6-02理想气体的压强公式
1理想气体压强公式
压强的另外一个表达式
第七章气体动理论
m N, M NA
pV m RT M
NA:阿伏伽德罗常数 N:总分子数
p N RT N R T
N AV
V NA
p nkT
分子数密度 n N V
玻耳兹曼常量
在相同的温度和压强下,各种 气体的分子数密度相等。
k
R NA
8.31J mol1 k 1 6.022 1023 mol1
第七章气体动理论
系统
在热力学中,把所要研究的对象,即由大量微观粒子组成的物
体或物体系称为热力学系统。(如容器中的气体分子集合或溶
液中液体分子的集合或固体中的分子集合。) 系统的外界(简称外界) 能够与所研究的热力学系统发生相互作用的其它物体,称为外 界。
把用来描述系统宏观状态的物理量称为状态参量。
气体的宏观状态可以用V、P、T 描述
求 (1) 此时管内气体分子的数目; (2) 这些分子的总平动动能。
解 760 mmHg = 1大气压 = 1.013×105Pa
1 mmHg = 133.3Pa
(1) 由理想气体状态方程得
p nkT N kT V
N
nV
pV kT
5 106 133.3105 1.381023 300
1.611012
热力学与统计物理的发展, 加强了物理学与化学的联系, 建立了物理化学这一门交叉科学 .
热学
1.什么是热学
•宏观物体是由大量的微观粒子——分子、原子等组成的 •微观粒子的无规则的运动,称为热运动。 热学是研究热运动的规律及其对物质宏观性质的影响,以 及与其他运动形态之间的转化的物理学分支。
2.热学的分类
3
p
大气气压公式
大气气压公式
气体压强三大公式为pv=m/MRT;P=F/S;P液=pgh。
1、理想气体压力公式:pv=nrt,其中p为气体压力,v为气体体积,n为气体摩尔数,r为气体常数,t为热力学温度。
2、压力公式:固体压力p=f/s压力:p帕斯卡(pa)压力:f牛顿(n)面积:s平方米(㎡)液体压力p=jgh压力:p帕斯卡(pa)液体密度:每立方米(kg/m3)1公斤。
3、气体压力公式:pv=nrtp1v1/t1=p2v2/t2对同一理想气体系统的压力体积温度进行比较。
因此,以pv/t=nrr为常数,同一理想气体系统n不变。
大气压
大气压是指地球上某个位置的空气产生的压强。
地球表面的空气受到重力作用,由此而产生了大气压强.地球上面的空气层密度不是相等的,靠近地表层的空气密度较大,高层的空气稀薄,密度较小.大气压强既然是由空气重力产生的,高度大的地方,它上面空气柱的高度小,密度也小。
所以距离地面越高,大气压强越小.通常情况下,在2千米以下,高度每升高12米,大气压强降低1毫米水银柱。
气体和液体都具有流动性,它们的压强有相似之处、大气压向各个方向都有,在同一位置各个方向的大气压强相等.但是由于大气的密度不是均匀的,所以大气压强的计算不能应用液体压强公式。
理想气体的压强与体积关系
理想气体的压强与体积关系理想气体是指在一定条件下呈现高度自由运动的气体,它的分子之间几乎不发生相互作用。
在理想气体中,分子的体积可以忽略不计,分子之间的相互作用力也可以忽略。
通过研究理想气体的性质和行为,我们可以得出理想气体的压强与体积之间的关系。
根据理想气体状态方程,可以得出以下式子描述理想气体的性质:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数量,R为气体常数,T表示气体的绝对温度。
通过对上述方程进行简单推导,可以得到理想气体的压强与体积之间的关系。
首先,假设其他参数(如n、R和T)的值保持不变,我们可以将气体摩尔数量n和气体常数R合并成一个新的常数k,即PV = kT。
在等式的两边同时除以V,我们可以得到P = kT/V。
通过上述等式,我们可以看出,在温度确定的情况下,理想气体的压强与体积是呈反比关系的。
当气体的体积增大时,同样的气体分子数量被分布在更大的空间中,分子间的碰撞次数减少,单位面积上所受的撞击力减小,因此气体的压强降低。
反之,当气体的体积减小时,分子间的碰撞次数增加,单位面积上所受的撞击力增加,因此气体的压强增加。
这一压强与体积的反比关系可以通过实验进行验证。
实验中,我们可以改变气体的体积,通过测量气体的压强来观察其变化情况。
例如,我们可以使用容器和活塞装置来控制气体的体积,并使用压力计来测量气体的压强。
当我们逐渐移动活塞减小容器的体积时,可以观察到压力计上指示的压强逐渐增大;反之,当我们逐渐增大容器的体积时,压力计上的指示压强逐渐减小。
这一实验结果与理论推导相符,说明理想气体的压强与体积之间确实存在反比关系。
综上所述,根据理想气体状态方程的推导和实验结果,我们可以得出结论:理想气体的压强与体积之间呈反比关系。
这一关系对于理解气体的行为和描述气体的性质具有重要的意义。
大学物理学(课后答案)第7章
⼤学物理学(课后答案)第7章第七章课后习题解答、选择题7-1处于平衡状态的⼀瓶氦⽓和⼀瓶氮⽓的分⼦数密度相同,分⼦的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦⽓压强⼤于氮⽓的压强(C)温度,压强都相同(D)温度相同,但氦⽓压强⼩于氮⽓的压强3分析:理想⽓体分⼦的平均平动动能τk= kT,仅与温度有关,因此当氦⽓和氮2⽓的平均平动动能相同时,温度也相同。
⼜由理想⽓体的压强公式p =nkT ,当两者分⼦数密度相同时,它们压强也相同。
故选( C)O7-2理想⽓体处于平衡状态,设温度为T,⽓体分⼦的⾃由度为i ,则每个⽓体分⼦所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想⽓体分⼦的的平均平动动能3 kT和理想⽓体分⼦的的平均动能2T⼆丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想⽓体,其分⼦数密度n相同,⽽⽅均根1/2 1/2 1/2速率之⽐为V A : V B : V C 1:2:4 ,则其压强之⽐为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分⼦⽅均根速率公式= J3RT,⼜由物态⽅程p = nkT ,所以当三容器中得分⼦数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表⽰在相同温度下氧⽓和氢⽓分⼦的速率分布曲线。
如果(VP O和(V P 分别表⽰氧⽓和氢⽓的最概然速率,则[](A)图中a表⽰氧⽓分⼦的速率分布曲线且V P O z V P H= 4(B) 图中a表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O / V P H=1/4(D) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢⽓与氧⽓的摩尔质量M H2£M o2,可知氢⽓的最概然速率⼤于氧⽓的最概然速率,故曲线a对应于氧分⼦的速率分布曲线。
高中人教物理选择性必修二专题10 理想气体状态方程——教师版
专题10 理想气体状态方程(教师版)一、目标要求二、知识点解析1.气体的等温、等容和等压变化(1)气体实验定律气体的温度、体积和压强这三个状态参量之间存在一定的关系,我们从三个角度分别探讨它们之间的联系.图1、图2和图3分别表示气体在等温、等容和等压下的各状态参量之间的关系:注意:只有取开尔文温标时,等容变化和等压变化的正比关系才成立. 2.气体压强的微观解释①压强:从微观角度来看,气体对容器的压强是由于大量气体分子对容器的撞击引起的,气体的温度越高,气体分子的密集程度(单位体积内的分子数)越大,气体对容器的压强越大;注意:与气体对容器的压强不同,大气压强是由地球的吸引产生的; ②微观理解a .一定质量的气体温度不变时,平均动能不变,压缩体积使得气体分子密集程度增大,则压强增大;b .一定质量的气体体积不变时,升高温度使得气体分子的平均动能增加,在相同密集程度下撞击容器时的作用力更大,则压强增大;c .一定质量的气体压强不变时,升高温度,分子平均动能增大,为使气体的压强不变,气体只能减小分子的密集程度,即体积增大.3.理想气体状态方程 (1)理想气体①定义:气体实验定律只有在温度变化不大(相比室温)、压强变化不大(相比大气压)的情况下才成立,为研究方便,假设一种气体,在任何温度和任何压强下都符合实验定律,这种气体被称为理想气体;实际气体在温度变化不大(相比室温)、压强变化不大(相比大气压)时可以视作理想气体;②性质:理想气体中的分子忽略自身体积,可视作质点;不考虑分子间的作用力,即分子运动时做匀速直线运动,且不计分子势能;分子与分子、分子与容器的碰撞都是完全弹性的;(2)理想气体状态方程设一定质量的理想气体在1状态时的温度、压强和体积分别为T 1、p 1、V 1,在2状态时的温度、压强和体积分别为T 2、p 2、V 2,则有:112212p V p V T T理论表明,考虑理想气体的数量关系,理想气体状态方程为:pV=nRT 其中n 为理想气体的物质的量.三、考查方向图1图2图3题型1:气体压强的微观解释典例一:(2017•朝阳区二模)科学精神的核心是对未知的好奇与探究,小君同学想寻找教科书中“温度是分子平均动能的标志”这一结论的依据,他以氦气为研究对象进行了一番研究,经查阅资料得知:第一,理想气体的模型为气体分子可视为质点,分子间除了相互碰撞外,分子间无相互作用力;第二,一定质量的理想气体,其压强p 与热力学温度T 的关系式为p nkT =,式中n 为单位体积内气体的分子数,k 为常数。
气体压强体积温度公式
气体压强体积温度公式
理想气体状态方程描述了气体的压强、体积和温度之间的关系。
根据理想气体状态方程,压强(P)、体积(V)和温度(T)之间的
关系可以用以下公式表示,PV = nRT。
其中,P代表气体的压强
(单位为帕斯卡),V代表气体的体积(单位为立方米),n代表气
体的物质量(单位为摩尔),R代表气体常数(单位为焦耳每摩尔
每开尔文),T代表气体的温度(单位为开尔文)。
这个公式也可以用来表示为P = (nRT) / V,V = (nRT) / P,
T = (PV) / (nR)。
这些公式可以帮助我们在已知压强、体积和温度
中的任意两个量时,计算出第三个量的数值。
需要注意的是,理想气体状态方程适用于低压和高温的条件下,而在高压和低温条件下,真实气体会显示出偏离理想气体行为的特性。
在这种情况下,需要考虑修正因子来修正理想气体状态方程,
以更准确地描述气体的行为。
总之,理想气体状态方程是描述气体压强、体积和温度之间关
系的重要公式,它在热力学和物理化学等领域有着广泛的应用。
压强压力知识点总结
压强压力知识点总结一、压强的定义压强是力对一个单位面积的垂直施加的物理量,通常用P表示。
在国际单位制中,压强的单位是帕斯卡(Pa),1帕斯卡等于1牛顿/平方米(N/m^2)。
从公式上来看,压强可以表示为:\[P=\frac{F}{A}\]其中,P代表压强,F代表力,A代表受力面积。
二、压强的计算1. 气体体积和压强的计算对于气体来说,压强可以通过理想气体状态方程来计算。
理想气体状态方程可以表示为:\[PV=nRT\]其中,P代表压强,V代表体积,n代表摩尔数,R代表气体常数,T代表温度。
通过这个公式,可以通过测量气体的体积、温度和摩尔数来计算出气体的压强。
2. 液体压强的计算液体压强可以通过液体的密度和高度来计算。
液体压强可以表示为:\[P=\rho gh\]其中,P代表压强,ρ代表液体密度,g代表重力加速度,h代表液体的高度。
通过这个公式,可以计算出液体在某一深度处的压强。
三、压力的传递在物体中,压力可以通过物体内部的分子相互作用传递。
在液体和气体中,压力可以通过分子不断的碰撞和传递来实现。
当一个物体受到外力作用时,这个力会通过物体内部的分子相互作用传递到物体的其他部分,形成压力。
四、压强的应用压强在生活和工程中有很多重要的应用,下面将介绍一些常见的应用:1. 气压计气压计是一种用来测量大气压强的仪器。
气压计利用大气压强将汞柱推向玻璃管内,从而测量出大气压强的数值。
2. 液压工程在液压工程中,液体的压强和流动被广泛应用在液压装置中。
例如,液压千斤顶利用液体的压力来提升重物,液压系统用来实现机械运动等。
3. 球类运动在体育比赛中,例如棒球、网球、篮球等,压强是一个重要的物理概念。
球类运动中,球与地面的接触面积很小,因此球受到的压力就会很大,这样球才会弹跳。
4. 水压器械水压学在工程与农业中应用广泛,例如水压车、高压清洗机、水力船运输等,都是基于液体的压强原理。
总之,压强是一个非常重要的物理量,在物理学、力学、流体力学等多个领域中都有广泛的应用。
大学物理课程标准
《大学物理》课程标准课程代码:课程名称 : 大学物理英文名称: College Physics课程类型:专业必修课总学时: 144授课学时:108实践学时:36学分: 8适用对象:机械类及相近专业本科学生一、课程概述大学物理是高等院校非物理类理工科本科各专业学生一门重要的通识性必修基础课。
物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
该课程在培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
二、课程目标通过本课程的学习,使学生逐步掌握物理学研究问题的思路和方法,在获取知识的同时,学生建立物理模型的能力,定性分析,估算与定量计算的能力,独立获取知识的能力,理论联系实际的能力获得同步提高与发展。
开阔思路,激发探索和创新精神,增强适应能力,提升其科学技术的整体素养。
同时,使学生掌握科学的学习方法和形成良好的学习习惯,养成辩证唯物主义的世界观和方法论。
三、课程的内容与要求(一)教学基本要求与内容第一部分力学.第1章运动学1.1 质点运动的描述1.2 加速度为恒矢量时的质点运动1.3 圆周运动1.4 相对运动基本要求:1.深入地理解质点、位移、速度和加速度等重要概念,深入理解质点的运动。
2.分析加速度为恒矢量时的质点运动方程。
3.明确圆周运动中角位移、角速度、切向加速度、法向加速度的关系。
重点与难点 :1.加速度为恒矢量时质点运动方程的描写。
2.质点圆周运动的分析。
第2章牛顿定律2.1 牛顿定律2.2 物理量的单位和量纲2.3 几种常见的力2.4 惯性参考系力学相对性原理基本要求:1.清晰的理解牛顿第一定律、牛顿第二定律和牛顿第三定律。
2.熟练掌握几种常见力。
3.掌握物理量的单位和量纲。
理想气体状态方程专题训练
Part One
单击添加章节标题
Part Two
理想气体状态方程 的基本概念
理想气体状态方程的定义
理想气体:无黏 性、无分子间作 用力、忽略分子 体积的气体
理想气体状态方 程:PV=nRT, 其中P表示压强, V表示体积,n表 示摩尔数,R表 示气体常数,T 表示温度
理想气体状态方程 的练习题及解析
理想气体状态方程的基础练习题
● 题目:一个容积为20L的容器内,装有压强为100Pa的干燥空气。现将一束长度为10cm、直径为2cm的玻璃管开口端封闭,开口 端竖直插入水银槽中,使玻璃管内外的水银面一样高,若将容器内的空气温度升高到373K,求此时容器内空气的压强。
● (1)5min末A的物质的量浓度为 _______; ● (2)前5min内用B表示的化学反应速率v(B)为 _______; ● (3)前5min内A的转化率为 _______; ● (4)化学方程式中n的值 _______。
● 题目:在标准状况下,将氧气和二氧化氮按1:4的体积比充满干燥烧瓶,把烧瓶倒置于水中,瓶内液体逐渐上升,假设瓶内液体不 扩散,则最终烧瓶内溶液里溶质的物质的量浓度是 ( ) A. 1/28 mol/L B. 4/28 mol/L C. 1/39.2 mol/L D. 4/39.2 mol/L
添加标题
题目:一个容积为5L的容器内装有1大气压的空气,现将容器内的空气 温度升高到400K,求容器内气体的压强。
添加标题
题目:一个容积为3L的容器内装有1大气压的空气,现将容器内的空气 温度降低到270K,求容器内气体的压强。
理想气体状态方程的难题解析
不同气体混合物的处理
大学物理02理想气体的压强和温
v
2 x
v1x 2
v2x2 N
vNx 2
N i 1
vi2x N
同理,分子速度在y、z方向的方均值:
v
2 y
N i 1
vi2y N
v
2 z
N
v
2 iz
N i 1
由于分子在x、y、z三个方向上没有哪个方向的运
动占优势,所以,分子的三个速度方均值相等。
v
2 x
v
2 y
v
2 z
由矢量合成法则,分子速度的方均值为:
P
1 3
nmv2
2 3
n t
与
P
nkT
比较有:
2 3
n
t
nkT
温度公式: t
明确几点:
3 2
kT
1.温度是对大量分子热运动的统计平均结果,对个别 分子温度无意义。
2. T t 分子运动得越激烈,温度越高。
温度是分子平均平动动能的标志。
3. 不同气体温度相同,平均平动动能相同。
12
4.由P=nkT可知标准状况下分子数密度。
1 3
nmv2
2 3
n t
由气体的质量密度: M
V
Nm V
nm
压强公式又可表示为:P 1 v2
注意几点:
3
1.压强是由于大量气体分子碰撞器壁产生的,它是对
大量分子统计平均的结果。对单个分子无压强的概念。
2.压强公式建立起宏观量压强 P 与微观气体分子运动之 间的关系。
11
三、温度公式
由压强公式
平衡态下,器壁各处压强相等,取直角坐标系,在
垂直于x轴的器壁上任取一小面积dA,计算其所受的压
压强的公式知识点总结
压强的公式知识点总结
压强是指单位面积受力的大小,是一个物体内部的分子间相互碰撞产生的力的结果。
在物理学中,压强被定义为单位面积上的力的大小,通常用P表示,单位为帕斯卡(Pa),即1牛顿/平方米。
压强的公式可以根据不同情况而有不同的形式,下面我们将分别介绍几种常见的情况和对应的压强公式。
1. 对流体的压强公式
对于流体的压强公式可以用力的大小除以受力面积来表示,即
P = F/A
其中P表示压强,F表示受力的大小,A表示受力的面积。
2. 对气体的压强公式
对于气体的压强公式也可以用力的大小除以受力面积来表示,即
P = F/A
同样,其中P表示压强,F表示受力的大小,A表示受力的面积。
3. 流体静压的压强公式
流体静压是指静止的流体对受力面积的力的压强,可以用流体的密度、重力加速度和深度来表示,即
P = ρgh
其中P表示压强,ρ表示流体的密度,g表示重力加速度,h表示深度。
4. 球体内外的压强公式
对于球体内外的压强公式,可以用体积力除以体积来表示,即
P = F/V
同样,其中P表示压强,F表示受力的大小,V表示受力的体积。
5. 计算压强的公式
对于压强的计算公式,可以用受力的大小除以受力面积来表示,即
P = F/A
同样,其中P表示压强,F表示受力的大小,A表示受力的面积。
以上是几种常见情况下的压强公式及相关知识点总结。
希望可以对你有所帮助。
大学物理气体动理论
v v+dv
v
在平衡态下, 设分子总数为N, 速率在v~v+dv区间的 分子数为dN个, 那么 表dN示:
N
——速率在v~v+dv区间的分子数占总分子数的比率。
或一个分子速率处于v~v+dv区间的概率。
dN ~ dv N ~ v f (v)
即 dN f (v)dv N
由 dN f (v)dv N
总之, 理想气体可看作是一群彼此间无相互作用 的无规运动的弹性质点的集合。
二、平衡态的统计假设——等几率原理
1、理想气体处于平衡态时, 分子出现在容器内 各处的几率相等。即分子数密度处处相等, 具 有分布的空间均匀性。
2、分子朝各个方向运动的几率相等, 具有运动 的各向同性。
v 0, vx vy vz 0
(4)粒子的平均速率、方均根速率和最概然速率。
解 (1) 按图所示的速率分布曲线形状, 应有
kv
f
(v)
0
(v v0 ) (v v0 )
由速率分布函数的归一化条件, 可得
f (v)dv
0
v0 0
kvdv
1 2
kv 02
1
故速率分布函数为
2v
f
(v)
v02 0
(v v0 ) (v v0 )
f(v)
得
f (v) dN
Ndv
v v+dv
v
f (v) 称为分子的速率分布函数。
其物理意义是:在速率v附近, 单位速率区间内的分子 数占总分子数的比率。
或一个分子速率出现在v附近单位速率区间内的概率。
所以 f (v) 也称为分子速率分布的概率密度。
3、关于速率分布函数的几点重要讨论:
大学物理热力学公式(2024)
2024/1/30
1
目录
2024/1/30
• 热力学基本概念与公式 • 热力学第一定律 • 热力学第二定律 • 气体动理论基础与公式 • 相变与潜热公式 • 热力学循环与效率公式
2
01
热力学基本概念与公式
Chapter
2024/1/30
3
热力学系统与环境
01
热力学系统
所研究的对象,与周 围环境有物质和能量 的交换。
14
热力学第二定律表述及意义
克劳修斯表述
热量不能自发地从低温物体传到 高温物体。它说明在没有外界影 响的条件下,热传导过程是不可 逆的。
开尔文表述
不可能从单一热源吸收热量,使 之完全变成功,而不产生其他影 响。它说明功转变为热的实际宏 观过程是不可逆的。
热力学第二定律的意义
揭示了自然界中与热现象有关的 宏观过程的不可逆性,反映了宏 观自然过程的方向性。
自由膨胀过程
气体在真空中自由膨胀时,不受外界约束,体积自发增大。该过程中,系统的熵增加,表明自由膨胀是一个 不可逆过程。
17
04
气体动理论基础与公式
Chapter
2024/1/30
18
气体分子运动论概述
气体分子运动论是研究气体分子热运动的宏观规律和微观机制的理论基础。
气体分子运动论的基本假设包括:气体分子是由大量不断运动的质点组成,分子间的作用力可以忽略不 计,分子与器壁之间的碰撞是完全弹性的。
朗肯循环
朗肯循环是一种蒸汽动力循环,由锅 炉、汽轮机、凝汽器和给水泵等设备 组成。朗肯循环在火力发电厂、核电 站等领域得到广泛应用。其优点是可 以利用低品位的热能;缺点是需要消 耗大量的水资源,并且对环境有一定 影响。
大学物理分子动理论
xM1M3 (p1p3)V1
M2
p2V2
(1301)0329.6(天 ) 1400
6-2 理想气体压强公式
气体对器壁的压强是大量分子对容器不断碰撞 的统计平均效果。
每个分子对器壁的作用 f t
所有分子对器壁的作用 F f t
t
理想气体的压强公式
p F S
一、理想气体的分子模型 1、分子可以看作质点
说明: •平衡态是一种热动平衡
处在平衡态的大量分子仍在作热运动,而且因 为碰撞, 每个分子的速度经常在变,但是系统的宏 观量不随时间 改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
•平衡态是一种理想状态
对热力学系统的描述:
1. 宏观量——状态参量
解: (1) p1V1 p2V2
T1
T2
由已 :V 1知 2V 2,T 127 2 3 730 K ,0
T227 1 374 75 K0
p2V V 1 2T T 2 1p12 V V 22 3405 00 3p1
(2) w 3kT 2
ww2w123k(T2T1)
31.381 023(45030)03.1 11 021J 2
w 3 kT 2
p nkT
6-4 能量均分定理 理想气体的内能
一、自由度 确定一个物体的空间位置所需要的独立坐标数目。
He
O2
H2O
NH 3
以刚性分子(分子内原子间距离保持不变)为例
z
z
C(x, y,z)
y
C(x, y,z)
y
x
单原子分子
平动自由度t=3
itr3
理想气体压强公式的推导
理想气体压强公式的推导摘要:压强是热力学中描述平衡态下气体状态的一个重要力学参量。
从理想气体的微观模型出发,分析理想气体压强的产生原因,采用合理的统计方法,推导出理想气体的压强公式。
在推导的过程中,加强对统计概念及理想气体压强实质的认识。
关键词:理想气体;统计方法;压强公式。
1引言推导理想气体压强公式,首先要建立正确的理想气体微观模型;其次在理想气体微观模型的基础上,分析理想气体对容器器壁的压强和理想气体内部压强的产生原因;最后根据理想气体压强的产生原因,采用合理的统计方法推导理想气体的压强公式.2 理想气体的微观模型及其压强的产生原因德国物理学家克劳修斯1857年提出了理想气体的微观模型,即分子本身的线度比起分子间的距离可以忽略不计;可以认为除碰撞的一瞬间外,分子之间及分子与容器器壁之间都无相互作用;分子之间及分子与容器器壁之间的碰撞都是完全弹性的。
根据理想气体的微观模型,我们可以把理想气体看为由大量分子所组成的热学系统,粒子可近似地看作质点。
理想气体施于容器器壁的压强是大量分子对器壁不断碰撞的结果,而理想气体内部的压强是垂直于截面方向的热运动动量交换所引起的.并且理想气体的微观模型认为平衡态下理想气体内的分子是均匀分布的,向各个方向运动的几率是相等的,即具有混沌性。
所以在此基础上我们就可以运用合理的统计方法对理想气体的压强公式进行推导.3 推导理想气体对容器器壁的压强理想气体施于容器器壁的压强是大量分子对器壁不断碰撞的结果,在平衡态下,器壁上各处的压强相等,其大小等于单位时间单位面积器壁所受的冲量.设在任意形状的容器中贮有一定量的理想气体,体积为V,共含有N数个分子,单位体积内的分子数为Vn ,每个分子的质量为m.建立直角坐标系xyz,在垂直于x轴的器壁上任意取一N小块面积dA (图1),来计算它所受的压强。
图1一个速度分量为x v 的分子与容器器壁碰撞,容器器壁所受的冲量为x mv 2;dt 时间内,dA 面积上,速度分量在x x x dv v v +→之间能与容器器壁碰撞的分子数为()dAdt nv dv v f dN x x x ⋅=,这些分子对容器器壁的冲量为()dAdt nv dv v f mv dI x x x x ⋅⋅=2;dt 时间内,dA 面积上,速度分量在∞~0之间能与容器器壁碰撞的分子对容器器壁的冲量为()dAdt nv dv v f mv I x x x x ⋅⋅=⎰∞02 , (1) 麦克斯韦速度分布律()kT mv x x e kT m v f 22122-⎪⎭⎫ ⎝⎛=π , (2)单位时间,单位面积,容器器壁所受的冲量为dAdtI P = , (3) 速度平方的平均值mkT v 32= , (4) (1)(2)(3)(4)联立,解得εn v m n v nm P 3221323122=⎪⎭⎫ ⎝⎛== , (5) 4推导理想气体内部的压强因为理想气体内部的压强是垂直于截面方向的热运动动量交换所引起的,所以在平衡态下,X理想气体内部的压强等于单位时间单位面积垂直于截面方向交换的热运动动量。
理想气体微观模型压强动能和真实方程
3、理想气体物态方程的另一种形式
将
p nkT
k ,t
1 3 2 m v kT 2 2
带入
2 p n k 3
得
2 2 3 P n k ,t n kT nkT 3 3 2
P nkT
' v 及 v [例1.3] 试求273K时氢分子及空气分子的均方根速率 rms rms
Δ k指每个分子进入界面层时平均动量减少量
k F
F n
k an
1 1 a 2 pi nv cn n 2 2 3 Vm Vm
一摩尔气体范德瓦耳斯方程:
a [ p 2 ]Vm b RT Vm
M Vm 代入, 将 V Mm
a [ p 2 ]Vm b RT Vm
o
r0
r
分子力
分子力是一种电磁相互作用力, 故它是一种保守力,它对应有分子作 用力势能。
二、分子间互作用势能曲线
Ep(r)
平衡位置: r r0
r0 Ep0 分子互作用势能曲线 r
dEp (r ) F (r )dr或F E p (r ) F (r )dr
r
dEp dr
得气体质量为M的气体方程
M 2 a M M [p ( ) 2 ] V b RT Mm V Mm Mm
a---引力修正系数,b---斥力修正系数。
4 d 3 b 4 N A ( ) 10 5 m 3 3 2
2、昂纳斯( Onnes )方程
B C pV A 2 ...... V V
E Ek E p 0
二、真实气体物态方程
为了建立真实气体的物态方程,人们进行了许多理论和实 验的研究工作。目前已积累起非常多的资料,导出了大量的物 态方程,所有的物态方程可分为两类。一类是对气体的结构作 一些简化假设后推导出来的。虽然这类方程中的一些参数仍需 由实验来确定,因而多少带有一些半经验的性质,但其基本出 发点仍是物质结构的微观理论。这类方程的特点是形式简单, 物理意义清楚,具有一定的普通性和概括性,但在实际应用时 所得的结果常常不够精确。另一类是为数极多的经验的和半经 验的物态方程。它们在形式上是复杂的,而且每个方程只在某 一特定的较狭小的压强和温度范围内适用于某种特定的气体或 蒸汽。也正因为如此它们才具有较高的准确性,在实际工作中 主要靠这类方程来计算。下面对达两类方程各举一例略加介绍。
气体的压强与密度的关系
压强与密度关系式推导
密度定义
$rho = frac{m}{V}$,其中$rho$为密度,$m$为质量 ,$V$为体积。
压强与密度关系式
将理想气体状态方程变形为$质量。可以看出压强$p$与密度$rho$和 温度$T$成正比,与摩尔质量$M$成反比。
潜水员身体适应性调整
潜水员在深海潜水时需要逐渐适应水下高压环境 ,通过调整呼吸方式、控制下潜速度等措施来减 轻身体负担。
深海潜水装备的作用
深海潜水装备如潜水服、呼吸器等能够保护潜水 员免受水下高压环境的直接伤害,提供安全的呼 吸条件。
05
CATALOGUE
总结与展望
本次研究主要成果回顾
气体压强与密度关系的确立
方程意义
理想气体状态方程揭示了气体的压强、体积和温度之间的内在联系,是气体动力学和热力学的基础。
02
CATALOGUE
气体压强与密度实验探究
实验原理及步骤
• 原理:根据理想气体状态方程PV=nRT,在温度T和体积V一定的情况下,气体压强P与气体的物质的量n成正比。而气体的 密度ρ=m/V,因此可以通过测量气体的压强和密度来探究它们之间的关系。
影响因素分析
温度
温度升高时,气体分子的平均 动能增大,撞击容器壁的频率 和力度增加,导致压强增大。
体积
体积减小时,气体分子间的平 均距离减小,单位面积上受到 的分子撞击力增大,导致压强 增大。
物质的量
物质的量增加时,气体分子数 增多,单位面积上受到的分子 撞击力增大,导致压强增大。
摩尔质量
摩尔质量减小时,相同质量的 气体分子数增多,单位面积上 受到的分子撞击力增大,导致
压强单位
在国际单位制中,压强的单位是帕斯 卡(Pa),1Pa=1N/m²。
理想气体的实验研究及计算
理想气体的体积计算
物态方程
体积与物质的关 系
温度影响
体积变化规律
气体摩尔数
影响体积大小
理想气体的温度计算
通过物态方程 $PV=nRT$ 可以进行理想气体的 温度计算。温度是气体性质中的重要参数之一, 影响着气体的压强和体积。在实验研究中,准确 计算理想气体的温度对于数据分析和结论推断具 有重要意义。
● 05
第5章 理想气体的实际应用
理想气体在气象 学中的应用
气象学中常用理想气 体模型来描述大气的 温度、压强和密度分 布。通过理想气体方 程等公式,可以更准 确地预测天气变化, 为气象预测和研究提 供重要依据。
理想气体在工程热力学中的应用
01、
燃烧过程分析
工程热力学中常用理想气体模型来分析燃 烧过程中气体的热力学特性,如燃烧产物 的生成、燃烧温度等。
作用力
假设条件
适用条件为低密 度、高温度时
碰撞特性
具有完全弹性碰 撞
理想气体的物态 方程
理想气体的物态方程 为 $PVnRT$,其中 P为压强,V为体积, n为物质的量,R为 气体常数,T为温度。 该方程描述了理想气 体状态变化时的基本 关系。
理想气体的分子速度分布
麦克斯韦-玻 尔兹曼分布
律
描述理想气体分 子速度服从高斯
理想气体定 律
包括玻义尔定律、 查理定律等
● 02
第2章 理想气体的实验研究
理想气体的体积 测量实验
理想气体的体积测量 实验是通过容器的体 积变化以及容器中气 体的压强、温度变化 来进行的。实验中需 要对容器进行精确的 测量和记录,以便得 出准确的实验数据。 这种实验通常用于验 证理想气体状态方程 中的体积相关内容。
简明大学物理重点知识总结
五 机械振动知识点: 1、 简谐运动微分方程:0222=+x dtx d ω ,弹簧振子F=-kx,m k=ω, 单摆lg =ω 振动方程:()φω+=t A x cos振幅A,相位(φω+t ),初相位φ,角频率ω。
πγπω22==T。
周期T, 频率γ。
ω由振动系统本身参数所确定;A 、φ可由初始条件确定:A=22020ωv x +,⎪⎪⎭⎫⎝⎛-=00arctan x v ωφ; 2由旋转矢量法确定初相:初始条件:t=0 1) 由得 2)由得 3)由0=x 00<v 0cos =ϕ2/3 , 2/ππϕ=,0sin 0<-=ϕωA v 0sin >ϕAx =000=v ϕcos A A =1cos =ϕAx -=000=v ϕcos A A =-1cos -=ϕ0=ϕ2/πϕ=πϕ=得 4)由得3简谐振动的相位:ωt+φ:1)t+φ→(x,v )存在一一对应关系;2)相位在0→2π内变化,质点无相同的运动状态; 相位差2n π(n 为整数)质点运动状态全同; 3)初相位φ(t=0)描述质点初始时刻的运动状态; (φ取[-π→π]或[0→2π])4)对于两个同频率简谐运动相位差:△φ=φ2-φ1. 简谐振动的速度:V=-A ωsin(ωt+φ)加速度:a=)cos(2ϕωω+-t A简谐振动的能量:E=E K +E P = 221kA ,作简谐运动的系统机械能守恒4)两个简谐振动的合成(向同频的合成后仍为谐振动):1)两个同向同频率的简谐振动的合成:X 1=A 1cos (1φω+t ) ,X 2=A 2cos (2φω+t ) 合振动X=X 1+X 2=Acos (φω+t )其中 A=()12212221cos 2φφ-++A A A A ,tan 22112211cos cos sin sin φφφφφA A A A ++=。
相位差:12φφφ-=∆=2k π时, A=A 1 + A 2, 极大12φφφ-=∆=(2k+1)π时,A=A 1 + A2极小若0=x 00>v ϕcos 0A =0cos =ϕ2/3 , 2/ππϕ=,0sin 0>-=ϕωA v 0sin <ϕ)(sin 21212222k ϕωω+==t A m m E v )(cos 2121222p ϕω+==t kA kx E 2/3πϕ=121,ϕϕ=>A A2) 两个相互垂直同频率的简谐振动的合成:x=A 1cos (1φω+t ) ,y=A 2cos (2φω+t )其轨迹方程为: 如果) 其合振动的轨迹为顺时针的椭圆πϕϕπ2)212<-<其合振动的轨迹为逆时针的椭圆相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合成运动的轨迹为李萨如图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
A2
o
- mv x mv x
v
A1
y
z x
单个分子单位时间 施于器壁的冲量 2 mvix x 大量分子总效应 单位时间 N 个粒子 对器壁总冲量
2 vix
z
x
2 mvix
m Nm Nm 2 2 vix vx x x i x i N x i
器壁 A1所受平均冲力
F
2 vx
2)分子各方向运动概率均等
分子运动速度
vi vix i viy j viz k
各方向运动概率均等
vx v y vz 0Байду номын сангаас
1 2 vix N i
2 vz
x
2 方向速度平方的平均值 v x
2 vx
各方向运动概率均等
2 vy
1 2 v 3
6.2 理想气体的压强和温度公式第6章气体动理论
大量分子对器壁碰撞的总效果 : 恒定的、持续 的力的作用 .
热动平衡的统计规律 ( 平衡态 )
dN N 1)分子按位置的分布是均匀的 n dV V
2)分子各方向运动概率均等
分子运动速度
vi vix i viy j viz k
6.2 理想气体的压强和温度公式第6章气体动理论
一 理想气体压强公式 设 边长分别为 x、y 及 z 的长方体中有 N 个全 同的质量为 m 的气体分子,计算 A1 壁面所受压强 .
y
A2
o
- mv x mv x
v
A1
vy
y
z x
o
v vx
z
x
vz
6.2 理想气体的压强和温度公式第6章气体动理论
单个分子对器壁碰撞特性 : 偶然性 、不连续性.
6.2 理想气体的压强和温度公式第6章气体动理论
讨论
一瓶氦气和一瓶氮气密度相同,分子平均平动动 能相同,而且它们都处于平衡状态,则它们 (A)温度相同、压强相同。
(B)温度、压强都不同。 (C)温度相同,但氦气的压强大于氮气的压强. (D)温度相同,但氦气的压强小于氮气的压强.
N k 解 p nkT kT T V m p( N 2 ) p(He) m( N 2 ) m(He)
二 理想气体温度公式 理想气体压强公式
2 m' Nm p n k 3 M NAm m' 理想气体状态方程 pV RT M n N /V N pV RT p nkT NA
玻尔兹曼常数 分子平均平动动能
R 23 1 k 1.38 10 J K NA
1 3 2 k m v kT 2 2
单个分子遵循力学规律
y
x方向动量变化 pix 2mvix
分子施于器壁的冲量
A2
o
- mv x mv x
v
A1
y
2mvix
2 x vix
z
z x 两次碰撞间隔时间
x
单位时间碰撞次数
vix 2x
x
2 单个分子单位时间施于器壁的冲量 mvix
6.2 理想气体的压强和温度公式第6章气体动理论
微观量的统计平均值
宏观可测量量
6.2 理想气体的压强和温度公式第6章气体动理论
温度 T 的物理意义
1 2 3 k m v kT 2 2
1) 温度是分子平均平动动能的量度 (反映热运动的剧烈程度).
k T
2)温度是大量分子的集体表现,个别分子无意义. 3)在同一温度下,各种气体分子平均平动动能均 相等。 热运动与宏观运动的区别:温度所反 注意 映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有 分子的一种有规则运动的表现.
Nm x
6.2 理想气体的压强和温度公式第6章气体动理论
y
A2
o
- mv x mv x
v
A1
器壁 A1所受平均冲力 2 F v x Nm x
y
z x
气体压强
z
x
N n xyz
F Nm 2 p vx yz xyz
v2 x 1 2 v 3
统计规律
分子平均平动动能
1 2 k mv 2
6.2 理想气体的压强和温度公式第6章气体动理论
理想气体的微观模型 1)分子可视为质点; 线度 间距
9
d ~ 10 m,
10
r ~ 10 m, d r
;
2)除碰撞瞬间, 分子间无相互作用力;
3)弹性质点(碰撞均为完全弹性碰撞);
4)分子的运动遵从经典力学的规律 .
6.2 理想气体的压强和温度公式第6章气体动理论
6.2 理想气体的压强和温度公式第6章气体动理论
例 理想气体体积为 V ,压强为 p ,温度为 T , 一个分子 的质量为 m ,k 为玻尔兹曼常量,R 为摩 尔气体常量,则该理想气体的分子数为:
(A)
pV m
(B) pV (D)pV
(kT )
(m T )
(C) pV
( RT )
解
p nkT
pV N nV kT
2 p n k 3
6.2 理想气体的压强和温度公式第6章气体动理论
压强的物理意义 统计关系式
2 p n k 3
微观量的统计平均值
宏观可测量量 分子平均平动动能
1 2 k mv 2
压强是大量分子对时间、对面积的统计平均结果 .
问 为何在推导气体压强公式时不考虑分子间的碰撞 ?
6.2 理想气体的压强和温度公式第6章气体动理论