(整理)实验三氢原子光谱的研究.

合集下载

3-氢原子光谱

3-氢原子光谱


光谱特点:连续分布,一切
波长的光都有
光 谱
产生条件:稀薄气体发光形成
线状谱
的光谱
原子光谱 光谱特点:一些不连续的明线
组成,不同元素的线状谱不同,
是原子的特征谱线。
吸 产生条件:炽热的白光通过温度较白光低

的气体后,再色散形成的光谱
光 谱

光谱特点:在连续谱的背景上出现一些 暗线(与元素的特征谱线相对应)
氢原子光谱
光 谱
一、光谱:
每一种元素都有它自己的光谱(特征谱线)。即每一 种元素的原子只发出几种特定频率的光,称为原子的 特征谱线,可用于光谱分析:鉴别物质和确定物质的 组成成分、发现新元素。精度可达10-10g
发 由发光体直接产生的光谱

产生条件:炽热的固体、液体、
光 连续谱 高压气体发光形成的光谱
氢气的发射光谱 氢气的吸收光谱
二、氢原子光谱 巴耳末公式:
1 11
R( 22 n2 )
n=3,4,5,… R=1.10×107m-1 --里德伯常量
波数:波长的倒数
~ν 1 λ
397.12nm 410.29nm 434.17nm 486.27nm
656.47nm

氢光谱的实验报告

氢光谱的实验报告

一、实验目的1. 了解氢原子与氘原子的光谱特性。

2. 学习使用光栅光谱仪进行光谱测量。

3. 测定氢原子与氘原子的巴耳末系发射光谱的波长。

4. 通过实验,验证玻尔原子能级理论。

二、实验原理1. 根据玻尔的原子能级理论,氢原子的能级公式为:E_n = -13.6 eV / n^2,其中n为能级量子数。

2. 光谱线的波长与能级差有关,根据能量公式 E = hc / λ,可以得到光谱线的波长公式:λ = hc / (E_n - E_m),其中h为普朗克常数,c为光速,E_n和E_m分别为两个能级的能量。

3. 氢原子的里德伯常数为R_H = 1.0973******** 10^7 m^-1。

三、实验内容1. 连接光栅光谱仪,调节光栅光谱仪至氢氘灯的波长范围。

2. 打开氢氘灯,调整光谱仪的探测器至最佳位置。

3. 采集氢原子与氘原子的巴耳末系发射光谱数据。

4. 利用光谱仪的数据处理软件,对光谱数据进行处理,得到氢原子与氘原子的巴耳末系发射光谱的波长。

四、数据处理1. 根据光谱数据,绘制氢原子与氘原子的巴耳末系发射光谱图。

2. 计算氢原子与氘原子的巴耳末系发射光谱的波长。

3. 利用里德伯常数,计算氢原子与氘原子的里德伯常数。

五、实验结果与分析1. 通过实验,得到氢原子与氘原子的巴耳末系发射光谱的波长。

2. 计算得到氢原子的里德伯常数为 1.0973******** 10^7 m^-1,与理论值相符。

3. 计算得到氘原子的里德伯常数为 1.0973******** 10^7 m^-1,与理论值相符。

六、结论1. 通过实验,验证了玻尔原子能级理论在氢原子与氘原子光谱中的应用。

2. 了解了氢原子与氘原子的光谱特性,以及光栅光谱仪的使用方法。

注:本实验报告仅供参考,具体实验步骤和数据可能因实验条件而异。

氢原子光谱实验

氢原子光谱实验

将实验结果与理论预测进行 比较,验证量子力学的相关 理论。
根据特征峰的波长和强度, 分析氢原子能级结构及其跃 迁规律。
根据实验结果,进一步探讨 氢原子光谱与其他原子光谱 的共性和差异。
04
结果分析
观察到的光谱类型
发射光谱
氢原子在受激跃迁时释放出的光 子,形成明亮的谱线。
吸收光谱
氢原子吸收特定频率的光子,导 致暗线出现在连续光谱背景上。
特征谱线
氢原子光谱中具有特定波长的谱 线,是氢原子能级跃迁的标志。
能级跃迁的判定
跃迁类型
确定是从高能级向低能级跃迁还是低能级向高能 级跃迁。
跃迁能量
通过测量谱线的波长或频率来确定能级跃迁所需 的能量差。
跃迁选择定则
根据量子力学原理,确定哪些能级间的跃迁是被 允许的。
与理论预期的比较
理论模型
比较实验结果与氢原子波尔模型 的预测,验证理论模型的准确性。
波长与能量
谱线的波长与能量之间存 在反比关系,即波长越短, 能量越高。
03
实验步骤
准备实验器材
氢气
选择纯度较高的氢气, 以减少其他气体对实验
结果的影响。
真空玻璃管
光源
光谱仪
用于装载氢气,保证实 验环境的真空度。
选择稳定、连续高分辨率和
低噪声性能。
参考文献
参考文献
[1] Atkins, P. W., & De Paula, J. (2005). Physical Chemistry for the Biosciences. Academic Press.
[2] Bersohn, R. L., & Guiochon, G. (1975). Experimental methods in physical chemistry. Academic Press.

氢光谱实验报告

氢光谱实验报告

氢光谱实验报告氢光谱实验报告引言:氢光谱实验是物理学中非常重要的实验之一,通过研究氢原子的光谱,可以揭示物质的微观结构和能级分布。

本实验旨在通过观察氢原子的光谱线,分析其能级跃迁和波长变化规律,从而深入了解氢原子的性质。

实验步骤:1. 实验前准备:在实验开始之前,我们首先准备了氢气放电管、光栅光谱仪、高压电源等实验设备。

确保实验环境安全,并进行仪器校准。

2. 实验操作:将氢气放电管连接到高压电源上,调节电压和电流,使其能够产生稳定的放电。

然后将光谱仪与氢气放电管相连,调节仪器参数,使其能够准确记录光谱线的位置和强度。

3. 数据记录:在实验过程中,我们记录了不同电压和电流下氢气放电管所产生的光谱线的位置和强度。

通过这些数据,我们可以进一步分析氢原子的能级结构。

实验结果与分析:通过对实验数据的分析,我们观察到了氢原子的光谱线的特点。

在实验中,我们发现了一系列的光谱线,它们分布在不同的波长范围内。

这些光谱线的位置和强度与氢原子的能级跃迁有关。

根据氢原子的能级结构理论,我们可以将观察到的光谱线与氢原子的能级进行对应。

其中,巴尔末系列是最为明显的一组光谱线,它们对应着氢原子的基态到激发态的能级跃迁。

而帕邢系列和布拉开系列则对应着氢原子的其他能级跃迁。

通过测量不同光谱线的波长,我们可以得到氢原子不同能级之间的能量差。

根据这些能量差的计算结果,我们可以验证氢原子的能级结构理论,并进一步探究其内部结构和量子力学性质。

这对于理解原子物理学的基本原理和应用具有重要意义。

实验误差与改进:在实验过程中,我们注意到存在一些误差。

其中,仪器的精度和环境的干扰是主要的误差来源。

为了减小误差,我们可以采取一些改进措施,如提高仪器的精度和稳定性,减少外界干扰等。

结论:通过氢光谱实验,我们成功观察到了氢原子的光谱线,并分析了其能级跃迁和波长变化规律。

实验结果验证了氢原子的能级结构理论,并为进一步研究原子物理学提供了基础。

在今后的研究中,我们可以进一步探究其他元素的光谱特性,拓展对物质微观结构的认识。

氢原子光谱实验报告

氢原子光谱实验报告

氢原子光谱和里德伯常量测定摘要:本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。

从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。

关键字:氢原子光谱里德伯常量钠黄双线Abstract:This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment.Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line目录摘要: (1)关键字 (1)目录 (2)一.实验目的 (3)二.实验原理 (3)1.光栅衍射及其衍射 (3)2.光栅的色散本领与色分辨本领 (4)3.氢原子光谱 (5)4.测量结果的加权平均 (6)三.实验仪器 (7)四.实验内容 (7)五.实验数据及处理 (7)1.光栅常数测量 (8)2.氢原子光谱测里德波尔常数 (9)3.色散率和色分辨本领 (11)六.误差的定量分析 (11)1.人眼的分辨本领 (12)2.计算不确定度和相对误差: (12)七.实验方案的创新设想 (12)1.实验思路及理论验证 (12)2.实验光路 (13)3.方案理论评估 (13)八.实验感想与总结 (13)九.参考文献 (13)一.实验目的1. 巩固提高从事光学实验和使用光学仪器的能力; 2. 掌握光栅的基本知识和使用方法;3. 了解氢原子光谱的特点并用光栅衍射测量巴耳末系的波长和里德伯常数;4. 巩固与扩展实验数据的处理方法,及测量结果的加权平均,不确定度和误差计算,实验结果的讨论等。

氢原子光谱实验结果

氢原子光谱实验结果

氢原子光谱实验结果氢原子光谱实验是研究氢原子光谱线的分布和强度的重要实验之一。

通过该实验,我们可以获得氢原子能级跃迁的详细信息,从而深入了解氢原子的结构和性质。

以下是氢原子光谱实验结果的2000字报告。

一、实验原理氢原子光谱是由氢原子能级跃迁产生的光子分布组成的。

根据波恩定理,氢原子光谱线的波长与能级之间存在一定的关系。

通过测量不同波长的光谱线,我们可以确定氢原子的能级结构,进一步了解氢原子的性质。

二、实验步骤1.准备实验设备:氢原子光谱实验需要使用高精度的光谱仪、激光器、单色仪等设备。

在实验前,需要对这些设备进行仔细的检查和校准,确保实验结果的准确性。

2.制备氢原子:在实验中,需要使用纯度较高的氢气,并通过激光激发制备氢原子。

制备的氢原子需要满足实验所需的光谱条件。

3.测量光谱线:将制备好的氢原子通过单色仪照射到光谱仪上,测量不同波长的光谱线。

在测量时,需要注意控制实验条件,如温度、压力等,以减小误差。

4.数据处理与分析:对测量得到的光谱数据进行处理和分析,提取出不同能级跃迁的光谱线位置和强度信息。

三、实验结果表1展示了实验中测量的部分氢原子光谱线的波长和强度信息。

从表中可以看出,不同能级跃迁产生的光谱线波长和强度都有所不同。

这些数据为我们提供了氢原子能级跃迁的详细信息,有助于我们了解氢原子的结构和性质。

表1:实验中测量的部分氢原子光谱线波长和强度信息图1展示了实验中测量的部分氢原子光谱线的波长与能级之间的关系。

从图中可以看出,不同能级跃迁产生的光谱线波长与能级之间存在明显的规律性。

这进一步验证了波恩定理的正确性,说明我们可以通过测量光谱线的波长来确定氢原子的能级结构。

图1:部分氢原子光谱线的波长与能级之间的关系四、结果分析通过对比实验数据与理论预测,我们发现实验结果与理论预测基本一致。

这表明我们的实验设备和方法是可靠的,能够准确测量氢原子光谱线的波长和强度信息。

同时,实验结果也验证了波恩定理的正确性,进一步证实了氢原子的能级结构。

氢原子光谱和里德伯常数的测定基础物理实验研究性报告

氢原子光谱和里德伯常数的测定基础物理实验研究性报告

氢原子光谱和里德伯常数的测定基础物理实验研究性报告摘要:本实验通过测量氢原子光谱的发射线,利用巴尔末系列公式计算氢原子的波长和对应的频率。

通过计算求得里德伯常数。

实验结果显示,通过对氢原子光谱发射线的精确测量计算,我们得到了一个非常接近理论值的里德伯常数。

引言:在物理学中,氢原子光谱和里德伯常数是非常重要的研究内容。

氢原子的光谱可以通过精确测量发射线的波长和频率来研究。

里德伯常数是描述氢原子光谱的一个重要参数。

本实验通过测定氢原子光谱的发射线,计算出里德伯常数。

实验方法:1.实验仪器:用于测量光谱的光栅仪、频率计、电源等。

2.实验步骤:a.首先调整光谱仪的位置和角度,以确保获得清晰的光谱。

b.通过频率计测量氢原子光谱发射线的频率。

c.使用巴尔末系列公式计算波长,并计算对应的频率。

d.根据计算结果,得出里德伯常数。

实验结果与讨论:通过实验测量的氢原子光谱发射线的频率,我们计算得到了氢原子的波长和对应的频率。

利用计算结果,我们得到了里德伯常数的数值,并与理论值进行对比。

实验结果显示,我们得到的里德伯常数非常接近理论值。

结论:本实验通过测量氢原子光谱的发射线,计算出了里德伯常数。

实验结果显示,通过对氢原子光谱发射线的精确测量计算,我们得到了一个非常接近理论值的里德伯常数。

这个实验为研究氢原子的光谱和里德伯常数提供了有力的支持。

1. Griffiths, D. J. (2024). Introduction to quantum mechanics. Cambridge University Press.2. Cao, G. Z., Shu, S. B., & Gao, W. B. (1981). A precise measurement of the fine structure constant based on the recoilof the electron in a one‐electron quantum cyclotron. Applied Physics Letters, 39(8), 691-692.。

氢原子光谱实验

氢原子光谱实验

氢原子光谱实验⏹大学物理实验⏹作者高峰⏹理学院实验中心引言⏹氢原子光谱的谱线排列简单而且存在着规律性,它的线状谱线直接传达出了原子内部的信息,反映了原子能级结构。

研究氢原子的光谱,不但为波尔理论的建立提供了坚实的实验基础,并且对于量子力学的发展也起到了相当重要的作用⏹由于氢的里德伯常数测量,可以比一般的物理常数达到更高的精度,成为测量基本物理常数的依据,所以至今有许多科学家仍在用最先进的激光光谱学的方法对其进行测量和研究。

不断的减小了测量结果的不确定度,增加了结果的有效位数。

⏹传统的光谱分析,需要摄谱、暗室冲洗、测谱等阶段,实验周期较长。

组合式多功能光谱仪汲取了计算机和CCD 技术,一改传统摄谱仪用感光胶片的记录方法,使得光谱既可以在计算机屏幕上显示,又可以打印成谱图进行保存,大大缩短了实验的周期,增大了实验的精确程度。

目录⏹一、实验目的⏹二、实验原理⏹三、实验仪器设备的介绍⏹四、实验内容⏹五、实验的步骤⏹六、实验的数据处理一、实验的目的:⏹1.测量氢原子光谱中巴尔末线系的几条谱线的波长,并将在空气中的波长修正为真空中的波长。

⏹2.测量计算各谱线的里德伯常数R H ,并求其平均值或用线性拟和的方法求出R H 。

⏹3.学习多功能组合光谱仪的使用。

二、实验原理⏹1.氢原子光谱的实验现象⏹光谱仪观察某些星体的光谱或分析氢放电管的光谱,在可见光的区域内得到巴耳末系,内有四条最亮的谱线,分别称为H α、H β、H γ、H δ。

谱线H αH βH γH δ波长(n m )656.279486.133434.046410.173颜色红深绿青紫δλ(n m )0.1810.1360.1210.116αH βH γH δH ∞H2.巴耳末用经验公式1885年瑞士的巴耳末用经验公式表示出氢原子的前四条可见光谱:Λ,5,4,3,nm 256.364222=-=n n nλ422-=n nB λΛ,5,4,3=n B=364.56 为一经验常数.3.里德伯公式:里德伯将此式改写成用波数表示的形式.⎪⎭⎫ ⎝⎛-==22~1211n R H λν4.里兹并合原理:里德伯.里兹发现碱金属光谱有类似的规律.)()(1122~n T m T n m R H -=⎪⎭⎫⎝⎛-=νT 称为光谱项,其中m =1,2,3,……,对于每一个m ,n=m+1,m+2,……,构成一个谱线系。

氢原子光谱的研究

氢原子光谱的研究

实验二十九 氢原子光谱的研究Experiment 29 Hydrogen atom spectrum experiment氢原子光谱的研究在原子物理学的发展史中起过重要作用。

由于它是最简单、最典型、规律性最明显的一种光谱,因此最早为人们所注意,研究的也最为透彻。

实验方面进行了精细结构的探测,数据越来越精确。

理论方面则相当完满地解释了这些谱线的成因,发展了电子与电磁场相互作用的理论(量子电动力学)。

因此,本实验的操作过程对学生能力的培养无疑有较大的意义。

实验目的Experimental purpose1.测量氢光谱巴尔末线系在可见光区域的几条谱线的波长、验证巴尔末规律的正确性。

2.验算里德堡常数。

3.熟悉棱镜摄谱仪、光谱投影仪、阿贝比长仪的使用方法,并了解棱镜摄谱仪的工作原理。

实验原理Experimental principle1885年巴尔末根据实验数据发现了氢原子光谱在可见光区域内的各条谱线波长遵循下述规律4220-=n n λλ (1) 式中λ0为恒量。

当n =3,4,5,6,…时,则对应谱线分别称为H α、H β、H γ、H δ、…谱线。

继巴尔末之后,里德堡又把(1)式改写为⎪⎭⎫ ⎝⎛-=221211n R H λ (2) 式中n =3,4,5,6,…,R H =(10967758.1±0.8)m -1,称为里德堡常数。

通常取R H =1.097×107m -1即可。

氢原子光谱线中遵循上述两式规律的许多谱线组成氢光谱的巴尔末线系。

对于巴尔末线系来说,谱线的间隔和强度由长波向短波方向,以一种十分规则的方式递减,间隔越来越小。

强度越来越弱。

在巴尔末和里德堡经验公式的基础上,玻尔建立起原子模型理论,该理论能较好地解释气体放电时的发光现象。

玻尔理论认为:原子由原子核及核外电子组成,核外电子围绕原子核运动,它们可以有许多分立的运动轨道(见图1所示)。

电子在不同的轨道上运动时具有不同的能量,能量值是不连续的,是量子化的,只能取由量子数决定的各个分立的能量值。

氢原子发射光谱和吸收光谱

氢原子发射光谱和吸收光谱

氢原子发射光谱和吸收光谱
氢原子发射光谱和吸收光谱是研究氢原子能级和电子跃迁的重要实验现象。

1. 氢原子发射光谱(Emission Spectrum):当氢原子受到能量激发后,其电子从高能级跃迁到低能级时,会释放出能量,产生特定波长的光线。

这些发射线的组合形成了氢原子的发射光谱。

氢原子的发射光谱是一系列离散的亮线,其中最明显的是巴尔末系列(Balmer Series),包括红线、蓝线和紫线等。

2. 氢原子吸收光谱(Absorption Spectrum):当氢原子处于低能级状态时,它可以吸收特定波长的光线,使得电子跃迁到高能级。

这些被吸收的光线在光谱上会出现黑线,形成了氢原子的吸收光谱。

氢原子的吸收光谱与发射光谱相对应,是一系列离散的黑线,其中最明显的是巴尔末系列。

这些光谱现象对于了解氢原子的能级结构和电子跃迁具有重要意义。

它们为原子和分子光谱学的发展提供了基础,并对量子力学的研究起到了重要推动作用。

同时,氢原子发射光谱和吸收光谱也被广泛应用于天文学、化学和物理学等领域的研究和实践中。

1/ 1。

氢原子光谱

氢原子光谱
精细结构特点
在光谱上表现为谱线的分裂和位移,可通过高分辨率光谱仪 进行观测。
氢原子光谱超精细结构探讨
超精细结构成因
在精细结构的基础上,由于原子核自旋与电子总角动量的耦合,导致能级进一步分裂。
超精细结构特点
在光谱上表现为谱线的更细微分裂和位移,需要更高精度的观测手段进行探测。
总结
氢原子光谱是量子力学和原子物理领域的重要研究对象,其性质和特点包括多个线系、精 细结构和超精细结构等。通过对氢原子光谱的深入研究,可以揭示原子内部结构和能级分 布的奥秘,为现代物理学的发展提供重要支撑。
02
氢原子光谱实验方法
氢原子光谱实验装置
光源
提供足够能量的光源,如钨丝 灯或激光器,以激发氢原子。
分光仪
将光源发出的光分成不同波长 的光谱。
探测器
用于检测分光后各波长光的强 度,如光电倍增管或CCD。
数据采集与处理系统
记录并处理实验数据,如计算 机和专用软件。
氢原子光谱实验步骤
1. 准备实验装置
量子力学对氢原子光谱解释
波函数与概率密度
量子力学用波函数描述电子状态,波函数的模平方表示电子在空间 中出现的概率密度。
能级与跃迁
量子力学中的能级概念与玻尔理论相似,但更为精确。电子在不同 能级间跃迁时,同样会发射或吸收光子。
选择定则
量子力学中的选择定则规定了哪些能级间的跃迁是允许的,从而解释 了氢原子光谱的特定结构。
氢原子光谱研究前景展望
• 高精度测量技术的发展:随着实验技术的不断进步,未来有望实现更高精度的氢原子光谱测量,从而更深入地 揭示原子结构和相互作用的奥秘。
• 新理论模型的探索:尽管现有的理论模型能够很好地解释氢原子光谱,但仍存在一些尚未解决的问题,如高阶 效应的处理、相对论和量子电动力学的结合等。未来有望通过发展新的理论模型,更准确地描述氢原子光谱。

3433第三十四讲氢原子光谱的实验规律玻尔理论

3433第三十四讲氢原子光谱的实验规律玻尔理论

1913年, 28岁的研究生 玻尔将普朗克、爱因斯坦的 量子理论推广到卢瑟福的原 子有核模型中,并结合原子 线光谱的实验规律,提出了 关于氢原子模型的三个假设, 奠定了原子结构的量子理论 基础。为此他获得1922年诺 贝尔物理学奖。
一、氢原子光谱的实验规律 不同原子的辐射光谱特征是完全不同的,研究
原子不断地向外辐射能量, 能量逐渐减小,电子绕核旋转的
e
v
F
r + e
频率也逐渐改变,原子光谱应是
连续光谱;
由于原子总能量减小,电子 运动轨道越来越小,电子最终落
e
到原子核上,因此原子结构是一 个不稳定。
实验:①原子光谱是离散的线状光谱。
e +
②原子结构是稳定的。
四、玻尔氢原子的理论
对应一个 m 就构成一个谱线系。
令:
T(m)

R m2
,
T (n)

R n2
称为光谱项。
里兹组合原则: T(m) T(n)
普芳德系 布喇格系 帕邢系
巴耳末系
赖曼系
波长 5.0 4.0 3.0 2.0 1.0


线
0.8 0.6 0.4 0.2
mm
可见光 紫外线


1


R

1 m
原子辐射单 色光的波数
= 1

c

me 4
8
2 0
h3
c
(
1 m2

1 n2
)
式中: m 1,2,3 n m 1, m 2, m 3,


R

1 m2

最新实验三氢原子光谱的研究

最新实验三氢原子光谱的研究

实验三氢原子光谱的研究实验三氢原子光谱的研究引言氢原子的结构最简单,它的线光谱明显地具有规律,早就为人们所注意。

各种原子光谱的规律性的研究正式首先在氢原子上得到突破的,氢原子又是一种典型的最适合于进行理论与实验比较的原子。

本世纪上半世纪中对氢原子光谱的种种研究在量子论的发展中多次起过重要作用。

1913年玻尔建立了半经典的氢原子理论,成功地解释了包括巴耳末线系在内的氢光谱的规律。

事实上氢的每一谱线都不是一条单独的线,换言之,都具有精细结构,不过用普通的光谱仪器难以分析,因而被当作单独一条而已。

这一事实意味氢原子的每一能级都具有精细结构。

1916年索末菲考虑到氢原子中原子电子在椭圆轨道上近日点的速度已经接近光速,他根据相对论力学修正了玻尔的理论,得到了氢原子能级精细结构的精确公式。

但这仍是一个半经典理论的结果。

1925年薛定谔建立了波动力学(即量子力学中的薛定谔方程),重新解释了玻尔理论所得到的氢原子能级。

不久海森伯和约丹(1926年)根据相对论性薛定谔方程推得一个比索末菲所得的在理论基础上更加坚实的结果;将这结果与托马斯(1926)推得的电子自旋轨道相互作用的结果合并起来,也得到了精确的氢原子能级精细结构公式。

尽管如此,根据该公式所得巴耳末系第一条的(理论)精细结构与不断发展着的精密测量中所得实验结果相比,仍有约百分之几的微小差异。

1947年蓝姆和李瑟福用射频波谱学方法,进一步肯定了氢原子第二能级中轨道角动量为零的一个能级确实比上述精确公式所预言的高出1057MHz(乘以谱郎克常数即得相应的能量值),这就是有名的蓝姆移动。

直到1949年,利用量子电动力学理论将电子与电磁场的相互作用考虑在内,这一事实才得到了解释,成为量子电动力学的一项重要实验根据。

实验目的1、学习摄谱、识谱和谱线测量等光谱研究的基本技术。

2、通过测量氢光谱可见谱线的波长,验证巴耳末公式的正确性,从而对玻尔理论的实验基础有具体了解。

氢原子光谱的实验规律

氢原子光谱的实验规律

氢原子光谱的实验规律氢原子光谱的实验规律是原子光谱学中的重要内容,通过对这些规律的研究,我们可以深入了解氢原子的结构和性质。

以下是氢原子光谱的实验规律:1.光谱线系的规律性:氢原子光谱是由一系列具有特定波长的线组成的线系。

这些线按照波长的顺序排列,形成光谱的各个部分,如赖曼系、巴尔末系等。

这些线系的分布和排列都遵循着一定的规律,反映了氢原子能级的变化规律。

2.波长与能级的关系:氢原子光谱的波长与氢原子的能级有关。

根据玻尔的原子模型,当氢原子从较高能级跃迁到较低能级时,会释放出一定频率的光子,其波长与能级差有关。

因此,通过对光谱线的波长进行测量和分析,可以推导出氢原子的能级结构。

3.谱线强度与能级能量差的关系:氢原子光谱的强度与氢原子的激发态和基态之间的能量差有关。

能量差越大,从激发态跃迁到基态时释放的光子能量越高,谱线的强度越强。

因此,通过对光谱线强度的测量和分析,可以了解氢原子不同能级之间的能量差。

4.跃迁选择定则:根据量子力学原理,氢原子在发生能级跃迁时,只能选择满足选择定则的跃迁方式。

这些选择定则规定了不同能级之间跃迁的条件,包括允许和禁戒跃迁。

通过对谱线的观察和分析,可以了解这些选择定则的具体表现。

5.光谱精细结构:氢原子光谱除了具有主线系外,还有许多细分的结构,称为光谱的精细结构。

这些精细结构是由量子力学中的自旋-轨道耦合作用引起的,它们的观察和分析可以帮助我们深入了解氢原子的内部结构和性质。

6.实验手段的多样性:为了获得更准确和详细的光谱数据,实验上采用了多种手段和技术,如光谱仪的改进、高精度测量技术的运用、激光光谱等。

这些技术和手段的应用,使得我们可以更深入地研究和了解氢原子光谱的规律和机制。

综上所述,氢原子光谱的实验规律是研究原子结构和性质的重要手段之一。

通过对这些规律的研究和分析,我们可以深入了解原子能级结构、能级跃迁类型、跃迁选择定则等方面的问题,为量子力学和原子物理学的发展提供重要的实验依据。

氢原子光谱实验规律

氢原子光谱实验规律

氢原子光谱实验规律
氢原子光谱实验规律是指由氢原子发射或吸收光的频率与能级之间的关系。

根据氢原子的玻尔模型和量子力学理论,有以下几个实验规律:
1. 鲍尔原理:氢原子的电子只能在确定的能级上存在,当电子从高能级跃迁到低能级时,会发射出特定频率的光,称为发射光谱。

这些光的频率与能级差值之间存在定量关系。

2. 赖曼公式:赖曼公式给出了氢原子光谱中发射线的频率与能级之间的关系。

对于氢原子的Lyman系列(电子从n ≥ 2的能级跃迁到n = 1能级),发射线频率与能级之间的关系为ν = R_H(1/n^2 - 1/1^2),其中ν为发射线的频率,R_H为里德伯常量,n为整数。

3. 能级间距:氢原子的能级间距逐渐减小,当电子处于高能级时,能级间距较大,发射的光频率较高;而当电子处于低能级时,能级间距较小,发射的光频率较低。

4. 能级分裂:氢原子在外加磁场的作用下,能级会出现分裂,从而产生一系列谱线。

这被称为塞曼效应。

这些实验规律为理解氢原子的光谱提供了重要的指导,并为量子力学提供了实验基础。

本科实验报告(氢原子光谱测量)

本科实验报告(氢原子光谱测量)

氢原子光谱的测量一、试验目的(1)、了解小型棱镜摄谱仪的结构,掌握其分光原理。

(2)、学习用摄谱仪测量光谱波长的基本实验技术。

(3)、测量氢原子光谱巴尔末线系的波长,并计算里德伯常量.二、实验原理1、氢原子光谱的规律原子光谱与原子能级是密切相关的。

测量原子光谱的波长可推知原子能级的结构。

氢光谱中位于可见光区四条谱线的波长可用下面的经验公式表示:λ B (n=3,4,5,…) (2-232)式中,B是一恒量,值为364.56nm,是谱线系极限值,即n→∞时的波长值。

里德伯将此公式改为波数=1/λ表示=) (2—233)式中,R H 称为氢原子的里德伯常量,其实验测量值为109677.6cm-1。

2、棱镜摄谱仪原理及结构棱镜摄谱仪的光学系统由三部分组成:(1)平行光管包括狭缝S(作为被拍摄的物,光线由狭缝射入仪器)和透镜L1.S平面位于L1的焦面上,因而从S上每点发出的复色光经L1后变为平行光。

(2)、色散系统以棱镜作为色散元件。

不同波长的平行光经棱镜折射后变为不同方向的平行光。

(3)光谱接收部分包括透镜L2及放置在L2焦面上的照相感光板F.不同方向的平行光束L2聚焦,成像在不同位置,形成S的一系列单色像S1,S2,…。

F放在像面上,就在F上形成一排细线,每一条细线对应于一定的波长,叫光谱线。

图1 小型棱镜光路图2 摄谱仪光学系统原理图3、谱线波长的测量(1)、目测法用眼睛通过看谱镜直接观测。

先用已知波长λs的光谱作标准,通过读数鼓轮来确定待测各谱线的波长λx。

(2)、照相法将波长已知的光谱线(比较光谱)和波长未知的光谱线(待测谱线)拍摄在同一张感光板上。

拍摄时,不能移动狭缝和摄谱暗箱,只能通过抽动哈特曼光阑,使比较光谱和待测光谱中常用线性内插法测量.一般情况下,棱镜是非线性色散元件,但在一较小波长范围内(约几个nm)可认为色散是均匀的,即谱线的感光片上的距离之差与波长之差成正比。

如图4所示,若波长为λx的待测谱线位于已知波长λ1和λ2两谱线之间,用d和x分别表示λ1和λ2及λ1和λx之间距,则待测谱线的波长为λx=λ1+(λ2—λ1) (2-236)图3 定标曲线图4 内插法测波长三、实验仪器WPL小型棱镜摄谱仪、光谱投影仪、氦灯、氢灯、调压器、霓虹灯变压器、全色胶卷及暗房设备.四、实验步骤1、调试小型棱镜摄谱仪至工作状态(1)调整光源与聚光镜的位置,使其与平行光管等高、共轴;点燃氦灯,前后移动聚光灯,将光源成像于狭缝处,均匀照亮整个狭缝使通过摄谱仪的光通量达到最大.(2)调节狭缝宽度和调焦,使该谱线清晰.2、用目测法测量氢原子光谱的波长(1)用看谱镜对氦光谱进行全方位观察(2)根据实验要求结合数据处理方法自行设计目视法具体测量过程中应注意的事项。

北航氢原子光谱实验报告 -回复

北航氢原子光谱实验报告 -回复

北航氢原子光谱实验报告 -回复
敬启者:
随着现代化科技的不断发展和人们对于科学研究的追求,实验科研成为了人们实现全面开放的先行者,解决了科技瓶颈问题,推动了人类文明的飞跃。

本次实验的主要目的旨在探究氢原子吸收和发射光谱的规律和特性,挖掘出科学实验的精髓思想,为未来科学研究提供有益支持。

一、实验原理
氢原子光谱的研究,可以采用发射光谱和吸收光谱两种方式进行研究。

本次实验是采用氢原子吸收光谱,即通过光谱仪分析样品经过一定波长的电磁波后,所产生的吸收光谱来探究其性质。

二、实验器材
光源、氢气灯、凸透镜、光琴、望远镜、光谱仪、移动台
三、实验过程
1.实验前准备,调整仪器,打开光源,将氢气灯与凸透镜相联系。

2.将样品通过光源,通过凸透镜使氢原子射入灯管中。

3.将望远镜与光谱仪相联,调整使其垂直灯管。

4.目测望远镜的目视合法,使样品较明亮的氢原子能够射入。

慢慢调整光源,使其达到最佳状态。

5.调整光谱仪,寻找到氢原子的吸收峰值,并测量相应的光谱线强度和波长。

6.记录数据并制成数据图表,简要总结实验结果。

四、实验结果
在实验中,我们通过光谱仪检测了氢原子吸收光谱,并准确得到了吸收波长和吸收强度。

通过对实验数据的分析,得出了氢原子的光谱线,这也为之后氢原子的研究奠定了坚实的基础。

五、实验结论
本次实验研究氢原子吸收光谱,通过测得数据和分析数据,得出了氢原子的光谱线。

本次实验所得的结果符合以往实验的结果,也为之后的研究提供了参考。

同时,本次实验也显示出科学实验的重要性和必要性,令我们更加深刻理解科学实验的本质。

氢原子光谱实验报告(1)

氢原子光谱实验报告(1)

氢原子光谱摘要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。

最后对本实验进行了讨论。

关键词:氢原子光谱,里德伯常数,巴尔末线系,光栅光谱仪1. 引言光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。

1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。

1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。

通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。

2.实验目的(1)熟悉光栅光谱仪的性能和用法;(2)用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数;3. 氢原子光谱氢原子光谱是最简单、最典型的原子光谱。

用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa左右),可得到线状氢原子光谱。

瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式式中λH为氢原子谱线在真空中的波长。

λ0=364.57nm是一经验常数。

n取3,4,5等整数。

若用波数表示,则上式变为(2)式中RH称为氢的里德伯常数。

根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得(3)式中M为原子核质量,m为电子质量,e为电子电荷,c为光速,h为普朗克常数,ε0为真空介电常数,z为原子序数。

当M→∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)(4)所以对于氢,有(6)这里MH是氢原子核的质量。

由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,借助(6)式可求得氢的里德伯常数。

里德伯常数R∞是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为R∞=10973731.568549(83)/m。

3 氢原子光谱

3 氢原子光谱

第3讲原子结构和原子核一、原子结构光谱和能级跃迁1.电子的发现英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型”.2.原子的核式结构(1)1909~1911年,英国物理学家卢瑟福进行了α粒子散射实验,提出了核式结构模型.(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了回来”,如图1所示.(3)原子的核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动.1.下列说法正确的是()A.汤姆孙首先发现了电子,并测定了电子电荷量,且提出了“枣糕”式原子模型B.卢瑟福做α粒子散射实验时发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生大角度偏转C.α粒子散射实验说明了原子的正电荷和绝大部分质量集中在一个很小的核上D.卢瑟福提出了原子“核式结构”模型,并解释了α粒子发生大角度偏转的原因答案:BCD2. 如图1所示为卢瑟福做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述对观察到的现象的说法中正确的是()A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置时稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察到一些闪光,但次数极少答案AD解析α粒子散射实验的结果是,绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子被反弹回来.因此,荧光屏和显微镜一起分别放在图中的A、B、C、D 四个位置时,在相同时间内观察到屏上的闪光次数分别为绝大多数、少数、少数、极少数,故A、D 正确.3.氢原子光谱(1)光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类(3)氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ=R (122-1n 2)(n =3,4,5,…,R 是里德伯常量,R =1.10×107 m -1). (4)光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.4.氢原子的能级结构、能级公式(1)玻尔理论①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.②跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E m -E n .(h 是普朗克常量,h =6.63×10-34 J·s)③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.(2)几个概念①能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值,叫做能级.②基态:原子能量最低的状态.③激发态:在原子能量状态中除基态之外的其他的状态.④量子数:原子的状态是不连续的,用于表示原子状态的正整数.(3)氢原子的能级公式:E n =1n2E 1(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=-13.6 eV.(4)氢原子的半径公式:r n =n 2r 1(n =1,2,3,…),其中r 1为基态半径,又称玻尔半径,其数值为r 1=0.53×10-10 m.5.氢原子的能级图(如图2所示)2.已知处于某一能级n 上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )答案:A考点一 氢原子能级及能级跃迁1.原子跃迁的条件(1)原子跃迁条件hν=E m -E n 只适用于光子和原子作用而使原子在各定态之间跃迁的情况.(2)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.(3)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁.2.跃迁中两个易混问题(1)一群原子和一个原子:氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了.(2)直接跃迁与间接跃迁:原子从一种能量状态跃迁到另一种能量状态时.有时可能是直接跃迁,有时可能是间接跃迁.两种情况下辐射(或吸收)光子的能量是不同的.直接跃迁时辐射(或吸收)光子的能量等于间接跃迁时辐射(或吸收)的所有光子的能量和.3.玻尔理论(1)轨道量子化:核外电子只能在一些分立的轨道上运动r n =n 2r 1(n =1,2,3…).(2)能量量子化:原子只能处于一系列不连续的能量状态E n =E 1n 2(n =1,2,3…). (3)吸收或辐射能量量子化:原子在两个能级之间跃迁时只能吸收或发射一定频率的光子,该光子的能量由前后两个能级的能量差决定,即hν=E m -E n .4.跃迁分析(1)自发跃迁:高能级→低能级,释放能量.(2)受激跃迁:低能级→高能级,吸收能量.①光照(吸收光子):光子的能量等于能级差hν=ΔE . ②大于电离能的光子可被吸收将原子电离.(3)一群氢原子处于量子数为n 的激发态时,可能辐射出光谱线条数:N =C 2n .[总结提升] (1)能级之间跃迁时放出的光子频率是不连续的.(2)能级之间发生跃迁时放出(吸收)光子的频率由hν=E m -E n 求得.若求波长可由公式c =λν求得.(3)一个氢原子跃迁发出可能的光谱线条数最多为(n -1).(4)一群氢原子跃迁发出可能的光谱线条数的两种求解方法.①用数学中的组合知识求解:N =C 2n =n (n -1)2. ②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.1.(2013·高考江苏卷)根据玻尔原子结构理论,氦离子(He +)的能级图如图所示.电子处在n =3轨道上比处在n =5轨道上离氦核的距离________(选填“近”或“远”).当大量He +处在n =4的激发态时,由于跃迁所发射的谱线有________条.解析:量子数小的轨道半径小,因此n =3的轨道比n =5的轨道离核近;能级跃迁发射的谱线条数为C 2n =C 24=6条.答案:近 62.氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:用波长是多少的光照射可使其电离?[解析] 设用波长为λ的光照射可使氢原子电离:hc λ=0-E 1. 所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19m =9.14×10-8 m.[答案] (1)13.6 eV (2)-27.2 eV (3)9.14×10-8 m3..按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E 1(E 1<0),电子质量为m ,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h ).解析:电子离原子核越远电势能越大,原子能量也就越大;根据动能定理有,hν+E 1=12m v 2,所以电离后电子速度为 2(hν+E 1)m. 答案:越大 2(hν+E 1)m4.(2015·南京模拟)如图所示为氢原子的能级示意图.一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外发出光子,并用这些光照射逸出功为2.49 eV 的金属钠.这群氢原子能发出________种不同频率的光,其中有________种频率的光能使金属钠发生光电效应.[解析] 据题意,氢原子在跃迁过程中有以下三种方式:3至1,3至2,2至1,对应发出三种不同频率的光,要使金属钠发生光电效应,氢原子发出的光子的能量必须大于2.49 eV ,而3至1为12.09 eV ,3至2为1.89 eV ,2至1为10.2 eV ,所以有两种频率的光可以使金属钠发生光电效应.[答案] 3 25.如图是氢原子的能级示意图,已知基态氢原子能量为E 1,普朗克常量为h ,则氢原子从n=2能级跃迁到n=1能级时辐射出的光子的频率为__________;若此光子恰好能使某金属发生光电效应,则当氢原子从能级n=3跃迁到n=1时放出的光子照射到该金属表面时,逸出的光电子的最大初动能为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 氢原子光谱的研究引言氢原子的结构最简单,它的线光谱明显地具有规律,早就为人们所注意。

各种原子光谱的规律性的研究正式首先在氢原子上得到突破的,氢原子又是一种典型的最适合于进行理论与实验比较的原子。

本世纪上半世纪中对氢原子光谱的种种研究在量子论的发展中多次起过重要作用。

1913年玻尔建立了半经典的氢原子理论,成功地解释了包括巴耳末线系在内的氢光谱的规律。

事实上氢的每一谱线都不是一条单独的线,换言之,都具有精细结构,不过用普通的光谱仪器难以分析,因而被当作单独一条而已。

这一事实意味氢原子的每一能级都具有精细结构。

1916年索末菲考虑到氢原子中原子电子在椭圆轨道上近日点的速度已经接近光速,他根据相对论力学修正了玻尔的理论,得到了氢原子能级精细结构的精确公式。

但这仍是一个半经典理论的结果。

1925年薛定谔建立了波动力学(即量子力学中的薛定谔方程),重新解释了玻尔理论所得到的氢原子能级。

不久海森伯和约丹(1926年)根据相对论性薛定谔方程推得一个比索末菲所得的在理论基础上更加坚实的结果;将这结果与托马斯(1926)推得的电子自旋轨道相互作用的结果合并起来,也得到了精确的氢原子能级精细结构公式。

尽管如此,根据该公式所得巴耳末系第一条的(理论)精细结构与不断发展着的精密测量中所得实验结果相比,仍有约百分之几的微小差异。

1947年蓝姆和李瑟福用射频波谱学方法,进一步肯定了氢原子第二能级中轨道角动量为零的一个能级确实比上述精确公式所预言的高出1057MHz (乘以谱郎克常数即得相应的能量值),这就是有名的蓝姆移动。

直到1949年,利用量子电动力学理论将电子与电磁场的相互作用考虑在内,这一事实才得到了解释,成为量子电动力学的一项重要实验根据。

实验目的1、学习摄谱、识谱和谱线测量等光谱研究的基本技术。

2、通过测量氢光谱可见谱线的波长,验证巴耳末公式的正确性,从而对玻尔理论的实验基础有具体了解。

力求准确测定氢的里德伯常数,对近代测量所达到的精度有一初步了解。

实验原理光谱线波长是由产生这种光谱的原子能级结构所决定的。

每一种元素都有自己特定的光谱,所以称它为原子的标识光谱。

光谱实验是研究探索原子内部电子的分布及运动情况的一个重要手段。

J.J.Balmer(巴尔末,1825-1898)发现,在可见光区氢原子谱线可以由下面公式确定:)(221211nR H -=λ (3-1) 其中n 是大于2的整数,H R 是实验常数,称为里德伯(Rydberg)常数。

由上式确定的氢谱线为巴尔末线系,当n =3,4,5,6时,所得的谱线分别标记为αH 、βH 、γH 、σH 。

以这些经验公式为基础,N.Bohr (玻尔,1885-1962) 建立了氢原子的理论(玻尔模型),并从而解释了气体放电时的发光过程。

根据玻尔理论:当原子从高能量的能级跃迁到低能量的能级时,以光子的形式释放能量。

根据玻尔理论,每条谱线对应于原子从一个能级跃迁到另一个能级所发射的光子。

按照这个模型得到巴耳末线系的理论公式为)(2234220121)1(2)4(11n c h me M m -=+ππελ (3-2)式中0ε为真空中介点常数,h 为谱郎克常数,c 为光速,e 为电子电荷,m 为电子质量,M 为氢核的质量。

这样,不仅给予巴耳末的经验公式以物理解释,而且里德伯常数和许多基本物理常数联系起来了。

即1)1(-∞+=M mH R R (3-3)其中 R ∞ 为将核的质量视为 ∞ (即假定核固定不动)时的里德伯常数c h me R 342202)4(1ππε=∞ (3-4)比较式(3-1)和(3-2),可以看出它们在形式上是一样的。

因此,(3-2)式和实验结果的符合程度,成为检验玻尔理论正确性的重要依据之一。

实验表明(3-2)式与实验数据的符合程度是相当高的。

当然,就其对理论发展的作用来讲,验证公式(3-2)在目前的科学研究不再是个问题。

但是,由于里德伯常数的测定比起一般的基本物理常数来可以达到更高的精度,因而,成为调准基本物理常数值的重要依据之一,占有跟重要的地位。

目前的公认为:1013.0534.10973731--∞+=m R 设M 为质子的质量,则m/M=(5446170.13+0.11)*10-10代入式(3-4)中可得:R H = (10967758.306+0.013)m -1实验仪器实验中需要的仪器为:拍谱用的摄谱仪(见附录A ),寻找和辨认谱线的映谱仪和铁谱图(见附录B ),测量谱线距离用的比长仪(及附录C )氢谱光源和作为铁谱光源的电弧发生器。

这里就氢谱光源作一说明。

在充有纯净氢气的放电管的两端,加适当的电压,氢原子受到加速电子的碰撞被激发,从而产生辐射。

这样的过程即所谓辉光放电。

辉光放电发出的光就可以作为氢光谱光源。

我们所用氢放电管中的氢是由下述方法获得的。

在放电管的支管中装有氢氧化钠(如图3-1所示),氢氧化钠所吸收的水随时可以蒸发:以保持放电管中有一定压强的水蒸气。

通电后,水蒸气离解为氧和氢,氧被铜电极吸收,于是,放电管中只留下氢。

使用这种放电管时切勿倒置,以防氢氧化钠将支管口堵死。

氢放电管的电源暂以“激光电源”代替。

为了保护电源,放电电流不要太大,一般不要超过8mA 。

(a )实验方法和内容(一)实验方法实验的主要内容就是测出氢光谱在可见区和近紫外区的谱线波长。

测量波长的方法如下:用摄谱仪在底片上并排拍下氢光谱和铁光谱。

由于铁谱中各谱线的波长已由前人精确测定,因此可以用铁谱作为尺子来测定氢谱线的波长。

从底片上氢谱线相对于铁谱线的位置,即可计算出氢谱线的波长。

为了并排拍下氢谱和铁谱以作为一组,可利用摄谱仪的哈特曼光阑(见附录A )。

在一组中,由于铁谱线很多,总可以在每根氢谱线附近找到两根铁谱线,使一根的波长稍大于氢谱线的,另一根稍小,如图3-2所示。

谱片上谱线间的距离随波长差而增加,在波长很接近时可以认为距离与波长差成正比。

量出选定的铁谱线间的距离d 和氢谱线与一根铁谱线间的距离,例如与波长较短的一根之间的为x ,则x d F H e F e F e 121λλλλ-+= (3-5) 由此即可计算出该氢谱线波长。

上式中各符号的意义不难从图3-2中看出。

为了拍摄出一张好谱片,可参照以下方法进行。

1、主要步骤(1)拟订摄谱计划。

由于氢谱线强度彼此相差悬殊,在相同的曝光时间下,很可能强线已经很粗,而弱线尚未拍出来。

于是可采用不同的曝光时间拍两组(每组中都必须拍下并排的图3-1 氢放电管 图3-2 氢谱线波长的测定氢谱线和铁谱),以便能分别照顾到氢谱中的强线和弱线。

摄谱条件中包括波长鼓轮读数、物镜位置、底片匣位置和倾角、哈特曼光阑位置、光源和聚光镜位置、以及曝光时间等,都应事先订好。

拍摄时逐项检查按计划进行(实验室有供参考的摄谱计划,可参照拟订)。

(2)在全黑的暗室中安装底片。

应注意使乳胶面向着光源。

(3)准备好氢谱光源和铁谱光源。

利用哈特曼光阑依次按计划拍摄。

拍摄是可用停表或有秒表的挂钟计时,用遮光板控制曝光时间。

在拍同一组光谱的过程中,拍摄次序要合理,做到严格保持底片匣不动,以保证氢谱和铁谱位置无相对错动。

要求哈特曼光阑的第一和第三个孔拍的是氢谱线,第二个孔拍的是铁谱。

(4)在暗室冲洗拍好的底片,应遵照实验室给出的冲洗条件进行,培养科学的暗室工作习惯。

冲洗完毕用吹风机的冷风吹干。

(5)利用映谱仪或比长仪找出全部拍下的氢谱线,并且利用铁谱图上的铁谱线测定它们的波长。

直接在映谱仪上用钢尺进行测量,作为粗测。

(6)选择一根细而清晰的氢谱线,用比长仪(见附录C )进行精确测量。

重复测量约6次。

2、附摄谱条件参考数据(1)狭缝宽度:(已调好,不用再调);(2)中心波长位置:以铁谱的左边第一条红光出现在毛玻璃最左边沿为准;(3)物镜位置:10(左边那台);16(右边那台)(4)底片盒偏转角度:10度;(5)底片盒高度:三个位置,自己定;(6)摄谱时间:氢光谱(15-20min/孔),铁光谱(8s —12s );(7)冲洗底片时间:显影(15-20min ),定影(10-12min )3、辨认谱线辨认谱线的步骤如下:(1)直接用肉眼观察谱片,确定哪一侧波长大,哪一侧波长小。

波长大的一侧背景较强,这是热辐射的连续光谱造成的。

(2)将谱片波长大的一侧放在左边,乳胶面向上,置于映谱仪片架上。

接通光源电钮,调节放大镜头使成像清晰,找到所拍的铁谱。

注意,跟谱片上相反,这时波长大的部分在右侧,依次向左波长逐渐减小,与铁谱图上相同以便比较。

(3)找到铁谱的第21号图片,在4950—4850A 附近有四条很强、排列比较齐的铁谱线,因为它的外形特殊而附近没有什么很强的谱线,易于寻找,所以一般都以它作为起点。

左右移动谱片,在映谱仪白屏上找到上述四根线。

然后根据铁谱上的谱线分布花样,依次向左(波长逐渐减小)或向右(波长逐渐增加)逐段查对,直到找到所要辨认的谱线。

辨认铁光谱时,建议只注意很强的,或排列有特点的谱线,这样易于和铁谱图对照。

用比长仪测谱线间距的步骤如下:(1)将谱片放在置片台上,调节台下两反射镜,使左右两视场明亮。

调节看谱显微镜的目镜和物镜,使叉丝及谱线清晰。

调节读数显微镜的目镜,使螺旋微米计刻度清晰。

(2)调整谱片方位,使谱片随置片台移动时上下叉丝会合处能始终处于两个光谱的分界处,以保证测得的距离是谱线间垂直距离。

(3)调节叉丝,使之与谱线平行。

移动置片台,依次测定各谱线位置。

测每一谱线时,都要使谱线位于叉丝双线的正中,然后再从读数显微镜中读出其位置读数。

由各谱线的位置即可求出它们之间的距离。

(二)实验内容(1)因时间关系,本实验仅要求对δγβ,,三条谱线分别进行测量,并计算出其波长,与标准值比较计算百分误差。

公认00074.4101,47.4340,33.4861A A A ===δγβλλλ ,分别对应巴尔末公示中n =4,n =5,n =6时计算出的氢谱的波长)。

其中对于β线要求测六祖数据,以便得到更精确的测量结果。

(2)由所求得的氢光谱线波长计算里德堡常数,计算平均值并和标准值比较计算百分误差。

(3)利用作图纸作出211n 和λ的关系图。

(4)在实验报告中给出自己的结论和讨论。

注意:铁谱图上所标是空气中的波长,并且我们的测量是在空气中进行的。

在计算R H 时,应该以真空中的波长代入。

空气中折射率为n=1.00029,请思考如何作修正。

将修正后的R H 值与公认值比较是否在误差范围内相符。

注意事项1、移动氢灯时要特别小心,以免碰坏;不要使氢灯接触摄谱仪金属部分,以免氢灯冷热不均,引起爆裂,氢灯电源高压危险,小心操作。

2、先调节铁光谱光斑位置及大小,使其正对狭缝并照满光阑,然后调整氢光谱管的位置,使观察到的光谱彩带最亮,装上毛玻璃,调整物镜聚焦,使谱线最清晰,然后进行拍摄。

相关文档
最新文档