第十一章 三角形测验试题
新人教版八上《第11章三角形》测试卷(含答案)
新人教版八年级数学上册《第11章三角形》测试卷一、选择题1.从五边形的一个顶点作对角线,把这个五边形分成三角形的个数是()A.5个 B.4个 C.3个 D.2个2.以下列各组线段长为边能组成三角形的是()A.1cm,2cm,4cm B.2cm,4cm,6cm C.4cm,6cm,8cm D.5cm,6cm,12cm3.下列图形中一定能说明∠1>∠2的是()A.B.C.D.4.一个三角形的三条角平分线的交点在()A.三角形内B.三角形外C.三角形的某边上 D.以上三种情形都有可能5.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.长方形C.正八边形D.正六边形6.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以7.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为()A.70°和110°B.80°和120°C.40°和140°D.100°和140°8.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形9.(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180° D.n×360°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题.11.木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是.12.某一个三角形的外角中有一个角是锐角,那么这个三角形是角三角形.13.一个多边形的内角和是外角和的一半,则它的边数是.14.如图所示:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是.15.如图,正方形ABCD中,截去∠A,∠C后,∠1,∠2,∠3,∠4的和为.16.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是.17.三角形的三边长分别为5,1+2x,8,则x的取值范围是.18.一个四边形的四个内角中最多有个钝角,最多有个锐角.三、解答题.19.一个多边形的内角和等于它的外角和的6倍,它是几边形?20.已知:三角形的两个外角分别是α°,β°,且满足(α﹣50)2=﹣|α+β﹣200|.求此三角形各角的度数.21.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠ABC=40°、∠ACB=50°,则∠BOC=;(2)若∠ABC+∠ACB=116°,则∠BOC=;(3)若∠A=76°,则∠BOC=;(4)若∠BOC=120°,则∠A=;(5)请写出∠A与∠BOC之间的数量关系(不必写出理由).22.已知等腰三角形一腰上的中线将它的周长分成15cm和6cm两部分,求等腰三角形的底边长.23.如图,已知△ABC,D在BC的延长线上,E在CA的延长线上,F在AB上,试比较∠1与∠2的大小.24.已知:如图,AC和BD相交于点O,说明:AC+BD>AB+CD.25.如图,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?26.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.27.如图:∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE 交于点E.(1)求证:∠E=∠A.(2)若BE、CE是△ABC两外角平分线且交于点E,则∠E与∠A又有什么关系?28.如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.新人教版八上《第11章三角形》测试卷参考答案一、选择题1.C;2.C;3.C;4.A;5.C;6.B;7.A;8.D;9.A;10.B;二、填空题.11.三角形的稳定性;12.钝;13.3;14.AB;CD;15.540°;16.11cm或13cm;17.1<x<6;18.3;3;三、解答题.19.一个多边形的内角和等于它的外角和的6倍,它是几边形?解:设多边形的边数是n,根据题意得,(n﹣2)•180°=6×360°,解得n=14.故答案为:它是十四边形.20.已知:三角形的两个外角分别是α°,β°,且满足(α﹣50)2=﹣|α+β﹣200|.求此三角形各角的度数.解:∵(α﹣50)2=﹣|α+β﹣200|,∴α﹣50=0,α+β﹣200=0,∴α=50,β=150°,∴与∠α,∠β相邻的三角形的内角分别是130°,30°,∴三角形另一内角的度数=180°﹣130°﹣30°=20°.故答案为:130°,30°,20°.21.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠ABC=40°、∠ACB=50°,则∠BOC=135°;(2)若∠ABC+∠ACB=116°,则∠BOC=122°;(3)若∠A=76°,则∠BOC=128°;(4)若∠BOC=120°,则∠A=60°;(5)请写出∠A与∠BOC之间的数量关系∠A=2∠BOC﹣180°(不必写出理由).解:∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠OBC+∠OCB=(∠ABC+∠ACB),(1)当∠ABC=40°、∠ACB=50°时,∠OBC+∠OCB=×(40°+50°)=45°,∴在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=135°.故答案是:135°;(2)若∠ABC+∠ACB=116°,则∠OBC+∠OCB=×116°=58°,∴在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=122°.故答案是:122°;(3)在△ABC中,∠A=76°,则∠ABC+∠ACB=180°﹣76°=104°.∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠OBC+∠OCB=(∠ABC+∠ACB)=52°,∴在△BOC中,∠BOC=180°﹣(∠OBC+∠OCB)=128°.故答案是:128°;(4)若∠BOC=120°,则∠OBC+∠OCB=60°,∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=120°,∴在△ABC中,∠A=180°﹣120°=60°.故填:60°;(5)设∠BOC=α,∴∠OBC+OCB=180°﹣α,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠ABC+∠ACB=2(∠OBC+OCB)=2(180°﹣α)=360°﹣2α,∴∠A=180°﹣(ABC+∠ACB)=180°﹣(360°﹣2α)=2α﹣180°,故∠BOC与∠A之间的数量关系是:∠A=2∠BOC﹣180°.故答案是:∠A=2∠BOC﹣180°.22.已知等腰三角形一腰上的中线将它的周长分成15cm和6cm两部分,求等腰三角形的底边长.解:∵等腰三角形的周长是15cm+6cm=21cm,设等腰三角形的腰长、底边长分别为xcm,ycm,由题意得解得∴等腰三角形的底边长为1cm(1分)23.如图,已知△ABC,D在BC的延长线上,E在CA的延长线上,F在AB上,试比较∠1与∠2的大小.解:根据三角形的外角性质,在△AEF中,∠BAC>∠1,在△ABC中,∠2>∠BAC,所以,∠2>∠1.24.已知:如图,AC和BD相交于点O,说明:AC+BD>AB+CD.证明:∵AO+BO>AB,DO+CO>CD,∴AO+BO+DO+CO>AB+CD,即AC+BD>AB+CD.25.如图,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?解:延长DA、CB,相交于F,∵∠C+∠ADC=85°+55°=140°,∴∠F=180°﹣140°=40°;延长BA、CD相交于E,∵∠C+∠ABC=85°+75°=160°,∴∠E=180°﹣160°=20°,故合格.26.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.27.如图:∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE 交于点E.(1)求证:∠E=∠A.(2)若BE、CE是△ABC两外角平分线且交于点E,则∠E与∠A又有什么关系?(1)证明:∵∠ACD=∠A+∠ABC,∴∠3=(∠A+∠ABC).又∵∠4=∠E+∠2,∴∠E+∠2=(∠A+∠ABC).∵BE平分∠ABC,∴∠2=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A;(2)如图2所示,∵BE、CE是两外角的平分线,∴∠2=∠CBD,∠4=∠BCF,而∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∴∠2=(∠A+∠ACB),∠4=(∠A+∠ABC).∵∠E+∠2+∠4=180°,∴∠E+(∠A+∠ACB)+(∠A+∠ABC)=180°,即∠E+∠A+(∠A+∠ACB+∠ABC)=180°.∵∠A+∠ACB+∠ABC=180°,∴∠E+∠A=90°.28.如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.解:(1)∠C=2∠D 即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,即180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠D=∠C=45°;(2)当A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立,∵∠CAB+∠ABC=∠C=90°,不论A在CE上如何运动,只要不与C点重合,这个关系式都是不变的,整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA,得:180°﹣2∠GAB+2∠DBA=90°,整理得∠GAB﹣∠DBA=45度,恒定不变,即:∠D=45°的结论不变,∴∠C=2∠D恒成立.。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
八年级数学上册《第11章 三角形》单元测试卷及答案详解
人教新版八年级上册《第11章三角形》单元测试卷(2)一.选择题(共13小题)1.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边长可能是()A.4cm B.5cm C.6cm D.15cm2.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=105°,则∠DAC 的度数为()A.80°B.82°C.84°D.86°3.给定下列条件,不能判定三角形是直角三角形的是()A.∠A:∠B:∠C=1:2:3B.∠A﹣∠C=∠BC.∠A=∠B=2∠C D.∠A=∠B=∠C4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°5.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°6.正多边形的一个外角等于60°,这个多边形的边数是()A.3B.6C.9D.127.如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°8.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数是()A.10B.8C.6D.59.一个多边形的内角和是720°,这个多边形是()A.五边形B.六边形C.七边形D.八边形10.正n边形的一个外角为30°,则n=()A.9B.10C.12D.1411.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个B.6个C.7个D.8个12.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°13.已知n是正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个二.填空题(共5小题)14.已知一个凸多边形的每个内角都是135°,那么它的边数为.15.如图,AD为△ABC的中线,AB=13cm,AC=10cm.若△ACD的周长28cm,则△ABD 的周长为.16.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.17.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为.18.将一副直角三角板按如图放置,使两直角重合,则∠1的度数为.三.解答题(共5小题)19.已知,△ABC的三边长为4,9,x.(1)求△ABC的周长的取值范围;(2)当△ABC的周长为偶数时,求x.20.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:(1)∠BAC的度数.(2)∠BAH的度数.21.现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是.研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.22.已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.(1)∠DBC+∠DCB=度;(2)过点A作直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.23.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.人教新版八年级上册《第11章三角形》单元测试卷(2)参考答案与试题解析一.选择题(共13小题)1.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边长可能是()A.4cm B.5cm C.6cm D.15cm【考点】三角形三边关系.【分析】根据三角形三边关系定理求出第三边的范围,即可解答.【解答】解:∵三角形的两边长为3cm和8cm,∴第三边x的长度范围是8﹣3<x<8+3,即5<x<11,故选:C.2.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=105°,则∠DAC 的度数为()A.80°B.82°C.84°D.86°【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:∵∠BAC=105°,∴∠2+∠3=75°①,∵∠1=∠2,∠3=∠4,∴∠4=∠3=∠1+∠2=2∠2②,把②代入①得:3∠2=75°,∴∠2=25°,∴∠DAC=105°﹣25°=80°.故选:A.3.给定下列条件,不能判定三角形是直角三角形的是()A.∠A:∠B:∠C=1:2:3B.∠A﹣∠C=∠BC.∠A=∠B=2∠C D.∠A=∠B=∠C【考点】三角形内角和定理.【分析】根据三角形的内角和等于180°求出三角形的最大角,进而得出结论.【解答】解:A、设∠A=x,则∠B=2x,∠C=3x,∴x+2x+3x=180°,解得:x=30°,∴最大角∠C=3×30°=90°,∴三角形是直角三角形,选项A不符合题意;B、∵∠A﹣∠C=∠B,∴∠A=∠B+∠C,又∵∠A+∠B+∠C=180°,∴∠A=180°÷2=90°,∴三角形是直角三角形,选项B不符合题意;C、设∠C=y,则∠A=2y,∠B=2y,∴y+2y+2y=180°,解得:y=36°,∴最大角∠B=2×36°=72°,∴三角形不是直角三角形,选项C符合题意;D、设∠A=z,则∠B=z,∠C=2z,∴z+z+2z=180°,解得:z=45°,∴最大角∠C=2×45°=90°,∴三角形是直角三角形,选项D不符合题意.故选:C.4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.5.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】利用角平分线的性质计算.【解答】解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.6.正多边形的一个外角等于60°,这个多边形的边数是()A.3B.6C.9D.12【考点】多边形内角与外角.【分析】由正多边形的外角和为360°,及正多边形的一个外角等于60°,可得结论.【解答】解:∵正多边形的外角和为360°,∴此多边形的边数为:360°÷60°=6.故选:B.7.如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°【考点】多边形内角与外角;三角形内角和定理.【分析】连接BD,根据三角形内角和求出∠CBD+∠CDB,再利用四边形内角和减去∠CBD和∠CDB的和,即可得到结果.【解答】解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°﹣100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,故选:D.8.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数是()A.10B.8C.6D.5【考点】多边形内角与外角.【分析】根据多边形的内角和公式与外角和的关系找出等量关系,构建方程即可求解.【解答】解:设这个多边形是n边形,由题意得:(n﹣2)•180°=3×360°,解得:n=8,故选:B.9.一个多边形的内角和是720°,这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】多边形内角与外角.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选:B.10.正n边形的一个外角为30°,则n=()A.9B.10C.12D.14【考点】多边形内角与外角.【分析】利用多边形的外角和即可求出答案.【解答】解:n=360°÷30°=12.故选:C.11.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个B.6个C.7个D.8个【考点】三角形三边关系.【分析】根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边进行判断.【解答】解:可搭出不同的三角形为:2cm、3cm、4cm;2cm、4cm、5cm;2cm、5cm、6cm;3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm共7个.故选:C.12.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°【考点】三角形内角和定理.【分析】由题意AE平分∠BAC,BF平分∠ABD,推出∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,设∠C=y,∠ABC=3y,想办法用含x和y的代数式表示∠ABF 和∠DBF即可解决问题.【解答】解:如图:∵AE平分∠BAC,BF平分∠ABD,∴∠CAE=∠BAE,∠1=∠2,设∠CAE=∠BAE=x,∠C=y,∠ABC=3y,由外角的性质得:∠1=∠BAE+∠G=x+20,∠2=∠ABD=(2x+y)=x+y,∴x+20=x+y,解得y=40°,∴∠1=∠2=(180°﹣∠ABC)=×(180°﹣120°)=30°,∴∠DFB=60°.故选:C.13.已知n是正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【考点】三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边.依据三角形三边关系列不等式组,进行求解即可.【解答】解:由三角形三边关系可得,,解得2<n<10,∴正整数n有7个:3,4,5,6,7,8,9.故选:D.二.填空题(共5小题)14.已知一个凸多边形的每个内角都是135°,那么它的边数为8.【考点】多边形内角与外角.【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:凸多边形的每个内角都是135°,则它的每个外角为:180°﹣135°=45°,多边形的边数是:=8,故答案为:8.15.如图,AD为△ABC的中线,AB=13cm,AC=10cm.若△ACD的周长28cm,则△ABD 的周长为31cm.【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念得到BD=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵AD为△ABC的中线,∴BD=DC,∵△ACD的周长28cm,∴AC+AD+CD=28(cm),∵AC=10cm,∴AD+CD=18(cm),即AD+BD=18(cm),∵AB=13cm,∴△ABD的周长=AB+AD+BD=31(cm),故答案为:31cm.16.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=25度.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理以及角平分线性质,先求出∠D、∠A的等式,推出∠A =2∠D,最后代入求出即可.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.17.如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=26°,则∠DAE的度数为14°.【考点】三角形内角和定理.【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【解答】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣26°=64°,∵AE平分∠BAC,∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.18.将一副直角三角板按如图放置,使两直角重合,则∠1的度数为165°.【考点】三角形的外角性质.【分析】由题意得出∠CAD=60°、∠B=45°、∠CAB=120°,根据∠1=∠B+∠CAB 可得答案.【解答】解:如图,由题意知,∠CAD=60°,∠B=90°﹣45°=45°,∴∠CAB=120°,∴∠1=∠B+∠CAB=45°+120°=165°.故答案为:165°.三.解答题(共5小题)19.已知,△ABC的三边长为4,9,x.(1)求△ABC的周长的取值范围;(2)当△ABC的周长为偶数时,求x.【考点】三角形三边关系.【分析】(1)直接根据三角形的三边关系即可得出结论;(2)根据周长为偶数,结合(1)确定周长的值,从而确定x的值.【解答】解:(1)∵三角形的三边长分别为4,9,x,∴9﹣4<x<9+4,即5<x<13,∴9+4+5<△ABC的周长<9+4+13,即:18<△ABC的周长<26;(2)∵△ABC的周长是偶数,由(1)结果得△ABC的周长可以是20,22或24,∴x的值为7,9或11.20.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:(1)∠BAC的度数.(2)∠BAH的度数.【考点】三角形内角和定理.【分析】(1)根据角平分线的性质可得∠ACD=35°,再根据三角形的内角和是180°即可求解;(2)由直角三角形的两锐角互余即可求解∠HAC,根据∠BAH=∠BAC﹣∠HAC,即可得解.【解答】解:(1)∵CD平分∠ACB,∠ACB=70°,∴∠ACD=∠ACB=35°,∵∠ADC=80°,∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知,∠BAC=65°,∵AH⊥BC,∴∠AHC=90°,∴∠HAC=90°﹣∠ACB=90°﹣70°=20°,∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.21.现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是∠1=2∠A.研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是∠1+∠2=2∠A;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.【考点】三角形内角和定理.【分析】(1)根据折叠性质和三角形的外角定理得出结论;(2)先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠ADB和∠AEC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;(3)利用两次外角定理得出结论.【解答】解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠DAE,理由是:∵∠2=∠AFE+∠DAE,∠AFE=∠A′+∠1,∴∠2=∠A′+∠DAE+∠1,∵∠DAE=∠A′,∴∠2=2∠DAE+∠1,∴∠2﹣∠1=2∠DAE.故答案为:(1)∠1=2∠A;(2)∠1+∠2=2∠A.22.已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.(1)∠DBC+∠DCB=90度;(2)过点A作直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.【考点】三角形内角和定理;平行线的性质.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)在Rt△ABC中,根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,即,∴∠ABD+∠BAC=90°﹣∠ACD=70°,整体代入即可得出结论.【解答】解:(1)在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;故答案为90;(2)在△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠BAC,∴∠ABD+∠BAC=90°﹣∠ACD=70°.又∵MN∥DE,∴∠ABD=∠BAN.而∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°,∴∠CAM=180°﹣(∠ABD+∠BAC)=110°.23.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.【考点】直角三角形的性质;角平分线的定义;三角形内角和定理.【分析】(1)易证∠B与∠BOC分别是∠A与∠AOC的余角,等角的余角相等,就可以证出;(2)易证∠DOB+∠EOB+∠OEA=90°,且∠DOB=∠EOB=∠OEA就可以得到;(3)∠P=180°﹣(∠PCO+∠FOM+90°)根据角平分线的定义,就可以求出.【解答】解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.。
(完整版)第十一章《三角形》单元测试题及答案
精品word完整版-行业资料分享2017—2018学年度上学期八年级数学学科试卷(检测内容:第十一章三角形)一、选择题(每小题3分,共30分)1.如图,图中三角形的个数为( )A.3个 B.4个 C.5个 D.6个第1题图) ,第5题图) ,第10题图)2.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3.一个多边形的内角和是720°,则这个多边形的边数是( )A.4条 B.5条 C.6条 D.7条4.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3 B.5 C.7 D.95.如图,在△ABC中,下列有关说法错误的是( )A.∠ADB=∠1+∠2+∠3 B.∠ADE>∠BC.∠AED=∠1+∠2 D.∠AEC<∠B6.下列长方形中,能使图形不易变形的是( )7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135° C.45°或67.5° D.45°或135°9.一个六边形共有n条对角线,则n的值为( )A.7 B.8 C.9 D.1010.如图,在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以点A,B,C为顶点的三角形面积为1,则点C的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.等腰三角形的边长分别为6和8,则周长为___________________.12.已知在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠C=__________________.13.如图,∠1+∠2+∠3+∠4=________________.14.一个三角形的两边长为8和10,则它的最短边a的取值范围是________,它的最长边b 的取值范围是________.15.下列命题:①顺次连接四条线段所得的图形叫做四边形;②三角形的三个内角可以都是锐角;③四边形的四个内角可以都是锐角;④三角形的角平分线都是射线;⑤四边形中有一组对角是直角,则另一组对角必互补,其中正确的有________.(填序号)16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为__________________.第13题图第16题图第17题图第18题图17.如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又右转15°……这样一直走下去,他第一次回到出发点A时,一共走了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,与BD 交于点D,若∠D=∠α,试用∠α表示∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,一个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?(至少要用三种方法)21.(8分)如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?(S扇形=nπR2 360°)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.精品word完整版-行业资料分享23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂足为E,试说明∠DAE=12(∠B-∠C).24.(8分)有两个各内角相等的多边形,它们的边数之比为1∶2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案1.C ;2.B ;3.C ;4.D ;5.D ;6.B ;7.C ;8.D ;9.C ;10.D ;11.20或22;12.60;13.360;14.1810,82 b a ≤≤;15.②⑤;16.70;17.240;18.α2; 19.40; 20.21.π6; 22. 分析:连接AC ,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD 的度数;连接BD ,根据平行线的性质和三角形的内角和定理可以求得∠CDE 的度数.解答:解:连接AC .∵AF ∥CD ,∴∠ACD=180°-∠CAF ,又∠ACB=180°-∠B-∠BAC ,∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°. 连接BD .∵AB ∥DE ,∴∠BDE=180°-∠ABD .又∵∠BDC=180°-∠BCD-∠CBD ,∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°. 23解:∵AD 为∠BAC 的平分线∴∠DAC=21∠BAC又∵∠BAC=180°-(∠B+∠C )∴∠DAC=90°-21(∠B+∠C )又∵AE ⊥BC∴∠DAE+∠ADE=90°精品word 完整版-行业资料分享又∵∠ADE=∠DAC+∠C24. 设一个多边形的边数是n ,则另一个多边形的边数是2n ,因而这两个多边形的外角是n360和n 2360 , 第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:n 360-n2360=15°, 解得n=12, 故这两个多边形的边数分别为12,24. 25. 能判断BE ∥DF因为BE ,DF 平分∠ABC 和∠ADC ,又因为∠A=∠C=90°,所以∠ABC+∠ADC=180°所以∠ABE+∠AEB=90°所以∠AEB=∠ADF 所以BE//DF 。
部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十一章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6 ,第3题图) ,第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图) ,第9题图) ,第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△F MN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图) ,第13题图) ,第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°_ _.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C 点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B ,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠A CD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DA C=34°21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.解:设腰长为x cm,底边长为y cm,则{2x+y=18,x-y=3,或{2x+y=18,y-x=3,解得{x=7,y=4,或{x=5,y=8,经检验均能构成三角形,即三角形的三边长是7 cm,7 cm,4 cm或5 cm,5 cm,8 cm22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC=12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°。
人教版八年级上册数学第十一章(三角形)单元测试卷及答案
人教版八年级上册数学单元测试卷第十一章三角形姓名班级学号成绩一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.33.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE第3题图第6题图第7题图4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.80.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°第10题图第13题图第14题图二.填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C 的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.第11章:三角形单元测试卷(参考答案)一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性解答.【解答】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.3【分析】根据多边形的外角和与正多边形的性质即可求得答案.∵【解答】解:正n边形的一个外角为60°∴n=360°÷60°=6故选:A.【点评】本题考查多边形的外角和及正多边形的性质,此为基础且重要知识点,必须熟练掌握.3.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE【分析】根据三角形的高的定义进行分析即可得出结果.【解答】解:由图可得:△ABC的边BC上的高是AF.故选:A.【点评】本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C∴∠B=2∠A,∠C=3∠A∵∠A+∠B+∠C=180°∴∠A+2∠A+3∠A=180°解得∠A=30°所以,∠B=2×30°=60°∠C=3×30°=90°所以,此三角形是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°【分析】由折叠的性质可得∠B=∠D=30°,再根据外角的性质即可求出结果.【解答】解:将△ABC沿直线m翻折,交BC于点E、F,如图所示:由折叠的性质可知:∠B=∠D=30°根据外角的性质可知:∠1=∠B+∠3,∠3=∠2+∠D∴∠1=∠B+∠2+∠D=∠2+2∠B∴∠1﹣∠2=2∠B=60°故选:C.【点评】本题考查三角形内角和定理、翻折变换的性质,熟练掌握三角形外角的性质和翻折的性质是解题的关键.7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与其不相邻的两个内角之和.8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°【分析】根据∠BFC的度数以及BD⊥AC,可求出∠ACE度数,进而得出∠ACB度数,再结合∠AEC度数,求出∠A度数,最后利用三角形的内角和定理即可解题.【解答】解:因为BD是AC边上的高所以∠BDC=90°.又∠BFC=128°所以∠ACE=128°﹣90°=38°又∠AEC=80°则∠A=62°.又CE是∠ACB的平分线所以∠ACB=2∠ACE=76°.故∠ABC=180°﹣62°﹣76°=42°.故选:C.【点评】本题考查角平分线的定义及三角形的内角和定理,利用外角求出∠ACE的度数是解题的关键.9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.8【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n∴(n﹣2)•180°=540°∴n=5.故选:B.【点评】本题考查了多边形的内角和定理,掌握n边形的内角和为(n﹣2)•180°是解决此题关键.10.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°【分析】利用三角形ABC和三角形OBC的内角和都是180°,求解即可.【解答】解:由三角形内角和定理在三角形ABC中:∠A+∠ABC+∠ACB=180°∴∠OBC+∠OCB+∠1+∠2+∠A=180°∴∠OBC+∠OCB=180°﹣80°﹣15°﹣40°=45°在三角形OBC中∠OBC+∠OCB+∠BOC=180°∴∠BOC=180°﹣45°=135°故选:D.【点评】此题主要考查三角形的内角和定理:三角形的内角和是180°;掌握定理是解题关键.二.填空题(共5小题,每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x∵一个三角形的两边长分别为4和5∴5﹣4<x<5+4,即1<x<9∵第三边的长为整数∴x的值可以为2,3,4,5,6,7,8∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边;三角形的两边之差小于第三边是解题的关键.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为20°或60°.【分析】分两种情况进行讨论:当∠BFD=90°时,当∠BDF=90°时,分别依据三角形内角和定理以及角平分线的定义,即可得到∠ADF的度数为20°或60°.【解答】解:如图所示,当∠BFD=90°时∵AD是△ABC的角平分线,∠BAC=60°∴∠BAD=30°∴Rt△ADF中,∠ADF=60°;如图,当∠BDF=90°时同理可得∠BAD=30°∵CE是△ABC的高,∠BCE=50°∴∠BFD=∠BCE=50°∴∠ADF=∠BFD﹣∠BAD=20°综上所述,∠ADF的度数为20°或60°.故答案为:20°或60°.【点评】此题主要考查了三角形的内角和定理,解答此题的关键是要明确:三角形的内角和是180°.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=2.【分析】由题意,△ABC中,AD为中线,可知△ABD和△ADC的面积相等;利用面积相等,问题可求.【解答】解:∵△ABC中,AD为中线∴BD=DC∴S△ABD=S△ADC∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5∴•AB•ED=•AC•DF∴×3×ED=×4×1.5∴ED=2故答案为:2.【点评】此题考查三角形的中线,三角形的中线把三角形的面积分成相等的两部分.本题的解答充分利用了面积相等这个知识点.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.【分析】根据三角形的外角定理得出∠AEB=∠CAE+∠C,再根据∠AFB=∠CBD+∠AEB即可求解.【解答】解:∵∠CAE=25°,∠C=40°∴∠AEB=∠CAE+∠C=25°+40°=65°∵∠CBD=30°∴∠AFB=∠CBD+∠AEB=30°+65°=95°.【点评】本题主要考查了三角形的外角定理,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.【分析】(1)利用多边形的内角和与外角和列得方程,解方程即可;(2)利用多边形的内角和与正多边形的性质列得方程,解方程即可.【解答】解:(1)由题意可得(n﹣2)•180°=360°×4解得:n=10;(2)由题意可得(n﹣2)•180°=135°n解得:n=8.【点评】本题考查多边形的内角和与外角和,正多边形的性质,结合已知条件列得对应的方程是解题的关键.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C∵∠B=40°,∠C=70°∴∠BAF=110°;(2)∵∠BAF=110°∴∠BAC=70°∵AD是△ABC的角平分线∴∠DAC=BAC=35°∵EF∥AD∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线∴∠OAB+∠OBA=(∠BAC+∠ABC)在△ABC中,∠C=70°∴∠BAC+∠ABC=180°﹣∠C=110°∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线∴∠CAE=∠CAB=25°∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=2a.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.【分析】(1)先根据三角形的三边关系定理可得a+b>c,a+c>b,从而可得a+b﹣c>0,b﹣a﹣c<0,再化简绝对值,然后计算整式的加减法即可得;(2)先根据三角形中线的定义可得,再分①和②两种情况,分别求出a,c的值,从而可得三角形的三边长,然后看是否符合三角形的三边关系定理即可得出答案.【解答】解:(1)由题意得:a+b>c,a+c>b∴a+b﹣c>0,b﹣a﹣c<0∴|a+b﹣c|+|b﹣a﹣c|=a+b﹣c+(﹣b+a+c)=a+b﹣c﹣b+a+c=2a.故答案为:2a;(2)设AB=AC=2x,BC=y,则AD=CD=x∵AC上的中线BD将这个三角形的周长分成15和6两部分①当3x=15,且x+y=6解得,x=5,y=1∴三边长分别为10,10,1;②当x+y=15且3x=6时解得,x=2,y=13,此时腰为4根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴△ABC的腰长AB为10.【点评】本题考查了三角形的三边关系定理、整式加减的应用、二元一次方程组的应用、三角形的中线等知识点,掌握相应的定义和分类讨论思想是解题关键.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.【分析】(1)根据角平分线的定义、三角形的外角性质计算,证明结论;(2)根据角平分线的定义及已知条件可求解∠ACB,∠ECD的度数,利用直角三角形的性质可求解∠B 的度数,再由三角形外角的性质可求解.【解答】(1)证明:∵CE平分∠ACD∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE∴∠BAC=∠E+∠ECD∵∠ECD=∠B+∠E,′∴∠BAC=∠E+∠B+∠E∴∠BAC=2∠E+∠B.(2)解:∵CE平分∠ACD∴∠ACE=∠DCE∵∠ECD﹣∠ACB=30°,2∠ECD+∠ACB=180°∴∠ACB=40°,∠ECD=70°∵CA⊥BE∴∠B+∠ACB=90°∴∠B=50°∵∠ECD=∠B+∠E∴∠E=70°﹣50°=20°.【点评】本题考查的是三角形的外角性质、三角形内角和定理,直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=29°,可以发现∠ADC'与∠C的数量关系是∠ADC'=2∠C;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【分析】(1)根据平角定义求出∠CDC′=122°,然后利用折叠的性质可得∠CDE=∠CDC′=61°,∠DEC=×180°=90°,最后利用三角形内角和定理,进行计算即可解答;(2)根据平角定义求出∠CDC′=160°,∠CEC′=138°,然后利用折叠的性质可得∠CDE=∠CDC′=80°,∠DEC=∠CEC′=69°,最后利用三角形内角和定理,进行计算即可解答;(3)根据平角定义求出∠CDC′=180°﹣x,∠CEC′=180°+y,然后利用折叠的性质可得∠CDE=∠CDC′=90°+y,∠DEC=∠CEC′=90°﹣x,最后利用三角形内角和定理,进行计算即可解答.【解答】解:(1)∵∠ADC′=58°∴∠CDC′=180°﹣∠ADC′=122°由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°∴∠C=180°﹣∠EDC﹣∠DEC=29°∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°∴∠C=180°﹣∠EDC﹣∠DEC=31°∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y∴∠C与x,y之间的数量关系:∠C=x﹣y.【点评】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,以及折叠的性质是解题的关键.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【分析】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答】(1)解:∵∠AOB=90°∴∠BAO+∠ABO=90°∵AC、BC分别是∠BAO和∠ABO的角平分线∴∠CAB=∠BAO,∠CBA=∠ABO∴∠CAB+∠CBA=(∠BAO+∠ABO)=45°∴∠ACB=180°﹣45°=135°故答案为:135°;(2)解:∠ADB的大小不发生变化∵∠OBE是△AOB的外角∴∠OBE=∠OAB+∠AOB∵∠AOB=90°∴∠OBE﹣∠OAB=90°∵BD平分∠OBE∴∠EBD=∠OBE∵∠EBD是△ADB的外角∴∠EBD=∠BAG+∠ADB∴∠ADB=∠EBD﹣∠BAG=∠OBE﹣∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°∴∠BCG=180°﹣∠ACB=180°﹣135°=45°∵∠AGO是△BCG的外角∴∠AGO=∠BCG+∠CBG=45°+∠CBG∵∠AGO﹣∠BCF=45°∴45°+∠CBG﹣∠BCF=45°∴∠CBG=∠BCF∴CF∥OB.【点评】本题考查的是三角形的外角性质、平行线的判定、角平分线的定义、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.。
第十一章《三角形》经典练习题及答案
第十一章《三角形》经典练习题及答案一、选择题:将下列各题正确答案的代号的选项填在下表中。
1.如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2= A.60°B. 180°C.55° D. 145°.若三条线段中a=3,b=5,c为奇数,那么由a,b,c为边组成的三角形共有A. 1个 B.个C. 无数多个D. 无法确定3.有四条线段,它们的长分别为1cm,2cm,3cm,4cm,从中选三条构成三角形,其中正确的选法有A. 1种B.种C.种D.种4.能把一个三角形分成两个面积相等的三角形是三角形的A. 中线 B. 高线C. 角平分线 D. 以上都不对5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是A. 锐角三角形B. 钝角三角形C. 直角三角形D.不能确定A6.在下列各图形中,分别画出了△ABC中BC边上的高AD,正确的是ABBACBCADBCDACCDD7.下列图形中具有稳定性的是A. 直角三角形B. 正方形C. 长方形D. 平行四边形 .如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB、AC上的点,且DE∥BC,则∠AED的度数是A.40°B.60°C.80°D.120°第8题图9.已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是 A. 130°B.0° C. 130°或50° D.0°或120°10.若从一多边形的一个顶点出发,最多可将其分成8个三角形,则它是A.十三边形B.十二边形C.十一边形D.十边形11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为A.45°B.60°C.75°D.85°第11题图①② 13题③12.三角形的三边分别为3,1+2a,8,则a的取值范围是A、﹣6<a<﹣B、﹣5<a<﹣2C、2<a<D、a<﹣5或a>﹣13.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是A.带①去 B. 带②去 C. 带③去 D. 带①和②去二、填空题:13.已知△ABC的周长是24cm,三边a、b、c满足c+a =2b,c-a=4cm,则a、b、c分别为多少____________14.已知等腰三角形两边比为3︰5,周长为24,则底边长为 .15.一个长方形周长为24,长和宽的比为3:5,则长宽分别为 . 16.如图,RtABC中,∠ACB=90°,∠A =50°,将其折叠,使点A落在边BCB上的A/处,折痕为CD,则∠A/DB=17.在△ABC中,若∠A︰∠B︰∠C=1︰2︰3,则∠A=,∠B=,∠C= .A/DCA第16题图18.从n边形的一个顶点出发可引条对角线,它们将n边形分为个三角形.19.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是,这个外角的度数是.20.在三角形ABC中,AB=AC,中线BD把ABC的周长分为12和15两部分,则该三角形各边长为___________。
人教版八年级数学上册 第十一章 三角形 单元测试(含解析)
第十一章 《三角形》单元测试一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中,具有稳定性的是( )A .B .C .D .2.如图,在中,边上的高作法正确的是( )A .B .C .D .3.盒中有的小棒各一根,取出和的小棒后,至少再取( )的小棒才能围成一个三角形A .3B .4C .5D .64.如图,的面积为4,取的中点D ,E ,连接,则图中阴影部分面积是( )A.B .C .3D .5.如图,、是边、上的点,沿翻折后得到,沿翻ABC AB 110cm 3cm 7cm cm ABC AB AC ,DE 528372M N ABC AB AC AMN MN DMN BMD BD折后得到,且点在边上,沿翻折后得到,且点在边上,若,则( )A .B .C .D .6.小明制作简易工具来测量物体表面的倾斜程度,方法如下:将刻度重新设计的量角器固定在等腰直角三角板上,使量角器的刻度线与三角板的底边平行.将用细线和铅锤做成的重锤线顶端固定在量角器中心点O 处,现将三角板底边紧贴被测物体表面,如图所示,此时重锤线在量角器上对应的刻度为,那么被测物体表面的倾斜角为( )A .B .C .D .7.已知四边形,求证:.在证明该结论时,需要添加辅助线,则添加辅助线不正确的是( )A .B .C .D .8.如图,A ,B ,C ,D ,E 分别在的两条边上,若,,,,,则下列结论中错误的是()BED E BC CND △CD CFD △F BC 70A ∠=︒12∠+∠=65︒70︒75︒85︒90︒27︒α63︒36︒27︒18︒ABCD 360BAD ABC BCD ADC ∠+∠+∠+∠=︒MON ∠120∠=︒240∠=︒360∠=︒AB CD BC DE ∥A .B .C .D .9.如图,直线,点C 为直线MN 上一点,连接AC 、BC ,∠CAB =40°,∠ACB =90°,∠BAC 的角平分线交MN 于点D ,点E 是射线AD 上的一个动点,连接CE 、BE ,∠CED 的角平分线交MN 于点F .当∠BEF =70°时,令,用含的式子表示∠EBC 为( ).A.B .C .D .10.如图,点A 是直线l 外一点,点B 、C 是直线l 上的两动点,且,连接,点D 、E 分别为的中点,为的中线,连接,若四边形的面积为5,则的最小值为( )A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11如果一个多边形的每个外角都等于,那么它的内角和为 °.12如图,∠1= .13.(2023秋·全国·八年级专题练习)如图,点B ,C ,D 都在直线l 上,点A 是直线外一点,.若,,,则长的最小值为 .480∠=︒100BAO ∠=︒40CDE ∠=︒120CBD ∠=︒AB MN ∥ECM α∠=α52α10α︒-1102α︒-1102α-︒4BC =AB AC 、AC BC 、AF ABD △EF AFEC AB 72︒90BAD ∠=︒12AB =5AD =13BD =AC14.如图,点E 是长方形纸片AD 边的中点,过E 点将∠A 和∠D 分别翻折,得到折痕EM 和EN ,且折后A 、D 两点均与MN 上的点H 重合.若∠DEN =62°,则∠AEM = .15.清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,是锐角的高,则.当,时, .16.如图,两条交叉水管的接口在处,为了测量两条交叉水管所在直线和的夹角,工程师傅在直线上选取点,并过点作直线,量得与的夹角,由此可知:的度数为.AD ABC 2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭7,6AB BC ==5AC =CD =A 1l 2l β2l B B 31l l ⊥2l 3l 35α=︒β17.如图,三角形是由三角形平移得到的,点在边上,连接.若和中其中一个角是另一个角的倍,,则的度数为 .18.有一副直角三角板、,其中,,.如图,将三角板的顶点E 放在上,移动三角板,当点E 从点A 沿向点B 移动的过程中,点E 、C 、D 始终保持在一条直线上.下列结论:①当时,;②逐渐变小;③若直线与直线交于点M ,则为定值;④若的一边与的某一边平行,则符合条件的点E 的位置有3个.正确的有 .(填序号)三、解答题(本大题共6小题,共58分)19.(8分).已知一个多边形的内角和与外角和相加等于,求这个多边形的边数及对角线的条数.DEF ABC D AC CE BCE ∠CED ∠360B ∠=︒CED ∠ABC DEF 90ACB DEF ∠=∠=︒30A ∠=︒45D ∠=︒DEF AB DEF AB DE AB ⊥60ACE ∠=︒BEF ∠DF AB ACE DME ∠+∠ABC DEF 2160︒20.(8分)已知 的周长为,(1)若,求的长;(2)若,求三条边的长.21.(10分)如图,是的角平分线,,P 为线段上一点,交的延长线于点E .(1),,求的度数;(2)试猜想与、之间的数量关系,并证明你的结论.22.(10分)如图,已知,.(1)求证:;(2)求证:;(3)若、、分别是、、边上的中点,,则______.ABC 45cm 2AB AC BC ==BC ::2:3:4AB BC AC =ABC AD ABC ACB B ∠>∠AD PE AD ⊥BC 30B ∠=︒80ACB ∠=︒E ∠E ∠B ∠ACB ∠180BDC EFC ∠+∠=︒DEF B ∠=∠EF AB ∥AED ACB ∠=∠D E F AB AC CD 6ADFE S =四边形ABC S =23.(10分)如图,在中,于点,平分.(1)若,则 ;(2)与∠DAE 有何数量关系?证明你的结论;(3)点是线段上任一点(不与重合),作,交的延长线于点,点在的延长线上.若,求(用含代数式表示).ABC B C AD BC ∠>∠⊥,D AE BAC ∠6442B C ∠=︒∠=︒,DAE ∠=︒B C ∠∠、G CE C E 、GH CE ⊥AE H F BA FAC GHE αβ∠=∠=,B C ∠∠、αβ、24.(12分)(2023春·江苏·七年级专题练习)(1)问题解决:如图,中,、分别是和的平分线,为、交点,若,求的度数;(写出求解过程)(2)拓展与探究①如图1,中,、分别是和的平分线,为、交点,则与的关系是______;(请直接写出你的结论)②如图2,、分别是和的两个外角和的平分线,为、交点,则与的关系是______;(请直接写出你的结论)③如图3,、分别是的一个内角和一个外角的平分线,为、交点,则与的关系是______.(请直接写出你的结论)1ABC BO CO ABC ∠ACB ∠O BO CO 62A ∠=︒BOC ∠ABC BO CO ABC ∠ACB ∠O BO CO BOC ∠A ∠BO CO ABC ∠ACB ∠CBD ∠BCE ∠O BO CO BOC ∠A ∠BO CO ABC ABC ∠ACE ∠O BO CO BOC ∠A ∠一、单选题1.B【分析】根据三角形具有稳定性进行解答即可.【详解】解:A 、不具有稳定性,故此选项不符合题意;B 、具有稳定性,故此选项符合题意;C 、不具有稳定性,故此选项不符合题意;D 、不具有稳定性,故此选项不符合题意;故选:B .2.D【分析】中边上的高线是过C 点作的垂线,据此判断即可.【详解】解:中边上的高线是过C 点作的垂线,四个选项中只有D 选项正确,符合题意.故选:D .3.C【分析】设三角形的第三边长为,根据三角形三边关系得到,即可得到答案.【详解】解:设三角形的第三边长为,则,即,故选:CABC AB AB ABC AB AB cm x 410x <<cm x 7373x -<<+410x <<4.C【分析】连接,根据三角形中线平分三角形的面积求解即可.【详解】如图所示,连接,∵点D 是的中点,∴是的中线∴∵点E 是的中点∴是的中点∴∴.故选:C .5.D【分析】根据折叠的性质以及三角形内角和定理得出,,将已知数据代入,即可求解.【详解】解:如图所示,依题意,∴CD CD AB CD ABC 122BCD ACD ABC S S S ===V V V AC DE ACD 112CDE ADE ACD S S S ===V V V 213BCD CDE DBCE S S S =+=+=V V 四边形123125∠+∠+∠=︒360MDB CDN BDC MDN ∠+∠+∠+∠=︒1122MBD CBD ABC DCB DCN ACB ∠=∠=∠∠=∠=∠,180BDC DBC DCB ∠=︒-∠-∠即,∵∴∴∴∴故选:C .6.C【分析】如解析图所示,中,,,由此利用直角三角形两锐角互余即可求出答案.【详解】解:如图所示,在中,,,∴,∴,∴被测物体表面的倾斜角为,故选C .7.D【分析】根据三角形的内角和定理,在四边形中添加辅助线构成三角形即可求解.【详解】解:、根据图示可得,的内角和为,的内角和为,由此可得,故原选项正确,不符合题意;()11802ACB ACB =︒-∠+∠()1180180701252=︒-︒-︒=︒123125∠+∠+∠=︒1323BDM CDN ∠+∠=∠∠+∠=∠,70MDN A ∠=∠=︒360MDB CDN BDC MDN ∠+∠+∠+∠=︒1223123360MDN ∠+∠+∠+∠+∠+∠+∠=︒()()31231270360∠+∠+∠-∠+∠+︒=︒()31251270360⨯︒-∠+∠+︒=︒1285∠+∠=︒Rt △ABD 9090BAD ACD =︒=︒∠,∠27CAD ∠=︒Rt △ABD 9090BAD ACD =︒=︒∠,∠27CAD ∠=︒90CAD ADC ABD ADB +=︒=+∠∠∠∠27ABD CAD ==︒∠∠α27︒A ABD △180︒BCD △180︒360BAD ABC BCD ADC ∠+∠+∠+∠=︒、的内角和为,然后减去平角,可得,故原选项正确,不符合题意;、的内角和为,然减去以点为圆心的周角,可得,故原选项正确,不符合题意;、不能证明,故原选项不正确,符合题意;故选:.8.B【分析】根据两直线平行,同位角相等可得,根据平角180度,得出;根据三角形的内角和定理求出,然后根据两直线平行,同位角相等可得,然后根据三角形内角和定理求出,根据平角的定义列式计算求出即可.【详解】解:∵,∴,∴,故B 选项错误,符合题意;∵,∴,∵,∴,故A 选项正确,不符合题意;∵,∴,故C 选项正确,不符合题意;,故D 选项正确,不符合题意.故选:B .9.D【分析】先求出∠ABC ,再延长CE ,交AB 于点G ,结合平行线的性质表示出∠BCE ,然后根据三角形内角和定理表示∠CED ,再根据角平分线得定义表示出∠CEB ,最后根据三角形内角和定理得出答案.【详解】在△ABC 中,∠CAB=40°,∠ACB =90°,∴∠ABC=50°.延长CE ,交AB 于点G ,B ,,ADE ABE BCE 1803540⨯︒=︒180CED ∠=︒360BAD ABC BCD ADC ∠+∠+∠+∠=︒C ,,,AOB AOD COD BOC △△△△1804720︒⨯=︒O 360︒360BAD ABC BCD ADC ∠+∠+∠+∠=︒D D 360BAC ∠=∠=︒18060120BAO ∠=︒-︒=︒ACB ∠4ACB ∠=∠CDE ∠CBD ∠AB CD 360BAC ∠=∠=︒18060120BAO ∠=︒-︒=︒240∠=︒1802180406080ACB BAC ∠=︒-∠-∠=︒-︒-︒=︒BC DE ∥480ACB ∠=∠=︒360∠=︒18034180608040CDE ∠=︒-∠-∠=︒-︒-︒=︒180121802040120CBD ∠=︒-∠-∠=︒-︒-︒=︒∵,∴,∠ACM=∠BAC=40°,∴∠ACE =-40°,∴∠BCE=90°-(-40°)=130°-.∵∠CEA=180°-∠CAE -∠ACE ,∴∠CED=180°-∠CEA =∠CAE +∠ACE =20°+(-40°)=-20°.∵EF 平分∠CED ,∴∠CEF=,∴∠CEB =,∴∠EBC =.故选:D .10.C【分析】连接,如图,利用三角形中线的性质依次求出与的面积间的关系,然后根据四边形的面积为5求出的面积,进而可求出边上的高,即为的最小值.【详解】解:连接,如图,MN B A ∥E GB α∠=ααααα111022C ED α∠=-︒1110706022αα-︒+︒=+︒11180(60)(130)1022ααα︒-+︒-︒-=-︒CF ,,ADF CDF CEF ABC AFEC ABC BC AB CF∵点D 为的中点,∴,∵为的中线,∴,,∵点E 为中点,∴,∵四边形的面积为5,∴,即,解得,作于点G ,如图,∵,∴,∴,∵,∴的最小值是4;故选:C.AC 12ABD BCD ABC S S S == AF ABD △1124ABF ADF ABD ABC S S S S === 1124BCF DCF BCD ABC S S S S === BC 1128BEF CEF BCF ABC S S S S === AFEC 5ADF CDF CEF S S S ++= 1115448ABC ABC ABC S S S ++= 8ABC S =△AG BC ⊥4BC =1482AG ⨯⋅=4AG =AB AG ≥AB二、填空题11.【分析】根据多边形的外角和可求出多边形的边数,根据多边形的内角和定理即可求解.【详解】解:∵多边形的外角和为,每个外角都等于,∴多边形的边数为,∴多边形的内角和为:,故答案为:.【点拨】本题主要考查多边形的内角和定理与外角和的综合应用,掌握多边形的内角和的计算公式,外角和是360度是解题的关键.12.【分析】根据三角形的外角,可以求出另一个角的度数,进而得出结论.【详解】在三角形中:∵,∴,∴,故答案为:.13./【分析】根据垂线段最短,可知当时,最短,再根据面积相等即可得出答案.540360︒72︒360572=180(52)540︒⨯-=︒540120︒280140∠+︒=︒260∠=︒1180218060120∠=︒-∠=︒-︒=︒120︒60138413AC BD ⊥AC【详解】解:根据垂线段最短,可知当时,最短,∵,,,,∴,即,∴,故答案为:.14.28°【分析】根据折叠的性质得出∠DEN =∠HEN ,∠AEM =∠MEH ,根据题意结合图形即可得出结果.【详解】解:过E 点将∠A 和∠D 分别翻折,得到折痕EM 和EN ,∴∠DEN =∠HEN ,∠AEM =∠MEH ,又∵∠DEN =62°,∴∠HEN =62°,∴∠AEM =×(180°-62°-62°)=28°,故答案为:28°.15.【分析】根据公式求得,根据,即可求解.【详解】解:∵,,∴∴,故答案为:.AC BD ⊥AC 90BAD ∠=︒12AB =5AD =13BD =1122AB AD BD AC ⨯=⨯111251322AC ⨯⨯=⨯⨯6013AC =6013121BD CD BC BD =-7,6AB BC ==5AC =2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭651CD BC BD =-=-=116.125°【分析】根据垂直的性质和对顶角的性质求出∠AOB 、∠ABO 的度数,即可求出β.【详解】解:如图,设l 3与l 1的交点为O ,∵l 3⊥l 1,∴∠AOB =90°,∵α=35°,∴∠ABO =35°,∴β=∠ABO +∠AOB =125°.故答案为:125°.17.【分析】根据图形的平移,可知,,是的外角,可得,分类讨论,当时;当时;根据角的和差倍分关系即可求解.【详解】解:如图所示,设与交于点,∵三角形平移得到三角形,∴,,∴,∵是的外角,∴,当时,,解得,;15︒AB DE ∥=60B ∠︒DGC ∠CGE DGC BCE CEG ∠=∠+∠3BCE CEG ∠=∠3BCE CEG ∠=∠BC DE G ABC DEF AB DE ∥=60B ∠︒60DGC B ∠=∠=︒DGC ∠CGE DGC BCE CEG ∠=∠+∠3BCE CEG ∠=∠360DGC CEG CEG ∠=∠+∠=︒15CEG ∠=︒当时,则,∴,解得,;综上所述,的度数为或,故答案为:或.18.①③④【分析】①由即可判断;②过点C 作,即可判断;③分别讨论当直线与线段相交、直线与线段的延长线相交即可判断;④根据平行线的判定定理即可进行判断.【详解】解:①∵,点E 、C 、D 始终保持在一条直线上∴∵∴故①正确;②如图1:过点C 作当点E 从点A 移动到点H 位置时,的度数在逐渐增大∴的度数在逐渐减小当点E 从点H 移动到点B 位置时,的度数在逐渐增大故②错误;③当直线与线段交于点M ,如图2:3BCE CEG ∠=∠13BCE CEG ∠=∠1603DGC CEG CEG ∠=∠+∠=︒45CEG ∠=︒CED ∠15︒45︒15︒45︒DE AB ⊥CH AB ⊥DF AB DF AB DE AB ⊥CE AB⊥30A ∠=︒60ACE ∠=︒CH AB ⊥DEB ∠BEF ∠BEF ∠DF AB∵∴∴当直线与线段的延长线交于点M ,如图3:∵∴∴故若直线与直线交于点M ,则为定值故③正确;④当点E 在线段上时,且,则;当点E 在线段上时,且,则;当时,则;∴若的一边与的某一边平行,则符合条件的点E 的位置有3个故④正确;故答案为:①③④三、解答题19.解:设这是边形,则,180DEB A ACE D DEB DME ∠=∠+∠∠+∠+∠=︒3045180ACE DME ∠+︒+︒+∠=︒105ACE DME ∠+∠=︒DF AB ,180DEB A ACE D DEB DME ∠=∠+∠∠+∠+∠=︒3045180ACE DME ∠+︒+︒+∠=︒105ACE DME ∠+∠=︒DF AB ACE DME ∠+∠AH 60BEF B ∠=∠=︒EF BC ∥BH 30BEF A ∠=∠=︒EF AC ∥45ECB D ∠=∠=︒DF BC ∥ABC DEF n,,.所以这个多边形的边数是12,它的对角线的条数是54.20.(1)由题意,得,解得.即的长是.(2)设,则,,由题意,得,解得.故,,.所以,,.21.(1)解:,,,平分,,,又∵,;(2)解:.设,,平分,,,,,()21802160360n -⨯︒=︒-︒210n -=12n =()()1212352243n n ⨯-=-=2245cm AB AC BC BC BC BC ++=++=9cm BC =BC 9cm 2cm AB x =3cm BC x =4cm AC x =23445x x x ++=5x =210x =315x =420x =10cm AB =15cm BC =20cm AC =30B ∠=︒ 80ACB ∠=︒70BAC ∴∠=︒AD BAC ∠35DAC ∴∠=︒18065ADC DAC ACB ∴∠=︒-∠-∠=︒PE AD ⊥9025E ADC ∴∠=︒-∠=︒1()2E ACB B ∠=∠-∠B n ∠=︒ACB m ∠=︒AD BAC ∠1122BAC ∴∠=∠=∠180B ACB BAC ∠+∠+∠=︒ B n ∠=︒ ACB m ∠=︒,,,,°,..22.(1)证明:∵,,∴,∴,(2)由()得:,∴,∵,∴,∴,∴,(3)∵为的中点,∴,∵为的中点,∴,又,即,∴,()180CAB n m ∴∠=--︒()11802BAD n m ∴∠=--︒()1113118090222B n n m n m ∴∠=∠+∠=︒+--︒=︒+︒-︒PE AD ⊥ 90DPE ∴∠=()()111190902222E n m m n ACB B ⎛⎫∴∠=︒-︒+︒-︒=-︒=∠-∠ ⎪⎝⎭180BDC EFC ∠+∠=︒180EFC DFE ∠+∠=︒BDC DFE ∠=∠EF AB ∥1EF AB ∥ADE DEF ∠=∠DEF B ∠=∠ADE B ∠=∠DE BC ∥AED ACB ∠=∠E AC 12ADE CDE ADC S S S == F DC 12DEF CEF CED S S S == 6ADFE S =四边形612ADE CDE S S += 4ADE S =△∴,∵为的中点,∴,故答案为:.23.(1)解:在中,,,,平分,,,,,,,故答案为:11;(2)解:,证明:在中,,,平分,,,,,;(3)解:是的一个外角,,,28ADC ADE S S == D AB 216ABC ADC S S == 16ABC 180B C BAC ∠+∠+∠=︒6442B C ∠=︒∠=︒ ,180644274BAC ∴∠=︒-︒-︒=︒AE BAC ∠11743722BAE BAC ∴∠=∠=⨯︒=︒AD BC ⊥ 90ADB ∴∠=︒64B ∠=︒ 906426BAD ∴∠=︒-︒=︒372611DAE BAE BAD ∴∠=∠-∠=︒-︒=︒1122DAE B C ∠=∠-∠ABC 180B C BAC ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE BAC ∠()1111180902222BAE BAC B C B C ∴∠=∠=⨯︒-∠-∠=︒-∠-∠AD BC ⊥ 90ADB ∴∠=︒90BAD B ∴∠=︒-∠11111909022222DAE BAE BAD B C B B C ⎛⎫∴∠=∠-∠=︒-∠-∠-︒-∠=∠-∠ ⎪⎝⎭FAC ∠ ABC FAC B C ∴∠=∠+∠FAC α∠=,,,,,,由(2)知,,即②,①、②组成方程组得,解得,,.24.解(1)∵,∴,∵、分别是和的平分线,∴,∴,∴;(2)①,理由如下:∵,∴,∵、分别是和的平分线,∴,B C α∴∠+∠=①AD BC GH CE ⊥⊥ ,AD GH ∴∥DAE GHE ∴∠=∠GHE β∠= DAE β∴∠=1122DAE B C ∠=∠-∠1122B C β∴∠-∠=2B C β∠-∠=2B C B C βα∠-∠=⎧⎨∠+∠=⎩1212B C βααβ⎧∠=+⎪⎪⎨⎪∠=-⎪⎩∴12B βα∠=+12C αβ∠=-62A ∠=︒180118ABC ACB A +=︒-∠=︒∠∠BO CO ABC ∠ACB ∠1122OBC ABC OCB ACB ∠=∠∠=∠,115922OBC OCB ABC ACB +=+=︒∠∠∠∠180121BOC OBC OCB =︒--=︒∠∠∠1902BOC A ∠=+∠︒180A ABC ACB ∠+∠+∠=︒180ABC ACB A ∠+∠=︒-∠BO CO ABC ∠ACB ∠1122OBC ABC OCB ACB ∠=∠∠=∠,∴,∴,故答案为:;②,理由如下:∵,∴,∵分别是两个外角和的平分线,∴,∴,∴,故答案为:;③,理由如下:∵、分别是的一个内角和一个外角的平分线,,∴,又∵是的一外角,∴,∴,∵是的一外角,∴,故答案为:.11190222OBC OCB ABC ACB A +=+=︒-∠∠∠∠∠1180902BOC OBC OCB A =︒--=︒+∠∠∠1902BOC A ∠=+∠︒1902BOC A ∠=︒-∠DBC A ACB ECB A ABC ∠=∠+∠∠=∠+∠,180DBC ECB A ACB A ABC A ∠+∠=∠+∠+∠+∠=︒+∠BO CO 、ABC CBD ∠BCE ∠1122OBC DBC OCB ECB ∠=∠∠=∠,()111809022OBC OCB A A ∠+∠=︒+∠=︒+1180902BOC OBC OCB A ∠=︒-∠-∠=︒-∠1902BOC A ∠=︒-∠12BOC A ∠=∠BO CO ABC ABC ∠ACE ∠1122OBC ABC OCE ACE ∠=∠∠=∠,ACE ∠ABC ACE A ABC ∠=∠+∠()1122OCE A ABC A OBC ∠=∠+∠=∠+∠OCE ∠BOC 1122BOC OCE OBC A OBC OBC A ∠=∠-∠=∠+∠-∠=∠12BOC A ∠=∠。
人教版八年级数学上册第十一章三角形单元测试(含详细解析).doc
第十一章三角形单元测试一、单选题(共10 题;共30 分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则 AA、B、C、D、2、等腰三角形的两边分别为5cm、 4cm,则它的周长是()A、 14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14 条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720 °,则这个多边形的边数为()9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC 内角和等于180 °”时,延长BC 至 D,过点 C 作∠ BAC=∠ ACE,由于∠BCD=180°,可得到∠ABC+∠ ACB+∠ BAC=180°,这个证()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8 题;共27 分)11、一个等腰三角形的两边长分别为 5 厘米、9 厘米,则这个三角形的周长为12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的利用了 ________.13、若一个多边形从一个顶点可以引8 条对角线,则这个多边形的边数是_ 角线的条数是________.14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45 °,那么另外两个角的度数为________16、已知一个多边形的内角和是1620 °,则这个多边形是________ 边形.17 、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上199 ,则这个格点多边形内有________ 个格点.20 、如图,五边形ABCDE 的内角都相等,且∠1= ∠ 2,∠ 3= ∠ 4,求x 的值.21 、如图,在△ABC 中,∠ B=40 °,∠ C=62 °, AD 是△ ABC 的高,AE 是△AB数.22 、如图,△ABC 的中线AD 、 BE 相交于点F.△ ABF 与四边形CEFD 的面积有四、综合题(共 1 题;共11 分)24、已知点P 为∠ EAF 平分线上一点,PB⊥ AE 于 B, PC⊥ AF 于 C,点 M, N 分PM=PN.(1) 如图1,当点M在线段AB 上,点N 在线段AC的延长线上时,求证:BM 接写出线段AM, AN与 AC 之间的数量关系________ ; (3) 如图2,当点M在线段 AC 上时,若AC: PC=2: 1,且PC=4,求四边形ANPM的面积.。
第十一章-三角形》单元测试卷含答案(共5套)
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
《第十一章 三角形》单元测试卷及答案(共6套)
《第十一章三角形》单元测试卷(一)时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列长度的三条线段能组成三角形的是( )A.1cm,2cm,3cm B.2cm,2cm,5cmC.1.5cm,2.5cm,5cm D.3cm,4cm,5cm2.如图是某三角形麦田怪圈,经测量得∠A=85°,∠B=45°,则∠C的度数为( )A.40° B.45° C.50° D.55°3.如图是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是( )A.三角形两边之和大于第三边 B.三角形具有稳定性C.三角形两边之差小于第三边 D.两点之间线段最短4.如图,AC⊥BC,CD⊥AB,DE⊥BC,下列说法中错误的是( )A.△ABC中,AC是BC边上的高B.△BCD中,DE是BC边上的高C.△ABE中,DE是BE边上的高D.△ACD中,AD是CD边上的高5.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A.正五边形 B.正六边形 C.正七边形 D.正八边形6.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是( )A.9 B.14 C.16 D.不能确定7.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.0个8.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°9.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为( )A.60° B.65° C.75° D.85°10.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且S△ABC =4cm2,则△BEF的面积为( )A.2cm2 B.1cm2 C.12cm2 D.14cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,∠1的度数为________.12.一个正多边形的内角和等于1440°,则此多边形是________边形,它的每一个外角的度数是________.13.如图,在△ABC中,AD为中线,DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,则DE=________.14.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.下列结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④∠BDC=12∠BAC.其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,求∠B的度数.16.如图,AB∥CD,求图形中x的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC 中,AD ⊥BC 于点D ,BE 平分∠ABC .若∠ABC =64°,∠AEB =70°,求∠CAD 的度数.18.如图,在△ABC 中,AD 是BC 边上的中线,P 是AD 上的一点,若△ABC 的面积为S .(1)当点P 是AD 的中点⎝⎛⎭⎪⎫即PD =12AD 时,△PBC 的面积=________(用含S 的代数式表示);(2)当PD =13AD 时,△PBC 的面积=________(用含S 的代数式表示); (3)当PD =1nAD 时,△PBC 的面积=________(用含S 、n 的代数式表示).五、(本大题共2小题,每小题10分,满分20分)19.梦雪的爸爸用一段长为30米的破旧渔网围成一个三角形的园地,用于种植各类蔬菜.已知第一条边长为a 米,第二条边长比第一条边长的2倍多2米.(1)请用含a 的式子表示第三条边长;(2)求出a的取值范围.20.如图,在四边形ABCD内找一点O,使OA+OB+OC+OD之和最小,并说出你的理由.六、(本题满分12分)21.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).七、(本题满分12分)22.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系;探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A 的数量关系;探究三:若将△ADC改为任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.八、(本题满分14分)23.如图①,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图①的图形称之为“8字形”,可知∠A+∠C=∠B+∠D.如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于点M、N.试解答下列问题:(1)仔细观察,在图②中有________个以线段AC为边的“8字形”;(2)在图②中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图②中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图③,则∠A+∠B+∠C+∠D+∠E+∠F的度数为________.参考答案与解析1.D 2.C 3.B 4.C 5.B 6.A 7.B 8.B 9.B10.B 解析:∵点E是AD的中点,∴S△ABE=S△DBE=12S△ABD,S△AEC=S△DEC=12S△ACD,∴S △BEC =S △DBE +S △DEC =12S △ABD +12S △ACD =12(S △ABD +S △ACD )=12S △ABC =12×4=2(cm 2).∵点F 是CE 的中点,∴S △BEF =12S △BEC =12×2=1(cm 2).故选B. 11.70° 12.十 36° 13.214.①②③④ 解析:∵AD 平分∠EAC ,∴∠EAC =2∠EAD .∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确;∵AD ∥BC ,∴∠ADB =∠DBC .∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ACB =∠ABC =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF .∵AD ∥BC ,∴∠ADC =∠DCF ,∠CAD =∠ACB ,∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°,∴∠ADC =90°-∠ABD ,∴③正确;∵∠ACF =2∠DCF ,∠ACF =∠BAC +∠ABC ,∠ABC =2∠DBC ,∠DCF =∠DBC +∠BDC ,∴∠BAC =2∠BDC ,∴④正确.综上所述,正确的结论是①②③④.15.解:∵∠A =30°,∴∠B +∠C =180°-∠A =150°.(3分)∵∠C =2∠B ,∴3∠B =150°,(6分)∴∠B =50°.(8分)16.解:∵AB ∥CD ,∠B +∠C =180°,(3分)∴(5-2)×180°=x +125°+180°+150°,(6分)∴x =85°.(8分)17.解:∵BE 平分∠ABC ,∴∠EBC =12∠ABC =12×64°=32°.(3分)∵AD ⊥BC ,∴∠ADB =∠ADC =90°.∵∠AEB =70°,∴∠C =∠AEB -∠EBC =70°-32°=38°,(6分)∴∠CAD =90°-∠C =90°-38°=52°.(8分)18.(1)S 2(2分) (2)S 3(4分) (3)S n(8分) 19.解:(1)第三条边长为30-a -(2a +2)=30-a -2a -2=(28-3a )(米).(4分)(2)根据三角形的三边关系得(2a +2)-a <28-3a <a +(2a +2),(8分)解得133<a <132.(10分)20.解:要使OA +OB +OC +OD 之和最小,则点O 是线段AC 、BD 的交点.(4分)理由如下:如图,在四边形ABCD 内,任取不同于点O 的点P ,连接PA 、PB 、PC 、PD ,那么PA +PC ≥AC ,PB +PD ≥BD ,且至少有一个不取“=”,∴PA +PC +PB +PD >AC +BD ,即PA +PB +PC +PD >OA +OB +OC +OD ,(8分)即点O 是线段AC 、BD 的交点时,OA +OB +OC +OD 之和最小.(10分)21.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠ADC =90°,∴∠CAD =90°-∠C =90°-70°=20°,∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(4分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(10分) (3)∵∠C -∠B =α,由(2)中可知∠DAE =12(∠C -∠B )=12α.(12分) 22.解:探究一:∵∠FDC =∠A +∠ACD ,∠ECD =∠A +∠ADC ,∴∠FDC +∠ECD =∠A +∠ACD +∠A +∠ADC =180°+∠A .(4分)探究二:∵DP 、CP 分别平分∠ADC 和∠ACD ,∴∠PDC =12∠ADC ,∠PCD =12∠ACD ,∴∠P =180°-∠PDC -∠PCD =180°-12∠ADC -12∠ACD =180°-12(∠ADC +∠ACD )=180°-12(180°-∠A )=90°+12∠A .(8分)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD=180°-12∠ADC-12∠BCD=180°-12(∠ADC+∠BCD)=180°-12(360°-∠A-∠B)=12(∠A+∠B).(12分)23.解:(1)3(2分)(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP.∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C-∠P=∠P-∠B,即∠P=12(∠C+∠B).(6分)∵∠C=100°,∠B=96°,∴∠P=12(100°+96°)=98°. (7分)(3)∠P=13(β+2α).(8分)理由如下:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB.∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C-∠P=∠CDP-∠CAP=13∠CDB-13∠CAB,∠P-∠B=∠BDP-∠BAP=23∠CDB-23∠CAB,∴2(∠C-∠P)=∠P-∠B,∴∠P=13(∠B+2∠C).∵∠C=α,∠B=β,∴∠P=13(β+2α).(12分)(4)360°(14分) 解析:如图,连接AE,∴∠1+∠2=∠C+∠D.∵∠1+∠2+∠B+∠BAC+∠DEF+∠F=360°,∴∠BAC+∠B+∠C+∠D+∠DEF+∠F=360°.故答案为360°.87654321D C B A《第十一章 三角形》单元测试卷(二)第Ⅰ卷(选择题 共24分)一、选择题:(每小题3分,共24分)1、下列各组线段,能组成三角形的是( )A 、2 cm ,3 cm ,5 cmB 、5 cm ,6 cm ,10 cmC 、1 cm ,1 cm ,3 cmD 、3 cm ,4 cm ,8 cm2、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A 、150° B、135° C、120° D、100°3、如图4,△ABC 中,AD 为△ABC 的角平分线,BE为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A 、59° B、60° C、56° D、22°4、在下列条件中:①∠A+∠B=∠C;②∠A:∠B∠:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C,能确定△ABC 是直角三角形的条件有( )个.A.1B.2C.3D.45、.坐标平面内下列个点中,在坐标轴上的是( )A.(3,3)B.(-3,0)C.(-1,2)D.(-2,-3)6.将某图中的横坐标都减去2,纵坐标不变,则该图形( )A. 向上平移2个单位B. 向下平移2个单位C. 向右平移2个单位D. 向左平移2个单位7.点P (x,y )在第三象限,且点P 到x 轴、y 轴的距离分别为5,3,则P 点的坐标为( )A.(-5,3)B.(3,-5)C.(-3,-5)D.(5,-3)8、如图6,如果AB ∥CD ,那么下面说法错误的是( ) A .∠3=∠7; B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠8第Ⅱ卷(非选择题共76分)二、填空题:(每小题4分,共32分)9、如图1,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°,则∠DAE= 度。
2023-2024学年数学人教版八年级上册第11章三角形 单元测试题(含解析)
第11章 三角形 单元测试题一、单选题1.根据下列已知条件,能确定的形状和大小的是( )A .,,B .,,C .,,D .,,2.如图,一只手握住了一个三角形的一部分,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .以上都有可能3.如图,为估计池塘两岸,间的距离,小明在池塘一侧选取了一点,测得,,那么间的距离不可能是( )A .B .C .D .4.如图,人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .三角形具有稳定性B .垂线段最短C .两点之间,线段最短D .两直线平行,内错角相等5.在中,,若,则等于( )A .B .C .D .6.如图,AE ,AD 分别是的高和角平分线,,,则的度数为( )ABC 30A ∠=︒=60B ∠︒90C ∠=︒40A ∠=︒50B ∠=︒5cm AB =5cm AB =4cm AC =30B ∠=︒6cm AB =4cm BC =30A ∠=︒A B P 14m PA =10m PB =AB 4m 15m 20m 22m Rt ABC 90C ∠=︒50A ∠=︒B ∠55︒50︒45︒40︒ABC 30B ∠=︒70C ∠=︒DAE ∠A .40°B .20°C .10°D .30°7.四边形具有不稳定性,如图,挤压矩形ABCD ,会产生变形,得到四边形EBCF ,则在这个变化过程中,关于矩形ABCD 的周长和面积,下列说法正确的是( )A.周长和面积都不变B.周长不变,面积变小C .周长变小,面积不变D .周长变小,面积变小8.一个多边形每个外角都等于,则从这个多边形的某个顶点画对角线,最多可以画出几条( )A .7条B .8条C .9条D .10条9.正五边形的每个内角度数为( )A .B .C .D .10.一个正多边形的外角等于36°,则这个正多边形的内角和是( )A .1440°B .1080°C .900°D .720°11.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为( )A .5B .5或6C .6或7D .5或6或712.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A 出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ……如此下去,当他第一次回到A 点时,发现自己走了60米,θ的度数为( )A .28°B .30°C .33°D .36°二、填空题36︒72︒100︒108︒120︒720︒14.如图,在中, .15.如图,在中,上,且,则16.大桥钢架、索道支架、人字梁等为了坚固,学校门口的电动推拉门是利用四边形的17.如图,两条平行线l 1、那么∠2= .ABC A ∠=ABC ∆∠DE BC ∥EDC ∠三、解答题(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm ,AD=7 cm 时,求△ABC 22.已知:在中,,分别是(1)若,.求(2)试求与有何关系?23.如图,在中,(1) ;(2)若是两条外角平分线的交点,则ABC AD AE 30B ∠=︒50C ∠=︒DAE ∠DAE ∠C B ∠-∠ABC 50BAC ∠=︒BIC ∠=︒D(3)在(2)的条件下,若是内角和外角的平分线的交点,试探索与的数量关系,并说明理由.E ABC ∠ACG ∠BEC ∠BAC ∠参考答案:1.B解:A 、∠A =30°,∠B =60°,∠C =90°,△ABC 的形状和大小不能确定,故不符合题意;B 、∠A =40°,∠B =50°,AB =5cm ,则利用“ASA”可判断△ABC 是唯一的,故符合题意;C 、AB =5cm ,AC =4cm ,∠B =30°,△ABC 的形状和大小不能确定,故不符合题意;D 、AB =6cm ,BC =4cm ,∠A =30°,△ABC 的形状和大小不能确定,故不符合题意. 2.D解:A 、当另外两角为44°和100°时,该三角形为钝角三角形,B 、当另外两角为90°和54°时,该三角形为直角三角形,C 、当另外两角为80°和64°时,该三角形为锐角三角形,∴钝角三角形,直角三角形,锐角三角形都有可能,3.A解:,,,即,间的距离不可能是:.4.A解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.5.D解:在中,,,,,6.B解:∵,,AE ⊥BC ,∴∠BAC=80°,∠AEB=90°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=40°,在△AEB 中,∠AEB+∠B+∠BAE=180°,∴∠BAE=60°,14m PA = 10m PB =PA PB AB PA PB ∴-<<+4m 24m AB <<AB ∴4m Rt ABC =90C ∠︒ =50A ∠︒=90A B ∴∠+∠︒=9050=40B ∴∠︒-︒︒30B ∠=︒70C ∠=︒∴∠EAD=∠BAE-∠BAD=60°-40°=20°;7.B解:因为把长方形拉成平行四边形后,每个边的长度不变,所以它的周长就不变;但是平行四边形的高比长方形的宽变小了,所以平行四边形的面积就变小了.8.A解:根据题意可知多边形为正多边形,设边数为则由多边形外角和的性质可得,解得则从一个顶点最多可以画10-3=7条对角线9.C解:,∴正五边形的每个内角度数为 10.A解:∵一个正多边形的外角等于36°,∴这个正多边形是正十边形,∴内角和为(10﹣2)×180°=1440°,11.D解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为的多边形的边数是n ,∴,解得:.则原多边形的边数为5或6或7.12.Bn36360n ︒⨯=︒10n =()180525=108︒⨯-÷︒108︒720︒()2180720n -⋅︒=︒6n =。
人教版八年级数学上《第11章三角形》单元测试含答案解析
《第11章三角形》一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.113.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.706.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°7.六边形的内角和是()A.540°B.720°C.900°D.1080°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部11.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,512.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形13.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35° B.5°C.15° D.25°三、填空题14.十边形的外角和是______°.15.如图,自行车的三角形支架,这是利用三角形具有______性.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为______.17.如图,∠1+∠2+∠3+∠4+∠5=______°.三、解答18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.20.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.21.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.23.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.25.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.《第11章三角形》参考答案与试题解析一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为6,故选A.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°【考点】三角形内角和定理.【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【考点】多边形内角与外角;多边形的对角线.【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是: ==35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.6.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°【考点】多边形内角与外角.【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.7.六边形的内角和是()A.540°B.720°C.900°D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n≥3,且n为整数)..8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A、三角形的中线在三角形的内部正确,故本选项错误;B、三角形的角平分线在三角形的内部正确,故本选项错误;C、只有锐角三角形的三条高在三角形的内部,故本选项正确;D、三角形必有一高线在三角形的内部正确,故本选项错误.故选C.【点评】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.11.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,5【考点】三角形三边关系.【分析】直接利用三角形三边关系得出a的取值范围,进而得出答案.【解答】解:∵一个三角形的三条边长分别为3,2a﹣1,6,∴,解得:2<a<5,故整数a的值可能是:3,4.故选:B.【点评】此题主要考查了三角形三边关系,正确得出a的取值范围是解题关键.12.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【考点】三角形内角和定理.【分析】根据已知条件和三角形的内角和是180度求得各角的度数,再判断三角形的形状.【解答】解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.【点评】主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.13.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35° B.5°C.15° D.25°【考点】三角形内角和定理;角平分线的定义.【分析】利用三角形的内角和是180°可得∠BAC的度数;AE是∠BAC的角平分线,可得∠EAC的度数;利用AD是高可得∠ADC=90°,那么可求得∠DAC度数,那么∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=50°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=30°,∴∠EAD=∠EAC﹣∠DAC=5°.故选B.【点评】关键是得到和所求角有关的角的度数;用到的知识点为:三角形的内角和是180°;角平分线把一个角分成相等的两个角.三、填空题(共4小题,每小题3分,满分12分)14.十边形的外角和是360 °.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的外角和等于360°解答.【解答】解:十边形的外角和是360°.故答案为:360.【点评】本题主要考查了多边形的外角和等于360°,多边形的外角和与边数无关,任何多边形的外角和都是360°.15.如图,自行车的三角形支架,这是利用三角形具有稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为125°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.【解答】解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.17.如图,∠1+∠2+∠3+∠4+∠5= 540 °.【考点】多边形内角与外角.【分析】连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理即可求出答案.【解答】解:连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.故答案为540.【点评】本题主要考查三角形的内角和为180°定理,需作辅助线,比较简单.三、解答18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.【考点】三角形的角平分线、中线和高.【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠B=60°,∴∠BCD=90°﹣∠B=90°﹣60°=30°;∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,∴∠ACB=100°,∵CE是∠ACB的平分线,∴∠ACE=∠ACB=50°,∴∠CEB=∠A+∠ACE=20°+50°=70°,∠ECD=90°﹣70°=20°【点评】此题考查了三角形的内角和定理,三角形外角的性质以及三角形高线,角平分线的定义等知识.此题难度不大,解题的关键是数形结合思想的应用.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【考点】三角形的角平分线、中线和高.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.20.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【考点】三角形的角平分线、中线和高.【专题】证明题.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.21.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.【考点】多边形内角与外角;三角形内角和定理.【分析】首先根据四边形内角和为360度计算出∠DAB+∠ABC=360°﹣220°=140°,再根据∠1=∠2,∠3=∠4计算出∠2+∠3=70°,然后利用三角形内角和为180度计算出∠AOB的度数.【解答】解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,∴∠DAB+∠ABC=360°﹣220°=140°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°,∴∠AOB=180°﹣70°=110°.【点评】此题主要考查了多边形的内角,关键是掌握四边形内角和为360°,三角形内角和为180°.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.【考点】三角形内角和定理;角平分线的定义;平行线的性质.【专题】证明题.【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.【解答】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,即EP⊥FP.【点评】本题的关键就是找到∠PEF+∠EFP与∠BEF+∠EFD之间的关系,考查了整体代换思想.23.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.【考点】三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【考点】三角形三边关系;平行线的性质.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.25.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.【解答】解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.第21页共21页。
人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)
第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。
(完整word版)八年级数学第十一章三角形测试卷答案
DDDDDCB ACCCC BBBBAAAAA第8题图CBA八年级数学第十一章三角形测试题(一)(时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号的选项填在下表中。
(每小题2分,共24分。
)1.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A. 360° B. 180° C. 255° D. 145°2.若三条线段中a =3,b =5,c 为奇数, 那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个C. 无数多个D. 无法确定3.有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm ,从中选三条构成三角形,其中正确的选法有( )A. 1种B. 2种C. 3种D. 4种 4.能把一个三角形分成两个面积相等的三角形是三角形的( )A. 中线B. 高线C. 角平分线D. 以上都不对 5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定6.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )7.下列图形中具有稳定性的是( )A. 直角三角形B. 正方形C. 长方形D. 平行四边形 8.如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点,且DE ∥BC ,则∠AED 的度数是( )A.40°B.60°C.80°D.120° 9.已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( )A. 130°B. 60°C. 130°或50°D. 60°或120° 10.若从一多边形的一个顶点出发,最多可引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形(3)(2)(1)第11题图A /第16题图DCB A11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为( )A.45°B.60°C.75°D.85°12.用三个不同的正多边形能够铺满地面的是( )A. 正三角形、正方形、正五边形B. 正三角形、正方形、正六边形C. 正三角形、正方形、正七边形D. 正三角形、正方形、正八边形 二、填空题:(本大题共8小题,每小题3分,共24分。
人教版八年级上册数学《第11章三角形》单元测试题(含答案)
第十一章《三角形》单元测试题(时间120分钟,满分100分)一、选择题(每小题只有一个正确答案,每小题3分,共36分)1.下列长度的三条线段,能组成三角形的是()A. 4cm,5cm,9cmB. 8cm,8cm,15cmC. 5cm,5cm,10cmD. 6cm,7cm,14cm2.下列选项中,有稳定性的图形是()A. B. C. D.3.如图中,三角形的个数为( )A. 3个B. 4个C. 5个D. 6个4.已知直角三角形ABC中,∠ACB=90°,AC=4,BC=3,AB=5,点D从点A到点B沿AB 运动,CD=x,则x的取值范围是( ) .A. 125≤x≤3 B. 125≤x<4 C. 125≤x≤4 D. 125≤x≤55.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A. 40°B. 45°C. 50°D. 55°6.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A. 80°B. 70°C. 85°D. 75°7.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A. 125°B. 135°C. 145°D. 155°8.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A. 8B. 9C. 10D. 119.三角形的重心是三角形的()A. 三条中线的交点B. 三条角平分线的交点C. 三边垂直平分线的交点D. 三条高所在直线的交点10.如图,已知在△ABC 中,AD 是高,若∠DAC=50°,则∠C 的度数为( )A. 60°B. 50°C. 40°D. 30°11.已知实数x ,y 满足7160x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是( )A. 30或39B. 30C. 39D. 以上答案均不对12.在△ABC 中,∠A +∠B =134°,∠B +∠C =136°,则△ABC 的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题(每小题4分,共20分)13.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是__________,14.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC=600,∠BCE=500,则∠ADB 的度数是_________.15.折叠三角形纸片ABC ,使点A 落在BC 边上的点F ,且折痕DE ∥BC ,若∠A=75°,∠C=60°,则∠BDF=____________________________16.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为_____度.17.如图,在△ABC中剪去∠C得到四边形ABDE,且∠1+∠2=230°.纸片中∠C的度数为___.三、解答题(共44分)18.(本题7分)如图,在△ABC中,CD平分∠ACB,DE∥AC,∠B,50°,∠EDC,30°.求∠ADC的度数.19.(本题7分)如图,在△ABC中,∠ABC,66°,∠ACB,54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求∠BHC的度数.20.(本题7分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E,,1)求∠CBE 的度数;,2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.21.(本题7分)如图直线EF//GH ,点A 、点B 分别在EF 、GH 上,连接AB ,FAB ∠的角平分线AD 交GH 于D ,过点D 作DC AB ⊥交AB 延长线于点C ,若036CAD ∠=,求BDC ∠的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013学年第一学期《中学单元学习水平评价》
八年级数学(一)
三角形[范围:第十一章全章]
姓名 学号 班别 评价
一、选择题(每小题5分,共30分)
1.下列各组线段中能组成三角形的是( )
(A)a =6,b =8,c =15 (B)a =4,b =5,c =6
(C)a =7,b =6,c =13 (D)a =12,b =14,c =18
2.如图1,在一些平房住宅中,房梁一般都使用三角形结构,这里所运用的几何原理是( ) (A)三角形的稳定性 (B)两点之间线段最短
(C)两点确定一条直线 (D)垂线段最短
3.已知等腰三角形的两边长分别是3和6,则它的周长等于( )
(A)12 (B)12或15 (C)15 (D)15或18
4.一个多边形的内角和是720°,这个多边形是( )
(A)四角形 (B)五边形 (C)六边形 (D)七边形
5.将一个四边形截去一个角后,它不可能是( )
(A)三角形 (B)四边形 (C)五边形 (D)六边形
6.如图2,下列各式中正确的是( )
(A)∠A>∠2>∠1 (B)∠1>∠A<∠2
(C)∠2>∠1>∠A (D)∠1>∠2>∠A
二、填空题(每小题5分,共30分)
7.如图3,若AD为△ABC的中线,则图中一定相等的线段为 .
8.如图4,延长△ABC的BC边到点D,若∠A=62°,∠B=40°,则∠ACD的度数为 .
9.在△ABC中,AB=2,BC=8,则AC 的值范围为: <AC< .
图1 A C 1 2 图2
D B C A 图4 B C D A 图3 O
B C D
A 图5
10.在△ABC中,若∠A=70°,∠B=∠C,则∠B= ,∠C= .
11.如图5,AD与BC相交于点O,AB∥CD,若∠D=80°,∠AOC=120°,则∠A= °,则∠B= °.
12.一个角的两边分别垂直于另一个角的两边,已知其中一个角为65°,另一个角的大小为 .
三、解答题(满分40分)
13.(满分12分)在△ABC中,AB=5,BC=2,且AC为奇数.
(1)求△ABC的周长;
(2)判断△ABC的形状.
14.(满分12分)已知一个多边形内角和与外角和之比为9︰2,求边数.
15.(满分16分)如图6,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E.
(1)求∠ADC的度数;
(2)求∠BDE的度数.
4321E D C B A 图6
附加题(各10分,共20分)
1.如图7,P是△ABC内的一点,连结BP与CP.求证:∠BPC∠>A.
A
P
图7
2.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24和30两部分,求三角形的三边长.。