流体流动阻力和孔板流量计孔流系数的测定
化工实验-流量计-数据处理计算过程举例
数据处理计算过程举例以第四组为例1、孔板流量计性能测定(1)流体粘度μ=0.000001198+EXP(1972.53/(273.15+27.7))=0.695×10-3(Pa·s)(2)流体密度ρ=-0.003589285×27.72-0.0872501×27.7+1001.44 =996.1(kg·m3)(3)流体流量qv=6.0(m3÷h)÷3600(s)=1.67×10-3(m3÷s)(4)因流速u=qv÷A=qv÷(3.14×d²÷4)=1.67×10-3÷(3.14×(0.0262)÷4=3.14(m·s)(5)因qv =C×A×√(2ΔP÷ρ)则孔流系数C0=qv/((A×√(2ΔP/ρ))=1.67×10-3/[(3.14×0.0172÷4)×√(2×36.2×1000÷996.1)] =0.862(6)雷诺数Re=d×u×ρ÷μ=0.026×1.67×996.1÷(0.695×10-3)=1170882、文丘里流量计性能测定(1)流体粘度μ=0.000001198+EXP(1972.53/(273.15+29.8))=0.673×10-3(Pa·s)(2)流体密度ρ=-0.003589285×29.82-0.0872501×29.8+1001.44=995.7(kg·m3)(3)流体流量qv=6.9(m3·h)÷3600(s)=1.92×10-3(m3÷s)(4)因流速u=qv ÷A=qv÷(3.14×d²÷4)=1.92×10-3÷(3.14×(0.0262)÷4 =3.61(m·s)(5)因qv =Cv×A×√(2ΔP÷ρ)则孔流系数Cv =qv/((A×√(2ΔP/ρ))=1.92×10-3/[(3.14×0.0152÷4)×√(2×6.0÷995.7)]=0.998(7)雷诺数Re=d×u×ρ÷μ=0.026×1.67×996.1÷(0.695×10-3)=139023 3、转子流量计性能测定涡轮流体流量qv=2.3(m3·h)÷3600(s)=6.39×10-4(m3·s) 流体密度ρ=-0.003589285×25.82-0.0872501×25.8+1001.44=996.8(kg·m3)校正后转子流量:由公式qv ’/qv=√[ρ(ρf-ρ’)]÷√[ρ’(ρf-ρ)]=2.2×√[996.779(7900-996.8)]÷√[996.8(7900-996.779)]÷3600 =6.1×10-4 (m3·s)4、用最大误差法对节流式流量计的流量系数进行误差估算和分析。
食品工程原理实验报告
姓名:陈蔚婷 学号:1363115 班级:13级食安1班实验一:流体流动阻力的测定一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数?。
4.学会倒U 形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为: 2221u d l p p p w ff λρρ=-=∆= (1) 即,22lu p d f ρλ∆=(2)式中: λ —直管阻力摩擦系数,无因次;d —直管内径,m ; f p ∆—流体流经l 米直管的压力降,Pa ;f w —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ —流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。
滞流(层流)时,Re64=λ (3) μρdu =Re (4) 式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。
l 、d 为装置参数(装置参数表格中给出), ρ、μ通过测定流体温度,再查有关手册而得, u 通过测定流体流量,再由管径计算得到。
2.局部阻力系数? 的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
(1) 当量长度法流体流过某管件或阀门时造成的机械能损失看作与某一长度为e l 的同直径的管道所产生的机械能损失相当,此折合的管道长度称为当量长度,用符号e l 表示。
流体流动阻力的测定
测数据的准确性,每组数据之间稳定时间不得低于5min。 记录数据列表。 5、实验终了,首先关闭阀7,停泵、关闭发生器、仪表、 电源。 五、实验报告编写 (一)实验目的
(二)实验原理
(三)实验装置 (四)实验数据记录表 (五)实验数据处理 (六)思考题
实验数据处理
由所测得的Vs,t1、t2,确定流体密度,计算Q
数据处理结果表 序号 1 2 3 4 5 6 7 8 9
流量
m3/h
光滑管
粗糙管
Re
闸阀阻 力系数
Re
log()
粗糙管
光滑管
log(Re)
全开闸阀阻力系数实验数据处理: 根据流量、管径确定流速,根据该流量下所对应的闸 阀阻力(mH2O)代入下式,确定阻力系数。
2 gH f u2
计算三个流量下的阻力系数,并将其平均得全开闸阀平 均阻力系数。
Q Ki S i t m
确定流体被加热给热热阻占总热阻的比例
所占热阻比例 1 i 100% 1 Ki
确定蒸汽冷凝的给热系数o 1 1 1 o S o K i Si i Si
So d o L
do—换热管外径。 计算每一个流量下的给热系数和总传热系数,将处理 结果列入计算结果表中(表的格式见书)。 注意:在实验报告中仅写出一组实验数据的计算过程, 其他只要在计算结果表中表达出来即可。
再由已知的t1、t2、 Q,Si,并根据测得的加热蒸汽温度 T,确定传热平均温度差 tm,代入传热速率方程即可 确定Ki,与所测到的给热系数i进行比较,分析管内流 体给热热阻占总热阻的比例。若将管壁热阻忽略,也可 求出水蒸气冷凝的给热系数o 。
Q Ki S i t m
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告流体流动阻力的测定17321001 1120162761 王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。
2. 测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区λ与Re的关系曲线。
3. 测定流体流经管件、阀门时的局部阻力系数ξ。
4. 学会流量计和压差计的使用方法。
5. 识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:?pfp1?p2lu2hf===λ 即,2d?pfλ= 式中:λ—直管阻力摩擦系数,无因次;d—直管内径,m;?pf—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。
层流流时,64λ= 湍流时λ是雷诺准数Re和相对粗糙度的函数,须由实验确定。
欲测定λ,需确定l、d,测定?pf、u、ρ、μ等参数。
l、d 为装置参数,ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。
?pf可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
求取Re和λ后,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法。
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
即:fhf′==ξ因此,2?pf′ξ=式中:ξ—局部阻力系数,无因次;?pf′-局部阻力压强降,Pa;ρ—流体密度,kg/m3;u—流体在管内流动的平均流速,m/s。
离心泵性能测定实验分析
离心泵性能测定实验一、实验目的:1、了解离心泵的构造,掌握其操作和调节方法;2、测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围;3、测量管路特性曲线及双泵并联时特性曲线;4、了解工作点的含义及确定方法;5、测定孔板流量计孔流系数C 0与雷诺数Re 的关系(选做)。
二、基本原理:1、离心泵特性曲线测定离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。
离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。
因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。
在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。
泵的扬程可由进、出口间的能量衡算求得:He = H压力表+ H 真空表+ H 0 [ m ] 其中:H 真空表,H 压力表分别为离心泵进出口的压力 [ m ]; H0为两测压口间的垂直距离,H 0= 0.3m 。
N 轴= N 电机?η电机?η传动 [ kw ]其中:η电机—电机效率,取0.9;η传动—传动装置的效率,取 1.0;102HeQ N [ kw ]因此,泵的总效率为:轴N Ne2、孔板流量计孔流系数的测定孔板流量计孔板孔径处的流速u 0可以简化为:u 0=C 0(2gh )1/2根据u 0和S 0,即可算出流体的体积流量Vs 为:Vs=u 0S 0=C0S 0(2gh )1/2或: Vs= C0S 0(2△p/ρ)1/2式中Vs ——流体的体积流量,m 3/s ;△p ——孔板压差,Pa ;S 0——孔口面积,m 2;ρ——流体的密度,kg/m 3;C 0——孔流系数。
孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径与管径比和雷诺数共同决定,具体数值由实验确定。
当d0/d1一定,雷诺数Re超过某个数值后,C0就接近于定值。
通常工业上定型的孔板流量计都在C0为常数的流动条件下使用。
流体流动阻力的测定
流体流动阻⼒的测定⼀、实验⽬的1、掌握层流流体经直路和管件时阻⼒损失的测定⽅法。
通过实验了解流体流动中能量损失的变化规律。
2、测定直管摩擦系数λ与雷诺准数Re 的关系。
3、测定流体流经闸阀等管件时的局部阻⼒系数ξ。
4、学会压差计和流量计的使⽤⽅法。
5、观察组成管路的各种管件、阀件,并了解其作⽤。
⼆、实验原理1、直管摩擦系数λ与雷诺数Re 的测定:流体在管道内流动时,由于流体的粘性作⽤和涡流的影响会产⽣阻⼒。
流体在直管内流动阻⼒的⼤⼩与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f =ρfP ?=22u d l λ(1-1)λ=22u P l d fρ (1-2) Re =µρu d (1-3)式中:-d 管径,m ;-?f P 直管阻⼒引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3; -µ流体的粘度,N ·s/m 2。
直管摩擦系数λ与雷诺数Re 之间有⼀定的关系,这个关系⼀般⽤曲线来表⽰。
在实验装置中,直管段管长l 和管径d 都已固定。
若⽔温⼀定,则⽔的密度ρ和粘度µ也是定值。
所以本实验实质上是测定直管段流体阻⼒引起的压强降△P f 与流速u (流量V)之间的关系。
根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,⽤式(1-3)计算对应的Re ,从⽽整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
2、局部阻⼒系数ζ的测定22'u P h ff ζρ=?=' (1-4)2'2uP f ?????? ?=ρζ (1-5) 式中:-ζ局部阻⼒系数,⽆因次;-?'f P 局部阻⼒引起的压强降,Pa ;-'f h 局部阻⼒引起的能量损失,J/kg 。
图1-1 局部阻⼒测量取压⼝布置图局部阻⼒引起的压强降'f P ? 可⽤下⾯的⽅法测量:在⼀条各处直径相等的直管段上,安装待测局部阻⼒的阀门,在其上、下游开两对测压⼝a-a'和b-b',见图1-1,使ab =bc ;a'b'=b'c'则:△P f ,a b =△P f ,bc ;△P f ,a 'b '= △P f ,b 'c '在a-a'之间列⽅程式: P a -P a '=2△P f ,a b +2△P f ,a 'b '+△P 'f (1-6) 在b-b'之间列⽅程式: P b -P b '=△P f,bc +△P f ,b 'c '+△P 'f=△P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联⽴式(1-6)和(1-7),则:'f P ?=2(P b -P b ')-(P a -P a ')为了实验⽅便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
化工原理实验
实验一 流体流动阻力的测定一、 实验目的和任务1.了解流体流过管路系统的阻力损失的测定方法;2.测定流体流过圆形直管的阻力,确定摩擦系数λ与流体Re 的关系;3.测定流体流过管件的阻力,局部阻力系数ξ;4.学会压差计和流量计的使用方法;5.识别管路中各个管件、阀门,并了解其作用; 二、实验原理流体的流动性,即流体内部质点之间产生相对位移。
真实流体质点的相对运动表现出剪切力,又称内摩擦力,流体的粘性是流动产生阻力的内在原因。
流体与管壁面的摩擦亦产生摩擦阻力,统称为沿程阻力。
此外,流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。
因此,研究流体流动阻力的大小是十分重要的。
I .直管摩擦系数λ测定 流体在管道内流动时,由于流体粘性作用和涡流的影响产生阻力。
阻力表现为流体的能量损失,其大小与管长、管径、流体流速等有关。
流体流过直管的阻力计算公式,常用以下各种形式表示:)2( 2gu d L H 2f λ=或 )3( 2L P P P 221f u d ρλ=-=-∆ 式中h f ——以能量损失表示的阻力,J /kg ; H f ——以压头损失表示的阻力,m 液柱; △P f ——以压降表示的阻力,N /m 2 L ——管道长,md ——管道内径,m ;u ——流体平均流速,m/s ; P ——流体密度,kg /m 3; λ——摩擦系数,无因次;g ——重力加速度,g 一9.81m/s 2。
.λ为直管摩擦系数,由于流体流动类型不同,产生阻力的原因也不同。
层流时流体流动主要克服流体粘性作用的内摩擦力。
湍流时除流体的粘性作用外,还包括涡流及管壁粗糙度的影响,因此λ的计算式形式各不相同。
层流时,利用计算直管压降的哈根-泊谡叶公式: )4( duL 32P P P 221f μ=-=-∆ 和直管阻力计算公式(3),比较整理得到λ的理论计算式为 )5( Re64du 232==ρμλ⨯ 由此式可见,λ与管壁粗糙度ε无关,仅为雷诺数的函数。
阻力试验
实验三 阻力实验一.实验目的:1、测定流体在直管内流动时摩擦阻力,计算摩擦系数,并在双对数坐标纸上绘出二者之间的关系曲线。
2、测定突扩管、弯头及阀门的局部阻力系数。
3、学习液位计的使用方法。
4*、测定孔板流量计的孔流系数与雷诺数Re 的关系。
带*项为教学大纲要求之外项目。
二. 基本原理:流体在管内流动时,由于流体粘性作用和涡流的影响,会产生阻力损失,其大小与管长、管径、流体流速和管道摩擦系数等有关。
记为:(2-3-1)式中:—压头损失,m—管长,m —管径,m—流体在管内的流速,—摩擦系数,无因次。
由柏努力方程得知:流体在水平直管段做稳定流动时,阻力损失直接表现为流体的压强降,流体由截面1流到截面2所产生的阻力损失可由两端分别与这二截面相接的液位计示值测出。
即: (2-3-2)式中:—1截面的静压强,N/㎡—2截面的压强,N/㎡—两测压截面上液位计读数之差,m 。
摩擦因数受到很多因素的影响,主要与流体的流动型态密切相关,当流体在管内作滞流流动时,可以从理论上推得的计算式为:(2-3-3)当流体在管内作湍流流动时,由于流动情况复杂,不能完全用理论分析建立摩擦因素关系式,只能借助因次分析,将诸因素归并整理为准数关联式,得出如下结论:(2-3-4)e R 和雷诺准数λ090l d u λg u d l H f 22⋅=λfH l d u s mλRg p P H f ∆=-=ρ211p 2p R ∆λλe R 64=λ⎪⎭⎫ ⎝⎛=d R e εφλ,即为和管壁相对粗糙度的函数,其函数的具体关系只能通过实验方法加以确定。
对照(2-3-1),(2-3-2)式有:= (2-3-5)又因 (2-3-6)将(2-3-5)代入(2-3-6)得:(2-3-7)式中:Vs —水的流量,㎡/s又: (2-3-8) 实验过程中,水温变化不大,、可视为常数。
改变水的流量、测定流量和压强降,计算出和的数值,在双对数坐标纸上绘出~关系曲线。
实验三 流量计的标定及流动阻力测定
p1 p 2 g
[ m]
根据伯努利方程可知,流体通过直管的沿程阻力损失,可直接由所测得的液柱压差计 读数Δ R 算出: △p=Δ R(ρ 指-ρ 水)g 其中:ρ 指——压差计中指示液密度,kg/m3。本实验中用水银作指示液,被测流体为 水。 Δ R——U 型管中水银位差,m。 g——重力加速度,g=9.81m/s2。
u 2 2 u 2g 2 1
1
2
g
H
(式 3-1)
由于缩脉处位置随流速而变,截面积 A2 又难于知 道,而孔板孔径的面积 Ao 为已知,因此,用孔板孔径 处流速 u0 来代替上式中的 u2。又考虑这种代替带来的 误差以及实际流体局部阻力造成的能量损失, 故需用系 数 C 加以校正。 对于不可压缩流体,将 u 得:
转/L 孔板压降 (右)读数/cm
孔板直径 do= 阻力损失 左(右)读数/cm
mm
m2 孔板系数 压头损失/m Co=
Ao Vs
序 号 1 2 3 4 5 6 7
流量/m3·S-1
2 gR (
R
)
六、实验报告
按正规要求书写实验报告,书写实验报告时,还应注意以下事项: 1、根据实验结果在直角坐标纸描绘 Vs 所得的 Co 比较。
三、实验装置与流程
1、本设备主要参数:管道直径 0.027m 2、流程图: 孔板直径 0.018m
图 3-2
孔板流量计标定流程图
(1)离心泵 (2)测定流体经过孔板所带来的阻力损失的 U 形压差计 (3)测定孔板前后压降的 U 形压差计 (4)孔板流量计 (5)涡轮流量计 (6)调节阀 (7)引水阀 (8)水箱 (9)排水阀 3、装置: (1)元件 镀锌水管 Dg=1" 内径=27mm 孔板孔径=18mm (2)测量仪表 U 形压差计,指示液(水银) 涡轮流量计 LW-25 精度 0.5 级 量程 1.6~10m3/h 仪表编号: 常数: MMD 智能流量仪
化工原理实验指导书
《化工原理》实验指导书冯治宇编沈阳大学生物与环境工程学院目录实验一:雷诺实验实验二:流体沿程阻力损失的测定实验三:流体局部阻力损失的测定实验四:孔板流量计流量系数的测定实验五:离心泵特性曲线的测定课程编号:1414341课程类别:学科必修课程适用层次:本科适用专业:环境工程课程总学时:64 适用学期:第四学期实验学时:10 开设实验项目数:5撰写人:冯治宇审核人:王英刚教学院长:马德顺实验一:雷诺实验一、实验目的与要求观察层流和紊流的物理现象以及相互转换的特征,了解雷诺数的测定和计算。
实验前认真预习;实验中严格按照规定操作;实验后认真总结。
二、实验类型验证型。
三、实验原理及说明在管流动的问题中,流体的流动常受到压力、重力、粘滞力、弹性力和表面张力等各种力的影响,其中与流体关系最大的是粘滞力,即由真实流体所具有的粘性而产生的力,使得流体的流动呈现两种差异性较大的流态—层流和紊流,这两种流动现象的区别可由惯性力与粘滞力的比值体现出来。
实验中可发现,当玻璃管内流体的流动速度较小时,可以看到颜色水呈明显的直线形状(层流);当节流阀逐渐开大颜色水开始抖动,断断续续,最后染色线扩散到整个玻璃管中。
染色线开始扩散时的流体平均速度,称为临界速度。
当流体速度超过临界速度时,流体分子的动量增加,使惯性力大于粘滞力,流体分子发生上下左右不规则的混合,这种流动称为紊流。
雷诺数计算公式:式中l为特征尺寸(m);u为流体的平均速度(m/s);ρ为流体密度(kg/m3);μ为流体动力粘度(Pa﹒s);q v为流量(m3/s);A为管路截面积(m2)。
流态稳定性的根据雷诺数判定:R e < 2000, 层流;2000<R e < 4000, 过渡流;R e > 4000紊流。
图1 实验原理示意图当流速小时,染料自始自终均呈一直线,且不向周围扩散,称为层流;而当速度很大时,管内染料则将整支管子染色,且向周围扩散,称为紊流。
验二、孔板流量计的流量校正
实验二、孔板流量计的流量校正一、实验目的1、学会流量计流量校正(或标定)的方法2、通过孔板流量计孔流系数的测定,了解孔流系数的变化规律 二、实验内容1、测定孔板流量计的孔流系数2、观察孔流系数与雷诺数的变化规律3、测定孔板流量计的永久压强损失三、实验原理孔板流量计是压差式流量计,也称速度式流量计,它用测定流体压差的方法来确定流体的速度。
可用流体流动规律(即伯努利方程)导出孔板流量计的计算模型。
即=(1)因孔口的大小已知,所以用孔口速度u 0替代u 2,并引入校正因子C ,将(1)式转变为:=(2) 对于不同压缩流体,20101()d u u d =,代入(2)式,整理得0u =令0C C =0u C =当采用倒U 型压差计测量压差时,P gR ρ∆=于是孔板流量计的流速为:0u C =得孔板流量计流量的数学模型式为:0G C A =(3) 式中:G--被测流体(水)的体积流量,m/sC 0--孔流系数,无因次 A 0--流量计最小流道截面积,m 2R--流量计上,下游两取压口处所连接的U 型管压差计读数,mρ--被测流体的密度Kg/m 3由管径d 可计算出雷诺数 1Re du ρμ=由于孔板流量计(局部阻力)引起的永久压强损失为: f f P H ρ∆=∙ 或 22ff P u H ζρ∆==∙问题引导:1、 工业上如何使用孔板流量计测流量?2、 测孔流系数的压差R 与测孔板流量计的永久压力损失ΔP f ,理论上测压点应该相同,但实际上测出的永久压力损失不准,为什么?3、 如何精确的测出并计算出孔板流量计的永久压强损失? 四、实验装置1、实验装置示意图如下:水箱转子流量计涡流转子流量计2、主要设备及参数:涡轮转子流量计转子流量计倒U形管压差计磁力泵水箱阀门新设备参数:测试段管径:d1=0.029m 孔板孔径:d=0.02m老设备参数:测试段管径:d1=32mm,孔板孔径: d=18mm五、实验操作1、检查各部分电路是否连接完好,开关处于关闭状态。
离心泵实验报告
北京化工大学化工原理实验报告实验名称:离心泵实验班级:化工****姓名: ***学号: ********** 序号: *同组人: *** *** ***设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第1套实验日期: 2013-**-**一、实验摘要本实验使用FFRS Ⅲ型第1套实验设备,通过测量离心泵进出口截面的流量、压强、电机输入功率等量,根据He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f 、Pa =0.9P 电 、η=Pe Pa ⁄得到 He~q v 、Pa~q v 、η~q v 关系曲线,即离心泵特性曲线;同理得管路的特性曲线;通过涡轮流量计测得的管路流量,根据C o =q v A 0√ρ2∆p 和R e =duρμ⁄得到孔板流量计的孔流系数C o 与雷诺数R e ,从而绘制C o 和R e 曲线图。
该实验提供了一种测量泵和管路的特性曲线以及标定孔板流量计孔流系数的的方法,其结果可为泵、管路和孔板流量计的实际应用与工艺设计提供重要参考。
关键词:离心泵,特性曲线,孔板流量计二、实验目的1. 了解离心泵的构造,掌握其操作和调节方法。
2. 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3. 了解孔板流量计的构造和原理,测定其孔流系数。
4. 测定管路特性曲线。
5. 测定相同转速下双泵并联特性曲线三、实验原理1. 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
离心泵性能是指在叶轮结构、尺寸、转速等固定的情况下,泵输送液体具有的特性。
其中He~q v 、Pa~q v 、η~q v 关系曲线称为离心泵特性曲线。
根据此曲线可以求出最佳操作范围,作为选泵的依据。
(1) 泵的扬程He扬程是离心泵对单位牛顿流体作的有效功。
在泵的进出管路取两个截面,忽略流体阻力,列机械能衡算可知扬程为:He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f =H 2−H 1+∆Z +u 22−u 122gm式中,H 2——出口截面静压能,mH 20;H 1——进口截面静压能,mH 20;(2)泵的有效功率和效率轴功率取输入电机功率Pa 的90%,即:Pa =0.9P 电 kW 有效功率:P e =(p 2−p 1)q v 1000⁄=ρgq v H e 1000⁄ kW 泵的效率:η=Pe Pa ⁄ 总效率:η总=Pe P 电⁄通过仪器仪表直接测量电功率、进出口截面静压能、液体流量、温度等。
流量计的标定实验报告
流量计的标定实验报告标定流量计实验报告流量计的校核实验报告文丘里流量计实验报告篇一:实验2 流量计标定实验实验2 流量计标定实验一、实验目的1.了解文氏管、转子流量计、孔板流量计和涡轮流量计的构造、工作原理和主要特点;2.掌握流量计的标定方法;3. 用直接容量法或对比法对文氏流量计、孔板流量计、转子进行标定,测定孔流系数与雷诺数间的关系;3.学习合理选用坐标系的方法。
二、实验原理流体流过文氏管由于喉部流速大压强小,文氏管前端与喉部产生压差,此差值可用倒U管型、单管压差计测出。
又压强差与流量大小有关,根据柏努力方程及压差计计算公式,可以推导出公式如下:Vs=Cv〃Sv2gR?0?? ?则在测定不同流量下的R、Vs等数值代入公式即可求得1Cv值。
当流体流过流量计时,因为阻力造成机械能损失。
把文氏管看成一个局部阻力部位,流体克服局部阻力所消耗的机械能(损失压头)可表示为动能(动压头)的倍数。
22u0u0?J/kg? 或Hf???m? 即hf??22g若流量计前部压强为p1 后部为p2列出实际流体的机械能衡算式为:2p1u1p2u2?z2g??2?hf z1g???2?2对在水平管上安装的文氏管,上式可整理成p?phf?12?J/kg? ?即只要在文氏管两端连接测压导管并用U型压差计测出p1-p2值,即可测出文氏管阻力,并进一步得出局部阻力系数。
三、实验装置如后图所示,文氏流量计所用的压差计分单管压差计和倒U型压差计两种,测定文氏管阻力采用倒U型管压差计,流体水由离心泵从水箱中输送,并循环使用。
四、实验方法1.装有单管压差计的装置(1)在出口阀(即流量调节阀或管道进口阀)关闭情况下开动离心泵。
(2)打开计量槽下阀门,再缓慢开启泵出口阀,排出管2道中气体。
(3)关闭泵出口阀,观察压差计液面是否指零,不指零说明测压导管中有气体,需要重新进行排气调节。
(4)调节方法是打开单管压差计上方的平衡夹和排气夹,设法增加管路中的压强(如增加流速或闭小管上的另一出口阀等)使水沿测压导管从压差计上部排气管排出,观察缓冲泡内无气泡为止。
实验六 孔板流量计流量的校正
实验六 孔板流量计流量的校正一、实验目的1.掌握流量计流量系数校正的方法; 2.了解流量系数与其影响因素的关系。
二、实验原理工程上通过测定流体的压差来确定其速度及流量。
孔板流量计数学模型为:ρρρ/)(2A C V 00-=i gR m ),(R C e 0f =孔板流量计是基于流体在流动过程中的能量转换关系,由流体通过孔板前后压差的变化来确定流体流过管截面的流量。
)(Rg 2/2//2//Hg 212221222211ρρρρρρ-=∆⇒-=-=∆+=+P u u P P P u P u P 由于2-2(缩脉)处面积难以确定,所以工程上以孔口速度u 0代替u 2,流体通过孔口时有阻力损失,又因流动状况而改变的缩脉位置使测得的(P 1-P 2)/ρ带来偏差,因此通过实验来确定C 0,流量计的计算式:ρρρ/)(200-=Hg S gR A C V孔板流量计不足之处是阻力损失大,这个损失可由U 形压差计测得。
三、实验装置与流程1.水箱 2.引水阀3.调节阀 4.涡轮流量计5.测定孔板前后压降的U形压差计 6.测量阻力损失的U形压差计7.孔板流量计 8.离心泵主要参数:管道直径:27mm;孔板孔径:18mm四、实验步骤1.水箱充满水至80%2.打开压差计上平衡阀,关闭各放气阀。
3.启动循环水泵。
4.排气:(1)管路排气;(2)测压导管排气;(3)关闭平衡阀,缓慢旋动压差计上放气阀,排除压差计上的气泡,注意:先排进压管后排低压管。
5.读取压差计零位读数。
6.开启调节阀至最大,确定流量范围,确定实验点,测定孔板前后压降和经过孔板所带来的压降。
7.测定读数:改变管道中的流量,读出一系列流量,压差。
8.实验装置恢复原状,打开压差计上的平衡阀,并清理场地。
五、实验记录六、实验报告1、数据整理2.本实验μρ/1du R ed=,m),(0ed R f C =,对于特定孔板m 为常数,上式可写成)(0ed R f C =。
管道阻力测定及流量计流量系数测定
四、实验要求: 实验要求
实验预习: 实验预习 1、复习流体流动的两种不同形态—层流和紊流; 2、预习阻力系数与雷诺系数之间的关系 3、阻力系数λ与损失压力之间的关系。即:hf=λv2/d2g、hj=ζμ2/2g。 4、熟悉文丘利流量计、孔板流量计。 注意事项: 注意事项: 1、在该装置上与本实验无关的阀门一律关闭严紧 ,以免额外漏入水管产生窜 水现象。 2、调节流量要缓慢,改变流量以后,应待水流稳定以后,再读取压差和实测流 量。 3、由于水源的脉动作用和旋涡的产生, 压差计液面回上下跳动, 读数取平均值。 4、实验进行前, 应排除系统中和压差计、 测压管中的气泡, 以免影响实验效果。 实验结果: 实验结果 1、测试出管道的沿程阻力系数、局部阻力系数。 2、测试出对文丘里流量计、孔板流量计系数。 3、绘制μ=f(Re); μ=f(△h); α0=f(Red1); α0=f(△h)关系曲线。 4、绘制 90°弯头阻力系数与 Re 关系曲线。 5、绘制沿程阻力系数和雷诺数的关系λ=f(Re) 曲线,学习把试验所得的数据 整理成经验公式的方法。
实验项目 名称 所属课程 要求 编制人
管道阻力测定及流量计流量系数测定 流体力学 必做
开出实 验类别
综合性 2 10/6
本项目实验学时数 本课程实验学时总数 李慧星
设计性实验的理由: 一、该实验项目作为综合性/设计性实验的理由: 该实验项目作为综合性 设计性实验的理由 (要求阐明本项目为设计性/综
合性实验的重要性和意义)
二、实验设备和装置简介(可附图说明)(要求只列出与本项目相关的设备和装 实验设备和装置简介(可附图说明) :
置) 阻力实验装置(配有 U 形管压差计) 秒表一块
三、实验任务: 实验任务
1、要求学生建立水头损失的概念;理解伯努力方程及流体连续方程。 2、弄清能量转换的关系。 3、掌握动量定理、动量矩的具体实际应用、了解力的合成有关知识。
流体流动阻力系数的测定ppt(精)
实验一 流体流动阻力系数的测定
实验目的
了解流体流动阻力的测定方法。 确定流体通过直管时的摩擦阻力,并确 定摩擦系数λ与雷诺数 Re 的关系。 定流体通过阀门时的局部阻力,并求出 局部阻力系数ζ。
实验原理
流体在管路中流动时,由于流体粘性剪 应力和涡流存在,流体必定要消耗一定 机械能。 管路系统是由直管、管件和阀 门等组成。流体流过直管时造成的机械 能损失称为直管阻力; 而流体通过管件、 阀门等局部障碍,由于流动方向或流动 截面的改变造成的机械能损失称为 局部 阻力。
注意事项
注意测定局部阻力时,在通水之前应将后 面的传感器平衡阀打开,让传感器两侧充 满 水,维持平衡,保护传感器,用压差 表测压差时,将传感器平衡阀关闭。
流体阻力系数的计算
局部阻力系数的计算
2P近 P远 2 P P 2 远 近 u / 2 2 u / 2
实验装置
Hale Waihona Puke 实验步骤1.向储水槽内注水,直到水满为止(最好用蒸馏水,以保持流体清 洁 )。 2.在大流量状态下用压差表测量系统压差前,应先接通电源予热 10~15 分钟,调好数字表 的零点,方可启动泵做实验。 3.测量前先检查导压系统内有无气泡存在,可参阅下图(Π形 压差计))当流量由大调至 100 以下时,再将关闭阀 18, 20,打开阀 26 后,缓慢同时打开两侧阀 19使倒 U 型管两 端水面下降至 0 刻度左右时迅速 关紧,同时将阀门 26 关 闭,然后打开阀 18,20,将水流量调节至零,看液面是否 平行,如果不平 则说明系统内有气泡存在,需赶净气泡方 可测取数据。赶气泡的方法:将流量调至最大,把阀门 13, 15,16,17,18,20 全部打开,使大流量的水经 阀 18 处进入 U 型玻璃管经阀 20 处排出。看 U 型 玻璃管内无明 显气泡后,将水流量调节到零流量 后(同上)查看液面是 否平行。
[设计]仿真思考题及答案
1.精馏实验0001.精馏操作回流比:000越大越好000越小越好000以上两者都不对r0002.精馏段与提馏段的理论板:000精馏段比提馏段多000精馏段比提馏段少000两者相同000不一定r0003.当采用冷液进料时,进料热状况q值:000 q>1r000q=10000<q<1000q=0000q<00004.全回流在生产中的意义在于:000用于开车阶段采用全回流操作r000产品质量达不到要求时采用全回流操作r000用于测定全塔效率r0005.精馏塔塔身伴热的目的在于:000减小塔身向环境散热的推动力000防止塔的内回流r000加热塔内液体0006.全回流操作的特点有:000F=0,D=0,W=0r000在一定分离要求下NT最少000操作线和对角线重合0007.本实验全回流稳定操作中,温度分布与哪些因素有关?000当压力不变时,温度分布仅与组成的分布有关r000温度分布仅与塔釜加热量有关系000当压力不变时,温度分布仅与板效率、全塔物料的总组成及塔顶液与釜液量的摩尔量的比值有关0008.判断全回流操作达到工艺要求的标志有:000浓度分布基本上不随时间改变而改变r000既不采出也不进料000温度分布基本上不随时间改变而改变r0009.塔压降变化与下列因素有关:000气速r000塔板型式不同r00010.如果实验采用酒精-水系统塔顶能否达到98%(重量)的乙醇产品?(注:95.57%酒精-水系统的共沸组成)000若进料组成大于95.57% 塔顶可达到98%以上的酒精000若进料组成大于95.57% 塔釜可达到98%以上的酒精r000若进料组成小于95.57% 塔顶可达到98%以上的酒精000若进料组成大于95.57% 塔顶不能达到98%以上的酒精r00011.冷料回流对精馏操作的影响为:000XD增加,塔顶T降低r000XD增加,塔顶T升高000XD减少,塔顶T升高00012.当回流比R<Rmin时,精馏塔能否进行操作?000不能操作000能操作,但塔顶得不到合格产品r00013.在正常操作下,影响精馏塔全效率的因素是:000物系,设备与操作条件r000仅与操作条件有关000加热量增加效率一定增加000加热量增加效率一定减少000仅与物系和设备条件有关00014.精馏塔的常压操作是怎样实现的?000塔顶连通大气000塔顶冷凝器入口连通大气000塔顶成品受槽顶部连通大气r000塔釜连通大气000进料口连通大气00015.全回流操作时,回流量的多少受哪些因素的影响?000受塔釜加热量的影响r000受塔顶冷剂量的影响00016.为什么要控制塔釜液面高度?000为了防止加热装置被烧坏r000为了使精馏塔的操作稳定r000为了使釜液在釜内有足够的停留时间r000为了使塔釜与其相邻塔板间的足够的分离空间000为了使釜压保持稳定00017.塔内上升气速对精馏操作有什么影响?000上升气速过大会引起漏液000上升气速过大会引起液泛r000上升气速过大会造成过量的液沫夹带r000上升气速过大会造成过量的气泡夹带000上升气速过大会使塔板效率下降r00018.板压降的大小与什么因素有关?000与上升蒸气速度有关r000与塔釜加热量有关r0002.传热实验0001.下列属于传热基本形式有:000间壁换热000混合换热000辐射r0002."热能"总是:000由热能高的物体传向热能低的物体000由温度高的物体传向温度低的物体r000由比热大的物体传向比热小的物体0003.间壁换热时,壁温总是:000接近温度高的流体000接近温度低的流体000接近传热系数大的流体r0004.在本实验中的管壁温度Tw应接近蒸汽温度,还是空气温度?可能的原因是:000接近空气温度,这是因为空气处于流动状态,即强制湍流状态,a(空气)↑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2324
d5pf
lqV2
局部阻力系数ζ的测定
对于不可压缩流体流经管件、阀门等局部地方造成的 机械能损失,可由柏努利方程式和范宁公式得到:
Hf
P1 P2
g
u2 2g
0.3081d4qVp2f
孔板流量计孔流系数C0的测定
qV A2u2 A2 1 ( A2 )2 A1
2p f
qV
CA0 1( A0 )2
A1
2pf
令孔流系数 C 0
C0
C 1 ( A0 )2
A1
C 0
AO
qV 2p f
四、实验装置及流程
阻力实验装置流程图
1、3、4、12. 球阀 2、截止阀 5、6. 涡轮流量计 7. 不锈钢直管 8. 塑料直管 9. 孔板流量计 10.闸阀或截止阀 11. 90°弯头(弯管) 13. 闸阀
主要设备规格:
钢管长度: 1650 mm 钢管直径: Φ45mm×3.5mm 孔口直径: 29.664 mm 塑料管长度: 2000 mm 塑料管直径: Φ50×5 mm
五、实验操作过程
❖ 检查各有关阀门(包括测压口阀门)是否符合 要变 送器两端是否有气泡,有气泡要及时排气。
❖ 调节大回路截止阀2的开度,改变不同的流量, 记录有关数据;
❖ 关闭大回路阀门2,实验结束。
六、实验注意事项
❖ 在所测流量范围内(3~11m3/h),测点不得 少于8个,并注意测点间隔基本均匀;
❖ 当流量<6m3/h时,应适当关小球阀12的开度, 保证整个管路满管流,保证气体不进入压差变 送器;
❖ 在测取数据过程中,每次调节阀门改变流量时, 应力求变化缓慢些,不要大起大落,以免流量 突然改变,引起额外扰动。
七、实验报告要求
❖ 实验前必须进行预习并完成相应的预习报告; ❖ 将处理后的数据填写在数据记录表中; ❖ 计算出的数据必须有示例演算; ❖ 根据实验结果在坐标纸中绘制Co-Re,λ-Re图; ❖ 得出实验结论并进行相应的讨论。
八、思考题
❖ 为什么要排除压差计中的气泡?如何排除? ❖ 本实验用水为介质做出的λ与Re的曲线,对其它
流体能否使用?为什么?
❖ 孔流系数C0与哪些因素有关? ❖ 本实验是测定等直径水平直管的流动阻力,若将
水平管改为流体自下而上流动的垂直管,从测量 两取压点压差读数到Hf的计算过程和公式是否与水 平管路完全相同?
三、实验原理
总阻力
直管阻力
流体流经一定直径的直管时由于内摩 擦而产生的阻力;
局部阻力 流体流经管件、阀门等局部地方由于流 速大小及方向的改变而引起的阻力。
直管摩擦系数λ的测定
对于同直径的水平管内不可压缩流体流动造成的机 械能损失,可由柏努利方程式和范宁公式得到:
Hf
pf
g
l u2
d 2g
❖ 涡轮流量计测量流量的原理是什么?
❖ 根据实验装置,如何设计一个高阻和低阻的并联 管路系统,并如何验证两分支管路中流量的分配 规律?
❖ 从教材中可查到,90°标准弯头的局部阻力系数 ζ=0.75, 90°弯管的局部阻力系数ζ≈0.175,你 的实验结果如何?ζ随着雷诺准数Re的改变变化 大吗?
谢谢