Circumferential3.3.5 Bend and Shot Dielectric Method (4)3.3.6 Flat and Edge Bend Method (4)3.4 Elongation (4)3.5 Heat Shock (6)3.6 Reserved (6)3.7 Springback (Specified for Copper Conductors Only) (6)3.7.1 MandrelWrap Method (6)3.7.2 Deflection Method (All Rectangular and Round Sizes Larger than 14 AWG) (10)3.8 Dielectric Breakdown (11)Procedure—General (11)3.8.1 TestElectrode Method (11)3.8.2 FoilPair Method (12)3.8.3 TwistedPair Method (14)3.8.4 Wound3.8.5 Layer Method (14)Method (14)3.8.6 Bend3.8.7 Cylinder Method (15)3.9 Continuity (17)3.9.1 General (17)3.9.2 High-Voltage Direct Current Continuity (14-44 AWG) (17)3.9.3 Low-Voltage Direct Current Continuity (45-56 AWG) (18)3.10 Completeness of Cure (19)3.10.1 Toluene-Ethanol Boil Method (19)3.10.2 Dissipation Factor Method (20)3.11 Reserved (22)3.12 Coverage (22)3.12.1 Mandrel Wrap Method (22)3.12.2 Flat Bend Method (22)3.13 Solderability (22)3.13.1 General (22)3.13.2 Self-Supported Specimen Method (14-36 AWG) (22)3.13.3 Fixture-Supported Specimen Method (37-56 AWG) (22)MW 1000-2003Page ixPERIODIC CONFORMANCE TESTS3.50 Thermoplastic Flow (24)3.50.1 Apparatus (24)3.50.2 Procedure (24)3.51 Solubility (25)3.51.1 Round Film Insulated Wire (10 AWG and Finer)........................................................25 3.51.2 Round Wire Larger than 10 AWG, Rectangular and Square Wire ............................25 3.52Dielectric Strength at Rated Temperature...............................................................................26 3.52.1 Test Procedure...........................................................................................................26 3.53Reserved.................................................................................................................................26 3.54Transformer Oil Resistance and Hydrolytic Stability...............................................................26 3.54.1 Principal of Test..........................................................................................................26 3.54.2 Test Apparatus...........................................................................................................26 3.54.3 Short Term Exposure Test.........................................................................................26 3.54.4 Long Term Exposure Test..........................................................................................27 3.55Refrigerant (R-22) Extraction ..................................................................................................27 3.55.1 Preparation of Specimens..........................................................................................28 3.55.2 Environmental Conditioning .......................................................................................28 3.55.3 Collecting Residue......................................................................................................29 3.55.4 Determination of Results............................................................................................30 3.56Retained Dielectric after R-22 Conditioning............................................................................30 3.57Bond ........................................................................................................................................31 3.57.1 Preparation of Specimens (31)3.57.2 Heating and Solvent Bonding.....................................................................................31 3.57.3 Room Temperature Bonding......................................................................................32 3.57.4 Elevated Temperature Bond Test Procedure.............................................................32 3.58Thermal Endurance.................................................................................................................33 3.58.1 Test Procedure...........................................................................................................33 3.59Scrape Resistance..................................................................................................................33 3.59.1 Apparatus...................................................................................................................33 3.59.2 Test Procedure...........................................................................................................34 Tables3.2.1Specification for Micrometer Anvil Diameter and Spindle Force...............................................2 3.3.1Adherence and Flexibility: Elongation and Mandrel Diameters ................................................3 3.4.1Minimum Percent Elongation, Square and Rectangular Wire...................................................4 3.4.2 MinimumPercent Elongation, Round Wire...............................................................................5 3.5.1Heat Shock: Elongation and Mandrel Diameters......................................................................6 3.7.1Springback - Mandrel Wrap Method..........................................................................................9 3.8.2Minimum Dielectric Breakdown Voltage—Foil Method...........................................................12 3.8.3.1Twisted Pair Method: Tensions and Rotations........................................................................12 3.8.3.2Minimum Dielectric Breakdown Voltage—Twisted Pair Method.............................................13 3.8.6 BendMethod Mandrel Sizes...................................................................................................14 3.8.7.1Rate of Increase in Voltage—Cylinder Method.......................................................................15 3.8.7.2 Cylinder Method Test Loads (16)MW 1000-2003Page x3.8.7.3 Minimum Dielectric Breakdown Voltage—Cylinder Method (16)3.9.2.1 Test Voltage (DC Volts ±5%) and Maximum Fault Count per 100 Feet (17)3.9.2.2 Threshold Fault Current (18)Continuity—Maximum Fault Count per 100 Feet (19)3.9.3 Low-Voltage3.50.2 Thermoplastic Flow Test Loads (24)Vessel Components (27)3.54.4 PressureSiphonCup Dimensions (28)3.55.1 TypicalTest Parameters (31)3.57.1 Bond3.59.1 Standard Scrape Resistance of Round Film Insulated Magnet Wire (35)3.59.2 Reduced Scrape Resistance of Round Film Insulated Magnet Wire (35)Figuresthe Springback Scale (7)3.7.1.1 Detailsof3.7.1.2 Springback Tester After Winding a Coil Under Tension (8)3.7.1.3 Photograph of Possible Appearance of the Springback Scales (8)3.7.2 Apparatus for Springback Deflection Method (10)PairSpecimen Winder (14)3.8.4 WoundApparatusfor Cylinder Method (15)3.8.7 Test3.9.3 Bath of Mercury or Other Suitable Material (19)3.10.2 Electrode and Specimen Arrangement for Dissipation Factor Test (21)Test Specimen Fixture (23)3.13.3 Solderability3.51.1 MachineSolubility Scrape (25)forExtractable Siphon Cup (28)3.55.1 Refrigerant3.55.2 Condenser Coil (29)3.55.3 Condenser Coil Siphon Cup Assembly (29)CoilPrep Fixture (31)3.57.1 BondStrength Test Fixture (32)3.57.3.1 BondTest Fixture (32)3.57.3.2 Bond3.59.1 MachineScrape Resistance (34)forAppendicesA Reference Test Conditions and Procedures for Film-Insulated Magnet Wire....................................A–1B Magnet Wire Packaging and Labeling................................................................................................B–11000-2003MWPage xiForewordThis publication supersedes NEMA Standards Publication MW 1000-1997. It is currently under review by ANSI for approval as an American National Standard.The standards contained in this publication are periodically reviewed by the NEMA Magnet Wire Section for revisions considered to be necessary to keep them up to date with changes in technology. Proposedor recommended revisions should be submitted to:Vice President, EngineeringNational Electrical Manufacturers Association1300 North 17th Street, Suite 1847Rosslyn, Virginia 22209These standards were developed by the Magnet Wire Section of NEMA, working closely with representatives of various industries that use magnet wire. At the time they were approved, the Magnet Wire Section had the following members:Bridgeport Insulated Wire Company—Bridgeport, CTElektrisola, Inc.—Boscawen, NHMagnekon—San Nicolas, NL, MexicoNexans—Markham, ON, CanadaPhelps Dodge Magnet Wire Company—Fort Wayne, INRea Magnet Wire Company, Inc.—Fort Wayne, INRea Algonquin Osceola Manufacturing Plant (formerly Southwire Company)—Osceola, AREssex Group, Inc.—Fort Wayne, INUniversal Lighting Technologies—Gallman, MSMW 1000-2003Page xiiHow to Use This PublicationPart 1 (blue, if in print) of this publication deals with information common to all types of magnet wire, that is, ordering information, general material requirements, general test conditions, definitions and manufacturing data in support of thermal rating. This part also includes dimensions with metric equivalents for all bare, minimum insulation increase, and overall dimensions for all Part 2 MW specification requirements. The exception to this is MW 16, where the dimensional and other requirements are provided in Part 2.Part 2 (yellow, if in print) consists of product specifications requirements (other than dimensions) for magnet wire with different types of coatings and/or coverings. Insofar as possible, the product specifications are complete on one sheet since they are arranged to include only one insulation or covering per sheet. The title on each individual sheet identifies the product. (Example: MW 15-C, Polyvinyl Acetal Round Copper Magnet Wire. MW 15-A covers the aluminum version of the same generic product).Part 3 (green, if in print) contains the test procedures to be followed and corresponding tables of specific test values to be attained in determining compliance with the requirements given in Part 2. The requirements are consolidated with the test procedures and testing parameters for a given property. An index of the main test paragraphs is given beginning on page viii of the Table of Contents.Appendix A (green, if in print) provides a cross reference between test procedures in this Standards Publication and those published by the American Society for Testing and Materials (ASTM).Appendix B (tan, if in print) consists of definitions, requirements, and recommended test procedures for reusable magnet wire packaging, standardized dimensions for spools and reels, and formatting for the labeling of magnet wire products.First, review Part 1 for general information. Then in Part 2 locate the specification for the type of insulation and conductor of interest. Part 2 is arranged in numerical order as shown beginning on page ii. The dimensions for each Part 2 MW type are provided in Part 1 beginning with Table 1-1. The specification in Part 2 will indicate the requirements to be met and will refer to the test procedures and corresponding test values to be attained in Part 3.。

Creo1.0 Freeform Surface

Creo1.0 Freeform Surface

Loft Curves
Loft Surface
© 2011 PTC
28
使用多曲线创建边界曲面
Multiple Segments Boundaries: ¤ 按住SHIFT 选取. ¤ 连接处使用相切或曲率. ¤ Results in a composite surface.
Select Multiple Curves
创建来自曲面的曲线 ¤ Select a location on the surface. ¤ Drag or specify a relative value to position the curve. ¤ Free Curve or Curve on Surface type curves. ¤ From a single surface patch.
Tangent or Curvature Continuity
Composite Surface
© 2011 PTC
29
创建曲面使用“径向”选项
With Radial Option
With Radial Option – Top View
Without Radial Option
Without Radial Option – Top View
© 2011 PTC
17
编辑自由点位置
长度和长度比例
偏离平面
© 2011 PTC
参考平面
18
编辑曲线
移动点 添加或删除点 分割和连接曲线 Extending Curves ¤ 自由 ¤ 相切 ¤ 曲率
添加点
Split and Extended Free
Curve Split at Added Point

Adobe Acrobat SDK 开发者指南说明书

Adobe Acrobat SDK 开发者指南说明书
Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.
This guide is governed by the Adobe Acrobat SDK License Agreement and may be used or copied only in accordance with the terms of this agreement. Except as permitted by any such agreement, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe. Please note that the content in this guide is protected under copyright law.

自由变形技术(Free-FormDeformation)

自由变形技术(Free-FormDeformation)

⾃由变形技术(Free-FormDeformation) ⾃由变形技术Free-Form Deformation是编辑⼏何模型的重要⼿段,它于80年代由Sederberg等⼈提出,⽬前许多三维建模软件中都有这种变形算法。

⾃由变形⽅法在变形过程中并不是直接操作⼏何模型,⽽是把⼏何模型嵌⼊到变形空间,然后通过操作变形空间来使得嵌⼊其中的⼏何模型发⽣变形,如图所⽰。

⾃由变形算法主要过程如下: 1. 创建⼀个平⾏六⾯体的变形空间框架,将待变形⼏何模型嵌⼊这个框架中,同时建⽴局部坐标系,计算⼏何模型的顶点在局部坐标系下的坐标:其中,S、T、U可以认为是这个变形框架的3个边长向量,并且0 < s < 1、0 < t < 1、0 < u < 1。

需要注意的是,在变形过程中,⼏何模型顶点的局部坐标(s, t, u)都是固定不变的。

2. 移动变形框架控制点,利⽤⼏何模型顶点的局部坐标(s, t, u)、控制点世界坐标和Bernstein多项式重新计算⼏何模型每个顶点的世界坐标:其中P(i, j, k)为框架控制点的新坐标,l、m、n分别为在S、T、U坐标轴上划分的格⼦数⽬。

本⽂为原创,转载请注明出处:。

参考⽂献:[1] Sederberg, Thomas W., and Scott R. Parry. "Free-form deformation of solid geometric models." international conference on computer graphics and interactive techniques 20.4 (1986): 151-160.[2]附录 n阶Bernstein基础多项式的表达形式为:例如:。

Bernstein基础多项式的⼀个重要性质是其所有项之和为1: n阶Bernstein基础多项式可以组成⼀个多项式向量空间Πn,那么空间中任意⼀点可以表⽰成Bernstein基础多项式的线性组合:其中βv为Bernstein系数或Bézier系数,其实上⾯的表达式就是Bézier曲线的表达式。

freeform 培训指南

freeform  培训指南

前言数年前开始,软件厂商已经开始希望能提供像 "雕刻"和 "刮黏土" 一般容易使用的功能。

但是要真的 "像"在 "刮" "数字数据" 的一个最重要因素 "触觉" 却总是被忽略。

这就像是要一个音乐家戴着耳塞演奏,或是要一位画家蒙着眼睛作画一把最精随的部分给去掉了。

现找回来给您。

FreeFormmodeling 取得世界专利的 3D Touch 技术,为您开创了一条能将创意、灵感及您想表达的目的与意图直接表现在数字数据上的康庄大道。

设计师再也不用被迫只透过 2D 的鼠标,做平面的互动;灵感再也不会被一些图素的控制、slider 及设定所过滤掉;创意的念头,可以直接的透过心灵而传达、表现在实体的物质上。

般,在,我们把最精随的部分数字的优点FreeForm 把数字工具所独具的弹性及其能力带到实体的模型上。

完全的符合今日产品设计潮流及制造的流程FreeForm modeling system 完全的符合今日产品设计潮流及制造FreeForm 的 "数字黏土" 和黏土间的关系,就像文书处理工具和打字的关系一样;你可以复制及重复使用模型的特征。

只要透过按键,便可以控制黏土的硬度及曲面的平滑度;汇入 Sketch ,作为切割线的参考与指引;Mirror 及 scale 的特性,能让你在几秒钟内变完成以前要花上数个小时才能完成的工作;放胆的去做,就算有失误,"复原键"会一直在旁边等候着您的差遣。

的流程。

它消弥了" 2D 绘图"与" 3D 产品设计间"的鸿沟。

它补充了实体模型的不足,甚至取代实体模型;它可以让设计师自由的在3D 的环境里挥洒、制造出创意就如同他们用纸、笔在2D 的平面上设计一般。

工程师可以直接在汇入的 sketch 、2D 绘图、扫描完成的 model 或是 3D 工程图上做设计。

freeform基本指令

freeform基本指令

Freeform软件常用工具指令说明(一)2013-09-14 12:46:03这些工具都是雕刻工具,按右下角的小三角可飞出不同形状的雕刻工具,可根据需要进行选择。

选择工具后,当用针点笔触碰到模型时,按下针点笔上的按钮,可以在模型上进行雕刻,当用力将针点笔推入模型内时可以在模型上建立突起,在下面的工具属性栏中可以改变工具的大小和粘土的硬度(在使用其它工具时,如下面有相同的图标表示的意思相同),或者有一个更快捷的方式,直接按住"P"字母键,可以实现同样功能。

对于需要长时间使用雕刻工具,可以有效缓解手指的疲劳。

Freeform软件基本指令说明(二)2013-09-15 22:09:35smudge工具是挤压粘土工具,它不光可以外部,而且也可以内部使用,使用该工具时不但所接触的粘土会变形,附近的clay也会随之变形,在工具属性栏中比“carve”工具多了一个属性“Area of influenc”,可以调节改变clay的程度。

Freeform软件基本指令文字说明(三)2013-09-25 21:58:031、该工具是吸附粘土工具,在飞出的工具中有spikes工具,他吸起的粘土形状要比attract吸的更尖,它也可以在模型的内外使用。

2、smooth工具是光滑工具,按下针点笔在物体表面来回的移动,可使表面变得更加光滑,在下面的工具属性栏中可以改变大小和光滑的等级,有10级,可以用1-0的数字键快速的改变,1的等级最低,0的等级最高,等级越高,就越光滑,飞出的smooth area工具,可以对要光滑的区域进行选区,是增加选区,是减少选区,是全选物体,是取消选区。

3、这两个工具都是增加粘土工具,可以添加球形、圆锥形、圓錐形和任意形,在下面的工具列中可以选取形状和大小。

Freeform软件基本指令说明(四)2013-09-27 21:01:01这两个工具主要用来改变物体的形状,Tug主要用来局部改变物体的形状,当选择该工具贴近物体表面时,按下针点笔,就可以随便地的移动粘土,在下面的工具属性栏中有precise movement选项,选中该选项,可以精确的移动针点笔,它的快捷键是shift.还有Axis snap选项,选中它之后,光标只能沿着坐标轴移动,Deform用来整体地改变物体的形状,选中它,物体表面将会出现一个矩形方框,我们可以通过改变方框来改变物体的形状。

FreeFrom软件操作说明

FreeFrom软件操作说明

Patches/Solids-曲面和實體Patches/Solids工具欄一、鏡射曲面和實體Mirror Patch指令可以鏡射一個或多個曲面或實體。

二、將曲面模型縫補成實體模型Stitch 指令是將多個曲面(Patch)縫補成一個實體(Solid)。

點選Stitch 命令後,使用步驟及方法說明如下圖。

三、改變曲面顯示模式Patch Display Properties 指令是利用貼圖的方式來檢測曲面的順滑程度。

四、產生曲面Create Patch 指令是先規劃好曲面邊界線,再舖成曲面。

曲面和實體轉換功能說明五、將曲面或實體模型轉換成黏土Convert to Clay 指令是可將實體(Solid)或曲面(Patch)轉換成黏土,點選Convert to Clay 命令後,使用步驟及方法說明如下圖。

六、利用3D 曲線分割黏土網格Split Mesh 指令是依據封閉的3D 曲線,進行模型STL 資料的拆解。

七、利用3D 曲線修剪曲面Trim Patch 指令是用封閉的3D 曲線將曲面做裁剪的動作。

點選Trim Patch 命令後,會出現如下的工具列,說明如下圖。

八、 Wire Cut Solid :切割/擠出實體Wire Cut Solid 指令是用封閉的2D 線切割或擠出實體。

點選Wire Cut Solid 命令後,會出現如下的工具列,說明如下圖。

建構說明:九、Spin Solid:旋轉實體Spin Solid指令是利用封閉的2D斷面線繞著一個旋轉中心軸旋轉出實體。

使用方法及步驟說明如下圖。

十、 Loft Solid :斷面拉伸成實體Loft Solid 指令是用兩個平面以上的封閉2D 線拉伸成實體。

點選Loft Solid 命令後,使用步驟及方法說明如下圖。

調整控制點十一、Rail Solid:掃出實體Rail Solid指令是利用2D輪廓線沿著3D線路徑掃出實體或溝槽。

點選Rail Solid命令後,使用步驟及方法說明如下圖。

shapely库 object.intersects(other)原理

shapely库 object.intersects(other)原理

Shapely 是一个Python 库,用于处理地理空间数据,特别是对于几何对象(如点、线、多边形等)的操作。

intersects 是Shapely 中的一个方法,用于判断两个几何对象是否相交。

具体来说,当使用object.intersects(other) 时,这个方法会检查object 和other 两个几何对象是否有公共的内部点。

如果两个对象有公共的内部点,那么它们就相交,该方法返回True;否则,返回False。

为了更深入地理解这个原理,我们可以考虑以下几种情况:
1. 线与线的交点:如果两条线段有公共的点,那么它们就相交。

2. 线与多边形的交点:如果一条线段与多边形的边相交或与顶点相交,那么它们就相交。

3. 多边形与多边形的交集:如果两个多边形有公共的内部点或共享的边,那么它们就相交。

值得注意的是,intersects 方法只是判断是否相交,而不是判断是否有公共边界。

为了判断两个对象是否有公共边界,应使用touches 方法。

uf_modl_create_extrusion2用法

uf_modl_create_extrusion2用法

uf_modl_create_extrusion2用法uf_modl_create_extrusion2是Unigraphics软件中的一种功能模块,用于创建二维截面的拉伸体。

它可以根据给定的二维截面图形,沿指定方向进行拉伸操作,生成一个具有一定长度、宽度和高度的三维实体。

在本文中,我们将详细介绍uf_modl_create_extrusion2的用法,包括参数设置、操作步骤以及常见问题解答。

一、参数设置在使用uf_modl_create_extrusion2之前,我们需要先设置一些参数来定义所需的拉伸体特征。

这些参数包括截面形状、拉伸方向、长度等。

下面是一些常用的参数设置:1. 截面形状:截面可以是任意形状的多边形,也可以是矩形、圆形等基本几何形状。

2. 拉伸方向:可以选择在三维空间的任意方向进行拉伸,也可以指定一个平面进行拉伸。

3. 长度:拉伸体的长度可以根据实际需要进行设置,可以是固定的数值,也可以是相对于截面的比例。

二、操作步骤接下来,我们将一步一步地介绍使用uf_modl_create_extrusion2创建二维截面的拉伸体的具体操作步骤:步骤一:打开Unigraphics软件,并选择一个已经存在的零件文件,或新建一个零件文件。

步骤二:选择创建拉伸体功能模块。

步骤三:在参数设置界面中,选择截面形状,并设置截面的大小和位置。

可以通过绘制截面图形或导入已有的截面文件来定义截面形状。

步骤四:设置拉伸方向。

可以选择在三维空间中的任意方向进行拉伸,也可以指定一个平面进行拉伸。

步骤五:设置拉伸的长度。

可以根据实际需要设置拉伸体的长度,可以是固定的数值,也可以是相对于截面的比例。

步骤六:确认参数设置无误后,点击“创建”按钮生成拉伸体。

步骤七:保存生成的拉伸体实体,并进行进一步的编辑和分析。

三、常见问题解答在使用uf_modl_create_extrusion2功能模块的过程中,可能会遇到一些常见问题。

freeform简介

freeform简介

FreeFormFreeFormFreeForm是目前全世界第一套能够让设计者在电脑上利用触觉就能完成3D模型设计与建构的计算机辅助设计系统,就好像通过触觉去雕刻黏土一样,可以雕刻设计任何形态的三维造型,再结合电脑CAD的功能,让使用者能够快速且随心所欲地创造出自己想要的模型。

3D 触觉式设计系统:FreeForm全称为FreeForm Modeling Plus ( 3D 触觉式设计系统)FreeForm 介绍:FreeForm引入了计算机3D模型设计与制作的触感,彻底改造人机交互接口和设计界面,允许设计师在形态与功能之间制作充满智慧和富有创意的作品,而无需受任何传统三维模型制作工具的限制。

Freeform完全摆脱了一般3D设计软件的限制,设计师不需要继续在复杂的电脑程序-数学方程式、鼠标与键盘指令、程序化的方法等阻碍下工作,系统提供了我们与真实世界互动的最基本方式-——触觉,你可以通过触感,与您的模型进行直接和自然的互动。

例如,一个象恐龙一样复杂的三维数字模型,设计师30分钟就可以解决问题,大大缩短了传统3D设计软件的自作周期,这样,您将拥有更多的时间和精力投身于真正的挑战,将您更多的创意转变为高品质的产品或工艺作品同时,它也将实体功能带入了数字领域,这样一来,您即可以通过一个自然、类比的互动过程获得一个珍贵的数字化的三维模型。

简单、直接的触觉互动;精确、细微的触觉控制,这一切都让你随心所欲的将你的设计理念和美感赋予您充满智慧和富有创意的精品之作,世界各地的设计家已渐渐开始发现FreeForm系统在这些行业所能够带来的好处,从工业产品、玩具与游戏、礼品与鞋子,到消费电器、用具,以及汽车内部设计,无不受用无穷,使设计过程变的十分方便。

FreeForm模型制作:● 以灵活简便的功能取代令人头疼的复杂电脑程序。

● 开启计算机与设计师之间的设计理念的交流之门。

● 使用实体、类比介面来创建一个直观、可调度的数字模型。

inp文件详解

inp文件详解

说明:1. 本INP文件以及解释参考石亦平博士所著的"ABAQUS有限元分析实例详解";2. 注释行以**口头,以保持与INP文件的格式一致〔为方便起见以绿色显示〕。

*Heading** Job name: Plate-CPS8 Model name: Model-1**---------------------------------------------------------------------------------------------------------------------------------------------------- **INP 文件总是以*Heading开头,接下来可以用一行或多行来写下此模型的标题和相关信息.**---------------------------------------------------------------------------------------------------------------------------------------------------- *Preprint, echo=NO, model=NO, history=NO, contact=NO**---------------------------------------------------------------------------------------------------------------------------------------------------- **Preprint可设置在DAT文件〔*.dat)中记录的内容。

上述为ABAQUS默认,内容为:在DAT文件 **中不记录对INP文件的处理过程,以及详细的模型和历史数据。

-------------------------------------------------------------------------------------------- ** PARTS*Part, name=Plate1**---------------------------------------------------------------------------------------------------------------------------------------------------- **定义Part的标准格式:*Part,name=部件名称**对于非独立实体,比方此例,要在下面数据块中定义详细的节点,单元,截面属性等数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Intersecting a Freeform Surfacewith a General Swept Surface Joon-Kyung Seong a Ku-Jin Kim b Myung-Soo Kim a,cGershon Elber d Ralph R.Martin ea School of Computer Science and Engineering,Seoul National University,Koreab Dept.of Computer Engineering,Kyungpook National University,Koreac Institute of Computer Technology,Seoul National University,Koread Dept.of Computer Science,Technion,Haifa,32000,Israele School of Computer Science,Cardiff University,UK1IntroductionSurface-surface intersection(SSI)is an important problem in geometric modeling and processing,particularly for applications in CAD/CAM and solid modeling. Many different approaches have been proposed.However,it is still a difficult prob-lem to solve with sufficient accuracy,efficiency and robustness.The main difficulty lies in analyzing the topological structure of the intersection curve:it is not easy to determine the exact number of connected components and the correct topological arrangement of these components.Because of the difficulty in dealing with general freeform surfaces,considerable research has been devoted to intersecting surfaces of special types[13].Martin et al.[14]and de Pont[3]considered intersection of a cyclide with a quadric,and with another cyclide.Johnstone[11]proposed an algorithm to intersect a cyclide with a ringed surface.(The term‘ringed surface’was coined by Johnstone[11];it is a surface generated by sweeping a circle while changing its size and orientation.)Heo et al.[8]presented an algorithm for intersecting two ruled surfaces.They reduced the intersection problem to a search for the zero-set of the function:f(u,v)=0, where f(u,v)is a bivariate polynomial of relatively low degree.This approach was later applied to the case of intersecting two ringed surfaces[7].In the present paper, we extend this result to the intersection of a rational parametric freeform surface with a general swept surface.A swept surface is a one-parameter family of cross-sectional curves.In this paper,we focus on the case where each curve in the family is obtained by applying an affine transformation to a template curve.By taking an affine spline motion applied to a template curve[10],we can generate a swept surface.Ruled surfaces and ringed surfaces are special types of swept surfaces, which are constructed by sweeping a line or a circle.We present two methods for intersecting a freeform surface with a swept surface. Thefirst approach detects certain critical points on the intersection curve,and con-nects them in a correct topology;the curve segments connecting each pair of ad-jacent critical points is generated by a numerical curve tracing technique[1,2,5]. This procedure gives the entire intersection curve.The second approach transforms the intersection problem into a simple problem of solving a system of(n−1) polynomial equations in n variables.(See Elber and Kim[6]or Patrikalakis and Maekawa[15]for details of solving a system of m polynomial equations in n vari-ables.)Kim et al.[12]previously proposed a related topology-construction approach for intersecting a sphere with a surface of revolution.A surface of revolution is a spe-cial kind of swept surface which is generated by sweeping a circle of varying radius along a line.Figure1(a)shows the silhouette C S of a sphere S and the generating curve C+R for a surface of revolution R.Each point p1(∈C+R)outside the silhouette C S generates a circle on the surface R that has no intersection with the sphere S.2(a)(b)(c)Sp 3p 1p 2Fig.1.Three different types of intersection between S and the circles of R .Thus we can completely ignore the curve segments of C +R that lie outside C S .Onthe other hand,each point p 2(∈C +R )inside C S generates a circle that intersects thesphere S transversally in two distinct points.When we follow the curve C +R insidethe circle C S ,we can trace two branches of the intersection curve S ∩R ,one on the front hemisphere and the other on the back hemisphere.The two branches are firstcreated (starting at the same point)when the curve C +R enters the circle C S ,andthey merge to form a closed loop when the curve C +R leaves C S .Finally,each pointp 3lying on C +R and C S (∈C +R ∩C S )generates a circle that intersects S tangentially.All tangential intersections between the sphere S and the cross-sectional circles ofR can be detected by computing C +R ∩C S ,which can be reduced to solving a uni-variate polynomial equation.We will use similar principles in the first approach presented in this paper.Here,we consider the intersection between a rational parametric freeform surface and a general swept surface.The topology of the intersection curve is in this case determined by certain critical points where cross-sectional curves of a swept surface intersects a freeform surface tangentially.The geometric condition of tangential in-tersection can be formulated as a system of n polynomial equations in n variables,which in general produces discrete solutions.The tangential condition is formulated as one of these equations.By deleting this equation,we obtain a system of (n −1)equations in n variables,the solution of which generates a 1-manifold in the pa-rameter space of the given freeform surface and the swept surface.The intersection curve is then constructed by projecting the 1-manifold into the uv -parameter plane of the freeform surface S (u,v ).We first consider the problem of intersecting a freeform surface with a ruled surface or a ringed surface.We then consider the case of intersecting a freeform surface with a general swept surface.Each cross-sectional curve of the swept surface may be defined as a rational parametric curve or as an implicit algebraic curve that3moves under a rational affine spline motion[10].The rest of this paper is organized as follows.In Section2,we discuss how to construct the correct topology of an intersection curve based on detecting certain critical points on the curve.In Section3,we give a simple technique for reducing the intersection problem to that of computing the simultaneous zero-set of(n−1) polynomial equations in n variables.Section4presents some experimental results. Finally,in Section5,we conclude this paper.2Topology ConstructionWe willfirst present an algorithm that detects critical points on the intersection curve and constructs the correct topological structure of the curve.The critical points are tangential intersection points between the freeform surface and the cross-sectional curves of the swept surface.The basic idea of this approach isfirst ex-plained using an illustrative example for a simple case where a freeform surface is intersected with a general cylindrical surface(i.e.,a linear extrusion surface).Then we proceed to the cases where a freeform surface is intersected with a ruled surface, or a ringed surface.Finally,we show algorithms for intersecting a rational freeform surface with a general swept surface.2.1Intersection with a Cylindrical SurfaceFor the sake of simplicity,wefirst consider the case of intersecting a freeform surface with a cylindrical surface.We may assume that the cylindrical surface is generated by extruding a plane curve C(t)=(x(t),y(t),0)along the z-direction. Let L(p)denote a line passing through a point p in the xy-plane and parallel to the z-axis.The line L(C(t))intersects a freeform surface S(u,v)=(x(u,v),y(u,v), z(u,v))tangentially if and only if the point C(t)=(x(t),y(t),0)is located on the silhouette of S(u,v)when viewed along the z-direction.The silhouette curves and the boundary curves of S(u,v)subdivide the xy-plane into several regions.Figure2 shows some such surface S(u,v)and its silhouette and boundary curves projected on to the xy-plane.Also shown are the corresponding six regions A0,···,A5on the plane.The location of a point p(in the xy-plane)leads to the following relation betweena line L(p)and the surface S(u,v):(1)If p is on the silhouette curve of S(u,v),the line L(p)intersects S(u,v)tangentially at some location.4Fig.2.Regions on the xy-plane delimited by the silhouette curves and the boundary curves of S(u,v).(2)If p is inside a region A i,then L(p)intersects S(u,v)transversally at eachintersection point.(3)If p and q are in the same region A i,then L(p)and L(q)have the samenumber of intersections with S(u,v).For points p i,(0≤i≤5),located in the region A i(Figure2),the intersection between L(p i)and S(u,v)is classified as follows:(1)L(p0)∩S(u,v)consists of one transversal intersection point.(2)L(p1)∩S(u,v)consists of two transversal intersection points.(3)L(p2)∩S(u,v)consists of three transversal intersection points.(4)L(p3)∩S(u,v)consists of one transversal intersection point.(5)L(p4)∩S(u,v)consists of two transversal intersection points.(6)L(p5)∩S(u,v)has no intersection point.For points q j,(0≤j≤2),on the silhouette or boundary curves,the intersection between L(q j)and S(u,v)is classified as follows:(1)L(q0)∩S(u,v)consists of one tangential intersection point and one transver-sal intersection point.(2)L(q1)∩S(u,v)consists of one boundary point of S(u,v).(3)L(q2)∩S(u,v)consists of one tangential intersection point and one boundarypoint of S(u,v).As one can notice from the above example,the number of intersections between the line L(p)and the surface S(u,v)changes when the point p passes across the silhouette or boundary curves of S(u,v).When the point p traces a continuous curve C(t)in the xy-plane,this observation leads to a classification of the topology of the intersection curve between a surface S(u,v)and a cylindrical surface.Let R(s,t)denote the cylindrical surface generated by extruding C(t)=(x(t),y(t),0)5)ttransversalintersectiontangentialintersectionboundarypoint(a)(b)Fig.3.Topological structure of the intersection curve between R(s,t)and S(u,v).along the z-direction,where we take s=z.That is,the curve C(t)in Figure3(a)is the projection of the cylindrical surface R(s,t)on to the xy-plane.For afixedt0,each ruling line R(s,t0)is projected on to a curve point C(t0).The topological structure of the intersection curve between S(u,v)and R(s,t)is completely de-termined by the intersection between C(t)and the silhouette and boundary curvesof S(u,v).By subdividing S(u,v)and C(t)if necessary,we may assume that the curve C(t)does not pass through any of the self-intersection points of the silhou-ette or boundary curves of S(u,v);that is,it does not pass through points such asq2in Figure2.Moreover,we assume that the surface S(u,v)and the curve C(t) have no self-intersection.Figure3(a)shows a sequence of points C(t i),for i=0,···,10,where the even-indexed curve points C(t0),C(t2),···,C(t10)are located on the silhouette or bound-ary curves of S(u,v).On the other hand,the odd-indexed curve points C(t1),C(t3),···,C(t9)lie inside the regions A i;the t i satisfy t i−2<t i−1<t i.Now,in Fig-ure3(b),the curve C(t)is stretched out along its parameter line,which is the t-axis.Each dotted line(parallel to the z-axis)corresponds to a ruling line L(C(t i))of the cylindrical surface R(s,t).The correct topology of the intersection curve is completely determined by the discrete set of intersection points L(C(t i))∩S(u,v),for i=0,···,10.The intersection points on each line L(C(t i))are sorted along the z-direction.We connect discrete points on two adjacent vertical lines accordingto their z-order.Each tangential intersection point is connected to two transversal intersection points on an adjacent vertical line;or it is an isolated point.Three cases where the number of points on L(C(t i+1))is larger than on L(C(t i)) are shown in detail in Figure4.In Figure4(a)there is a tangential intersection point (marked with afilled circle)on L(t i+1),whereas in Figure4(b)there is a boundary point(marked by a square)on L(t i+1).In these cases,a new component starts at6t i t i+1i i+1i i+1(a)(b)(c)Fig.4.Three cases where there are more points on L(t i+1)than on L(t i).the point,and the other remaining transversal intersection points are connected as usual.Figure4(c)shows the case where L(t i)contains a tangential intersection point,which may be considered as a double point and is thus connected to two transversal intersection points.In the opposite case,where the number of points on L(t i)is larger than the number on L(t i+1),we apply a similar rule.In this case,two branches may meet at a tangential intersection point,where the corresponding loop is closed.In the above discussion,we considered the case where the curve C(t)intersects the silhouette or boundary curves of S(u,v)transversally.The case of tangential intersection is more involved.When the curve C(t)intersects the silhouette curve of S(u,v)tangentially at p,we may consider it as a double intersection.The tangential intersection point at L(p)∩S(u,v)becomes a singular point where two different loops meet and the intersection curve self-intersects.In the case where the curve C(t)touches the silhouette curve of S(u,v)externally,the tangential intersection point may be an isolated intersection point.Once the topological structure has been determined,the intersection curve itself can be constructed by numerically tracing the intersection curve using a conventional technique[1,2,5].In some degenerate cases,the curve C(t)may also intersect the silhouette curves of S(u,v)along some curve segments C(t),(t a≤t≤t b),not just at discrete points.The surface-surface intersection then includes some tangential intersection curves,or even some cylindrical surface patches.Such degenerate singular inter-sections are extremely difficult to deal with using conventional techniques.Nev-ertheless,in our approach,the problem is reduced to a simpler problem of ex-tracting the silhouette curve segments or the silhouette surface patches of S(u,v) that project on to the corresponding curve segments C(t),(t a≤t≤t b).Let N(u,v)=(n x(u,v),n y(u,v),n z(u,v))denote a normal vectorfield of the surface S(u,v).We can construct the silhouette curve or the silhouette surface patch of S(u,v)along the z-direction by solving:n z(u,v)=0.When the function n z(u,v)7vanishes over certain open regions in the uv-plane,the surface S(u,v)will inter-sect the cylindrical surface R(s,t)in some surface patches,not just in1-manifold curves.2.2Intersection with a Ruled SurfaceNow we consider the more general problem of intersecting a freeform surface S(u,v)with a ruled surface R(s,t).A ruled surface is defined by connecting two space curves C1(t)and C2(t)by a line:R(s,t)=C1(t)+s(C2(t)−C1(t)).The ruling direction is no longerfixed,but is a function of t,namely C2(t)−C1(t). Nevertheless,we can apply a similar argument to the one used in the previous section to classify the critical points on an intersection curve.So,we need to detect the values of t that correspond to the ruling lines(in R(s,t))that intersect S(u,v) tangentially or at its boundary curves S(u0,v)or S(u,v0).Figure5shows a loop in the intersection curve.The loop is delimited by two tangential intersections of the moving line with the surface S(u,v).Fig.5.An intersection curve.Two ruling lines intersect tangentially with a freeform surface and delimit a loop on the intersection curve.When a ruling line is tangent to the surface S(u,v),the surface point S(u,v)is on the line.Moreover,the ruling line is contained in the tangent plane of S(u,v)and thus it is orthogonal to the normal vector N(u,v).(See Figure6(a)for a configu-ration where a ruling line touches the surface S(u,v).)From these conditions,we obtain the following system of three constraint equations:f1(u,v,t)= S(u,v)−C1(t),N1(t) =0,(1) g1(u,v,t)= S(u,v)−C1(t),N2(t) =0,(2) h1(u,v,t)= C2(t)−C1(t),N(u,v) =0,(3)8(a)(b)C 1(C 2(t )Fig.6.A line (a)or a circle (b)touches the surface S (u,v ).where N 1(t )and N 2(t )are two non-parallel vectors which are orthogonal to the rul-ing direction C 2(t )−C 1(t ).Hughes and M¨o ller [9]proposed an elegant method for the construction of such vectors N 1(t )and N 2(t ),which have degree no higher than that of C 2(t )−C 1(t ).When the ruling direction C 2(t )−C 1(t )=(d x (t ),d y (t ),d z (t ))has its first component as the one with largest magnitude:|d x (t )|≥|d y (t )|,|d z (t )|,we can take N 1(t )=(d y (t ),−d x (t ),0)and N 2(t )=(d z (t ),0,−d x (t )).Other cases can be handled in a similar way.The intersection between a boundary curve S (u,v 0)and a ruling line can be com-puted by solving the following system of two equations:f 2(u,t )= S (u,v 0)−C 1(t ),N 1(t ) =0,g 2(u,t )= S (u,v 0)−C 1(t ),N 2(t ) =0.The intersection between S (u 0,v )and a ruling line can be computed in a similar way.After all critical points have been detected by solving the above systems of polyno-mial equations,their t -values are sorted in ascending order and given even indices:t 0<t 2<···<t 2m .Now take t 2k −1=t 2k −2+t 2ktopology has been determined,each segment of the intersection curve is again gen-erated by numerical curve tracing along the intersection between two surfaces[1,2,5]. In some degenerate cases,the ruled surface may intersect the surface S(u,v)tan-gentially along curve segments or even on surface patches.Equations(1)–(3)will then produce a set of1-manifold curve segments or2-manifold surface patches in the uvt-space as their solution set.We can distinguish the two cases by check-ing the dimensionality of the solution set.Whenever S(u,v)and R(s,t)inter-sect tangentially,the implicit surfaces f1(u,v,t)=0and g1(u,v,t)=0also intersect tangentially on their common solution set since in this case the equa-tion f1(u,v,t)−g1(u,v,t)=0has multiple roots.Moreover,the implicit surface h1(u,v,t)=0becomes singular on the common zero-set since the tangential con-dition is almost satisfied in the region close to tangential intersections.When the zero-set includes2-manifold surface patches,the surfaces S(u,v)and R(s,t)also intersect tangentially over surface patches.This observation also applies to other types of surface-surface intersections to be discussed in later sections.2.3Intersection with a Ringed SurfaceA ringed surface is a one-parameter family of circles,where the generator cir-cle moves in space while continuously changing its position,size and orientation. Given a freeform surface S(u,v)and a ringed surface R(s,t)=∪O t,their inter-section curve can be computed by characterizing the intersection points between each circle O t and the surface S(u,v).Let C(t)denote the center of the circle O t;and assume that the circle has radius r(t)and is contained in a plane with normal D(t).When the circle O t intersects the surface S(u,v),the surface point S(u,v)is contained in the circle O t:f3(u,v,t)= S(u,v)−C(t),D(t) =0,(4) g3(u,v,t)= S(u,v)−C(t) 2−r2(t)=0.(5)Equation(4)implies that S(u,v)is contained in the plane of the circle O t;and Equation(5)means that the circle O t has radius r(t).Moreover,when the circle O t intersects the surface S(u,v)tangentially,the three vectors S(u,v)−C(t),D(t) and N(u,v)become coplanar.(See Figure6(b)for a configuration where a circle touches the surface S(u,v).)Consequently,we haveh3(u,v,t)= (S(u,v)−C(t))×D(t),N(u,v) =0.(6) The intersection between a boundary curve S(u,v0)and a circle O t can be com-puted by solving the following system of two equations:10f4(u,t)= S(u,v0)−C(t),D(t) =0,g4(u,t)= S(u,v0)−C(t) 2−r2(t)=0.The case of S(u0,v)∩O t can be computed similarly.The intersection curve itself is constructed by a numerical curve tracing.However, in the case of intersection with a ringed surface,the intersection points along the s-axis repeat themselves with a period of2π.Thus,matching between two adjacent t i-circles becomes slightly more complicated.Given a set of discrete intersection points R(s j,t i),(0≤i≤2m;1≤j≤n i),on the ringed surface,we start a nu-merical curve tracing from a point R(s j,t i),with an even index i,and continue the tracing until we reach an adjacent circle R(s,t i±1),where wefind a mate R(s j,t i±1) from n i±1possible candidates of transvesal intersection points.Once this connec-tion has been made,the matching becomes straightforward for other intersection points on the two adjacent circles R(s,t i)and R(s,t i±1).2.4Intersection with a Swept SurfaceNow we consider the intersection of a freeform surface with a swept surface.A swept surface may be generated by sweeping a rational parametric curve in space or by sweeping an implicit algebraic curve.In the previous two cases of intersection with a ruled surface or a ringed surface,we represented the moving line or the moving circle as the intersection of two planes or as the intersection of a plane and a sphere.The same approach can be applied to a general cross-sectional curve that is defined as the intersection of two implicit surfaces.The curve can move under an affine spline motion[10]by making the two implicit surfaces move under the same motion.The cross-sectional curves may also be defined as the result of a rational affine spline motion applied to a template rational spline curve K(s).In this case, the curve parameter s also appears in the characterizing equations for tangential intersections.2.4.1Sweeping an Implicit Algebraic CurveWe consider a general swept surface where each cross-sectional curve is defined as an intersection of two time-dependent implicit algebraic surfaces:F t(x,y,z)=0 and G t(x,y,z)=0.The intersection curve between a rational freeform surface S(u,v)and the swept surface can be computed by solvingf5(u,v,t)=F t(S(u,v))=0,(7) g5(u,v,t)=G t(S(u,v))=0.(8)11Moreover,when the cross-sectional curve intersects the surface S(u,v)tangen-tially,we haveh5(u,v,t)= ∇F t(S(u,v))×∇G t(S(u,v)),N(u,v) =0,(9) where∇F t is the gradient of F t and∇G t is the gradient of G t.When two algebraic surfaces F(x,y,z)=0and G(x,y,z)=0are under the same affine spline motion,the two time-dependent algebraic surfaces are given as followsF t(x,y,z)=F [(x,y,z)−T(t)]L−1(t) =0,G t(x,y,z)=G [(x,y,z)−T(t)]L−1(t) =0,where T(t)represents a rational translational motion and L(t)is a non-singular 3×3matrix with rational spline functions as its entries.Note that the inverse matrix L−1(t)also has rational spline functions as its entries(as can be seen from Cramer’s rule).Figure7shows an example of a swept surface,where each cross-sectional curve is defined as the intersection of two quadrics.(a)(b)Fig.7.(a)A cross-sectional curve is represented as an intersection of two quadrics;and(b) A swept surface is generated by sweeping the intersection of two quadrics.The intersection between a boundary curve S(u,v0)and the swept surface can be computed by solvingf6(u,t)=F t(S(u,v0))=0,g6(u,t)=G t(S(u,v0))=0.The case of intersecting S(u0,v)and the swept surface can be handled in a similar way.122.4.2Sweeping a Rational Parametric CurveLet K(s)=(x(s),y(s),z(s))denote a rational spline curve.Now we apply a time-dependent non-singular linear transformation L(t)to K(s)and then a translation T(t)=(α(t),β(t),γ(t))to the result K(s)L(t),where L(t)is a3×3matrix with each entry as a rational spline function of t,andα(t),β(t),andγ(t)are also rational functions of t.Then a rational swept surface R(s,t)is defined as R(s,t)=∪[K(s)L(t)+T(t)].The intersection between R(s,t)and a freeform surface S(u,v)is characterized by the following vector equation:f7(u,v,s,t)=S(u,v)−K(s)L(t)−T(t)=0.(10)At a tangential intersection point,the tangent vector K′(s)L(t)of a cross-sectional curve K(s)L(t)+T(t)should be orthogonal to the normal vector N(u,v)of the freeform surface S(u,v):h7(u,v,s,t)= K′(s)L(t),N(u,v) =0.(11) The intersection between a boundary curve S(u,v0)and the swept surface R(s,t) can be computed by solvingf8(u,s,t)=S(u,v0)−K(s)L(t)−T(t)=0.The case of intersecting S(u0,v)and R(s,t)can be handled in a similar way.3Reduction to Parameter SpaceWe now go on to present an alternative approach that reduces the intersection prob-lem to that of computing the zero-set of(n−1)polynomial equations in n variables. When the cross-sectional curves are defined as the intersection of two implicit sur-faces,the problem is formulated with n=3,i.e.,we need to solve two equations in three variables.On the other hand,when the cross-sectional curves are rational parametric curves,the problem is formulated with n=4.In either case,the result is a1-manifold in the parameter space.(In some degenerate cases,we may also produce some2-manifold surface patches in the solution set.)By projecting the 1-manifold on to the uv-parameter plane of S(u,v),the intersection curve can be constructed.In the case of intersection with a ruled surface,we may represent each ruling lineR(s,t)=C1(t)+s(C2(t)−C1(t))13Fig.8.A ruled surface as a one-parameter family of lines,where each line is defined as the intersection of two non-parallel planes.as the intersection of two non-parallel planes with normal vectors N1(t)and N2(t) (Figure8).The intersection between a freeform surface S(u,v)and a ruling line is characterized as follows:f1(u,v,t)= S(u,v)−C1(t),N1(t) =0,g1(u,v,t)= S(u,v)−C1(t),N2(t) =0,which are two polynomial equations in three variables u,v,t.Fig.9.A ringed surface as a one-parameter family of circles,where each circle is defined as the intersection of a sphere and a plane.Figure9shows a ringed surface as a one-parameter family of circles,where each circle is defined as the intersection between a sphere and a plane.The intersection condition between a freeform surface S(u,v)and a circle O t is given as follows:f3(u,v,t)= S(u,v)−C(t),D(t) =0,g3(u,v,t)= S(u,v)−C(t) 2−r2(t)=0,14which are two polynomial equations in three variables u,v,t.We can represent a swept surface as a one-parameter family of cross-sectional curves.For a swept surface generated by a one-parameter family of implicit al-gebraic curves,each defined by two algebraic surfaces,the intersection curve is constructed by solvingf5(u,v,t)=F t(S(u,v))=0,g5(u,v,t)=G t(S(u,v))=0,which are two polynomial equations in three variables u,v,t.When a swept sur-face is generated by a rational parametric curve K(s)under a rational affine spline motion,the intersection curve can be constructed by solvingf7(u,v,s,t)=S(u,v)−K(s)L(t)−T(t)=0,which is a vector equation and represents three polynomial equations in four vari-ables u,v,s,t.Now we have reduced the intersection problem to that of computing the zero-set of(n−1)polynomial equations in n variables.The result is a1-manifold.By projecting this zero-set on to the uv-plane,the intersection is generated as a curve embedded in the freeform surface S(u,v).4Discussion and Experimental ResultsThe polynomial equations for constructing topology have one more equation(for the tangential condition)than those for the problem reduction approach.Moreover, we have to solve n polynomial equations for topology construction,but one less equation for the reduction approach.However,the solutions of n equations are discrete points in general,whereas the zero-sets of(n−1)equations in the reduction approach are1-manifolds.It is computationally more efficient to compute discrete solutions than to construct1-manifolds.Therefore,it is worthwhile to solve the n polynomial equations in n variables needed for topology construction. Topology construction requires a second stage of numerical tracing that generates segments of the intersection curve.This can be achieved using conventional tech-niques for numerical tracing along intersection curves.Alternatively,we can solve (n−1)polynomial equations in n variables,which have been formulated for the problem reduction approach.These equations define(n−1)implicit surfaces in an n-dimensional space,which is yet another surface-surface intersection problem when n=3.The two approaches proposed in this paper are thus closely related to15。

相关文档
最新文档