2018北师大版九年级数学上册期末测试及答案

合集下载

(北师大版)2018年秋九年级数学上期末检测题(含详细答案)

(北师大版)2018年秋九年级数学上期末检测题(含详细答案)

2018年秋九年级上册数学期末检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若反比例函数y =-2x 的图象上有两点A(-1,m),B(-23,n),则m ,n 的关系是( B )A .m >nB .m <nC .m =nD .无法确定 2.一元二次方程x(x -3)=4的解是( C ) A .1 B .4 C .-1或4 D .1或-43.(2016·安徽)如图,一个放置在水平桌面上的圆柱体,它的主(正)视图是( C )4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是( B )A.15B.14 C.13 D.3105.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( B )A.13B.23C.16D.566.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( A )A .10米B .12米C .15米D .22.5米7.已知关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则k 的取值范围是( D ) A .k <-2 B .k <2 C .k >2 D .k <2且k ≠18.如图,已知矩形ABCD 的周长为20 cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于点E ,F(不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为( B )A .△CDE 与△ABF 的周长都等于10 cm ,但面积不一定相等B .△CDE 与△ABF 全等,且周长都为10 cmC .△CDE 与△ABF 全等,且周长都为5 cmD .△CDE 与△ABF 全等,但它们的周长和面积都不能确定,第6题图) ,第8题图) ,第9题图),第10题图)9.如图,两个反比例函数y =1x 和y =-2x 的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为点C ,交l 2于点A ,PD ⊥y 轴,垂足为点D ,交l 2于点B ,则三角形PAB 的面积为( C )A .3B .4 C.92D .510.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF ,下列结论:①点G 是BC 的中点;②FG =FC ;③S △FGC =910.其中正确的是( B )A .①②B .①③C .②③D .①②③ 二、填空题(每小题3分,共18分)11.写出一个两实根之和为-5的一元二次方程,它可以是__x 2+5x -1=0__.12.如图,小明在打网球时,使球恰好能打过网,且落在离网4米的位置上,则球拍击球的高度h 为__1.5_m __.13.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于点E ,则AE 的长是__3.4__.,第12题图) ,第13题图) ,第14题图),第15题图)14.如图,在Rt △ABC 中,∠ACB =90°,直线EF ∥BD 交AB 于点E ,交AC 于点G ,交AD 于点F.若S △AEG =13S 四边形EBCG ,则CF AD =__12__.15.如图,已知一次函数y =kx -4的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =8x 在第一象限内的图象交于点C ,且A 为BC 的中点,则k =__4__.16.如图,在矩形ABCD 中,AB =3,AD =4,点P 是AD 上的动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为__2.4__.三、解答题(共72分)17.(8分)如图,画出下图中物体的三视图.18.(10分)如图,直线y =-x +2与反比例函数y =kx的图象只有一个交点,求反比例函数的表达式.∵直线y =-x +2与y =k x 只有一个交点,∴kx =-x +2,其中Δ=0,解得k =1.∴反比例函数的表达式为y =1x19.(10分)春秋旅行社为吸引市民组团去玉龙雪山风景区旅游,推出了如下的收费标准:某单位组织员工去玉龙雪山风景区旅游,共支付给春秋旅行社旅游费用27 000元,请问该单位这次共有多少员工去玉龙雪山风景区旅游?设该单位这次共有x 名员工去玉龙雪山风景区旅游.因为1 000×25=25 000<27 000,所以员工人数一定超过25人,可得方程[1 000-20(x -25)]x =27 000,整理得x 2-75x +1 350=0,解得x 1=45,x 2=30.当x 1=45时,1 000-20(x -25)=600<700,故舍去x 1;当x 2=30时,1 000-20(x -25)=900>700,符合题意.答:该单位这次共有30名员工去玉龙雪山风景区旅游20.(10分)如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数.(1)∵EF 垂直平分BC ,∴CF =BF ,BE =CE ,∠BDE =90°,BD =CD ,又∵∠ACB =90°,∴EF ∥AC ,∴BE ∶AB =DB ∶BC =1∶2,∴点E 为AB 的中点,即BE =AE.∵CF =AE ,∴CF =BE.∴CF =FB =BE =CE ,∴四边形BECF 是菱形 (2)∵四边形BECF 是正方形,∴∠CBA =45°.∵∠ACB =90°,∴∠A =45°21.(10分)如图,在平面直角坐标系中,点A ,B 分别在x 轴、y 轴的正半轴上,OA =4,AB =5.点D 在反比例函数y =kx(k>0)的图象上,DA ⊥OA ,点P 在y 轴负半轴上,OP =7.(1)求点B 的坐标和线段PB 的长;(2)当∠PDB =90°时,求反比例函数的表达式.(1)在Rt △OAB 中,OA =4,AB =5,∴OB =AB 2-OA 2=52-42=3,∴点B 的坐标是(0,3).∵OP =7,∴PB =OB +OP =3+7=10(2)过点D 作DE ⊥OB ,垂足为点E ,由DA ⊥OA 可得矩形OADE ,∴DE =OA =4,∠BED =90°,∴∠BDE +∠EBD =90°,又∵∠BDP =90°,∴∠BDE +∠EDP =90°,∴∠EBD =∠EDP ,∴△BED ∽△DEP ,∴BE DE =DEEP ,设D 的坐标是(4,m ),由k >0,得m>0,则有OE =AD =m ,BE =3-m ,EP =m +7,∴3-m 4=4m +7,解得m 1=1,m 2=-5(不合题意,舍去).∴m =1,点D 的坐标为(4,1),∴k =4,反比例函数的表达式为y =4x22.(12分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x ,y 确定的点(x ,y)在函数y =-x +5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy>6,则小明胜;若x ,y 满足xy<6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.(1)画树状图:∵共有12种等可能的结果,在函数y =-x +5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x ,y )在函数y =-x +5的图象上的概率为412=13 (2)∵x ,y 满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况;x ,y 满足xy<6有:(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P (小明胜)=412=13,P (小红胜)=612=12.∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy<6,则小红胜23.(12分)如图,在Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm ,动点P 从点B 出发,在BA 边上以每秒5 cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4 cm 的速度向点B 匀速运动,运动时间为t 秒(0<t<2),连接PQ.(1)若△BPQ 和△ABC 相似,求t 的值; (2)连接AQ ,CP ,若AQ ⊥CP ,求t 的值.(1)由题知,BP =5t ,CQ =4t ,∴BQ =8-4t ,在Rt △ABC 中,由勾股定理得AB =10,当△ABC ∽△PBQ 时,有BP AB =BQ BC ,∴5t 10=8-4t 8,解得t =1;当△ABC ∽△QBP 时,有BQ AB =BP BC ,8-4t 10=5t 8,解得t =3241,∴若△ABC 与△PBQ 相似,t =1秒或3241秒(2)如图,过点P 作PD ⊥BC 于点D ,∵∠ACB =90°,∴PD ∥AC ,∴△BPD ≌△BAC ,∴BP BA =PD AC ,即5t10=PD6,∴PD =3t ,∴BD =4t ,∴CD =8-4t ,∵AQ ⊥CP ,∠ACB =90°,∴∠CAQ =∠DCP ,∴△CPD ∽△AQC ,∴CD AC =PDCQ ,∴8-4t 6=3t 4t,∴t =错误!。

最新北师大版九年级数学上册期末考试及答案【完整版】

最新北师大版九年级数学上册期末考试及答案【完整版】

最新北师大版九年级数学上册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-5 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .89.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)11x +有意义的x 的取值范围是__________.2.因式分解:3269a a a -+=_________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥-2、2(3)a a -3、0或14、140°5、x <1或x >36、 1三、解答题(本大题共6小题,共72分)1、x=32、(1)点B 的坐标为1(2,)a -;(2)对称轴为直线1x =;(3)当12a ≤-时,抛物线与线段PQ 恰有一个公共点.3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)AD =.5、(1)补图见解析;50°;(2)35. 6、(1)y=﹣10x+740(44≤x ≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。

北师大版九年级上册数学期末考试试卷含答案解析

北师大版九年级上册数学期末考试试卷含答案解析

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。

北师大版数学九年级上学期《期末考试卷》含答案

北师大版数学九年级上学期《期末考试卷》含答案

北 师 大 版 数 学 九 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________满分150分 时间120分钟A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是()A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形2.(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .3.(2019•桓台县二模)已知a b =25,则a+b b 的值为( )A .25B .35C .23D .754.(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .45.将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣16.(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .07.(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√58.(2020•武昌区模拟)函数y =−a 2−1x(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,EF ∥AC ,GH ∥AB ,MN ∥BC ,EF 、GH 、MN 、交于点P ,则图中与△PGF 相似的三角形的个数是( )个.A .4B .5C .6D .710.(2020•立山区二模)如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A.2√2B.4C.4√2D.8√2二.填空题(共3小题,满分12分,每小题4分)11.(2019秋•仪征市期末)已知四条线段a,2,6,a+1成比例,则a的值为.12.(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有个同学.13.(2020•无锡)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.三.解答题(共6小题,满分54分)14.(12分)(2018秋•新都区期末)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x(x﹣3)=2x15.(6分)(2019•花都区一模)已知:A=(m+1)(m﹣1)﹣(m+2)(m﹣3)(1)化简A;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为;(2)抽取两名同学,求甲在其中的概率.18.(10分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.19.(10分)(2020•烟台二模)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .(1)求证:DE 是⊙O 的切线;(2)若DE =3,CE =2,①求BC AE 的值;②若点G 为AE 上一点,求OG +12EG 最小值.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 .21.(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为 .22.(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)= . 23.(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x 上,则k 的取值范围为 .24.(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为 .五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.27.(12分)(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=−49x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=−49x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案与解析A 卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•新宾县四模)在△ABC 中,∠A ,∠B 都是锐角,tan A =1,sin B =√22,你认为△ABC 最确切的判断是( )A .等腰三角形B .等腰直角三角形C .直角三角形D .锐角三角形 [解析]解:由题意,得∠A =45°,∠B =45°.∠C =180°﹣∠A ﹣∠B =90°,故选:B .2.(3分)(2020•成都模拟)如图所示的四棱柱的主视图为( )A .B .C .D .[解析]解:由图可得,几何体的主视图是:故选:B . 3.(3分)(2019•桓台县二模)已知a b =25,则a+b b 的值为( ) A .25B .35C .23D .75 [解析]解:由a b =25,得a+b b =2+55=75.故选:D .4.(3分)(2020•临沂模拟)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5C .7D .4[解析]解:∵x 1,x 2是方程x 2−√5x +1=0的两根,∴x 1+x 2=√5,x 1•x 2=1,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=5﹣2=3.故选:A .5.(3分)将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式为( )A .y =(x ﹣1)2+1B .y =(x ﹣1)2+2C .y =(x ﹣2)2﹣3D .y =(x ﹣2)2﹣1[解析]解:y =x 2﹣2x +3=x 2﹣2x +1+2=(x ﹣1)2+2,故选:B .6.(3分)(2020•南山区校级二模)下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A .3B .2C .1D .0[解析]解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C .7.(3分)(2019秋•毕节市期末)已知AB =2,点P 是线段AB 上的黄金分割点,且AP >BP ,则AP 的长为( )A .√5−12B .√5−1C .3−√52D .3−√5[解析]解:由于P 为线段AB =2的黄金分割点,且AP >BP ,则AP =√5−12×2=√5−1.故选:B.8.(3分)(2020•武昌区模拟)函数y=−a2−1x(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1[解析]解:∵a2≥0,∴﹣a2≤0,﹣a2﹣1<0,∴反比例函数y=−a2−1x的图象在二、四象限,∵点(2,y3)的横坐标为2>0,∴此点在第四象限,y3<0;∵(﹣4,y1),(﹣1,y2)的横坐标﹣4<﹣1<0,∴两点均在第二象限y1>0,y2>0,∵在第二象限内y随x的增大而增大,∴y2>y1,∴y2>y1>y3.故选:A.9.(3分)如图,EF∥AC,GH∥AB,MN∥BC,EF、GH、MN、交于点P,则图中与△PGF相似的三角形的个数是()个.A.4B.5C.6D.7[解析]解:∵EF∥AC,GH∥AB,MN∥BC,∴△PGF∽△EBF,△PGF∽△HGC,△AMN∽△ABC,△EMP∽△ENF,△HPN∽△HGC,△EBF∽△ABC,故选:C.10.(3分)(2020•立山区二模)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A .2√2B .4C .4√2D .8√2[解析]解:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB =45°,∴∠AOB =2∠AMB =90°,∴△OAB 为等腰直角三角形,∴AB =√2OA =2√2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =12AB •CD +12AB •CE =12AB (CD +CE )=12AB •DE =12×2√2×4=4√2.故选:C .二.填空题(共3小题,满分12分,每小题4分)11.(4分)(2019秋•仪征市期末)已知四条线段a ,2,6,a +1成比例,则a 的值为 3 .[解析]解:∵四条线段a ,2,6,a +1成比例,∴a 2=6a+1,解得:a 1=3,a 2=﹣4(舍去),所以a =3,故答案为:312.(4分)(2019秋•深圳期末)元旦到了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,该班有 40 个同学.[解析]解:设该班有x 个同学,则每个同学需交换(x ﹣1)件小礼物,依题意,得:x (x ﹣1)=1560, 解得:x 1=40,x 2=﹣39(不合题意,舍去).故答案为:40.13.(4分)(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为83.[解析]解:如图,过点D 作DF ∥AE ,则DF AE=BD BA =23,∵ECAE=13,∴DF =2EC ,∴DO =2OC ,∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC ,∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4,此时△ABO 的面积最大为:23×4=83.故答案为:83.三.解答题(共6小题,满分54分) 14.(12分)计算(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+√27(2)解方程:x (x ﹣3)=2x[解析]解:(1)原式=1﹣1﹣3×√33+3√3=1﹣1−√3+3√3=2√3; (2)x (x ﹣3)﹣2x =0,x (x ﹣3﹣2)=0,x =0或x ﹣3﹣2=0,所以x 1=0,x 2=5. 15.(6分)(2019•花都区一模)已知:A =(m +1)(m ﹣1)﹣(m +2)(m ﹣3) (1)化简A ;(2)若关于x的一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,求A的值.[解析]解:(1)A=(m+1)(m﹣1)﹣(m+2)(m﹣3)=m2﹣1﹣(m2﹣m﹣6),=m2﹣1﹣m2+m+6,=m+5,(2)∵一元二次方程x2+(m+2)x+14m2=0有两个相等的实数根,∴△=0,即△=(m+2)2﹣4×14m2=0,解得m=﹣1.当m=﹣1时,A=m+5=﹣1+5=4.16.(8分)(2020•陕西一模)小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)[解析]解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=√3EG,设热气球的直径为x米,则35.76+12x=√3(30−12x),解得x≈11.9.故热气球的直径约为11.9米.17.(8分)(2019秋•仪征市期末)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会.(1)抽取一名同学,恰好是甲的概率为 14;(2)抽取两名同学,求甲在其中的概率.[解析]解:(1)随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等.恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为14,故答案为:14.(2)随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等.恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为36=12.18.(10分)(2020•宿州模拟)如图,已知反比例函数y =kx的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b ,得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上,∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.19.(10分)(2020•烟台二模)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D . (1)求证:DE 是⊙O 的切线; (2)若DE =3,CE =2,①求BC AE的值;②若点G 为AE 上一点,求OG +12EG 最小值.[解析](1)证明:连接OE ∵OA =OE ∴∠OAE =∠OEA ∵AE 平分∠BAF ∴∠OAE =∠EAF ∴∠OEA =∠EAF ∴OE ∥AD ∵ED ⊥AF ∴∠D =90°∴∠OED =180°﹣∠D =90°∴OE ⊥DE ∴DE 是⊙O 的切线(2)解:①连接BE ∵AB 是⊙O 直径∴∠AEB =90°∴∠BEA =∠D =90°,∠BAE +∠ABE =90° ∵BC 是⊙O 的切线∴∠ABC =∠ABE +∠CBE =90°∴∠BAE =∠CBE ∵∠DAE =∠BAE ∴∠DAE =∠CBE ∴△ADE ∽△BEC ∴AE BC=DE CE∵DE =3,CE =2∴BC AE=23②过点E 作EH ⊥AB 于H ,过点G 作GP ∥AB 交EH 于P ,过点P 作PQ ∥OG 交AB 于Q∴EP ⊥PG ,四边形OGPQ 是平行四边形∴∠EPG =90°,PQ =OG ∵BC AE=23∴设BC =2x ,AE =3x ∴AC =AE +CE =3x +2∵∠BEC =∠ABC =90°,∠C =∠C ∴△BEC ∽△ABC∴BC AC=CE BC∴BC 2=AC •CE 即(2x )2=2(3x +2)解得:x 1=2,x 2=−12(舍去)∴BC =4,AE =6,AC =8∴sin ∠BAC =BC AC =12,∴∠BAC =30°∴∠EGP =∠BAC =30°∴PE =12EG ∴OG +12EG =PQ +PE ∴当E 、P 、Q 在同一直线上(即H 、Q 重合)时,PQ +PE =EH 最短 ∵EH =12AE =3∴OG +12EG 的最小值为3B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)20.(4分)(2019•宿豫区模拟)若2m ﹣n +1=0,则代数式5﹣6m +3n 的值是 8 . [解析]解:∵2m ﹣n +1=0,∴2m ﹣n =﹣1,则原式=5﹣3(2m ﹣n )=5+3=8,故答案为:821.(4分)(2019•大邑县模拟)有五张正面分别写有数字﹣4,﹣3,0,2,3的卡片,五张卡片除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为n ,则抽取的n 既能使关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,又能使以x 为自变量的反比例函数y =n 2−16x 的图象在每个象限内y 随x 的增大而增大的概率为15.[解析]解:∵关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,∴当n =﹣3时,关于x 的方程(n +3)x 2+(n +1)x +12=0有实数根,当n ≠﹣3时,(n +1)2﹣4(n +3)×12=n 2﹣5≥0,∴n 2≥5, ∵反比例函数y =n 2−16x的图象在每个象限内y 随x 的增大而增大,∴n 2﹣16<0,∴n 2<16,∴5≤n 2≤16,∴n =3,∴概率为,15,故答案为:15.22.(4分)(2019秋•滦州市期中)计算:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=2019x(x+2019).[解析]解:1x(x+1)+1(x+1)(x+2)+1(x+2)(x+3)+⋯+1(x+2018)(x+2019)=1x−1x+1+1x+1−1x+2+1x−2−1x+3+⋯+1x+2018−1x+2019=1x−1x+2019=2019x(x+2019)故答案为:2019x(x+2019).23.(4分)(2019•南充)在平面直角坐标系xOy 中,点A (3m ,2n )在直线y =﹣x +1上,点B (m ,n )在双曲线y =k x上,则k 的取值范围为 k ≤124且k ≠0 .[解析]解:∵点A (3m ,2n )在直线y =﹣x +1上,∴2n =﹣3m +1,即n =−3m+12, ∴B (m ,−3m+12),∵点B 在双曲线y =kx 上,∴k =m •−3m+12=−32(m −16)2+124,∵−32<0,∴k 有最大值为124,∴k 的取值范围为k ≤124,∵k ≠0,故答案为k ≤124且k ≠0.24.(4分)(2020•青白江区模拟)如图,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,则四边形AGCD 的面积的最小值为152.[解析]解:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2, ∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=12AD×CD+12AC×h=12×4×3+12×5×h=52h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,即点E,点G,点H共线.由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC=BCAC=45,在Rt△AEH中,AE=2,sin∠BAC=EHAE=45,∴EH=45AE=85,∴h=EH﹣EG=85−1=35,∴S四边形AGCD最小=52h+6=52×35+6=152.故答案为:152.五.解答题(共3小题,满分30分)25.(8分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?[解析]解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:{200=15k +b300=10k +b ,解得:{k =−20b =500,即:函数的表达式为:y =﹣20x +500,(25>x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =−b 2a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680, 此时,既能销售完又能获得最大利润.26.(10分)(2020•衢州模拟)(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B =∠C =∠EDF =a .△BDE 与△CFD 相似吗?请说明理由;(2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD =2.①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.[解析]解:(1)△BDE ∽△CFD ,理由:∠B =∠C =∠EDF =a ,在△BDE 中,∠B +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠B =180°﹣α,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =180°﹣α,∴∠BED =∠CDF ,∵∠B =∠C ,∴△BDE ∽△CFD ;(2)①设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =8, 由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠B +∠BDE +∠BED =180°, ∴∠BDE +∠BED =180°﹣∠B =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠B =∠C =60°,∴△BDE ∽△CFD ,∴BD CF=BE CD =DE FD∵BE =AB ﹣AE =8﹣x ,CF =AC ﹣AF =8﹣y ,CD =BC ﹣BD =6,∴28−y=8−x 6=xy,∴{2y =x(8−y)6x =y(8−x),∴xy =1014=57,∴AE AF =57; ②设AE =x ,AF =y ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠ACB =60°,AB =BC =AC =8,由折叠知,DE =AE =x ,DF =AF =y ,∠EDF =∠A =60°,在△BDE 中,∠ABC +∠BDE +∠BED =180°,∴∠BDE +∠BED =180°﹣∠ABC =120°,∵∠BDE +∠EDF +∠CDF =180°,∴∠BDE +∠CDF =180°﹣∠EDF =120°,∴∠BED =∠CDF ,∵∠ABC =∠ACB =60°,∴∠DBE =∠DCF =120°,∴△BDE ∽△CFD ,∴BD CF=BE CD=DE FD∵BE =AB ﹣AE =8﹣x ,CF =AF ﹣AC =y ﹣8,CD =BC +BD =10,∴2y−8=8−x 10=x y ,∴{2y =x(y −8)10x =y(8−x),∴x y =13.∵△BDE ∽△CFD ,∴△BDE 与△CFD 的周长之比为DE DF=x y=13.27.(12分)(2020•铁岭四模)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =−49x 2+bx +c 经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =−49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.[解析]解:(1)将A 、C 两点坐标代入抛物线,得{c =8−49×36+6b +c =0,解得:{b =43c =8,∴抛物线的解析式为y =−49x 2+43x +8;(2)①∵OA =8,OC =6,∴AC =√OA 2+OC 2=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴QE 10−m=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m ; ②∵S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m =−310(m ﹣5)2+152, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =−49x 2+43x +8的对称轴为x =32,D 的坐标为(3,8),Q (3,4),当∠FDQ =90°时,F 1(32,8),当∠FQD =90°时,则F 2(32,4),当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n =6±√72,∴F 3(32,6+√72),F 4(32,6−√72),满足条件的点F 共有四个,坐标分别为F 1(32,8),F 2(32,4),F 3(32,6+√72),F 4(32,6−√72).。

最新2018-2019学年北师大版九年级数学上册期末考试综合模拟试题及答案解析-精编试题

最新2018-2019学年北师大版九年级数学上册期末考试综合模拟试题及答案解析-精编试题

九年级(上)期末模拟测试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B铅笔填涂相应的信息点.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上,不按要求填涂的,答案无效.3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排,如需改动,先划掉原来的答案,然后再写上新的答案.不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,不折叠,不破损.考试结束后,将答题卡交回.5.允许使用计算器.第Ⅰ卷选择题(36分)一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................)1.如图的几何体是由五个同样大小的正方体搭成的,其主视图是A.B.C.D.2.一元二次方程x2﹣9=0的解是A. x=﹣3 B. x=3 C. x1=3,x2=﹣3 D.x=83.点(2,﹣2)是反比例函数y=的图象上的一点,则k=A.﹣1 B.C.﹣4 D.﹣4.下列关于x的一元二次方程有实数根的是A. x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是红球的概率是A.B.C.D.6.顺次连结对角线相等的四边形的四边中点所得图形是A.正方形B.矩形C.菱形D.以上都不对7.如图,在菱形ABCD 中,BD=6,AC=8,则菱形ABCD 的周长为 A .20 B .16C .25D . 308.下列命题中,假命题的是 A . 四边形的外角和等于内角和 B . 对角线互相垂直的平行四边形是菱形 C . 矩形的四个角都是直角D . 相似三角形的周长比等于相似比的平方9.如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则=A .B .C .D .10. 已知1(0),3a c e a c eb d f b d f b d f++===++≠=++则A .B .13C .D .2311.下列命题中, ①有一组邻边互相垂直的菱形是正方形②若2x=3y ,则③若(﹣1,a )、(2,b )是双曲线y=上的两点,则a >b 正确的有( )个A .1B .2C .3D .012. 如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为A . 2B . 3C . 22D .32第Ⅱ卷 非选择题二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡........上)...13.若x=﹣2是关于x 的一元二次方程x 2+3x+m+1=0的一个解,则m= .14.一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是 .15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为 .16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC= .三、解答题(本大题有7题,共52分)17.(5分)解方程:x2+6x﹣7=018.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“南”、“山”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“南山”的概率;19.(6分)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.20.(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.21.(8分)A市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,请通过计算说明哪种方案更优惠?22.(9分)如图,Rt△ABO 的顶点A 是双曲线y 1=与直线y 2=﹣x ﹣(k+1)在第二象限的交点.AB⊥x 轴于B ,且S △ABO =. (1)求这两个函数的解析式; (2)求△AOC 的面积.(3)直接写出使y 1>y 2成立的x 的取值范围23.(10分)如图,在平面直角坐标系中,四边形ABCD 是平行四边形,AD =6,若OA 、OB的长是关于x 的一元二次方程01272=+-x x 的两个根,且OA >OB. (1)求OA 、OB 的长.(2)若点E 为x 轴上的点,且S △AOE =316,求经过D 、E 两点的直线解析式,并判断△AOE 与△AOD 是否相似.(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.九年级数学答案一、选择题(本题有12小题,每题3分,共36分)二、填空题(本题有4小题,每题3分,共12分.)三、解答题(本大题有7题,其中17题5分,18题6分,19题6分,20题8分,21题8,22题9分,23题10分,共52分)17.(5分)解方程:x2+6x﹣7=0.解:∵x2+6x﹣7=0,∴(x+7)(x﹣1)=0,…………………3分∴x1=﹣7或x2=1.…………………5分18.(6分)(1)∵有汉字“美”、“丽”、“南”、“山”的四个小球,任取一球,共有4种不同结果,∴球上汉字是“美”的概率为P=;…………………2分(2)列表如下:美丽南山美﹣﹣﹣(丽,美)(南,美)(山,美)丽(美,丽)﹣﹣﹣(南,丽)(山,丽)南(美,南)(丽,南)﹣﹣﹣(山,南)山(美,山)(丽,山)(南,山)﹣﹣﹣所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“美丽”或“南山”的情况有4种,则P==;…………………6分19.(6分)解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.…………………2分(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴…………………4分又∵AB=1.6,BC=2.4,DN=DE﹣NE=15﹣xMN=EG=16∴解得:x=,答:旗杆的影子落在墙上的长度为米.…………………6分20.(8分)解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.…………………4分(2)∵四边形ABCD为菱形,∴AO=OC=AC=3,…………………5分OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,…………7分∴四边形CODE的周长=2(3+4)=14.…………8分21.(8分)解:(1)设平均每次下调的百分率为,则,………………2分解得:(舍去).∴平均每次下调的百分率为10%. …………………4分(2)方案①可优惠:(元),…………………6分方案②可优惠:(元),…………………7分∴方案①更优惠. …………………8分21.(9分)解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,…………………1分又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;…………………3分(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),…………………4分∵A、C在反比例函数的图象上,∴,解得,,∴交点A为(﹣1,3),C为(3,﹣1),…………………6分∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.…………………7分(3)-1<x<0或x>3 (只写对一个不等式给1分)…………………9分23.(10分)(1)解一元二次方程得,∵OA>OB∴OA=4,OB=3;…………………1分(2)设E(x,0),由题意得解得∴E(,0)或(,0),…………………3分∵四边形ABCD是平行四边形,∴点D的坐标是(6,4)设经过D、E两点的直线的解析式为若图象过点(,0),(6,4)则,解得此时函数解析式为…………………4分若图象过点(,0),(6,4)则,解得此时函数解析式为………………… 5分在△AOE与△DAO中,,又∵∠AOE=∠OAD=90°∴△AOE ∽△DAO ; …………………6分(3)符合条件的F 点共有4个,其坐标分别为m (-3,0)或(3,8)或(),)或((25442542722,1475--- …………………10分。

2017-2018学年度第一学期新北师大版九年级数学上册期末测试卷含答案-(1)

2017-2018学年度第一学期新北师大版九年级数学上册期末测试卷含答案-(1)

新北师大版 2017-2018 学年度第一学期九年级数学上册期末总复习模拟试题卷班级姓名得分亲爱的同学:你好!数学就是力量,自信决定成绩。

请你灵便智慧,周祥思虑,认真作答,努力吧,祝你成功 !第一卷(选择题,共2页,满分 30分)一、精心选一选(本大题共10 小题,每题 3 分,共 30 分.每题给出四个答案,其中只有一个是正确的).1、 sin45 °的值等于()A.1B.2C.3D.1 2222、一元二次方程x2=2x 的根是()A.x=2B.x=0C.x1=0,x2=2D.x1=0,x2=-23、等腰三角形的两条边长分别为3, 6,那么它的周长为()A.15B.12C.12或15D.不能确定4、如图,空心圆柱的左视图是()A. B. C. D.5、以下列图,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的地址应选在()A. △ ABC的三条中线的交点B. △ ABC三边的中垂线的交点C. △ ABC三条高所在直线的交点D. △ ABC三条角均分线的交点6、如图, DE是△ ABC的中位线,若BC的长为 3cm,则 DE的长是()A. 1cmB. 1.2cmC. 1.5cmD. 2cm7、直角三角形两直角边的长分别为x,y,它的面积为 3,则 y 与 x 之间的函数关系用图象表示大体是()A. B. C. D.8、由于国家出台对房屋的限购令,我省某地的房屋价格原价为8400 元 / 米2,经过连续两次降价a% 后,售价变为6000 元 / 米2,以下方程中正确的选项是()A. 8400(1a2 )6000B.C. 8400(1a)26000D.9、以下命题中真命题是()A. 若是 m是有理数,那么m是整数B.4 的平方根是26000(1 a 2 ) 8400 8400(1 a)26000C.等腰梯形两底角相等D.若是四边形 ABCD是正方形,那么它是菱形10、图 1 为两个相同的矩形,若阴影地域的面积为10,则图 2 的阴影面积等于()A.40B.30C.20D.10第二卷(非选择题,满分70 分)第一节认真填一填(本大题共 5 小题,每题 3 分,共 15 分.请你把答案填在横线的上方).11 、已知反比率函数y k.的图象经过点( 2, 5),则 k=2x.12、抛物线 y=x -2x+3 的极点坐标是13、命题“平行四边形的对角线互相均分”的抗命题是.14、如图,在△ ABC中, AB=BC,∠ B=120°, AB 的垂直均分线交AC于点 D.若AC=6cm,则 AD=cm.15、定义新运算“ * ”.规则: a*b=a ( a≥b)也许 a*b=b (a< b)如 1*2=2 ,( -3 )*2=2 .若 x2+x-1=0的根为 x1、x2,则 x1*x 2的值为:.第二节专心做一做(本大题共 2 小题,每题 5 分,共 10 分).16、如图,已知AC均分∠ BAD, AB=AD.求证:△ ABC≌△ ADC.解:17、如图,在平行四边形ABCD中, BF=DE.求证:四边形 AFCE是平行四边形.解:四、沉稳沉稳,周祥思虑(本大题共 2 小题,每题 6 分,共 12 分).18、我市某中学对全校学生进行文明礼仪知识测试,为认识测试结果,随机抽取部分学生的成绩进行解析,将成绩分为三个等级:不合格、一般、优秀,并绘制成以下两幅统计图(不完满).请你依照图中所给的信息解答以下问题:( 1)请将以上两幅统计图补充完满;(2分)( 2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(2分)(3)若该校学生有 1200 人,请你估计此次测试中,全校达标的学生有多少人?( 2 分)解:19、如图经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,若是这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这两辆汽行驶方向所有可能的结果;(2)求最少有一辆汽车向左转的概率.解:五、满怀信心,再接再厉(本大题共 3 小题,每题 6 分,共 18 分).20(本题满分 6 分)如图,放置在水平桌面上的台灯的灯臂AB长为 40cm,灯罩 BC长为 30cm,底座厚度为 2cm,灯臂与底座构成的∠BAD=60°.使用发现,光辉最正确时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少 cm?(结果精确到0.1cm ,参照数据: 3 ≈1.732)解:W(台),21、(本题满分 6 分)某商场销售一种进价为20 元 / 台的台灯,经检查发现,该台灯每天的销售量销售单价x(元)满足W=-2x+80,设销售这种台灯每天的利润为y(元).(1)求 y 与 x 之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?150 元的利润,应( 3)在保证销售量尽可能大的前提下.该商场每天还想获得将销售单价定位为多少元?解:22、(本题满分6 分)以下列图,制作一种产品的同时,需将原资料加热,设该资料温度为y℃,从加热开始计算的时间为x 分钟.据认识,该资料在加热过程中温度y 与时间 x 成一次函数关系,已知该资料在加热前的温度为l5 ℃,加热 5 分钟使资料温度达到60℃时停止加热,停止加热后,资料温度逐渐下降,这时温度y 与时间 x 成反比率函数关系.( 1)分别求出该资料加热和停止加热过程中y 与 x 的函数关系(要写出x 的取值范);(2)依照工艺要求,在资料温度不低于 30℃的这段时间内,需要对该资料进行特别办理,那么对该资料进行特别办理所用的时间为多少分钟?解:茂名市2012年第一学期初三期末模拟考试数学试题(一)参照答案一、选择题(本大题共10 小题,每题 3 分,共 30 分.)题号12345678答案B C A C D C B D二、填空题(本大题共 5 小题,每题 3 分,共 15 分.)11、 10 12、(1,2)13、对角线互相均分的四边形是平行四边形.9D10D14、2 15 、152三、(本大题共 3 小题,每题7 分,共 21 分.)16、证明:∵ AC均分∠ BAD,∴∠ BAC=∠DAC,在△ ABC和△ ADC中,AB ADBAC DAC ,AC AC∴△ ABC≌△ ADC.17、证明:∵平行四边形ABCD,∴AB∥CD,AB=CD.∵ BF=DE,∴AF=CE.∵在四边形AFCE中, AF∥ CE,∴四边形AFCE是平行四边形.四、(本大题共 2 小题,每题7 分,共 14 分)19、解:( 1)成绩一般的学生占的百分比 =1-20%-50%=30%,测试的学生总数 =24÷ 20%=120人,成绩优秀的人数=120× 50%=60人,所补充图形以下所示:( 2)该校被抽取的学生中达标的人数=36+60=96.(3) 1200×( 50%+30%) =960(人).答:估计全校达标的学生有960 人.20、解法 l :( 1)依照题意,可以画出出以下的“树状图”:∴这两辆汽乖行驶方向共有9 种可能的结果;( 2)由( 1)中“树状图”知,最少有一辆汽车向左转的结果有5 种,且所有结果的可能性相等(最少有一辆汽车向左转)= 5.∴P9解法 2:依照题意,可以列出以下的表格:左直左 (左,左) (左,直) 直 (直,左) (直,直) 右(右,左)(右,直)以下解法同.五、(本大题共 3 小题,每题 8 分,共 24 分)21、解:右(左,右)(直,右)(右,右)∵灯罩 BC 长为 30cm ,光辉最正确时灯罩BC 与水平线所成的角为 30°,∴ sin30 ° =CMCM , BC30∴ CM =15cm , ∵ sin60 ° =BF,BA∴3 BF 2,40解得: BF 203 ,∴ CE=2+15+20 3 ≈ 51.6cm .答:此时灯罩顶端C 到桌面的高度 CE 是 51.6cm .22、解:( 1) y=( x-20 )( -2x+80 ),2( 2)∵ y=-2x 2+120x-1600 ,=-2 ( x-30 ) 2+200, ∴当 x=30 元时,最大利润y=200 元;( 3)由题意, y=150,即: -2 ( x-30 ) 2+200=150,解得: x 1=25, x 2=35,又销售量 W=-2x+80随单价 x 的增大而减小,所以当 x=25 时,既能保证销售量大,又可以每天获得 150 元的利润.。

最新北师大版九年级数学上册期末考试及答案【完整版】

最新北师大版九年级数学上册期末考试及答案【完整版】

最新北师大版九年级数学上册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .302.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。

最新北师大版九年级数学上册期末试卷及答案【完美版】

最新北师大版九年级数学上册期末试卷及答案【完美版】

最新北师大版九年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >22.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩4.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.149.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A .45°B .50°C .55°D .60°二、填空题(本大题共6小题,每小题3分,共18分)1.81的算术平方根是____________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.函数2y x =-中,自变量x 的取值范围是__________.4.如图,901,2,AB CD BCD AB BC CD E ∠=︒===,,为AD 上的中点,则BE =__________.5.如图,直线l 为y=3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为__________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.3.如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、D5、B6、D7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(y﹣1)2(x﹣1)2.3、2x≥45、2n﹣1,06、5三、解答题(本大题共6小题,共72分)1、32x=-.2、(1) y=2x+1;(2)不在;(3)0.25.3、(1)8;(2)6;(3),40cm,80cm2.4、(1)二次函数的表达式为:213222y x x=--;(2)4;(3)2或2911.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)120件;(2)150元.。

新北师大版九年级数学上册期末考试及答案【精编】

新北师大版九年级数学上册期末考试及答案【精编】

新北师大版九年级数学上册期末考试及答案【精编】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把 )A B .C D .2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y << 4.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或35.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x+1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x+1)2+3D .y=﹣5(x ﹣1)2+3 6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、A5、A6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(y﹣1)2(x﹣1)2.3、﹣34、140°5、3 166、8.三、解答题(本大题共6小题,共72分)1、无解2、1 23、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m1,2.4、(1)BF=10;(2)r=2.5、(1)2、45、20;(2)72;(3)1 66、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。

新北师大版九年级数学上册期末考试及答案【完整】

新北师大版九年级数学上册期末考试及答案【完整】

新北师大版九年级数学上册期末考试及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .610.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:3x -x=__________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、C6、A7、C8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x (x+1)(x -1)3、x ≥-3且x ≠24、﹣2<x <25、)6、245三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、-11x +,-14. 3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)2(2)略5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

北师大版九年级数学上册期末考试卷及答案【全面】

北师大版九年级数学上册期末考试卷及答案【全面】

北师大版九年级数学上册期末考试卷及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >22.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A .y=(x+2)2﹣5B .y=(x+2)2+5C .y=(x ﹣2)2﹣5D .y=(x ﹣2)2+55.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .106.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .928.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.把一副三角板如图放置,其中90ABC DEB ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边10AC BD ==,若将三角板DEB 绕点B 按逆时针方向旋转45︒得到''D E B △,则点A 在''D E B △的( )A .内部B .外部C .边上D .以上都有可能二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:x 3﹣16x =_____________.3.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为__________米.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.已知关于x ,y 的方程组231034ax x y ⎧+=-⎪⎨+=⎪⎩与215x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为6x 的方程20x ax b ++=的解.试判断该三角形的形状,并说明理由.3.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣m x>0的解集.4.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan58 1.60︒≈.5.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、B6、C7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x(x+4)(x–4).3、-154、3或3 2.5、56、①③④.三、解答题(本大题共6小题,共72分)1、x=12、(1) 12(2)等腰直角三角形,理由见解析3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、甲建筑物的高度AB约为125m,乙建筑物的高度DC约为38m.5、(1)50,18;(2)选择的市民均来自甲区的概率为16.6、(1)y=﹣40x+880;(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元。

最新北师大版九年级数学上册期末考试及参考答案

最新北师大版九年级数学上册期末考试及参考答案

最新北师大版九年级数学上册期末考试及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.已知x+1x=6,则x2+21x=()A.38 B.36 C.34 D.323.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×105 5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.16.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<327.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD •AC D . AD AB AB BC = 9.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.81的算术平方根是____________.2.分解因式:3x -x=__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__________.5.如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_________(只添一个即可),使四边形ABCD 是平行四边形.6.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =-.3.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF 的长.4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、A6、B7、C8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、x (x+1)(x -1)3、x 1≥-且x 0≠4、32;5、BO=DO .6、2三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22mm -+ 1.3、(1)略;(2) 52.4、(1)反比例函数的解析式为22y x =,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =.5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

新北师大版九年级数学上册期末考试卷及答案【完整】

新北师大版九年级数学上册期末考试卷及答案【完整】

新北师大版九年级数学上册期末考试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定 6.函数123y x x =+--的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2<D .x 3<8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A .25B .5C .2D .1210.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:3244a a a -+=__________.3x 2-x 的取值范围是__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为__________米.6.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___________cm.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.如图,在ABC中,ACB90∠=,AC BC=,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:ACD≌BCE;1()当AD BF2∠的度数.=时,求BEF4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、D5、B6、A7、C8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、2(2)a a -;3、x 2≥4、﹣2<x <25、56、15.三、解答题(本大题共6小题,共72分)1、1x =2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、()1略;()2BEF 67.5∠=.4、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、()()21y5x800x2750050x100=-+-≤≤;(2)当x80=时,y4500=最大值;(3)销售单价应该控制在82元至90元之间.。

北师大版九年级数学上册期末试卷及答案【汇总】

北师大版九年级数学上册期末试卷及答案【汇总】

北师大版九年级数学上册期末试卷及答案【汇总】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个B .4个C .6个D .8个 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:a3-ab2=____________.3.函数2y x=-中,自变量x的取值范围是__________.4.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为__________.5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB ⊥x轴,垂足为B,若△AOB的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.已知a 、b 、c 满足2225(32)0a b c -+-+-=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、B5、B6、D7、A8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、a(a+b)(a﹣b)3、2x≥4、72°5、6、-2三、解答题(本大题共6小题,共72分)1、无解2、(1)a=b=5,c=2)能;3、(1)略(24、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

2018年最新九年级数学上期末试卷(北师大版)

2018年最新九年级数学上期末试卷(北师大版)

2018-2019新北师大版数学九年级上期末试卷 一、选择题:(40分) 1.已知1=x 是方程022=++ax x 的一个根,则方程的另一个根为( )A .2B .2-C .3-D .32.在下列函数中,当x <0时,y 随x 增大而增大的是( )A 、x y 31-=B 、3y x=- C 、y=-x -3 D 、32+=x y 3.若函数xk y 1-=(k ≠1)在每一象限内,y 随x 的增大而减小,则k 的取值范围是( ) A 、k >1 B 、k <1 C 、k >0 D 、k <04.如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:45.函数y=kx (k ≠0)和x k y =(k ≠0)在同一坐标系中的图象是( )6. 如图,正方形ABOC 的边长为2,反比例函数xk y =过点A ,则k 的值是( ) A 、4 B 、-4 C 、-2 D 、27.(2013•六盘水)下列图形中,阴影部分面积最大的是( )A .B .C .D .8.如图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( ) A 、P 是BC 的中点 B. ∠APE =90° C. ∠APB =∠EPC D. BP ︰BC =2︰39、(2008山东潍坊)如右上图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )A. 45x- B. 35x + C. 72 D. 21212525x x - 10.如图所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连结BE 交CD 于点O ,连结AO ,下列结论不正确的是( ) A .△AOD ≌△EOD B .△BOC ≌△EOD C .△AOB ≌△BOC D .△AOD ≌△BOC二、填空题:(24分)11.若一元二次方程的两个根分别是R t △ABC 的两条直边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 12.已知函数1y x=的图象如图所示,函数解析式为 13、已知),(),,(2211y x B y x A 都在反比例函数x y 6=的图象上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试(BJ)
(满分:150分,考试用时120分钟)
一、选择题(本大题共15个小题,每小题3分,共45分)
1.已知一元二次方程x 2-5x +3=0的两根为x 1,x 2,则x 1x 2=( ) A .5 B .-5 C .3 D .-3
2.下列几何体中,俯视图与主视图完全相同的几何体是( ) A .圆锥 B .球 C .圆柱 D .长方体
3.已知2是关于x 的方程x 2-3x +a =0的一个解,则a 的值是( ) A . 5 B .4 C .3 D .2
4.(黔西南中考)如图,在菱形ABCD 中,AC 与BD 相交于点O ,AO =4,BO =3,则菱形的边长AB 等于( ) A .10 B.7 C .6 D .5
5.如图,若要使平行四边形ABCD 成为菱形,则可添加的条件是( ) A .AB =CD B .AD =BC C .AB =BC D .AC =BD
6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等实数根,则k 的取值范围是( ) A .k>-1 B .k ≥-1 C .k ≠0 D .k>-1且k ≠0 7.若某几何体的三视图如图所示,则这个几何体是( )
8.下列对正方形的描述错误的是( ) A .正方形的四个角都是直角 B .正方形的对角线互相垂直 C .邻边相等的矩形是正方形
D .对角线相等的平行四边形是正方形
9.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是( ) A.12 B.13 C.14 D.18
10.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x 人,则可列方程为( ) A .x(x -1)=90 B .x(x -1)=2×90 C .x(x -1)=90÷2 D .x(x +1)=90
11.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′,点A 、B 、A′、B′均在图中格点上,若线段AB 上有一点P(m ,n),则点P 在A′B′上的对应点P′的坐标为( )
A .(m
2,n) B .(m ,n)
C .(m ,n 2)
D .(m 2,n
2
)
12.如图,AB ∥CD ∥EF ,AD =4,BC =DF =3,则BE 的长为( ) A.94 B.21
4
C .4
D .6
13.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )
A.13
B.14
C.15
D.18
14.函数y =2
|x|
的图象是( )
15.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点,且EF ⊥AC 分别交DC 于F ,交AB 于E ,点G 是AE 中点,且∠AOG =30°,则下列结论正确的个数为( )
①DC =3OG ;②OG =12BC ;③△OGE 是等边三角形;④S △AOE =1
6S 矩形ABCD .
A .1
B .2
C .3
D .4
二、填空题(本大题共5小题,每小题5分,共25分)
16.如图所示是两棵小树在同一时刻的影子,可以断定这是________投影.
17.如图所示,在某一电路中,保持电压不变,电阻R(欧)与电流I(安)之间的函数关系式是________,则这一电路
的电压为________伏.
18.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为972元,原价为1 200元,则可列出关于x 的一元二次方程为________________. 19.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为________.
20.如图,直线y =mx 与双曲线y =k
x 交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM ,若S △ABM =2,
则k 的值是________.
三、解答题(本大题共7个小题,各题分值见题号后,共80分) 21.(8分)解下列方程:
(1)(2x -1)2=9; (2)2x 2-10x =3.
22.(8分)画出右边实物的三视图.
23.(10分)如图,直线y =-x +2与反比例函数y =k
x
的图象只有一个交点,求反比例函数的表达式.
24.(12分)荷花小区要在一块一边靠墙(墙长是15 m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40 m的栅栏围成,如图所示.若设花园的BC的边长为x m,花园的面积为y m2.
(1)求y与x之间的函数关系式,写出自变量x的取值范围;
25.(12分)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.
(1)如果随机抽取1名同学单独展示,那么女生展示的概率为________;
(2)如果随机抽取2名同学共同展示,求同为男生展示的概率.
26.(14分)如图,△ABC中,∠ACB=90°,CD⊥AB于D,E为AC的中点,ED、CB的延长线交于点F,求证:
DF CF =BC AC
.
27.(16分)如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF.
(1)求证:AE =DF ;
(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由.
参考答案
1.C 2.B 3.D 4.D 5.C 6.D 7.C 8.D 9.D 10.A 11.D 12.B 13.D 14.B 15.C 16.中心 17.R =10I
10 18.1 200(1-x)2=972 19.24 20.2 21.(1)x 1=-1,x 2=2.(2)x 1=
5-312,x 2=5+31
2
. 22.如图:
23.∵直线y =-x +2与反比例函数y =k x 的图象只有一个交点,∴k
x =-x +2,即x 2-2x +k =0只有一个解.∴Δ
=0,即4-4k =0.解得k =1.∴反比例函数的表达式为y =1x . 24.(1)根据题意,得y =x·40-x 2,即y =-1
2x 2+
20x(0<x ≤15).(2)当y =200时,即-12x 2+20x =200.解得x 1=x 2=20>15.∴花园面积不能达到200 m 2. 25.(1)1
4 (2)
一共有12种情形,都是等可能的,其中,所有结果中,满足“同为男生展示”的结果有6种,所以P(同为男生)=1
2
. 26.证明:∵∠ACB =90°,CD ⊥AB ,∴∠ A +∠ACD =∠ACD +∠BCD ,∠ACB =∠BDC =90°.∴∠A =∠BCD.∴△ABC ∽△CBD.∴BC BD =AC CD ,即BC AC =BD
CD .又∵E 为AC 中点,∴AE =CE =ED.∴∠A =∠EDA.∵∠EDA
=∠BDF ,∴∠FCD =∠BDF.又∠F 为公共角,∴△FDB ∽△FCD.∴DF CF =BD CD .∴DF CF =BC
AC . 27.(1)证明:在△DFC
中,∠DFC =90°,∠C =30°,DC =4t ,∴DF =2t.又∵AE =2t ,∴AE =DF.(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF.又∵AE =DF ,∴四边形AEFD 为平行四边形.当四边形AEFD 为菱形时,AE =AD =AC -DC ,即60-4t =2t.解得t =10.∴当t =10秒时,四边形AEFD 为菱形.(3)①当∠DEF =90°时,由(2)知EF ∥AD ,∴∠ADE =∠DEF =90°.∵∠A =60°,∴∠AED =30°.∴AD =1
2AE =t.又AD =60-4t ,即60-4t =t ,解得t =12;②当∠EDF
=90°时,四边形EBFD 为矩形,在Rt △AED 中,∠A =60°,则∠ADE =30°,∴AD =2AE ,即60-4t =4t ,
解得t =15
2;③若∠EFD =90°,则E 与B 重合,D 与A 重合,此种情况不存在.故当t =2
15或12秒时,△DEF
为直角三角形.。

相关文档
最新文档