最新-2018年浙江中考模拟卷(5)[下学期]浙教版 精品
浙教版2018-2019学年中考数学模拟试卷含答案
∵S△ABC=?AB ?BC=×2×2 =4,∴S△ADC=2,∵= 2 ,∵△DEF∽△DAC,∴GH =BG=,∴BH=,又∵EF=AC=2,∴S△BEF=?EF?BH=×2×=,应选 C.方法二: S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED,易知 S△ABE+ S△BCF=S 四边形ABCD=3, S△EDF=,∴S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED=6﹣3﹣=.应选: C.【点评】此题主要考察了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.11 .如图,将半径为 2 ,圆心角为 120 °的扇形OAB 绕点A逆时针旋转60 °,点,B的对应点分别O为 O′,B′,连接BB′,那么图中阴影局部的面积是〔〕A.B.2﹣C.2﹣D.4﹣【分析】连接 OO ′,BO′,根据旋转的性质得到∠OAO ′=60°,推出△OAO ′是等边三角形,得到∠AOO ′=60 °,推出△OO′B是等边三角形,得到∠AO′B= 120 °,得到∠O′B′B=∠O′BB′=30 °,根据图形的面积公式即可得到结论.【解答】解:连接 OO ′,BO′,∵将半径为 2,圆心角为120 °的扇形OAB绕点A逆时针旋转60 °,∴∠OAO ′=60°,∴△OAO ′是等边三角形,∴∠AOO ′=60°,OO′=OA ,∴点 O′中⊙O 上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO ′B 是等边三角形,∴∠AO ′B=120°,∵∠AO ′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影局部的面积=S△B′O′B﹣〔 S 扇形O′OB﹣ S△OO′B〕=×1×2﹣〔﹣×2×〕=2﹣.【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,。
2018年浙教版中考数学模拟试卷及答案
2018年中考数学模拟卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在0,2,(-3)0,-5这四个数中,最大的数是( ) A .0 B .2 C .(-3)0 D .-5 2.如图中几何体的俯视图是( )第2题图3.中国人口众多,地大物博,仅领水面积就约为370000km 2,将“370000”这个数用科学记数法表示为( )A .3.7×106B .3.7×105C .37×104D .3.7×104 4.下列各式的变形中,正确的是( ) A .(-x -y )(-x +y )=x 2-y 2 B.1x -x =1-x xC .x 2-4x +3=(x -2)2+1D .x ÷(x 2+x )=1x+15.如图,在△ABC 中,∠ACB =90°,分别以点A 和B 为圆心,以相同的长⎝⎛⎭⎫大于12AB 为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连结CD ,下列结论错误的是( )A .AD =BDB .BD =CDC .∠A =∠BED D .∠ECD =∠EDC第5题图 第6题图 第9题图6.如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°7.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是() A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走600米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米8.某文具店的学习用品计算器、钢笔、笔记本,已知一台计算器的价钱比6支钢笔的价钱多6元,一本笔记本的价钱比2支钢笔的价钱少2元.则下列判断正确的是() A.一台计算器的价钱是一本笔记本的3倍B.若一台计算器降价4元,则其价钱是一本笔记本的3倍C.若一台计算器降价8元,则其价钱是一本笔记本的3倍D.若一台计算器降价12元,则其价钱是一本笔记本的3倍9.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,此时甲尺的刻度21会对准乙尺的刻度m,则m的值是()A.24 B.28 C.31 D.3210.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水.四位班长购买的数量及总价如表所示.若其中一人的总价算错了,则此人是谁()A.甲B.乙C.丙D.丁二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:m 3-m = .12.不等式组⎩⎪⎨⎪⎧2x +2>3x -2,3x<-6的解是 .13.在“直通春晚”总决赛中,选手小王、小张、小李、小刘组合要经过抽签进行终极PK ,工作人员准备了4个签,签上分别写有A 1,B 1,A 2,B 2的字样.规定:抽到A 1和B 1,A 2和B 2的选手分两组进行终极PK.小张第一个抽签,抽到了A 1,小王第二个抽签,则小王和小张进行PK 的概率是 .14.如图,点A 在双曲线y =3x 上,点B 在双曲线y =kx (k ≠0)上,AB ∥x 轴,过点A作AD ⊥x 轴于D.连结OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 .第14题图15.在矩形ABCD 中,AD =5,AB =4,点E ,F 在直线AD 上,且四边形BCFE 为菱形.若线段EF 的中点为点M ,则线段AM 的长为 .16.如图,在Rt △ABC 中,∠C =90°,BC =4,BA =5,点D 是边AC 上的一动点,过点D 作DE ∥AB 交边BC 于点E ,过点B 作BF ⊥BC 交DE 的延长线于点F ,分别以DE ,EF 为对角线画矩形CDGE 和矩形HEBF ,则在D 从A 到C 的运动过程中,当矩形CDGE 和矩形HEBF 的面积和最小时,AD 的长度为____________________.第16题图三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(-1)2018+⎝⎛⎭⎫12-1-4sin30°+16; (2)解方程组:⎩⎪⎨⎪⎧2x -3y =1,x +2y =4.18.某校新生入学后,对校服款式情况抽取了部分新生问卷调查,调查分为款式A ,B ,C ,D 四种,每位新生只能选择一种款式.现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:(1)在本次调查中,一共抽取了多少名新生,并补全条形统计图; (2)若该校有3000名新生,请估计该校新生选择款式B 的人数.第18题图19.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.已知OA =OB =10cm.第19题图(1)当∠AOB =18°时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)20.在探究“面积为常数的△ABC,边BC与BC边上高线AD的关系”的活动中,探究小组测得BC的长为x(cm),AD的长为y(cm)的一组对应值如下表:x(cm) 5 7 8 10 12 14y(cm)12 8.6 7.5 6 5 4.3第20题图(1)在右图坐标系中,用描点法画出相应的函数图象;(2)求出y关于x的函数关系式;(3)如果三角形BC边的长不小于15cm,求高线AD的范围.21.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:第21题图(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?22.△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.第22题图(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.23.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE 于点G,交BD于点F.第23题图(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是;(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.24.如图,平面直角坐标系中,已知A(0,4),B(5,0),D(3,0),点P从点A出发,沿y轴负方向在y轴上以每秒1个单位长度的速度匀速运动,过点P作PE∥x轴交直线AD 于点E.第24题图(1)设点P的运动时间为t(s),DE的单位长度为y,求y关于t的函数关系式,并写出t 的取值范围;(2)当t 为何值时,以EP 为半径的⊙E 恰好与x 轴相切?并求此时⊙E 的半径; (3)在点P 的运动过程中,当以D ,E ,P 三点为顶点的三角形是等腰三角形时,求此时t 的值.参考答案2018年中考数学模拟卷一、1—5.BABAD 6—10.AADDD二、11.m(m +1)(m -1) 12.x<-2 13.13 14.9 15.5.5或0.5 16.32三、17.(1)5 (2)⎩⎪⎨⎪⎧x =2,y =1.18.(1)设抽取了x 名新生,则40%x =20,∴x =50,∴抽取了50名新生.选择款式C 的新生50-10-20-5=15人,∴补全条形统计图如下: (2)3000×40%=1200人,∴估计该校新生选择款式B 的人数为1200名.第18题图19.(1)作OC ⊥AB 于点C ,如图1所示,由题意可得,OA =OB =10cm ,∠OCB =90°,∠AOB =18°,∴∠BOC =9°,∴AB =2BC =2OB·sin 9°≈2×10×0.1564≈3.13cm ,即所作圆的半径约为3.13cm ; (2)作AD ⊥OB 于点D ,作AE =AB ,如图2所示,∵保持∠AOB =18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE ,∵∠AOB =18°,OA =OB ,∠ODA =90°,∴∠OAB =81°,∠OAD =72°,∴∠BAD =9°,∴BE =2BD =2AB·sin 9°≈2×3.13×0.1564≈0.98cm ,即铅笔芯折断部分的长度是0.98cm .第19题图 第20题图20.(1)函数图象如图所示. (2)根据图象的形状,选择反比例函数模型进行尝试.设y =k x (k ≠0),选点(5,12)的坐标代入,得k =60,∴y =60x .∵其余点的坐标代入验证,近似符合关系式y =60x ,∴所求的函数解析式是y =60x(x >0). (3)由题意得:x ≥15,∴由图象知:0<y ≤4.即高线AD 的范围是0cm <AD ≤4cm .21.(1)40 (2)v 1=1.5v 2=1.5×40=60(米/分),60÷60=1(分钟),a =1,d 1=⎩⎪⎨⎪⎧-60t +60(0≤t <1),60t -60(1≤t ≤3); (3)d 2=40t ,当0≤t<1时,d 2+d 1>10,即-60t +60+40t >10,解得0≤t <1;当1≤t ≤3时,d 2-d 1>10,即40t -(60t -60)>10,解得1≤t <52时.综上所述:当0≤t <52时,两遥控车的信号不会产生相互干扰.22.(1)如图1所示;(2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图2,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC =90°,如图3,此时y =90°+12(90°-x)=135°-12x.若∠ABD =90°,如图4,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图5,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图6,此时x =45°,45°<y <135°.第22题图23.(1)AF =BE (2)AFBE = 3.理由如下:∵四边形ABCD 是菱形,∠ABC =120°,∴AC ⊥BD ,∠ABO =60°.∴∠FAO +∠AFO =90°.∵AG ⊥BE ,∴∠EAG +∠BEA =90°.∴∠AFO =∠BEA.又∵∠AOF =∠BOE =90°,∴△AOF ∽△BOE.∴AF BE =AOOB .∵∠ABO =60°,AC ⊥BD ,∴AO OB =tan 60°= 3.∴AFBE= 3.24.(1)在Rt △AOD 中,OA =4,OD =3,则AD =5.①当点P 在AO 上运动时,∵PE ∥x 轴,AE =5-y ,∴AP AO =AE AD ,则t 4=5-y 5,即y =-54t +5(0≤t ≤4).②当点P 在y 轴负半轴上运动时,∵PE ∥x 轴,AE =5+y ,∴AP AO =AE AD ,则4t =55+y ,即y =54t -5(t >4). (2)由题意以EP 为半径的⊙E 恰好与x 轴相切,设切点为M ,则EM =EP.故分别作第一、四象限角的平分线交直线AD 于点E 1,E 2.由A(0,4),D(3,0)得到直线y AD =-43x +4.解方程组⎩⎪⎨⎪⎧y =x ,y =-43x +4,得⎩⎨⎧x =127,y =127,即E 1(127,127).∴t 1=4-127=167.此时圆的半径是127.解方程组⎩⎪⎨⎪⎧y =-x ,y =-43x +4,得⎩⎪⎨⎪⎧x =12,y =-12,即E 2(12,-12).∴t 2=4+12=16,此时圆的半径是12.综上:当t =167或t =16时,以EP 为半径的⊙E 恰好与x 轴相切,此时⊙E 的半径分别是127和12.(3)当点P 在AO 上运动时,等腰△DEP 中只有EP =ED 这一种情况.∵EP =34t ,∴34t =-54t+5,∴t =52.当点P 在y 轴负半轴上运动时:①若PD =DE ,则PD 2=32+(t -4)2,DE 2=(54t-5)2,从而32+(t -4)2=(54t -5)2,解得t 1=0,t 2=8.(t =0舍去);②若PD =PE ,则PD 2=32+(t -4)2,PE 2=(34t)2,从而32+(t -4)2=(34t)2,解得t 1=1007,t 2=4.(t =4舍去);③若DE。
最新-2018年中考科学第二次模拟考试卷 浙教版 精品
2018年初中毕业生第二次模拟考试科学试卷亲爱的同学:欢迎你参加考试!经过一段时间的复习,你的科学知识又进展不少吧!答题前,请你认真阅读以下几点说明:1.全卷共8页,有四大题,37小题。
全卷满分200分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.本卷可能用到的相对原子质量有:H—1 O—16 Na—23 Cl—35.54.本卷中g取10牛/千克。
希望你认真审题,细心答题,发挥最佳水平!卷 I一、选择题(本题有20小题,每小题4分,共80分。
每小题只有一个选项是正确的,不选、多选、错选,均不给分。
)1.“低能耗”、“低废水”、“低废弃物”是低碳节能理念的重要内涵。
下列做法不符合低碳理念的是(▲ )A.推广利用太阳能 B.回收有机垃圾用于生产沼气C.循环使用生活用水 D.电脑显示器长期处于待机状态2.我们生活在一个千变万化的物质世界里。
下列变化中,属于物理变化的是(▲ )A .蜡烛燃烧B .冰雪融化C .牛奶变质D .瓦斯爆炸3.古语到:“人要实,火要虚。
”此话的意思是说做人要脚踏实地,才能事业有成;可燃物要架空一些,才能燃烧更旺。
“火要虚”的科学目的是(▲ )A.增大可燃物的热值B.降低可燃物的着火点C.增大空气中的氧气的含量D.增大可燃物与空气的接触面积4.如图是一辆汽车停在斜坡上的情景。
下列各图(长方形表示汽车)中能正确表示汽车对斜坡的压力的示意图是(▲ )5.下列有关人体的科学知识描述不正确的是(▲ )A.人体的安全电压不高于36伏 B.人体结构和功能的基本单位是细胞C.人体中不含有任何化学元素 D.人的发育是从受精卵形成开始6.为了保护南极的生态环境,到南极考察的科学工作者不但要把塑料等难以降解的垃圾带离南极,还需要把粪便等生活垃圾带离南极,这是因为南极(▲ )A.光照不足 B.没有分解者 C.没有消费者 D.自动调节能力弱7.一辆汽车不小心陷进泥潭后,司机按图所示的甲、乙两种方法安装滑轮,均可将汽车从泥潭中匀速拉出。
2018春浙教版科学九年级下册中考模拟试题
2018年浙江省中考科学模拟试题温馨提醒:1.全卷共四大题,38小题。
满分160分,考试时间为120分钟。
2. 所有答案都必须写在答题卷对应的位置上,务必注意试题序号和答题序号相对应。
3.本卷可能用到的相对原子质量有:H:1 C:12 O:16 Cl:35.5 Ca:40试题卷I一、选择题(本大题共20小题,每小题3分,共60分。
请选出每小题中一个符合题意的选项。
不选、多选、错选均不给分)1.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也叫可入肺颗粒物,与肺癌、哮喘等疾病的发生密切相关,是灰霾天气的主要原因,它主要来自化石燃料的燃烧(如机动车尾气、燃煤)等。
2018年2月,国务院同意发布新修订的《环境空气质量标准》,增加了PM2.5监测指标。
下列与PM2.5相关的说法不正确...的是(▲)A.大力发展电动车,减少燃油汽车的尾气排放量 B.是形成沙尘暴天气的主要因素 C.其颗粒小,在大气中的停留时间长、输送距离远,因而对人体健康影响更大D.开发利用各种新能源,减少对化石燃料的依赖2.人的指纹重复的概率极小,常被用来鉴别身份,被称为“人体身份证”。
决定每个人指纹这一性状的是A.无机盐B.葡萄糖C.基因D.蛋白质3.如图的四种情景,属于光的反射现象的是4.下列现象是由于地球不停自转产生的是A. 四季更替B.昼夜交替C. 白昼和黑夜D.昼夜长短变化5.下列化学式所表示的四种含氧化合物,在利用物质的酸碱性进行分类时不能与其他三种分为同类的是A.ZnSO4 B.H2SO4 C.Na2SO4 D.Fe2(SO4)36.生物与非生物有着本质的区别。
下列关于生物特征的叙述,错误的...一项是A.生物都能新陈代谢 B.生物能对刺激作出反应C.生物能生长和繁殖 D.生物都能制造自身需要的有机物7.如果用600牛的力能将一个物体沿竖直方向匀速拉升,那么要将这个物体沿竖直方向匀速放下(不计空气阻力),所需要的作用力是(▲)A.小于600牛,竖直向上施力B.等于600牛,竖直向上施力C.0牛D.等于600牛,竖直向下施力8.喝茶在我国有悠久的历史,又到了新茶上市的时候。
2018年浙江省杭州市萧山区中考物理模拟试卷(5月份卷
2018年浙江省杭州市萧山区中考物理模拟试卷(5月份)一.选择题(每小题3分)1.(3分)如图所示,在一面竖直立着的平面镜左方水平放置一个九格的棋盘,平面镜右方表示镜中的像,将一颗棋子“馬”由图中甲处移到乙处,则平面镜中所显示的棋子“馬”,其移动的路径是()A.P→S B.Q→R C.S→P D.R→Q2.(3分)在汽车中悬线上挂一个小球,当汽车运动时,悬线将与竖直方向成某一固定角度,如图所示,若在汽车底板上还有一个跟其相对静止的物体M,则关于汽车的运动情况和物体M的受力情况正确的是()A.汽车一定向右做加速运动B.汽车一定向左做加速运动C.M除受到重力、底板的支持力作用外,还一定受到向右的摩擦力作用D.M除受到重力、底板的支持力作用外,还可能受到向左的摩擦力作用3.(3分)《舌尖上的中国》热播,引起了人们对饮食文化的关注,广式腊味大受青睐,以下说法正确的是()A.腌制腊肉时,要把盐涂抹均匀,是因为盐不会扩散B.腌制好腊肠后,要晾在通风的地方,是防止水分蒸发C.蒸腊鸭时闻到香味,说明分子只在高温下运动D.做腊味煲仔饭时,腊味煲仔饭温度升高,它的内能增加4.(3分)长方体物块A、B的高和底面积如图甲所示。
把它们放在水中时,物块A处于漂浮,物块B处于悬浮,如图乙所示。
则在图甲把A、B两物块放在水平地面上时,对地面的压强较大的和在图乙中,A、B两物块下表面受到水的压强较大的分别是()A.A和A B.A和B C.B和A D.B和B5.(3分)在治疗心脏疾病患者时,通常用一种被称为“血泵”的体外装置来代替心脏,以维持血液循环,其简化示意图如图所示。
线圈固定在软铁杆上,两者组成一个电磁铁,活塞筒在阀门S1、S2处与血管相连,则下列说法正确的是()A.在该装置工作中的某时刻,若电流从a端流进线圈,从b端流出线圈,则电磁铁受到左侧永磁体向左的作用力B.要使该装置能维持人体血液循环,线圈a、b间所接电源应为直流电源交流电源C.要使该装置能维持人体血液循环,线圈a、b间所接电源应为交流、直流电源均可D.要使该装置能维持人体血液循环,线圈a、b间所接电源应为交流电源6.(3分)如图所示,是由微颗粒(1~50nm)制备得到新型防菌“纳米纸”。
最新-2018年中考数学模拟试卷及答案【浙江省】 精品
2018年初中毕业生中考模拟试卷(浙江省)数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题4分, 共40分) 下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1、-2的倒数是(▲) A.-2 B.-21 C.21D.2 2、据统计,2018年“超级男生”短信投票的总票数约327 000 000张,将这个数写成科学数法是(▲) A.3.27×118 B.3.27×118 C.3.27×118 D.3.27×118 3、如图所示的图案中是轴对称图形的是(▲)4、已知α为等边三角形的一个内角,则cosα等于(▲) A.21 B.22 C.23 D.335、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36º,则该圆锥的母线长为(▲)A.100cmB.10cm cm 6、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是(▲)A B C D7、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。
如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m1.4141.732)是(▲)A.0.62mB.0.76mC.1.24mD.1.62m 8、若反比例函数ky x=的图象经过点(–1,2),则这个函数的图象一定经过点(▲) A 、(2,-1) B 、(12-,2) C 、(-2,-1) D 、(12,2)9、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是(▲)A.14B.15C.16D.32010、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1,x 2是方程x 2+6x ++3=0的两实数根,则21x x +12x x 的值为(▲) A. 4 B. 6 C. 8 D. 10二. 认真填一填 (本题有6个小题, 每小题5分, 共30分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、分解因式:x 3-4x = . 12、函数函数12-+=x x y 中自变量x 的取值范围是 . 13、要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值是 .14、如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120︒,则该零件另一腰AB 的长是 m . 15、某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是 吨. 16、在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+ n .1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -1)×(n -2)×…×3×2×1.则20061k k =∑-20071k k =∑+2007!2006!=___. A B C D三. 全面答一答(17~19题每题8分,20~22每题10分,23每题12分,24题14分,共80分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17、(本小题满分8分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ;18、(本小题满分8分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90 ,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(要求写出画法). 19、(本小题满分8分)在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为 ;乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.20、(本小题满分10分)如图,小丽在观察某建筑物AB.(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影. (2)已知小丽的身高为1.65m ,在同一时刻测得小丽和建筑物AB 的投影长分别为1.2m 和8m ,求建筑物AB 的高.AB C很不满不满意 较满意很满10020021、(本小题满分10分)温度与我们的生活息息相关,你仔细观察过温度计吗?如图12是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F ),设摄氏温度为x (℃),华氏温度为y (°F),则y 是x 的一次函数. (1)仔细观察图中数据,试求出y 与x 之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少? 22、(本小题满分10分) 如图,已知△ABC ,∠ACB=90º,AC=BC ,点E 、 F 在AB 上,∠ECF= 45º, (1)求证:△ACF ∽△BEC (5分) (2)设△ABC 的面积为S ,求证:AF·BE=2S (5分)23、(本小题满分12分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm ),设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA=α,且sin α=35. (1)求点M 离地面AC 的高度BM (单位:厘米); (2)设人站立点C 与点AMF 的长度(单位:厘米).24、(本小题满分14分)如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线x =1交x 轴于点B 。
最新-2018年中考模拟数学试题[下学期]浙教版 精品
A D CB abb b b a ab 2018年中考模拟数学试题(时间:120分钟 满分:150分)学校_____________________ 考号_____________________ 姓名______________________第Ⅰ卷(选择题,共30分)39℃,最低气温为零下3℃,则计算2018年温差列式正确的是( )A 、(+39)+(-3) B 、(+39)+(+3)C 、(+39)-(-3)D 、(+39)-(+3)2、鸡兔同笼,若有鸡x 只,兔y 只,则鸡兔共有脚()A、(2x +2y +2)只 B 、(4x +4y -2)只 C 、(2x +4y)只 D 、(4y -2x)只3、一双旅游鞋标价285元,若以8折出售,仍可获利20%,则这种旅游鞋每双进价为( )A 、190元B 、185元C 、170元D 、228元 4、如图,矩形ABCD 是由一些小矩形和正方形拼成的,下列各式表示矩形ABCD 的面积S 错误的是( )A 、S =a 2+3b 2+4abB 、S =(a +b)(a +3b)C 、S =(a +b)2+2ab +2b 2D 、S =3b(a +b)+a 2 5、若不等式组⎩⎨⎧≥4x mx 无解则 m 的取值范围是( )A 、m ≥4B 、m ≦4C 、m>4D 、m<46、货架上摆放同一种盒装巧克力,其三视图如图所示,则货架上共摆放巧克力为( )A 、15盒B 、16盒C 、18盒D 、20盒7、在直角坐标系中,⊙O 的圆心在原点,半径为2,⊙P 的圆心为(-4,-4),半径为1,将⊙P 向左平移5个单位,再向上平移4个单位后,它与⊙O 的位置关系是( )A 、外切B 、内切C 、相交D 、外离 8、“龟兔赛跑”讲的是:领先的兔子看到乌龟缓慢爬行,骄傲起来,睡了一觉,醒来发现乌龟已快到终点,于是急忙追赶,但为时已晚,乌龟还是先到了终点,用s 表示所行路程,t 表示时间,下列图中与故事情节相吻合的是( )9、用0~9这10个数字组成一个两位数(首位可以为零),若数字可以重复使用,则可以组成102个不同的两位数,同样组成由三个数字排列的数,有103个,以此类推,2018年的有奖明信片编号共有六位数字组成,头等奖为后五位数是36186,那么今年购买明信片中头等奖的概率是( )A 、11000B 、110000C 、1100000D 、1100000010、已知二次函数y =ax 2+bx +c(a ≠0),若a +b +c =0,且a<b<c ,则它的大致图象是( )一、选择题:(本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一个符合题目要求,把它选出来。
2018年浙江省中考数学模拟试卷和答案
省2021年中考数学模拟试卷与答案一、选择题〔共16小题.1~6小题.每题2分;7~16小题.每题2分.共42分.在每题给出的四个选项中.只有一项为哪一项符合题目要求的〕1.〔2分〕﹣2是2的〔〕A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数.可得一个数的相反数.解答:解:﹣2是2的相反数.应选:B.点评:此题考察了相反数.在一个数的前面加上负号就是这个数的相反数.2.〔2分〕如图.△ABC中.D.E分别是边AB.AC的中点.假设DE=2.那么BC=〔〕A.2B.3C.4D.5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D.E分别是边AB.AC的中点.∴DE是△ABC的中位线.∴BC=2DE=2×2=4.应选C.点评:此题考察了三角形的中位线平行于第三边并且等于第三边的一半.熟记定理是解题的关键.3.〔2分〕计算:852﹣152=〔〕A.70 B.700 C.4900 D.7000考点:因式分解-运用公式法.分析:直接利用平方差进展分解.再计算即可.解答:解:原式=〔85+15〕〔85﹣15〕=100×70=7000.应选:D.点评:此题主要考察了公式法分解因式.关键是掌握平方差公式:a2﹣b2=〔a+b〕〔a﹣b〕.4.〔2分〕如图.平面上直线a.b分别过线段OK两端点〔数据如图〕.那么a.b相交所成的锐角是〔〕A.20°B.30°C.70°D.80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个角的和列式计算即可得解.解答:解:a.b相交所成的锐角=100°﹣70°=30°.应选B.点评:此题考察了三角形的一个外角等于与它不相邻的两个角的和的性质.熟记性质是解题的关键.5.〔2分〕a.b是两个连续整数.假设a<<b.那么a.b分别是〔〕A.2.3 B.3.2 C.3.4 D.6.8考点:估算无理数的大小.分析:根据.可得答案.解答:解:.应选:A.点评:此题考察了估算无理数的大小.是解题关键.6.〔2分〕如图.直线l经过第二、三、四象限.l的解析式是y=〔m﹣2〕x+n.那么m的取值围在数轴上表示为〔〕A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0.解得m<2.然后根据数轴表示不等式的方法进展判断.解答:解:∵直线y=〔m﹣2〕x+n经过第二、三、四象限.∴m﹣2<0且n<0.∴m<2且n<0应选C.点评:此题考察了一次函数图象与系数的关系:一次函数y=kx+b〔k、b为常数.k≠0〕是一条直线.当k >0.图象经过第一、三象限.y随x的增大而增大;当k<0.图象经过第二、四象限.y随x的增大而减小;图象与y轴的交点坐标为〔0.b〕.也考察了在数轴上表示不等式的解集.7.〔3分〕化简:﹣=〔〕A.0B.1C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法那么计算.约分即可得到结果.解答:解:原式==x.应选C点评:此题考察了分式的加减法.熟练掌握运算法那么是解此题的关键.8.〔3分〕如图.将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.那么n≠〔〕A.2B.3C.4D.5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质.结合勾股定理得出分割方法即可.解答:解:如下图:将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.那么n可以为:3.4.5.故n≠2.应选:A.点评:此题主要考察了图形的剪拼.得出正方形的边长是解题关键.9.〔3分〕某种正方形合金板材的本钱y〔元〕与它的面积成正比.设边长为x厘米.当x=3时.y=18.那么当本钱为72元时.边长为〔〕A.6厘米B.12厘米C.24厘米D.36厘米考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2.由待定系数法就可以求出解析式.当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2.由题意.得18=9k.解得:k=2.∴y=2x2.当y=72时.72=2x2.∴x=6.应选A.点评:此题考察了待定系数法求函数的解析式的运用.根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.10.〔3分〕如图1是边长为1的六个小正方形组成的图形.它可以围成图2的正方体.那么图1中小正方形顶点A.B围成的正方体上的距离是〔〕A.0B.1C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体.可得正方体.根据勾股定理.可得答案.解答:解;AB是正方体的边长.AB=1.应选:B.点评:此题考察了展开图折叠成几何体.勾股定理是解题关键.11.〔3分〕某小组做“用频率估计概率〞的实验时.统计了某一结果出现的频率.绘制了如图的折线统计图.那么符合这一结果的实验最有可能的是〔〕A.在“石头、剪刀、布〞的游戏中.小明随机出的是“剪刀〞B.一副去掉大小王的普通扑克牌洗匀后.从中任抽一牌的花色是红桃C.暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球D.掷一个质地均匀的正六面体骰子.向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知.试验结果在0.17附近波动.即其概率P≈0.17.计算四个选项的概率.约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布〞的游戏中.小明随机出的是“剪刀“的概率为.故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后.从中任抽一牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球的概率为.故此选项错误;D、掷一个质地均匀的正六面体骰子.向上的面点数是4的概率为≈0.17.故此选项正确.应选:D.点评:此题考察了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.〔3分〕如图.△ABC〔AC<BC〕.用尺规在BC上确定一点P.使PA+PC=BC.那么符合要求的作图痕迹是〔〕A.B.C.D.考点:作图—复杂作图分析:要使PA+PC=BC.必有PA=PB.所以选项中只有作AB的中垂线才能满足这个条件.故D正确.解答:解:D选项中作的是AB的中垂线.∴PA=PB.∵PB+PC=BC.∴PA+PC=BC应选:D.点评:此题主要考察了作图知识.解题的关键是根据作图得出PA=PB.13.〔3分〕在研究相似问题时.甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩.得到新三角形.它们的对应边间距为1.那么新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩.得到新的矩形.它们的对应边间距均为1.那么新矩形与原矩形不相似.对于两人的观点.以下说确的是〔〕A.两人都对B.两人都不对C.甲对.乙不对D.甲不对.乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.即可证得∠A=∠A′.∠B=∠B′.可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3.AD=BC=5.那么A′B′=C′D′=3+2=5.A′D′=B′C′=5+2=7.那么可得.即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.∴∠A=∠A′.∠B=∠B′.∴△ABC∽△A′B′C′.∴甲说确;乙:∵根据题意得:AB=CD=3.AD=BC=5.那么A′B′=C′D′=3+2=5.A′D′=B′C′=5+2=7.∴..∴.∴新矩形与原矩形不相似.∴乙说确.应选A.点评:此题考察了相似三角形以及相似多边形的判定.此题难度不大.注意掌握数形结合思想的应用.14.〔3分〕定义新运算:a⊕b=例如:4⊕5=.4⊕〔﹣5〕=.那么函数y=2⊕x〔x≠0〕的图象大致是〔〕A.B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=.再根据反比例函数的性质可得函数图象所在象限和形状.进而得到答案.解答:解:由题意得:y=2⊕x=.当x>0时.反比例函数y=在第一象限.当x<0时.反比例函数y=﹣在第二象限.又因为反比例函数图象是双曲线.因此D选项符合.应选:D.点评:此题主要考察了反比例函数的性质.关键是掌握反比例函数的图象是双曲线.15.〔3分〕如图.边长为a的正六边形有两个三角形〔数据如图〕.那么=〔〕A.3B.4C.5D.6考点:正多边形和圆分析:先求得两个三角形的面积.再求出正六边形的面积.求比值即可.解答:解:如图.∵三角形的斜边长为a.∴两条直角边长为 a. a.∴S空白=a•a=a2.∵AB=a.∴OC= a.∴S正六边形=6×a•a=a2.∴S阴影=S正六边形﹣S空白=a2﹣a2=a2.∴==5.应选C.点评:此题考察了正多边形和圆.正六边形的边长等于半径.面积可以分成六个等边三角形的面积来计算.16.〔3分〕五名学生投篮球.规定每人投20次.统计他们每人投中的次数.得到五个数据.假设这五个数据的中位数是6.唯一众数是7.那么他们投中次数的总和可能是〔〕A.20 B.28 C.30 D.31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数.众数是一组数据中出现次数最多的数据.注意众数可以不止一个.那么最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.那么可求得五个数的和的围.进而判断.解答:解:中位数是6.唯一众数是7.那么最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.那么五个数的和一定大于20且小于29.应选B.点评:此题属于根底题.考察了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚.计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序.然后再根据奇数和偶数个来确定中位数.如果数据有奇数个.那么正中间的数字即为所求.如果是偶数个那么找中间两位数的平均数.二、填空题〔共4小题.每题3分.总分值12分〕17.〔3分〕计算:= 2 .考点:二次根式的乘除法.分析:此题需先对二次根式进展化简.再根据二次根式的乘法法那么进展计算即可求出结果.解答:解:.=2×.=2.故答案为:2.点评:此题主要考察了二次根式的乘除法.在解题时要能根据二次根式的乘法法那么.求出正确答案是此题的关键.18.〔3分〕假设实数m.n 满足|m﹣2|+〔n﹣2021〕2=0.那么m﹣1+n0= .考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0.可得绝对值与平方同时为0.根据负整指数幂、非0的0次幂.可得答案.解答:解:|m﹣2|+〔n﹣2021〕2=0.m﹣2=0.n﹣2021=0.m=2.n=2021.m﹣1+n0=2﹣1+20210=+1=.故答案为:.点评:此题考察了负整指数幂.先求出m、n的值.再求出负整指数幂、0次幂.19.〔3分〕如图.将长为8cm的铁丝尾相接围成半径为2cm的扇形.那么S扇形= 4 cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知.弧长=8cm﹣2cm×2=4 cm.扇形的面积是×4cm×2cm=4cm2.故答案为:4.点评:此题考察了扇形的面积公式的应用.主要考察学生能否正确运用扇形的面积公式进展计算.题目比拟好.难度不大.20.〔3分〕如图.点O.A在数轴上表示的数分别是0.0.1.将线段OA分成100等份.其分点由左向右依次为M1.M2 (99)再将线段OM1.分成100等份.其分点由左向右依次为N1.N2 (99)继续将线段ON1分成100等份.其分点由左向右依次为P1.P2. (99)那么点P37所表示的数用科学记数法表示为 3.7×10﹣6 .考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3.N1表示的数为0×10﹣3=10﹣5.P1表示的数为10﹣5×=10﹣7.进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3.N1表示的数为0×10﹣3=10﹣5.P1表示的数为10﹣5×=10﹣7.P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考察图形的变化规律.结合图形.找出数字之间的运算方法.找出规律.解决问题.三、解答题〔共6小题.总分值66分.解容许写出文字说明、证明过程或演算步骤〕21.〔10分〕嘉淇同学用配方法推导一元二次方程ax2+bx+c=0〔a≠0〕的求根公式时.对于b2﹣4ac>0的情况.她是这样做的:由于a≠0.方程ax2++bx+c=0变形为:x2+x=﹣.…第一步x2+x+〔〕2=﹣+〔〕2.…第二步〔x+〕2=.…第三步x+=〔b2﹣4ac>0〕.…第四步x=.…第五步嘉淇的解法从第四步开场出现错误;事实上.当b2﹣4ac>0时.方程ax2+bx+c=0〔a≠O〕的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步.开方时出错;把常数项24移项后.应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中.开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项.得x2﹣2x=24.配方.得x2﹣2x+1=24+1.即〔x﹣1〕2=25.开方得x﹣1=±5.∴x1=6.x2=﹣4.点评:此题考察了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:〔1〕形如x2+px+q=0型:第一步移项.把常数项移到右边;第二步配方.左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步.直接开方即可.〔2〕形如ax2+bx+c=0型.方程两边同时除以二次项系数.即化成x2+px+q=0.然后配方.22.〔10分〕如图1.A.B.C是三个垃圾存放点.点B.C分别位于点A的正北和正向.AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C〔单位:度〕34 36 38 40他们又调查了各点的垃圾量.并绘制了以下尚不完整的统计图2.图3:〔1〕求表中∠C度数的平均数:〔2〕求A处的垃圾量.并将图2补充完整;〔3〕用〔1〕中的作为∠C的度数.要将A处的垃圾沿道路AB都运到B处.运送1千克垃圾每米的费用为0.005元.求运垃圾所需的费用.〔注:sin37°=0.6.cos37°=0.8.tan37°=0.75〕考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:〔1〕利用平均数求法进而得出答案;〔2〕利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比.进而求出垃圾总量.进而得出A处垃圾量;〔3〕利用锐角三角函数得出AB的长.进而得出运垃圾所需的费用.解答:解:〔1〕==37;〔2〕∵C处垃圾存放量为:320kg.在扇形统计图中所占比例为:50%.∴垃圾总量为:320÷50%=640〔kg〕.∴A处垃圾存放量为:〔1﹣50%﹣37.5%〕×640=80〔kg〕.占12.5%.补全条形图如下:〔3〕∵AC=100米.∠C=37°.∴tan37°=.∴AB=ACtan37°=100×0.75=75〔m〕.∵运送1千克垃圾每米的费用为0.005元.∴运垃圾所需的费用为:75×80×0.005=30〔元〕.答:运垃圾所需的费用为30元.点评:此题主要考察了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用.利用扇形统计图与条形统计图获取正确信息是解题关键.23.〔11分〕如图.△ABC中.AB=AC.∠BAC=40°.将△ABC绕点A按逆时针方向旋转100°.得到△ADE.连接BD.CE交于点F.〔1〕求证:△ABD≌△ACE;〔2〕求∠ACE的度数;〔3〕求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:〔1〕根据旋转角求出∠BAD=∠CAE.然后利用“边角边〞证明△ABD和△ACE全等.〔2〕根据全等三角形对应角相等.得出∠ACE=∠ABD.即可求得.〔3〕根据对角相等的四边形是平行四边形.可证得四边形ABEF是平行四边形.然后依据邻边相等的平行四边形是菱形.即可证得.解答:〔1〕证明:∵ABC绕点A按逆时针方向旋转100°.∴∠BAC=∠DAE=40°.∴∠BAD=∠CA E=100°.又∵AB=AC.∴AB=AC=AD=AE.在△ABD与△ACE中∴△ABD≌△ACE〔SAS〕.〔2〕解:∵∠CAE=100°.AC=AE.∴∠ACE=〔180°﹣∠CAE〕=〔180°﹣100°〕=40°;〔3〕证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE.∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°.∴∠BF E=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°.∴∠BAE=∠BFE.∴四边形ABEF是平行四边形.∵AB=AE.∴平行四边形ABEF是菱形.点评:此题考察了全等三角形的判定与性质.等腰三角形的性质以及菱形的判定.熟练掌握全等三角形的判定与性质是解此题的关键.24.〔11分〕如图.2×2网格〔每个小正方形的边长为1〕中有A.B.C.D.E.F.G、H.O九个格点.抛物线l 的解析式为y=〔﹣1〕nx2+bx+c〔n为整数〕.〔1〕n为奇数.且l经过点H〔0.1〕和C〔2.1〕.求b.c的值.并直接写出哪个格点是该抛物线的顶点;〔2〕n为偶数.且l经过点A〔1.0〕和B〔2.0〕.通过计算说明点F〔0.2〕和H〔0.1〕是否在该抛物线上;〔3〕假设l经过这九个格点中的三个.直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:〔1〕根据﹣1的奇数次方等于﹣1.再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值.然后把函数解析式整理成顶点式形式.写出顶点坐标即可;〔2〕根据﹣1的偶数次方等于1.再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值.从而得到函数解析式.再根据抛物线上点的坐标特征进展判断;〔3〕分别利用〔1〕〔2〕中的结论.将抛物线平移.可以确定抛物线的条数.解答:解:〔1〕n为奇数时.y=﹣x2+bx+c.∵l经过点H〔0.1〕和C〔2.1〕.∴.解得.∴抛物线解析式为y=﹣x2+2x+1.y=﹣〔x﹣1〕2+2.∴顶点为格点E〔1.2〕;〔2〕n为偶数时.y=x2+bx+c.∵l经过点A〔1.0〕和B〔2.0〕.∴.解得.∴抛物线解析式为y=x2﹣3x+2.当x=0时.y=2.∴点F〔0.2〕在抛物线上.点H〔0.1〕不在抛物线上;〔3〕所有满足条件的抛物线共有8条.当n为奇数时.由〔1〕中的抛物线平移又得到3条抛物线.如答图3﹣1所示;当n为偶数时.由〔2〕中的抛物线平移又得到3条抛物线.如答图3﹣2所示.点评:此题是二次函数综合题型.主要利用了待定系数法求二次函数解析式.二次函数图象上点的坐标特征.二次函数的对称性.要注意〔3〕抛物线有开口向上和开口向下两种情况.25.〔11分〕图1和图2中.优弧所在⊙O的半径为2.AB=2.点P为优弧上一点〔点P不与A.B 重合〕.将图形沿BP折叠.得到点A的对称点A′.〔1〕点O到弦AB的距离是 1 .当BP经过点O时.∠ABA′=60 °;〔2〕当BA′与⊙O相切时.如图2.求折痕的长:〔3〕假设线段BA′与优弧只有一个公共点B.设∠ABP=α.确定α的取值围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换〔折叠问题〕;锐角三角函数的定义专题:综合题.分析:〔1〕利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.〔2〕根据切线的性质得到∠OBA′=90°.从而得到∠ABA′=120°.就可求出∠ABP.进而求出∠OBP=30°.过点O作OG⊥BP.垂足为G.容易求出OG、BG的长.根据垂径定理就可求出折痕的长.〔3〕根据点A′的位置不同.分点A′在⊙O和⊙O外两种情况进展讨论.点A′在⊙O时.线段BA′与优弧都只有一个公共点B.α的围是0°<α<30°;当点A′在⊙O的外部时.从BA′与⊙O相切开场.以后线段BA′与优弧都只有一个公共点B.α的围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时.α的取值围是0°<α<30°或60°≤α<120°.解答:解:〔1〕①过点O作OH⊥AB.垂足为H.连接OB.如图1①所示.∵OH⊥AB.AB=2.∴AH=BH=.∵OB=2.∴OH=1.∴点O到AB的距离为1.②当BP经过点O时.如图1②所示.∵OH=1.OB=2.OH⊥AB.∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.〔2〕过点O作OG⊥BP.垂足为G.如图2所示.∵BA′与⊙O相切.∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°.∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP.∴BG=PG=.∴BP=2.∴折痕的长为2.〔3〕假设线段BA′与优弧只有一个公共点B.Ⅰ.当点A′在⊙O的部时.此时α的围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时.此时α的围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时.α的取值围是0°<α<30°或60°≤α<120°.点评:此题考察了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识.考察了用临界值法求α的取值围.有一定的综合性.第〔3〕题中α的围可能考虑不够全面.需要注意.26.〔13分〕某景区的环形路是边长为800米的正方形ABCD.如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发.1号车顺时针、2号车逆时针沿环形路连续循环行驶.供游客随时免费乘车〔上、下车的时间忽略不计〕.两车速度均为200米/分.探究:设行驶吋间为t分.〔1〕当0≤t≤8时.分别写出1号车、2号车在左半环线离出口A的路程y1.y2〔米〕与t〔分〕的函数关系式.并求出当两车相距的路程是400米时t的值;〔2〕t为何值时.1号车第三次恰好经过景点C?并直接写出这一段时间它与2号车相遇过的次数.发现:如图2.游客甲在BC上的一点K〔不与点B.C重合〕处候车.准备乘车到出口A.设CK=x米.情况一:假设他刚好错过2号车.便搭乘即将到来的1号车;情况二:假设他刚好错过1号车.便搭乘即将到来的2号车.比拟哪种情况用时较多?〔含候车时间〕决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P 〔不与点D.A重合〕时.刚好与2号车迎面相遇.〔1〕他发现.乘1号车会比乘2号车到出口A用时少.请你简要说明理由:〔2〕设PA=s〔0<s<800〕米.假设他想尽快到达出口A.根据s的大小.在等候乘1号车还是步行这两种方式中.他该如何选择?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:〔1〕由路程=速度×时间就可以得出y1.y2〔米〕与t〔分〕的函数关系式.再由关系式就可以求出两车相距的路程是400米时t的值;〔2〕求出1号车3次经过A的路程.进一步求出行驶的时间.由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时.在进展大小比拟就可以求出结论决策:〔1〕根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长.而成2号车到A出口的距离大于3个边长.进而得出结论;〔2〕分类讨论.假设步行比乘1号车的用时少.就有.得出s<320.就可以分情况得出结论.解答:解:探究:〔1〕由题意.得y1=200t.y2=﹣200t+1600当相遇前相距400米时.﹣200t+1600﹣200t=400.t=3.当相遇后相距400米时.200t﹣〔﹣200t+1600〕=400.t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;〔2〕由题意.得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000.∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟.两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8.∴两车相遇的次数为:〔40﹣4〕÷8+1=5次.∴这一段时间它与2号车相遇的次数为:5次;发现:由题意.得情况一需要时间为:=16﹣.情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:〔1〕∵游客乙在AD边上与2号车相遇.∴此时1号车在CD边上.∴乘1号车到达A的路程小于2个边长.乘2号车的路程大于3个边长.∴乘1号车的用时比2号车少.〔2〕假设步行比乘1号车的用时少..∴s<320.∴当0<s<320时.选择步行.同理可得当320<s<800时.选择乘1号车.当s=320时.选择步行或乘1号车一样.点评:此题考察了一次函数的解析式的运用.一元一次方程的运用.一元一次不等式的运用.分类讨论思想的运用.方案设计的运用.解答时求出函数的解析式是解答此题的关键.。
2018年杭州市中考数学模拟试卷(含答案)
2018年杭州市中考数学模拟试卷(含答案)一、填空题(每题3分)1.(3分)(2018•杭州)=()A.2 B.3 C.4 D.52.(3分)(2018•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2018•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2018•杭州)如图是某市2018年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2018•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2018•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2018•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.8.(3分)(2018•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2018•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2018•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2018•黔东南州)tan60°=.12.(4分)(2018•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2018•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2018•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2018•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2018•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2018•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.。
2018年浙江省中考数学模拟试卷和答案
浙江省2018年中考数学模拟试卷与答案一、选择题(共16小题.1~6小题.每小题2分;7~16小题.每小题2分.共42分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.(2分)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数.可得一个数的相反数.解答:解:﹣2是2的相反数.故选:B.点评:本题考查了相反数.在一个数的前面加上负号就是这个数的相反数.2.(2分)如图.△ABC中.分别是边的中点.若DE=2.则BC=()A.2B.3C.4D.5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵分别是边的中点.∴DE是△ABC的中位线.∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半.熟记定理是解题的关键.3.(2分)计算:852﹣152=()A.70B.700C.4900D.7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解.再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式.关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)如图.平面上直线分别过线段OK两端点(数据如图).则相交所成的锐角是()A.20°B.30°C.70°D.80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质.熟记性质是解题的关键.5.(2分)是两个连续整数.若a<<b.则分别是()A.B.C.D.考点:估算无理数的大小.分析:根据.可得答案.解答:解:.故选:A.点评:本题考查了估算无理数的大小.是解题关键.6.(2分)如图.直线l经过第二、三、四象限.l的解析式是y=(m﹣2)x+n.则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0.解得m<2.然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限.∴m﹣2<0且n<0.∴m<2且n<0故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数.k≠0)是一条直线.当k >0.图象经过第一、三象限.y随x的增大而增大;当k<0.图象经过第二、四象限.y随x的增大而减小;图象与y轴的交点坐标为().也考查了在数轴上表示不等式的解集.7.(3分)化简:﹣=()A.0B.1C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算.约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法.熟练掌握运算法则是解本题的关键.8.(3分)如图.将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.则n≠()A.2B.3C.4D.5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质.结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.则n可以为:故n≠2.故选:A.点评:此题主要考查了图形的剪拼.得出正方形的边长是解题关键.9.(3分)某种正方形合金板材的成本y(元)与它的面积成正比.设边长为x厘米.当x=3时.y=18.那么当成本为72元时.边长为()A.6厘米B.12厘米C.24厘米D.36厘米考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2.由待定系数法就可以求出解析式.当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2.由题意.得18=9k.解得:k=2.∴y=2x2.当y=72时.72=2x2.∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用.根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.10.(3分)如图1是边长为1的六个小正方形组成的图形.它可以围成图2的正方体.则图1中小正方形顶点围成的正方体上的距离是()A.0B.1C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体.可得正方体.根据勾股定理.可得答案.解答:解;AB是正方体的边长.AB=1.故选:B.点评:本题考查了展开图折叠成几何体.勾股定理是解题关键.11.(3分)某小组做“用频率估计概率”的实验时.统计了某一结果出现的频率.绘制了如图的折线统计图.则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中.小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后.从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球D.掷一个质地均匀的正六面体骰子.向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知.试验结果在附近波动.即其概率P≈.计算四个选项的概率.约为者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中.小明随机出的是“剪刀“的概率为.故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后.从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球的概率为.故此选项错误;D、掷一个质地均匀的正六面体骰子.向上的面点数是4的概率为≈.故此选项正确.故选:D.点评:此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)如图.已知△ABC(AC<BC).用尺规在BC上确定一点P.使PA+PC=BC.则符合要求的作图痕迹是()A.B.C.D.考点:作图—复杂作图分析:要使PA+PC=BC.必有PA=PB.所以选项中只有作AB的中垂线才能满足这个条件.故D正确.解答:解:D选项中作的是AB的中垂线.∴PA=PB.∵PB+PC=BC.∴PA+PC=BC故选:D.点评:本题主要考查了作图知识.解题的关键是根据作图得出PA=PB.13.(3分)在研究相似问题时.甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张.得到新三角形.它们的对应边间距为1.则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张.得到新的矩形.它们的对应边间距均为1.则新矩形与原矩形不相似.对于两人的观点.下列说法正确的是()A.两人都对B.两人都不对C.甲对.乙不对D.甲不对.乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.即可证得∠A=∠A′.∠B=∠B′.可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD==BC=5.则A′B′=C′D′=3+2=′D′=B′C′=5+2=7.则可得.即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.∴∠A=∠A′.∠B=∠B′.∴△ABC∽△A′B′C′.∴甲说法正确;乙:∵根据题意得:AB=CD==BC=5.则A′B′=C′D′=3+2=′D′=B′C′=5+2=7.∴..∴.∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大.注意掌握数形结合思想的应用.14.(3分)定义新运算:a⊕b=例如:4⊕5=.4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=.再根据反比例函数的性质可得函数图象所在象限和形状.进而得到答案.解答:解:由题意得:y=2⊕x=.当x>0时.反比例函数y=在第一象限.当x<0时.反比例函数y=﹣在第二象限.又因为反比例函数图象是双曲线.因此D选项符合.故选:D.点评:此题主要考查了反比例函数的性质.关键是掌握反比例函数的图象是双曲线.15.(3分)如图.边长为a的正六边形内有两个三角形(数据如图).则=()A.3B.4C.5D.6考点:正多边形和圆分析:先求得两个三角形的面积.再求出正六边形的面积.求比值即可.解答:解:如图.∵三角形的斜边长为a.∴两条直角边长为.∴S空白=a a=a2.∵AB=a.∴OC= a.∴S正六边形=6×a a=a2.∴S阴影=S正六边形﹣S空白=a2﹣a2=a2.∴==5.故选C.点评:本题考查了正多边形和圆.正六边形的边长等于半径.面积可以分成六个等边三角形的面积来计算.16.(3分)五名学生投篮球.规定每人投20次.统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7.则他们投中次数的总和可能是()A.20B.28C.30D.31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数.众数是一组数据中出现次数最多的数据.注意众数可以不止一个.则最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.则可求得五个数的和的范围.进而判断.解答:解:中位数是6.唯一众数是7.则最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚.计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序.然后再根据奇数和偶数个来确定中位数.如果数据有奇数个.则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.二、填空题(共4小题.每小题3分.满分12分)17.(3分)计算:=2.考点:二次根式的乘除法.分析:本题需先对二次根式进行化简.再根据二次根式的乘法法则进行计算即可求出结果.解答:解:.=2×.=2.故答案为:2.点评:本题主要考查了二次根式的乘除法.在解题时要能根据二次根式的乘法法则.求出正确答案是本题的关键.18.(3分)若实数满足|m﹣2|+(n﹣2014)2=0.则m﹣1+n0=.考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0.可得绝对值与平方同时为0.根据负整指数幂、非0的0次幂.可得答案.解答:解:|m﹣2|+(n﹣2014)2=0.m﹣2=﹣2014=0.m==2014.m﹣1+n0=2﹣1+20140=+1=.故答案为:.点评:本题考查了负整指数幂.先求出m、n的值.再求出负整指数幂、0次幂.19.(3分)如图.将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形=4cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知.弧长=8cm﹣2cm×2=4 cm.扇形的面积是×4cm×2cm=4cm2.故答案为:4.点评:本题考查了扇形的面积公式的应用.主要考查学生能否正确运用扇形的面积公式进行计算.题目比较好.难度不大.20.(3分)如图.点在数轴上表示的数分别是将线段OA 分成100等份.其分点由左向右依次为 (99)再将线段OM1.分成100等份.其分点由左向右依次为 (99)继续将线段ON1分成100等份.其分点由左向右依次为. (99)则点P37所表示的数用科学记数法表示为×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为×=10﹣表示的数为0×10﹣3=10﹣表示的数为10﹣5×=10﹣7.进一步表示出点P37即可.解答:解:M1表示的数为×=10﹣3.N1表示的数为0×10﹣3=10﹣5.P1表示的数为10﹣5×=10﹣7.P37=37×10﹣7=×10﹣6.故答案为:×10﹣6.点评:此题考查图形的变化规律.结合图形.找出数字之间的运算方法.找出规律.解决问题.三、解答题(共6小题.满分66分.解答应写出文字说明、证明过程或演算步骤)21.(10分)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时.对于b2﹣4ac>0的情况.她是这样做的:由于a≠0.方程ax2++bx+c=0变形为:x2+x=﹣.…第一步x2+x+()2=﹣+()2.…第二步(x+)2=.…第三步x+=(b2﹣4ac>0).…第四步x=.…第五步嘉淇的解法从第四步开始出现错误;事实上.当b2﹣4ac>0时.方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步.开方时出错;把常数项24移项后.应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中.开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项.得x2﹣2x=24.配方.得x2﹣2x+1=24+1.即(x﹣1)2=25.开方得x﹣1=±5.∴x1==﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项.把常数项移到右边;第二步配方.左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步.直接开方即可.(2)形如ax2+bx+c=0型.方程两边同时除以二次项系数.即化成x2+px+q=0.然后配方.22.(10分)如图是三个垃圾存放点.点分别位于点A的正北和正东方向.AC=100米.四人分别测得∠C 的度数如下表:甲乙丙丁∠C(单位:度)34363840他们又调查了各点的垃圾量.并绘制了下列尚不完整的统计图2.图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量.并将图2补充完整;(3)用(1)中的作为∠C的度数.要将A处的垃圾沿道路AB都运到B处.已知运送1千克垃圾每米的费用为元.求运垃圾所需的费用.(注:sin37°=)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比.进而求出垃圾总量.进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长.进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg.在扇形统计图中所占比例为:50%.∴垃圾总量为:320÷50%=640(kg).∴A处垃圾存放量为:(1﹣50%﹣%)×640=80(kg).占%.补全条形图如下:(3)∵AC=100米.∠C=37°.∴tan37°=.∴AB=ACtan37°=100×=75(m).∵运送1千克垃圾每米的费用为元.∴运垃圾所需的费用为:75×80×=30(元).答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用.利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)如图.△ABC中.AB=AC.∠BAC=40°.将△ABC绕点A按逆时针方向旋转100°.得到△ADE.连接交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE.然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等.得出∠ACE=∠ABD.即可求得.(3)根据对角相等的四边形是平行四边形.可证得四边形ABEF是平行四边形.然后依据邻边相等的平行四边形是菱形.即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°.∴∠BAC=∠DAE=40°.∴∠BAD=∠CAE=100°.又∵AB=AC.∴AB=AC=AD=AE.在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°.AC=AE.∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE.∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°.∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°.∴∠BAE=∠BFE.∴四边形ABEF是平行四边形.∵AB=AE.∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质.等腰三角形的性质以及菱形的判定.熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)如图.2×2网格(每个小正方形的边长为1)中有、九个格点.抛物线l的解析式为y=(﹣1)nx2+bx+c(n为整数).(1)n为奇数.且l经过点H()和C().求的值.并直接写出哪个格点是该抛物线的顶点;(2)n为偶数.且l经过点A()和B().通过计算说明点F()和H()是否在该抛物线上;(3)若l经过这九个格点中的三个.直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1.再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值.然后把函数解析式整理成顶点式形式.写出顶点坐标即可;(2)根据﹣1的偶数次方等于1.再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值.从而得到函数解析式.再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论.将抛物线平移.可以确定抛物线的条数.解答:解:(1)n为奇数时.y=﹣x2+bx+c.∵l经过点H()和C().∴.解得.∴抛物线解析式为y=﹣x2+2x+1.y=﹣(x﹣1)2+2.∴顶点为格点E();(2)n为偶数时.y=x2+bx+c.∵l经过点A()和B().∴.解得.∴抛物线解析式为y=x2﹣3x+2.当x=0时.y=2.∴点F()在抛物线上.点H()不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时.由(1)中的抛物线平移又得到3条抛物线.如答图3﹣1所示;当n为偶数时.由(2)中的抛物线平移又得到3条抛物线.如答图3﹣2所示.点评:本题是二次函数综合题型.主要利用了待定系数法求二次函数解析式.二次函数图象上点的坐标特征.二次函数的对称性.要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)图1和图2中.优弧所在⊙O的半径为=2.点P为优弧上一点(点P不与重合).将图形沿BP折叠.得到点A的对称点A′.(1)点O到弦AB的距离是1.当BP经过点O时.∠ABA′=60°;(2)当BA′与⊙O相切时.如图2.求折痕的长:(3)若线段BA′与优弧只有一个公共点B.设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°.从而得到∠ABA′=120°.就可求出∠ABP.进而求出∠OBP=30°.过点O作OG⊥BP.垂足为G.容易求出OG、BG的长.根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同.分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时.线段BA′与优弧都只有一个公共点B.α的范围是0°<α<30°;当点A′在⊙O的外部时.从BA′与⊙O 相切开始.以后线段BA′与优弧都只有一个公共点B.α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时.α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB.垂足为H.连接OB.如图1①所示.∵OH⊥=2.∴AH=BH=.∵OB=2.∴OH=1.∴点O到AB的距离为1.②当BP经过点O时.如图1②所示.∵OH==⊥AB.∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP.垂足为G.如图2所示.∵BA′与⊙O相切.∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°.∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP.∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B.Ⅰ.当点A′在⊙O的内部时.此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时.此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时.α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识.考查了用临界值法求α的取值范围.有一定的综合性.第(3)题中α的范围可能考虑不够全面.需要注意.26.(13分)某景区内的环形路是边长为800米的正方形ABCD.如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发.1号车顺时针、2号车逆时针沿环形路连续循环行驶.供游客随时免费乘车(上、下车的时间忽略不计).两车速度均为200米/分.探究:设行驶寸间为t分.(1)当0≤t≤8时.分别写出1号车、2号车在左半环线离出口A的路程(米)与t(分)的函数关系式.并求出当两车相距的路程是400米时t的值;(2)t为何值时.1号车第三次恰好经过景点C并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2.游客甲在BC上的一点K(不与点重合)处候车.准备乘车到出口A.设CK=x米.情况一:若他刚好错过2号车.便搭乘即将到来的1号车;情况二:若他刚好错过1号车.便搭乘即将到来的2号车.比较哪种情况用时较多(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点重合)时.刚好与2号车迎面相遇.(1)他发现.乘1号车会比乘2号车到出口A用时少.请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A.根据s的大小.在等候乘1号车还是步行这两种方式中.他该如何选择考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出(米)与t(分)的函数关系式.再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程.进一步求出行驶的时间.由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时.在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长.而成2号车到A出口的距离大于3个边长.进而得出结论;(2)分类讨论.若步行比乘1号车的用时少.就有.得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意.得y1==﹣200t+1600当相遇前相距400米时.﹣200t+1600﹣200t=400.t=3.当相遇后相距400米时.200t﹣(﹣200t+1600)=400.t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意.得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000.∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟.两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8.∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意.得情况一需要时间为:=16﹣.情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇.∴此时1号车在CD边上.∴乘1号车到达A的路程小于2个边长.乘2号车的路程大于3个边长.∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少..∴s<320.∴当0<s<320时.选择步行.同理可得当320<s<800时.选择乘1号车.当s=320时.选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用.一元一次方程的运用.一元一次不等式的运用.分类讨论思想的运用.方案设计的运用.解答时求出函数的解析式是解答本题的关键.。
2018年浙江省最新中考英语模拟试卷-含答案
2018年浙江省最新中考英语模拟试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120 分,考试时间分钟。
分,考试时间 100分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。
.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
.考试结束后,只需上交答题卷。
英语试题卷第I 卷第一部分听力(共两节,满分30分) 第一节(共5小题,每小题2分,满分10分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试题的相应位置,听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man mean? 【原创】A. He’s sure to pass the test. B. He also thinks the test difficult. C. He hopes the woman can pass the test.2. When will they study together for the English test? 【原创】A. On Thursday. B. On Saturday. C. On Friday. 3. Why did the boy sleep late last night?【原创】A. To finish his homework B. To see a movie C. To watch a match 4. How will Kevin go to London? 【原创】A. By car. B. By bus. C. By train. 5. What’s the probable relationship between the man and woman? 【原创】A. Husband and wife. B. Friends. C. Teacher and student. 【考点】考察when, how, why, what, where等疑问词在听力中的运用。
2018年语文中考全真模拟试题(五) 原卷+解析(浙江专版)
需要更完整的资源请到 学校租用教师免费下载2018年语文中考全真模拟试卷(五)考生须知:1.全卷共五大题,满分为120分(含书写3分)。
考试时间为120分钟。
2.各题的答案必须用黑色的钢笔或签字笔写在“答题纸”的相应位置上。
3.请用黑色字迹的钢笔或签字笔在“答题纸”上先填写姓名和准考证号。
4.卷面书写(3分)要求书写规范、工整,卷面整洁。
一、语文知识积累1. 根据拼音书写词语,并给加点字选择正确读音。
(3分)文以载.(A.zǎi B.zài )道,文以化人。
当代中国是历史中国的延续和发展,当代中国思想文化也是中国传统思想文化的chuán chéng 和升华,要认识今天的中国、今天的中国人,就要深入了解中国的文化血脉,准确把握zī yǎng 中国人的文化土壤。
2、下面图片中有两个错别字,请找出并改正。
(2分)改为 改为 3.诗文名句默写。
(6分)在中国经典诗词中,丰富的想象让诗词充满浪漫气息。
李白诗“① , ”一句心寄与月,月又随风,表达对王昌龄的思念,其情比隔千里共明月更甚;同样写思念,李商隐在《夜雨寄北》中直接想象日后重逢时的情景,这诗句是“② , ”。
苏轼在《水调歌头》中用“③我欲乘风归去, , ”表达对月宫仙境产生的向往和疑虑,寄寓着作者出世、入世的双重矛盾心理。
巧妙的用典让诗词意味深长。
刘禹锡在《酬乐天扬州初逢席上见赠》中用“④ , ” 暗示自己被贬时间之长,以及回归之后生疏而怅惘的心情;苏轼在《江城子 密州出猎》中用“⑤ , ?”希望能得到朝廷的信任重用自己;范仲淹在《渔家傲•秋思》中借“⑥ , 。
”表达自己杀敌报国、建立功勋的愿望和思亲念乡的复杂情怀。
4. 传统文化知识(3分)学校要举行优秀传统文化知识竞赛,德育处在网络上搜了几则材料,请你检查一下哪一则不正确。
( ) A 二十四节气中,“立”是开始的意思,古代以立春、立夏、立秋、立冬为四季的开始。
分是“季节均分”的意思,如春分、秋分。
最新-浙江省杭州市2018年中考科学模拟考试卷 浙教版 精品
2018年杭州市科学各类高中招生文化考试考生须知:1.本试卷满分为180分,考试时间为120分钟。
2.答题前,在答题纸上写姓名和准考证号。
3.必须在答题纸的对应位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4.考试结束后,试题卷和答题纸一并上交(相对原子质量:Na-23 O-16 H-1 C-12 Cl-35.5 K-39 I-127)试题卷一、选择题(每小题4分,共24分,每小题只有一个选项符合题意)1.根据你的生活经验和所学的化学知识,判断下列做法正确的是()A.用钢丝球洗刷铝制炊具B.食品袋里充人氮气延长食品的保质期C.服用熟石灰治疗胃酸过多症D.高层住房着火时,立即乘电梯撤离2.类推是科学学习中常用的思维方法。
现有以下类推结果:①酸碱中和反应生成盐和水,所以生成盐和水的反应一定是中和反应;②碱的水溶液显碱性,所以碱性溶液一定是碱溶液;③氧化物都含有氧元素,所以含有氧元素的化合物一定是氧化物;④有机物都含碳元素,所以含碳元素的化合物都是有机物。
其中错误的是()A.只有①B.只有①②③C.只有②③④D.①②③④3.2018年5月20日,美国科学家宣布世界首个“人造生命”诞生。
研究人员先人工合成了一种细菌DNA,再植入另一个内部被掏空的细菌细胞内,该细菌不断繁殖形成菌落(如图)。
对于人造生命技术,下列启示或论述不合理的有()A.细胞仍是生命存在的重要结构B.能培育具有特殊功能的“人造细菌”服务人类C.必须警惕此技术给人类可能带来的巨大风险D.由此技术可预见人工制造的高等动植物将会很快出现4.流程图有利于我们对所学知识进行整理和归纳。
以下几幅流程图中正确的是()A.神经冲动的传递:外界刺激→感受器→传入神经→神经中枢→传出神经→效应器B.人的生长过程:婴儿期→儿童期→幼儿期→青春期→中年期→老年期C.尿液的形成:血液→肾小管→原尿→肾小球→尿液D.食物通过消化道的次序:食物→口腔→咽→食道→小肠→胃→大肠→肛门5.如图,一辆轿车正在平直的公路上加速行驶。
浙江中考模拟卷(5)[下学期] 浙教版.doc
二0初中毕业会考暨高中阶段招生数学模拟考试试卷一、选择题:(每题4分,满分40分)在每小题给出的四个选项中,只有一项是符合题目要求的)。
1、 计算: 1 - |-2| 结果正确的是A . 3B .-1C .1D .-32、第五次全国人口普查结果显示,我国的总人口已达到1300000000人,用科学记数法表示这个数,结果正确的是( )A 、8103.1⨯B 、9103.1⨯C 、101013.0⨯D 、91013⨯ 3、已知α是锐角,cos α=23,则α等于( ) (A) 300 (B)450 (C)6O 0 (D)9004、不等式组的解为 ( )(A)X<-2 (B)-2<X<-1/2 (C)X>-1/2 (D)X>-1/2或X<-2 5、 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是A. 6B. 2 m -8C. 2 mD. -2 m 6、以上说法合理的是( ) A 、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B 、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6。
C 、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖。
D 、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51。
7、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A 、AD =BC 'B 、∠EBD =∠EDBC 、△ABE ∽△CBD D 、EDAEABE =∠sin8、如图,梯形ABCD 内接于◎○,AB//CD ,AB 为直径, DO 平分∠ADC ,则∠DAO 的度数是A 、900,B 、800,C 、700,D 、600;9.如图,已知点A的坐标为(1,0),点B在直线y x=-上运动,当线段AB最短时,点B的坐标为(A)(0,0). (B)11 (,) 22-.(c)22(,)22- (D)11(,)22-.10. 在日常生活中,你会注意到有一些含有特殊数学规律的车牌号码,,如:浙L80808 、浙L22222、浙L12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二00六年初中毕业会考暨高中阶段招生数学模拟考试试卷一、选择题:(每题4分,满分40分)在每小题给出的四个选项中,只有一项是符合题目要求的)。
1、 计算: 1 - |-2| 结果正确的是A . 3B .-1C .1D .-32、第五次全国人口普查结果显示,我国的总人口已达到1300000000人,用科学记数法表示这个数,结果正确的是( )A 、8103.1⨯B 、9103.1⨯C 、101013.0⨯D 、91013⨯ 3、已知α是锐角,cos α=23,则α等于( ) (A) 300 (B)450 (C)6O 0 (D)900 4、不等式组的解为 ( )(A)X<-2 (B)-2<X<-1/2 (C)X>-1/2 (D)X>-1/2或X<-2 5、 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是A. 6B. 2 m -8C. 2 mD. -2 m 6、以上说法合理的是( ) A 、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B 、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6。
C 、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖。
D 、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51。
7、如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A 、AD =BC 'B 、∠EBD =∠EDBC 、△ABE ∽△CBD D 、EDAEABE =∠sin8、如图,梯形ABCD 内接于◎○,AB//CD ,AB 为直径, DO 平分∠ADC ,则∠DAO 的度数是A 、900,B 、800,C 、700,D 、600;9.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为(A)(0,0). (B)11(,)22-.(c) (,22- (D) 11(,)22-.10. 在日常生活中,你会注意到有一些含有特殊数学规律的车牌号码,都是关于中间的一个数字“对称”的,给以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照。
如果让你负责制作只以8和9开头且有五个数字的“数字对称”牌照,那么最多可制作 ( ) A 2000个 B 1000个 C 200个 D 100个 11、观察图示寻找规律,在“?”中填上的数字是 ( ) A 128 B 136 C 162 D 18812、如图,王虎使一长为4cm 宽为3cm 的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A 位置变化为A →A 1→A 2,其中第二次翻滚时被桌面上的一小木板挡住,使木板与桌面成30°角,则A 翻滚到A 2位置时共走过的路程长为 ( )A 、10cmB 、4πcmC 、π27cmD 、25cm二、填空题 (本题有6小题,每小题5分,共30分) 13、在下图中有两圆的多种位置关系,请你找出还没有的位置关系是。
14、若x=1时一元二次方程ax 2+bx -2=0的根,则a+b= .第11题 第12题第15题 第16题15、如图是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角 . 16、编制一个底面周长为a 、高为b 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图14中的111222A C B A C B ,,……则每一根这样的竹条的长度最少是 。
17. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.18、如图,△P 1O A 1、△P 2 A 1 A 2是等腰直角三角形,点P 1P 2在函数4y x(x >0)的图象上,斜边OA 1、A 1A 2都在x 轴上,则点A 2的坐标是 . 三.解答题 (本题有8小题,第19--21题每题8分,第22 --24题每题12分,第25题14分)19.计算:计算:-22 + (12-1)0 + 2sin30º20.根据下图给出的信息,求每件T 恤衫和每瓶矿泉水的价格.图1 A图(2)(第18题)21.用数来解决形的问题.如图,边长为1的正方形方格纸上,有A 、B 、C 、D 四点, (1)求证:△ADC ∽ △BDA (2)求∠B+∠D 度数。
22.如图,在梯形ABCD 中,AD ∥BC ,BD =CD ,AB <CD 且∠ABC 为锐角,若AD =4,BC =12,E 为BC 上一点。
问:当CE 分别为何值时,四边形ABED 是等腰梯形?直角梯形? 请分别说明理由。
23.小明代表班级参加校运会的铅球项目,他想:“怎样才能将铅球推得更远呢?”于是找来小刚做了如下的探索:小明手挚铅球在控制每次推出时用力相同的条件下,分别沿与水平线成300、450、600方向推了三次。
铅球推出后沿抛物线形运动。
如图,小明推铅球时的出手点距地面2m ,以铅球出手点所在竖直方向为y 轴、地平线为x 轴建立直角坐标系,分别得到的有关数据如下表:E线上;⑵请根据以上数据,对如何将铅球推得更远提出你的建议。
24. 如图,在平面直角坐标系中,已知A(-10,0),B(-8,6),O为坐标原点,△OAB沿AB翻折得到△PAB.将四边形OAPB先向下平移3个单位长度,再向右平移m(m>0)个单位长度,得到四边形O1A1P1B1.设四边形O1A1P1B1与四边形OAPB重叠部分图形的面积为s.(1)求A1、P1两点的坐标(用含m的式子表示);(2)求面积s与m之间的函数关系式,并写出m的取值范围.(第24题)25.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a。
(1)求证:△ADE∽△BEC;(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由。
第二部分,答案1.B2.B3. A 4、B 5. D 6.D 7.C 8、D 9、B 10、C 11、C 12、C 13、外离 14、2 15、9001617、36°18、(4 根号2 、0)19、-2 20、20元 ,2元21、略22、解:(1)当CE=4时,四边形ABED是等腰梯形。
理由如下:在BC上截取CE=AD,连结DE、AE,∵AD∥BC,∴四边形AECD是平行四边形。
∴AE=CD=BD。
∵BE=12-4=8>4,即BE>AD,∴AB不平行于DE,∴四边形ABED是梯形。
∵AE∥CD,CD=BD,∴∠AEB=∠C=∠DBC。
在△ABE和△DEB中,AE BD AEB DBC BE EB ⎧⎪⎨⎪⎩=∠=∠=∴△ABE ≌△DEB (SAS )。
∴AB =DE ,∴四边形ABED 是等腰梯形。
(也可不作辅助线,通过证明△ABD ≌EDC 而得AB =DE ) (2)当C E '=6时,四边形AB E 'D 是直角梯形。
理由如下:在BC 上取一点E ',使C E '=B E '=1BC 2=6,连结D E ',∵BD =CD ∴D E '⊥BC又∵B E '≠AD ,AD ∥B E ',∴AB 不平行于D E ' ∴四边形AB E 'D 是直角梯形。
23、略24、 解:(1)过点B 作BQ ⊥OA 于点Q .(如图1)∵ 点A 坐标是(-10,0), ∴点A 1坐标为(-10+m ,-3),OA =10.…………………2分 又∵ 点B 坐标是(-8,6),∴BQ =6,OQ =8.在Rt △OQB 中,10OB ===…3分∴OA =OB =10,63tan 84BQ QOα===.由翻折的性质可知,PA =OA =10,PB =OB =10, ∴四边形OAPB 是菱形,∴PB ∥AO ,∴P 点坐标为(-18,6), ……………5分 ∴P 1点坐标为(-18+m ,3). ………………6分 (2)①当0<m ≤4时,(如图2), 过点B 1作B 1Q 1⊥x 轴于点Q 1,则B 1 Q 1=6-3=3,设O 1B 1 交x 轴于点F ,∵O 1B 1∥BO ,∴∠α=∠β,在Rt △FQ 1B 1中,111tan B Q Q Fβ=,∴1334Q F=,∴Q 1F =4,∴B1F5,∵AQ=OA-OQ=10-8=2,∴AF=AQ+QQ1+ Q1F=2+m+4=6+m,∴面积s=3AF=2m+12……9分②当4<m<14时,(如图设P1A1交x轴于点S,P1B1于点H,由平移性质,得OH=B1F此时AS=m-4,∴OS=OA-AS=10-(m-4)=14-m,∴面积s=3OS=3(5+14-m)=-3 m+57.……12分 25、 (1) 略 (2) 设AD=x,由已知AD+DE=AB=a得DE=a-x,又AE=m在Rt△AED中,由勾股定理得:222x m a x+=(-)化简整理得:22a m2ax-=①在△EBC中,由AE=m,AB=a,得BE=a-m因为△ADE∽△BEC,所以AD AE DEBE BC EC==,即:x m a xa m BC EC-==-,解得:a m m a m a xBC EC.x x(-)(-)(-)=,=所以△BEC的周长=BE+BC+EC=a m m a m a xa mx x(-)(-)(-)(-)++=m a xa m1x x⎛⎫⎪⎝⎭-(-)++=a ma mx+(-)=22a mx-②把①式代入②,得△BEC的周长=BE+BC+EC=2ax2ax=,所以△BEC的周长与m无关。
1。