平面弯曲习题解答1
弯曲内力习题与答案
弯曲力1. 长l的梁用绳向上吊起,如图所示。
钢绳绑扎处离梁端部的距离为x。
梁由自重引起的最大弯矩|M|max为最小时的x值为:(A) /2l;(B) /6l;(C…) 1)/2l。
l;(D) 1)/22. 多跨静定梁的两种受载情况如图(a)、(b)所示。
下列结论中哪个是正确的?(A) 两者的剪力图相同,弯矩图也相同;(B) 两者的剪力图相同,弯矩图不同;(C) 两者的剪力图不同,弯矩图相同;(D….) 两者的剪力图不同,弯矩图也不同。
3. 图示(a)、(b)两根梁,它们的(A) 剪力图、弯矩图都相同;(B…) 剪力图相同,弯矩图不同;(C) 剪力图不同,弯矩图相同;(D) 剪力图、弯矩图都不同。
4. 图示梁,当力偶M e的位置改变时,有下列结论:(A) 剪力图、弯矩图都改变;(B…) 剪力图不变,只弯矩图改变;(C) 弯矩图不变,只剪力图改变;(D) 剪力图、弯矩图都不变。
5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。
6. 图示梁,已知F、l、a。
使梁的最大弯矩为最小时,梁端重量P= 。
7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩图为 次曲线,|M |max 发生在 处。
8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为:S d ();d F x x = d ()d M x x = 。
9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。
10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。
1-10题答案:1. C 2. D 3. B 4. B 5. 28e2M ql -;42ql ;22ql 6. ⎪⎭⎫⎝⎛-a l a F 24 7. m 0/2;二;l /28. q (x );F S (x )+ m (x ) 9. 10. 1/211-60题. 作图示梁的剪力图和弯矩图。
材料力学习题册答案-第5章 弯曲应力
第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
( × )2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。
( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。
4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。
三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。
2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。
则当F 增大时,破坏的情况是 ( C )。
A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
第1节 平面弯曲的概念和实例
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
二、静定梁的基本形式 梁的支座形式:工程中常见的梁的支座有以下三 种形式。 1)固定铰支座:如图a所示,固定铰支座限制梁在 支承处任何方向的线位移,其支座反力可用两个正 交分量表示,即沿梁轴线方向的 FAx 和垂直于梁轴 线方向的FAy。
第七章 直梁弯曲时的内力和应力
第一节
平面弯曲的概念和实例
一、平面弯曲 弯曲变形:当杆件受到垂直于轴线的外力作用或 受到作用面平行于轴线的外力偶作用时,杆件的 轴线会由直线变为曲线,这种变形称弯曲变形。 梁:以弯曲变形为主的杆件称作梁。 直梁:工程中常见的轴线是直线的梁。 平面弯曲:若梁的外力及支 座反力都作用在纵向对称面 内,则梁弯曲时轴线将变成 此平面内的一条平面曲线, 该弯曲变形称为平面弯曲。
或
第七章 直梁弯曲时的内力和应力 2)活动铰支座:如图b所示,活动铰支座只能限制 梁在支承处垂直于支承面的线位移,支座反力可用 一个分量FRA表示。 3)固定端支座:如图c所示,固定端支座限制梁在 支承处的任何方向线位移和角位移,其支座反力有 两个正交力FAx、FAy和一个力偶分量MA。
或
MA
第七章 直梁弯曲时的内力和应力 静定梁的形式:根据梁的支座情况,工程中常见 的静定梁可以简化成以下三种形式。 1)简支梁:梁的支座一端是 固定铰支座,另一端是活 动铰支座。 2)外伸梁:梁的支座与简支 梁相同,只是梁的一端或 两端伸出在支座之外。 3)悬臂梁:梁的一端自由, 另一端是固定支座。
第七章 直梁弯曲时的Biblioteka 力和应力三、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力F。单位 为牛顿(N)或千牛顿(kN)。 2)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶M。单位为牛 顿· 米(N· m)或千牛顿· 米(KN· m)。 3)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载 荷q。其大小用载荷集度表 示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
工程力学习题及答案
工程力学习题及答案1.力在平面上的投影(矢量)与力在坐标轴上的投影(代数量)均为代数量。
正确2.力对物体的作用是不会在产生外效应的同时产生内效应。
错误3.在静力学中,将受力物体视为刚体(D)A. 没有特别必要的理由B. 是因为物体本身就是刚体C. 是因为自然界中的物体都是刚体D. 是为了简化以便研究分析。
4.力在垂直坐标轴上的投影的绝对值与该力的正交分力大小一定相等。
正确5.轴力图、扭矩图是内力图,弯矩图是外力图。
错误6.胡克定律表明,在材料的弹性变形范围内,应力和应变(A)A .成正比B .相等C .互为倒数 D. 成反比7.材料力学的主要研究对象是(B)A.刚体B.等直杆C.静平衡物体D.弹性体8.通常工程中,不允许构件发生(A)变形A.塑性B.弹性C.任何D.小9.圆轴扭转时,同一圆周上的切应力大小(A)A.全相同B.全不同C.部分相同D.部分不同10.杆件两端受到等值、反向且共线的两个外力作用时,一定产生轴向拉伸或压缩变形。
正确1.材料力学的主要研究对象是(B)A.刚体B.等直杆C.静平衡物体D.弹性体2.构件的许用应力是保证构件安全工作的(B)A.最低工作应力B.最高工作应力C.平均工作应力D.极限工作应力3.低碳钢等塑性材料的极限应力是材料的(A)A.屈服极限B.许用应力C.强度极限D.比例极限4.一个力作平行移动后,新点的附加力偶矩一定(B)A.存在B.存在且与平移距离有关C.不存在D.存在且与平移距离无关5.力矩不为零的条件是(A)A.作用力和力臂均不为零B.作用力和力臂均为零C. 作用力不为零D.力臂不为零6.构件抵抗变形的能力称为(B)B.刚度C.稳定性D.弹性7.工程实际计算中,认为切应力在构件的剪切面上分布不均匀。
错误8.力在垂直坐标轴上的投影的绝对值与该力的正交分力大小一定相等。
正确9.圆轴扭转时,横截面上的正应力与截面直径成正比。
错误10.扭转时的内力是弯矩。
错误1.各力作用线互相平行的力系,都是平面平行力系。
红外吸收光谱法习题
红外吸收光谱法习题一、填空题1、一般将多原子分子的振动类型分为振动和振动,前者又可分为振动和反对称伸缩振动,后者可分为和。
2、红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 、和 ,其中的应用最广。
3、红外光谱法主要研究振动中有变化的化合物,因此和等外,几乎所有的化合物在红外光区均有吸收。
4、在红外光谱中,将基团在振动过程中有变化的称为 ,相反则称为。
一般来说,前者在红外光谱图上。
5、红外分光光度计的光源主要有和。
6、基团一OH、一NH;==CH;一CH的伸缩振动频率范围分别出现在cm-1, cm-1, cm-1。
7、基团一C≡C、一C≡N ;—C=O;一C=N 一C=C—的伸缩振动频率范围分别出现在 cm-1, cm-1, cm-1。
8、区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为区;区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的一样,故称为。
二、选择题1、二氧化碳分子的平动、转动和振动自由度的数目分别()A. 3,2,4B. 2,3,4C. 3,4,2D. 4,2,32.乙炔分子的平动、转动和振动自由度的数目分别为()A. 2,3,3B. 3,2,8C. 3,2,7D. 2,3,73、二氧化碳的基频振动形式如下()(1)对称伸缩 O==C==O (2)反对称伸缩 O==C==O←→←←(3)x,y平面弯曲↑O==C==O ↑(4)x,z平面弯曲↑O==C==O ↑→→指出哪几个振动形式是非红外活性的?A .(1),(3) B.(2) C.(3) D. (1)4、下列数据中,哪一组数据所涉及的红外光谱区能够包括CH3CH2COH的吸收带?()A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。
B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。
C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。
《工程力学》项目9平面弯曲
项目9 剪切与挤压
• 任务9.4 平面弯曲梁横截面上的应力 • 梁的横截面上只有弯矩而剪力为零的平面弯曲称为纯弯
曲,如图 9-20梁上CD段;而横截面上既有弯矩也有剪力 的平面弯曲称为横力弯曲或剪力弯曲,如图 9-20梁上AC、 DB段。
图 9-20
项目9 剪切与挤压
9.4.1纯弯曲时梁横截面上的应力 1.实验现象 2.假设及推理 • 研究纯弯曲时梁横截面上的应力,可
式(9-2),即可确定截面上的剪力和弯矩为
3
FS2
YA
qa 4
M2
YAa
3 qa2 4
项目9 剪切与挤压
• 3-3截面:将杆件截面右侧的所有的外力给屏蔽起来,如图
9-7(d)所示,取截面的左侧为研究对象,即可确定截面上
的剪力和弯矩为
FS3
YA
P
3 qa qa 4
1 4
qa
M3
YAa
P0
3 4
9-4(b)所示。 外伸梁:梁的支撑情况同简支梁,但梁的一端或两端伸出支座
之外,如图 9-4(c)所示。
图9-4
项目9 剪切与挤压
• 任务9.2 梁弯曲的内力
• 9.2.1梁弯曲内力——剪力和弯矩
• 根据力系的平衡条件,可确定在留 下部分的截面上的内力为平行于横 截面的剪力和作用在纵向对称面内 的内力矩即弯矩。根据平衡方程可 得剪力与弯矩的大小,即
• 为了直观清楚地显示沿梁轴线方向的各截面剪力和 弯矩的变化情况,可绘制剪力图和弯矩图。对剪力 图,正值画在轴线的上侧,负值画在轴线的下侧; 对弯矩图正值画在轴线的下侧,负值画在轴线的上 侧,即弯矩坐标正向向下。
项目9 剪切与挤压
• 【例 9-2】图 9-8(a)所示的简支梁受均布荷载作用,试 作其剪力图和弯矩图。
工程力学习题册第八章 - 答案
第八章 直梁弯曲一、填空题1.工程中 发生弯曲 或以 弯曲变形 为主的杆件称为梁。
2.常见梁的力学模型有 简支梁 、 外伸梁 和 悬臂梁 。
3.平面弯曲变形的受力特点是 外力垂直于杆件的轴线,且外力和力偶都作用在梁的纵向对称面内 ;平面弯曲变形的变形特点是 梁的轴线由直线变成了在外力作用面内的一条曲线 ;发生平面弯曲变形的构件特征是 具有一个以上对称面的等截面直梁 。
4.作用在梁上的载荷有 集中力 、 集中力偶 和 分布载荷 。
5.梁弯曲时,横截面上的内力一般包括 剪力 和 弯矩 两个分量,其中对梁的强度影响较大的是 弯矩 。
6.在计算梁的内力时,当梁的长度大于横截面尺寸 五 倍以上时,可将剪力略去不计。
7.梁弯曲时,某一截面上的弯矩,在数值上等于 该截面左侧或右侧梁上各外力对截面形心的力矩 的代数和。
其正负号规定为:当梁弯曲成 凹面向上 时,截面上弯矩为正;当梁弯曲成凸面向上 时,截面上弯矩为负。
8.在集中力偶作用处,弯矩发生突变,突变值等于 集中力偶矩 。
9.横截面上弯矩为 常数 而剪力为 零 的平面弯曲变形称为 纯弯曲变形 。
10.梁纯弯曲变形实验中,横向线仍为直线,且仍与 梁轴线 正交,但两线不再 平行 ,相对倾斜角度θ。
纵向线变为 弧线 ,轴线以上的纵向线缩短,称为 缩短 区,此区梁的宽度 增大 ;轴线以下的纵向线伸长,称为 伸长 区,此区梁的宽度 减小 。
情况与轴向拉伸、压缩时的变形相似。
11.中性层与横截面的交线称为 中性轴 ,变形时梁的 所有横截面 均绕此线相对旋转。
12.在中性层凸出一侧的梁内各点,其正应力均为 正 值,即为 拉 应力。
13.根据弯曲强度条件可以解决 强度校核 、 截面选取 和 确定许可载荷 等三类问题。
14.产生最大正应力的截面又称为 危险截面 ,最大正应力所在的点称为 危险点 。
15.在截面积A 相同的条件下, 抗弯截面系数 越大,则梁的承载能力就越高。
《材料力学》第4章弯曲内力 课后答案
0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F
,
M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql
,
∑
M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=
−
3 8
ql
2
;
FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞
⎝
2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞
⎝
2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2
⎠
45
M (x) =
FA x +
FB
⎜⎛ ⎝
x
−
l 2
⎟⎞ ⎠
,
FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8
↑
( ) ∑ Fy
= 0 , FB
弯曲工艺和弯曲模具设计复习题答案
第三章弯曲工艺及弯曲模具设计复习题答案一、填空题1 、将板料、型材、管材或棒料等弯成一定角度、一定曲率 . 形成一定形状的零件的冲压方法称为弯曲。
2 、弯曲变形区内应变等于零的金属层称为应变中性层。
3 、窄板弯曲后起横截面呈扇形状。
窄板弯曲时的应变状态是立体的.而应力状态是平面。
4 、弯曲终了时. 变形区内圆弧部分所对的圆心角称为弯曲中心角。
5 、弯曲时.板料的最外层纤维濒于拉裂时的弯曲半径称为最小弯曲半径。
6 、弯曲时.用相对弯曲半径表示板料弯曲变形程度.不致使材料破坏的弯曲极限半径称最小弯曲半径。
7、最小弯曲半径的影响因素有材料的力学性能、弯曲线方向、材料的热处理状况、弯曲中心角。
8 、材料的塑性越好.塑性变形的稳定性越强.许可的最小弯曲半径就越小。
9 、板料表面和侧面的质量差时.容易造成应力集中并降低塑性变形的稳定性 .使材料过早破坏。
对于冲裁或剪切坯料.若未经退火.由于切断面存在冷变形硬化层.就会使材料塑性降低 .在上述情况下均应选用较大的弯曲半径。
轧制钢板具有纤维组织. 顺纤维方向的塑性指标高于垂直于纤维方向的塑性指标。
10 、为了提高弯曲极限变形程度.对于经冷变形硬化的材料.可采用热处理以恢复塑性。
11 、为了提高弯曲极限变形程度.对于侧面毛刺大的工件.应先去毛刺;当毛刺较小时.也可以使有毛刺的一面处于弯曲受压的内缘(或朝向弯曲凸模) .以免产生应力集中而开裂。
12 、为了提高弯曲极限变形程度.对于厚料.如果结构允许.可以采用先在弯角内侧开槽后.再弯曲的工艺.如果结构不允许.则采用加热弯曲或拉弯的工艺。
13 、在弯曲变形区内.内层纤维切向受压而缩短应变.外层纤维切向受受拉而伸长应变.而中性层则保持不变。
14 、板料塑性弯曲的变形特点是:( 1 )中性层内移( 2 )变形区板料的厚度变薄( 3 )变形区板料长度增加( 4 )对于细长的板料.纵向产生翘曲.对于窄板.剖面产生畸变。
15 、弯曲时.当外载荷去除后.塑性变形保留下来 .而弹性变形会完全消失 .使弯曲件的形状和尺寸发生变化而与模具尺才不一致 .这种现象叫回弹。
平面弯曲1(内力及内力图)
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l
工程力学习题库-弯曲变形
第8章 弯曲变形本章要点【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。
剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。
【公式】 1. 弯曲正应力 变形几何关系:yερ=物理关系:Ey σρ=静力关系:0N AF dA σ==⎰,0y AM z dA σ==⎰,2zz AAEI EM y dA y dA σρρ===⎰⎰中性层曲率:1MEIρ=弯曲正应力应力:,My Iσ=,max max z M W σ=弯曲变形的正应力强度条件:[]maxmax zM W σσ=≤ 2. 弯曲切应力矩形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F bh F S S 2323max ==τ工字形梁弯曲切应力:dI S F y z z S ⋅⋅=*)(τ,A F dh F S S ==max τ圆形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F S 34max =τ弯曲切应力强度条件:[]ττ≤max3. 梁的弯曲变形梁的挠曲线近似微分方程:()''EIw M x =-梁的转角方程:1()dwM x dx C dx EIθ==-+⎰ 梁的挠度方程:12()Z M x w dx dx C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰ 练习题一. 单选题1、 建立平面弯曲正应力公式zI My /=σ,需要考虑的关系有()。
查看答案A 、平衡关系,物理关系,变形几何关系B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系D 、平衡关系, 物理关系,静力关系;2、 利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
查看答案A 、平衡条件B 、边界条件C 、连续性条件D 、光滑性条件3、 在图1悬臂梁的AC 段上,各个截面上的()。
国开建筑工程技术专科建筑力学各章节习题答案
整理时间:2020.06.20 国开学习系统各章节本章自测之习题答案第一章习题01.建筑力学在研究变形固体时,对变形固体做了什么假设?A. 连续性假设02.杆件的基本变形包括()B. 轴向拉压、剪切、扭转、弯曲03.杆件轴向伸长或缩短的变形称为()C. 轴向拉压04. 杆件轴线变为曲线的变形()B. 弯曲05.建筑力学的研究对象是()C. 杆件结构06.工程结构必需满足以下哪种条件?()D. 强度条件、刚度条件、稳定性条件07.一般认为以下哪种材料是不符合各向同性假设的?( D )A. 金属B. 玻璃C. 陶瓷D. 木材08.基于( D )假设,可假设构成变形固体的物质没有空隙地充满整个固体空间。
选择一项:A. 小变形假设B. 各向同性假设C. 均匀性假设D. 连续性假设09.基于( B )假设,可假设变形固体中各处的力学性能是相同的。
选择一项:A. 各向同性假设B. 均匀性假设C. 连续性假设D. 小变形假设10.基于( D )假设,可假设材料沿任意方向具有相同的力学性能。
选择一项:A. 小变形假设B. 均匀性假设C. 连续性假设D. 各向同性假设1.根据荷载的作用范围不同,荷载可分为( D )。
选择一项:A. 永久荷载和可变荷载B. 恒荷载和活荷载C. 静荷载和动荷载D. 集中荷载和分布荷载2.关于柔索约束,以下说法正确的是( A )。
选择一项:A. 只能承受拉力,不能承受压力和弯曲B. 只能承受压力,不能承受拉力和弯曲C. 既能承受拉力,又能承受压力和弯曲D. 只能承受压力,不能承受拉力3.关于光滑圆柱铰链约束,以下说法不正确的是( C )。
选择一项:A. 不能限制物体绕销钉轴线的相对转动B. 不能限制物体沿销钉轴线方向的相对滑动C. 能限制物体绕销钉轴线的相对转动D. 只限制两物体在垂直于销钉轴线的平面内任意方向的相对移动4.只限制物体向任何方向移动,不限制物体转动的支座为( D )。
选择一项:A. 可动铰支座B. 固定支座C. 定向支座D. 固定铰支座5.既限制物体沿任何方向运动,又限制物体转动的支座称为( B )。
第六章 弯曲应力(习题解答)
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
第06章弯曲变形题解
第6章 弯曲变形习题解答6-1 用直接积分法求下列各梁的挠曲线方程和最大挠度。
梁的抗弯刚度EI 为已知。
(a )解:(1)弯矩方程 0≤ x ≤l+aM (x )=qlx -qx 2/2+q<x-l>2/2-ql 2/2(2)积分 EI θ (x )= qlx 2/2-qx 3/6+q<x-l>3/6-ql 2x /2+CEI ν(x )= qlx 3/6-qx 4/24+q<x-l>4/24-ql 2x 2/4+Cx+D (3)定常数x = 0 θ = 0 → C = 0 x = 0 ν= 0 → D = 0νmax =ν B =)341(84laEI ql +-(↓)(b )解:(1)支反力 F A = M o / l (↑), F C =-M o / l (↓) (2)弯矩方程 0≤ x ≤ 4l/3M (x )= M o x / l -M o <x-l> / l (3)积分EI θ (x )= M o x 2 / 2l - M o <x-l>2 /2 l +CEI ν(x )= M o x 3 / 6l - M o <x-l>3/6 l +C x+D (4)定常数x = 0 ν= 0 → D = 0x = l ν= 0 → C =-M o l /6νmax =ν B =EIl M o 62(↑)6-2 写出下列各梁的边界条件,并根据弯矩图和支座情况画出挠度曲线的大致形状。
解:x = 0 ν= 0 x = a ν= 0x = l ν= ∆k = M o / lk x = 3a ν= ∆l = Fa /2EA(b) ν(b) (a)x = 0 θ = 0 x = 0 ν= 0 x = 0 ν=0 x = 3a ν= 0x = 0 ν= 0 x = 0 ν= 0 , θ = 0x =2a ν=0 x = 2a ν= 06-3 用叠加法求下列各梁C 截面的挠度和B 截面的转角。
第四章弯曲挠度3-Lu
C
q
B
( d)
C
wc1 (q)
c1 (q)
2 AB变形,BC不变形(刚化)。
ml c 2 (q ) B (q ) 3EI 2 1 3 qa 2 a qa 2 3 EI 3 EI 4 qa wc 2 (q) B (q) a 3 EI
A
qa2/2
B
(e)
AD : Fb( l 2 b 2 ) Fbx2 1 w1 6 EI 2 EIl
Fb( l 2 b 2 ) Fb 3 w1 x x 6 EIl 6 EIl
y
l
HOHAI UNIVERSITY
DB :
Fb( l 2 b 2 ) Fb 2 F 2 w x ( x a ) 2 2 6 EIl 2 EIl 2 EI
M x w EI z
—— 挠曲线近似微分方程
HOHAI UNIVERSITY
§4-9 用积分法计算梁的挠度与转角
对于等截面梁,EI = 常数。
E I w "= - M (x)
EIw EI M ( x )dx C
EIw [ M ( x)dx ]dx Cx D
θ p
A
y
C w C p θ
B x
1、挠度: 梁的截面形心在垂直于轴线方向的线位 移w。 w= w(x)——挠曲线方程(挠度方程)。向下为正.
2、转角:梁的截面绕中性轴转过的角度θ。
小变形时,θ≈tanθ=dw (x)/dx=w'(x)——转角方
程。顺时针为正。
HOHAI UNIVERSITY
§4-8 梁的挠曲线近似微分方程
B
x
工程力学第章弯曲强度答案(整理)
43 第7章弯曲强度7-1 直径为d 地圆截面梁,两端在对称面内承受力偶矩为M 地力偶作用,如图所示.若已知变形后中性层地曲率半径为ρ;材料地弹性模量为E .根据d 、ρ、E 可以求得梁所承受地力偶矩M .现在有4种答案,请判断哪一种是正确地.(A)M =E π d 习题7-1图(B) 64ρ M =64ρ (C) E π d4M =E π d (D)32ρM =32ρ E π d 3正确答案是A .7-2关于平面弯曲正应力公式地应用条件,有以下4种答案,请判断哪一种是正确地.(A)细长梁、弹性范围内加载;(B)弹性范围内加载、载荷加在对称面或主轴平面内;(C)细长梁、弹性范围内加载、载荷加在对称面或主轴平面内; (D)细长梁、载荷加在对称面或主轴平面内.正确答案是C _.7-3长度相同、承受同样地均布载荷q 作用地梁,有图中所示地4种支承方式,考虑,请判断哪一种支承方式最合理.l 5习题7-3图d . 7-4悬臂梁受力及截面尺寸如图所示.图中地尺寸单位为mm .求:梁地1-1截面上A 、−⎜ ⎟ A z B 两点地正应力.习题7-4图解:1. 计算梁地1-1截面上地弯矩:M =⎛1×103N ×1m+600N/m ×1m ×1m ⎞=−1300N ⋅m⎝2 ⎠2. 确定梁地1-1截面上A 、B 两点地正应力: A 点:⎛150×10−3m ⎞ 1300N ⋅m ×⎜−20×10−3m ⎟σ =M z y =⎝2⎠=2.54×106Pa =2.54MPa(拉应力) I zB 点:100×10-3m ×(150×10-3m )3121300N ⋅m ×⎜0.150m−0.04m ⎟⎛⎞σ=M z y =⎝2⎠=1.62×106Pa =1.62MPa(压应力)B 0.1m×(0.15m )3 127-5 简支梁如图所示.试求I-I 截面上A 、B 两点处地正应力,并画出该截面上地正应力 分布图. 习题7-5图A (a)A C B(b)F R AkN ⋅解:(1)求支座约束力F RA =3.64kN,F RB =4.36kN习题7-5解图(2)求I -I 截面地弯矩值(见习题7-5解图b )M I −I =3.64kN ⋅m(3)求所求点正应力σ=M I-I y AI z33I =bh 12=75×150 12=21.1×106mm 4 y A =(75−40)=35mm6∴σ=−3.64×10 ×35=−6.04MPa A 21.1×1066σ=3.64×10 ×75=12.94MPa B 21.1×1067-6加热炉炉前机械操作装置如图所示,图中地尺寸单位为mm .其操作臂由两根无缝 钢管所组成.外伸端装有夹具,夹具与所夹持钢料地总重F P =2200N ,平均分配到两根钢管上.求:梁内最大正应力(不考虑钢管自重).3习题7-6图解:1.计算最大弯矩:−33M max =−2200N ×2395×10m=−5.269×10N ⋅m2.确定最大正应力:σ=Mmax = M max,α= 66mm=0.611max32W σ=Mmax =2×πD32(1−α4)5.268N ⋅m108m m=24.71×106P a =24.71M P a max2W=π(1=08×10−3m ) 2×(1−0.6114) 327-7图示矩形截面简支梁,承受均布载荷q 作用.若已知q =2 kN/m ,l =3 m ,h =2b=240mm .试求:截面竖放(图c)和横放(图b)时梁内地最大正应力,并加以比较. 习题7-7图解:1.计算最大弯矩: ql22×103N/m ×(3m )2M max ===2.25×103N ⋅m882.确定最大正应力:3平放:σ =M max = 2.25×10N ⋅m ×6 =3.91×106Pa=3.91MPamax 2−3 −32hb6240×10 m ×(120×10 m )4 ⎝ ⎠ 竖放:σ=M max = 2.25×103N ⋅m ×6=1.95×106Pa=1.95MPamax 2−3 −32 bh 6120×10m ×(240×10 m )3.比较平放与竖放时地最大正应力:σmax (平放) () 3.91 ≈2.07-8圆截面外伸梁,图中尺寸单位为mm .已知F P =10kN ,q = M解:σ( )M max1 =32×30.65×10N ⋅m =113[σ] max 实= W 1π(140×10-3m )3σ( )M max2 = 32×20×103N ⋅m =100.3×106Pa=100.3MPa<[σ] max 空=⎡⎛⎞⎤ W 2π(140×10-3m )3⎢1− ⎢⎣ 100⎜140⎟⎥所以,梁地强度是安全地.7-9悬臂梁AB 受力如图所示,其中F P =10kN ,M =70kN ·m ,a =3m .梁横截面地形状及尺寸均示于图中(单位为mm),C 为截面形心,截面对中性轴地惯性矩I z =1.02×108mm 4,拉伸许用应力[σ]+=40MPa ,压缩许用应力[σ]-=120MPa .试校核梁地强度是否安全.解:画弯矩图如图所示:σ σ σ σ M (kN.m) C 截面30x+max =30×10N ⋅m ×96.4×10 m =28.35×106Pa=28.35MPa 1.02×108×10−12m 43−3 D 截面 -max =30×10N ⋅m ×153.6×10m =45.17×106Pa=45.17MPa 1.02×108×10−12m 43−3 +max =40×10N ⋅m ×153.6×10m =60.24×106Pa=60.24MPa>[σ] 1.02×108×10−12m 43−3- max =40×10N ⋅m ×96.4×10 m =37.8×106Pa=37.8MPa 1.02×108×10−12m 4所以,梁地强度不安全.7-10由No.10BC 连接,BC 杆在C 处用铰链悬挂[σ]=160MPa ,试求:M8max P习题7-10图解:画弯矩图如图所示:对于梁:M max =0.5qσ=M max ≤[σ], 0.5q ≤[σ] max WW[σ]W 160×106×49×10−6q ≤ ==15.68×103N/m=15.68kN/m 0.50.5对于杆: σ=F N ≤[σ],4F B =4×2.25q ≤[σ] maxA πd 2 πd 2πd 2×[σ] π×(20×10-3)2×160×106q ≤ ==22.34×103N/m=22.34kN/m4×2.254×2.25所以结构地许可载荷为[q ]=15.68kN/m7-11 图示外伸梁承受集中载荷F P 作用,尺寸如图所示.已知F P =20kN ,许用应力[σ]=160MPa ,试选择工字钢地号码. 习题7-11图解:M =F ×1m=20×103N ×1m=20×103N ⋅m σmax =M maxW≤[σ], F ×1m 20×103×1m W ≥ P ==0.125×10-3m 3=125cm 3[σ] 所以,选择No.16 工字钢. 160×106Pa7-12图示之AB 为简支梁,当载荷F P 直接作用在梁地跨度中点时,梁内最大弯曲正应力超过许用应力30%.为减小AB 梁内地最大正应力,在AB 梁配置一辅助梁CD ,CD 也可以 习题7-12图看作是简支梁.试求辅助梁地长度a .解:1.没有辅助梁时σmax=M max≤[σ], WF P l4 =1.30[σ] W σmax=M max≤[σ], WF P l(3−2a ) 2=[σ]W F P l (3−2a ) F P l2= 4=[σ]W 1.30×W 1.30×(3−2a )=3a =1.384m7-13一跳板左端铰接,中间为可移动支承.为使体重不同地跳水者站在跳板前端在跳板中所产生地最大弯矩M zmax 均相同,问距离a 应怎样变化? 习题7-13图解:最大弯矩发生在可移动简支点B 处.(见图a 、b )设不同体重分别为W ,W +ΔW ,则有,W (l −a )=(W +ΔW )(l −a −Δa ) ABW A整理后得 a 图 Δa = ΔW(W +ΔW )b 图(l −a ) 此即为相邻跳水者跳水时,可动点B 地调节距离Δa 与他们体重间地关系.7-14利用弯曲内力地知识,说明为何将标准双杠地尺寸设计成a=l /4.M MF习题7-14图解:双杠使用时,可视为外伸梁..A C Bb 图 若将a 地长度设计能达到下述情况为最经济、省工: M +=M −, max max即正负弯矩地绝对值相等,杠为等值杆.当a=l /4时,+ max− max=F P l /4(如图a,在中间面C ); =F P l /4(发生在图b 所示受力情况下地A 面或B 面).7-15图示二悬臂梁地截面均为矩形(b×h ),但(a)梁为钢质,(b)梁为木质.试写出危险截面上地最大拉应力与最大压应力地表达式,并注明其位置.二梁地弹性模量分别为E 、 E .P FP习题7-15图解:(1)两悬臂梁均为静定梁,故应力与材料弹性常数无关.(2)两悬臂梁均发生平面弯曲,危险面均在固定端处.σ σ σ σ 6 I 6I (3)钢梁: (4)木梁:+ max− max=6F P l bh 2 =6F P l bh 2(在固定端处顶边诸点) (在固定端处底边诸点) + max − max=6F P l hb 2=6F Pl hb 2(在固定端处后侧边诸点) (在固定端处前侧边诸点) 7-16T 形截面铸铁梁受力如图所示,其截面地I z=2.59×10−6m 4.试作该梁地内力图,求出梁内地最大拉应力和最大压应力,并指出它们地位置.画出危险截面上地正应力分布图.习题7-16图解:(1)求支座约束力F RA =37.5kN, F RB =112.5kN(2)作内力图,剪力图、弯矩图分别见习题7-16解图b 、c . (3)求所最大正应力和最小正应力E 、B 两截面分别发生最大正弯矩与最大负弯矩.所以,两个截面均有可能是危险截面.σ+=M E y2=14×10 ×142=76.8MPa (在E 截面下缘)z2.59×107σ−=M B y 2 =25×10 ×142=−137MPa (在B 截面下缘)z 2.59×107正应力分布图见图d.σ σ σ y m (a)AqEBD2m 1m50kN37.5kN⊕(b)⊕Ө1 62.5kN43.6MPa(d)(c)14kN·my 2⊕Ө25 kN·m 76.8MPa137MPa习题7-16解图7-17.在横放和竖放两种情况下,(a)比较许用弯曲力偶矩m O 绘出危险截面上地正应力分布图.解:(a)F R A2M (b) Өy 1(c)y 235y 1y 2σ习题7-17解图33(1)求支座约束力F RA=FRB=mOkN 5(2)作弯矩图见习题7-17解图b 所示. (3)竖放下地许用弯曲力偶矩m O由型钢表查得 从b 图中得:W =269.6×103 mm 3M =3m O由强度条件maxσmax =5 M maxW≤[σ] m ≤5W [σ]=5×269.6×10×160=71.89kN ⋅mO33(4)横放下地许用弯曲力偶矩m O由型钢表查得由强度条件W =30.61×103 mm 3m ≤5W [σ]=5×30.61×10 ×160=8.16kN ⋅mO33危险截面上地正应力分布图见图c.7-18制动装置地杠杆用直径d =30mm 地销钉支承在B 处.若杠杆地许用应力 [σ]=140MPa ,销钉地剪切许用应力[τ]=100MPa ,求许可载荷[F P1],[F P2].F P1F P2习题7-18图解:(1)求F P1 与F P2地关系4杠杠平衡时有:F P1×1000=F P2×250, (2)作弯矩图,如图 a 所示F P2 =4F P11000F(3σmax =M max W≤[σ]20×603 (20×303−)W = 1212=1.05×104mm 330 1000F p1W≤[σ] F ≤W [σ]=1.05×10×140=1.47kN P11000 1000∴F P2 ≤5.88kN(4)校核销钉地剪切强度剪切强度条件:F Q τmax = A≤[τ] 其中,F=5F=3.675mm 2 Q2P13 ∴τmax=3.675×10706.86=5.2MPa<[τ]则,销钉安全.(5)杠杆系统地许可载荷为[FP1]=1.47kN,[FP2]=5.88kN.上一章返回总目录下一章。
平面弯曲知识点总结
平面弯曲知识点总结
一、弯曲的概念
平面弯曲是指一个平面图形在不改变其面积的情况下通过一定的变形使其外形发生变化的过程。
在数学中,弯曲也被称为等距变形或保面积变形。
二、弯曲的基本特点
1. 保角变形:在弯曲过程中,图形中各个角度不变。
2. 保边长:在弯曲过程中,图形中各条边的长度不发生改变。
3. 保面积:在弯曲过程中,图形的面积保持不变。
三、弯曲的分类
1. 等距变形:在弯曲过程中,图形的各个部分之间的距离保持不变。
2. 保面积变形:在弯曲过程中,图形的面积保持不变。
四、弯曲的应用
1. 平面几何中的应用:在平面几何中,弯曲用于研究形状的变化和等距变形的性质。
2. 工程学中的应用:在工程学中,弯曲用于设计建筑结构和道路,以及制造航空器和汽车等。
五、弯曲的基本定理
1. 等距变形的性质:在等距变形中,图形的面积和边长保持不变。
2. 保面积变形的性质:在保面积变形中,图形的各个部分之间的距离保持不变。
六、弯曲的计算
1. 等距变形的计算:在等距变形中,可以利用勾股定理和勾股定理的逆定理来计算图形的各个部分的长度。
2. 保面积变形的计算:在保面积变形中,可以利用图形的面积和周长来计算图形的形状。
七、弯曲的应用
1. 保面积变形的应用:在地图制作和平面拓扑学中应用较多。
2. 等距变形的应用:在制作平面图形和设计工程结构中应用广泛。
综上所述,平面弯曲是一项重要的数学概念,在不同领域都有广泛的应用。
通过对平面弯曲的研究和应用,可以更好地理解和利用图形的形状和变化,为工程设计和科学研究提供更多的可能性和技术支持。
第七章 平板弯曲问题的有限元分析
w 却不连续;s表示交界线切线方向而n表示交界线法线方向。因此我们 n
现在所讨论的单元是非协调元,或称为不完全协调单元。
以 1 的ij边界为例说明
s i
n1
w c c1 c2 c3 2 c4 3
n2 j s
24
该边界上两端点i , j共有4个已知条件:
(7-14)
0 和0 分别是 0 其中记号
i , 0 i。
22
由(7-12)式可以看到,整个薄板的位移完全由平面在z方向的挠度 w所决定,而在中面各点不产生x和y方向位移。因此薄板所可能产生的刚 性位移就只有沿z方向的平动以及绕x和y轴的转动,而对于z轴方向的旋 转是没有的。位移模式(7-10)式中是前三项反映了薄板单元的这三个刚 体位移。再由(7-3)式看到,板内各点的应变完全由挠度w的三个二阶导 数所决定。如果这三个二阶导数不随坐标而变化,则描述平板单元的一个 常应变状态,(7-10)式中的第四、五、六三个二次项反映了这个常应变 状态(或称常曲率状态)。因此,我们总是能够保证存在一组结点位移, 可以反映单元的刚体位移和常应变状态,因此,这个矩形单元是完备的。
式中f 1
( x, y) 和 f 2 ( x , y ) 是x,y的任意函数。
11
根据假设中面部产生应变的假定),可得
u z 0 0 , v z 0 0
(7-1)
w w u z , v z x y
而
w=w(x,y)
(7-2)
式中u,v和w是板内某点对于坐标轴方向的位移分量。从上面二式可以
w
( N w
i i 1
4
i
N xi xi N yi yi )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..第8-9章 平面弯曲主要知识点:(1)平面弯曲的概念;(2)平面弯曲内力——剪力和弯矩; (3)剪力图和弯矩图; 平面弯曲内力——剪力和弯矩1. 计算下图所示各梁1、2、3、4截面上的剪力和弯矩。
解:a) (1)考虑整体平衡,可解A 、D 支座反力03251321,0)(21=⨯+⋅⨯-⋅⨯⨯-=∑=D ni i A F m kN m kN F M 得 kN F D 83.3=0513,01=+-⨯-=∑=D A ni iy F kN kN F F得 kN F A 17.4=(2)计算截面1处的剪力和弯矩假想截面在1处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
013,011=-⨯-=∑=Q A ni iy F kN F F得 kN F Q 17.11=011321,0)(1121=+⨯-⋅⨯⨯-=∑=M F m kN F M Q ni i A 得 m kN M ⋅=67.21(3) 计算截面2处的剪力和弯矩假想截面2在处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
013,021=-⨯-=∑=Q A ni iy F kN F F得 kN F Q 17.12=011321,0)(2221=+⨯-⋅⨯⨯-=∑=M F m kN F M Q ni i A 得 m kN M ⋅=67.22(4) 计算截面3处的剪力和弯矩假想截面在3处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
05,031=+-=∑=D Q ni iy F kN F F得 kN F Q 17.13=01,0)(31=⨯+-=∑=D ni i C F M F M得 m kN M ⋅=83.33(5) 计算截面4处的剪力和弯矩假想截面在4处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
0,041=+=∑=D Q ni iy F F F得 kN F Q 83.34-=01,0)(41=⨯+-=∑=D ni i C F M F M得 m kN M ⋅=83.34b) (1)考虑整体平衡,可解A 、C 支座反力05.41244,0)(1=⋅⨯⨯-⨯+⋅=∑=m kN F m kN F M C ni i A得 kN F C 25.1=012,01=⨯-+=∑=kN F F F C A ni iy得 kN F A 75.0=..(2)计算截面1处的剪力和弯矩假想截面在1处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
0,011=-=∑=Q A ni iy F F F得 kN F Q 75.01=02,0)(111=+⨯-=∑=M F F M Q ni i A得 m kN M ⋅=5.11 (3) 计算截面2处的剪力和弯矩假想截面2在处把梁截开,考虑左段梁,截面处的剪力和弯矩按正方向假设。
0,021=-=∑=Q A ni iy F F F得 kN F Q 75.02=042,0)(221=+⋅+⨯-=∑=M m kN F F M Q ni i A得 m kN M ⋅-=5.22(4) 计算截面3处的剪力和弯矩假想截面在3处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
012,031=⨯-+=∑=kN F F F C Q ni iy得 kN F Q 75.03=01221,0)(231=⋅⨯⨯--=∑=m kN M F M ni i C得 m kN M ⋅-=13(5) 计算截面4处的剪力和弯矩假想截面在4处把梁截开,考虑右段梁,截面处的剪力和弯矩按正方向假设。
0)(1A =∑=i n i M F l M F M l F ==+⋅-B B 00)(1B =∑=i ni M F l M F M l F ==+⋅-A A 0)0()(A Q a x l M F x F ≤≤==)()(A Q l x a lMF x F ≤≤==)0( )(Q l x lMx F ≤≤=⎪⎩⎪⎨⎧≤≤--≤≤=)()()0()(l x a x l l Ma x x l Mx M012,041=⨯-=∑=kN F F Q ni iy得 kN F Q 24=01221,0)(241=⋅⨯⨯--=∑=m kN M F M ni i C得 m kN M ⋅-=14截面1 2 3 4 剪力(kN )0.75 0.75 0.75 2 弯矩(m kN ⋅)1.5 -2.5 -1 -1剪力图和弯矩图2. 建立图示梁的剪力方程和弯矩方程,并画剪力图和弯矩图。
(a ) (b )解:a)(1)求支座反力(2)求剪力方程和弯矩方程(分段建立方程)AC 段CB 段(3)作剪力图和弯矩图弯矩图是两斜直线,在C 截面处有突变,突变量为M 。
)0()(Aa x x l M x F x M ≤≤=⋅=)()()()(B l x a x l lMx l F x M ≤≤--=-⋅=..b) (1)求支座反力由整体平衡方程(见图8-2b ):0)(1=∑=ni i A F M , 03102=⋅⨯+⨯-m kN F B , kN F B 15=0)(1=∑=ni i B F M , 01102=⋅⨯+⨯-m kN F A , kN F A 5-=(2)求剪力方程和弯矩方程梁上任取一截面(见图8-2b),到支座A 的距离为x ,由截面法得该截面的剪力方程和弯矩方程AB 段:kN x F Q 5)(-=, x x M 5)(-=, (m x 20<≤)BC 段: kN x F Q 10)(=, )(x x M --=310)(,即3010)(-=x x M ,(m x m 32≤<)图8-2b(3)作剪力图和弯矩图:AB 、BC 段剪力都为常数,剪力图各为一水平直线。
AB 、BC 段弯矩方程是x 的一次函数,弯矩图各为一斜直线。
两点可以确定一条直线,当0=x 时,0)0(=M ;当m x 2=时,m kN M ⋅-=10)2(;当m x 3=时,0)3(=M ,连A 、B 两点可得AB 段弯矩图,连B 、C 两点可得BC 段弯矩图,如图8-2b 所示。
3. 剪力和弯矩的正负号如何确定?梁在集中力、集中力偶及均布载荷作用下的剪力图和弯矩图有何特点?答:在计算内力时,为了使考虑左段梁平衡与考虑右段梁平衡的结果一致,对剪力和弯矩的正负号作以下规定: 剪力:使截面绕其内侧任一点有顺时针转趋势的剪力为正,反之为负。
弯矩:使受弯杆件下侧纤维受拉为正,使受弯杆件上侧纤维受拉为负。
或者使受弯杆件向下凸时为正,反之为负。
(1) 当梁上有集中力作用时,剪力图在集中力作用处有突变,突变量是集中力的大小; 弯矩图在集中力作用处产生尖角。
(2) 当梁上有集中力偶作用时,剪力图在集中力偶作用处不变;弯矩图在集中力偶作用处有突变,突变量是集中力偶的大小。
(3)梁的某一段内有均布载荷作用,则剪力)(x F Q 是x 的一次函数,弯矩)(x M 是x 的二次函数。
剪力图为斜直线;若)(x q 为正值,斜线向上倾斜;若)(x q 负值,斜线向下倾斜。
弯矩图为二次抛物线,当)(x q 为正值,弯矩图为凹曲线;当)(x q 为负值,弯矩图为凸曲线。
4. 什么是剪力、弯矩和载荷集度的微分关系?如何利用微分关系作梁的剪力图和弯矩图?答:载荷集度)(x q 、剪力)(x F Q 和弯矩)(x M 之间的微分关系如下:)(d )(d x q x x F Q = )(d )(d x F x x M Q =)(d )(d 22x q x x M =利用微分关系作梁的剪力图和弯矩图:1. 无分布载荷作用的梁段(q =0)由于0)(=dx x dF Q ,因此)(x F Q =常数,即剪力图为水平直线。
而)()(x F dxx dM Q =为常数,)(x M 是x 的一次函数,即弯矩图为斜直线,其斜率由)(x F Q 值确定。
(1) 当梁上仅有集中力作用时,剪力图在集中力作用处有突变,突变量是集中力的大小;弯矩图在集中力作用处产生尖角。
(2) 当梁上仅有集中力偶作用时,剪力图在集中力偶作用处不变;弯矩图在集中力偶作用处有突变,突变量是集中力偶的大小。
2. 均布载荷作用的梁段()(x q 为常数)由于q x q =)(,因此q dxx dF Q =)(,即)(x F Q 是x 的一次函数,M(x)是x 的二次函数,所以剪力图为斜直线,其斜率由q 确定;弯矩图为二次抛物线。
当分布载荷向上(即q >0)时,q xd x M d =22)(>0,弯矩图为凹曲线;反之,当分布载荷向下(即q <0)时,q xd x M d =22)(<0,弯矩图为凸曲线。
5. 指出下图所示各弯矩图的错误,画出正确的弯矩图。
解:a )弯矩图的斜率、起点错误,图8-5a 为正确的弯矩图;b )弯矩图应该是斜直线,图8-5b 为正确的弯矩图;.图8-5解:c)弯矩图中间一段不为0,图8-5c为正确的弯矩图;d)弯矩图在支撑处没有突变,图8-5d为正确的弯矩图(设l>2a)。
图8-56. 利用剪力、弯矩与载荷集度的微分关系作图示各梁的剪力图和弯矩图。
解:a)(1)求支座反力由整体平衡方程(见图8-6a):.01=∑=ni iy F , 0=--qa qa F A , qa F A 2=0)(1=∑=ni i A F M , 05.2=⨯-⨯--a qa a qa M A , 25.3qa M A -=图8-6a(2)作剪力图AC 段剪力图是水平线,大小为2qa ,CD 段剪力图也是水平线,大小为qa ,DB 是斜直线,确定两个控制点qa F QD =,0=QB F ,作剪力图如图8-6a 所示。
(3)作弯矩图AC 段与CD 段的弯矩图是斜直线,求出以下控制截面的弯矩25.3qa M A -=,25.1qa M C -=,25.0qa M D -=,可作这两段斜直线。
DB 段由于有均布载荷作用,弯矩图是一段抛物线,如图8-6a 所示。
b) (1)求支座反力由整体平衡方程(见图8-6b ):0)(1=∑=ni i A F M , 0322=⨯++⨯⨯-a F qa a a q B , 得3qaF B = 01=∑=ni iy F , 02=+⨯-B A F a q F , 得35qaF A =..图8-6b(2)作剪力图CB段剪力图是水平线,大小为3qa-。
AC段剪力图是斜直线,确定两个控制点35qaFQA=,=QCF3qa-。
作剪力图如图8-6b所示。
(3)作弯矩图CB段的弯矩图是斜直线,求出以下控制截面的弯矩:231qaMC=+,0=BM,作出这段斜直线。
AC段由于有均布载荷作用,弯矩图是一段抛物线。
当剪力为0时(见图7-21所示D点),弯矩出现极值,即当ax35=时,2max389.1)35(qaaM=。