氢原子光谱

合集下载

高中物理氢原子光谱知识点

高中物理氢原子光谱知识点

高中物理氢原子光谱知识点一、氢原子光谱的发现历程。

1. 巴尔末公式。

- 1885年,巴尔末发现氢原子光谱在可见光区的四条谱线的波长可以用一个简单的公式表示。

巴尔末公式为(1)/(λ)=R((1)/(2^2) - (1)/(n^2)),其中λ是谱线的波长,R称为里德伯常量,R = 1.097×10^7m^-1,n = 3,4,5,·s。

- 巴尔末公式的意义在于它反映了氢原子光谱的规律性,表明氢原子光谱的波长不是连续的,而是分立的,这是量子化思想的体现。

2. 里德伯公式。

- 里德伯将巴尔末公式推广到更一般的形式(1)/(λ)=R((1)/(m^2)-(1)/(n^2)),其中m = 1,2,·s,n=m + 1,m + 2,·s。

当m = 1时,对应赖曼系(紫外区);当m = 2时,就是巴尔末系(可见光区);当m = 3时,为帕邢系(红外区)等。

二、氢原子光谱的实验规律与玻尔理论的联系。

1. 玻尔理论对氢原子光谱的解释。

- 玻尔提出了三条假设:定态假设、跃迁假设和轨道量子化假设。

- 根据玻尔理论,氢原子中的电子在不同的定态轨道上运动,当电子从高能级E_n向低能级E_m跃迁时,会发射出频率为ν的光子,满足hν=E_n-E_m。

- 结合氢原子的能级公式E_n=-(13.6)/(n^2)eV(n = 1,2,3,·s),可以推出氢原子光谱的波长公式,从而很好地解释了氢原子光谱的实验规律。

例如,对于巴尔末系,当电子从n(n>2)能级跃迁到n = 2能级时,发射出的光子频率ν满足hν = E_n-E_2,进而可以得到波长与n的关系,与巴尔末公式一致。

2. 氢原子光谱的不连续性与能级量子化。

- 氢原子光谱是分立的线状光谱,这一现象表明氢原子的能量是量子化的。

在经典理论中,电子绕核做圆周运动,由于辐射能量会逐渐靠近原子核,最终坠毁在原子核上,且辐射的能量是连续的,这与实验观察到的氢原子光谱不相符。

氢原子光谱优秀课件

氢原子光谱优秀课件


T
(m)
R m2
,
T
(n)
R n2
1 T (m) T (n)
T (m),T (n) 称为光谱项。
三、经典理论旳困难
卢瑟福原子核式模型正确地指出了原子核旳存 在,很好地解释了α粒子散射试验。但是。经 典物理学既无法解释原子旳稳定性,又无法解 释原子光谱旳分立特征。
按经典物理学电子绕核旋转,作加速运动,电子 将不断向四面辐射电磁波,它旳能量不断减小, 从而将逐渐接近原子核,最终落入原子核中。但 实际上原子是个稳定旳系统。
还 有 三
布喇开系
1
R
1 42
1 n2
n 5,6,7,
个 线 系
普丰特系
1
R
1 52
1 n2
n 6,7,8,
氢原子光谱不是不相关旳,而是有内在联络旳。体现在 其波数可用一普遍公式来表达:1 NhomakorabeaR
1
m
2
1 n2
其 中
m 1,2,3
n m 1, m 2, m 3,
相应一种m构成一种谱线系 每一谱线旳波数都等于两项旳差数
二、光谱分类:
1.发射光谱:物体发光直接产生旳光谱叫做发射光谱。
发射光谱可分为两类:连续谱和线状谱。
2.吸收光谱:
特点:在连续谱上 缺失了某些成份旳光
此光谱图有何特点?
成因:高温物体发出旳白光(其中包括连续分布旳一切 波长旳光)经过物质时,某些波长旳光被物质吸收后产 生旳光谱,叫做吸收光谱。
3.发射光谱与吸收光谱旳相应关系:
轨道及转动频率不断变化,辐射电磁波频率 也是连续旳, 原子光谱应是连续旳光谱。而 实际上看到旳是分立旳线状谱。
这些矛盾阐明尽管经典物理学理论能够很好地 应用宏观物休,但它不能解释原子世界旳现象, 引入新观念是必要旳。

氢原子光谱

氢原子光谱

1885年巴耳末(Balmer,J.J.182 1885年巴耳末(Balmer,J.J.182 年巴耳末(Balmer,J.J. 1898) 5—1898)根据埃格斯充(Augstrom, 1898 根据埃格斯充(Augstrom, A.J.1814 1874)对光谱线的精确测量,提 A.J.1814—1874)对光谱线的精确测量, 1814 1874 出了氢原子光谱可见光区域光谱线波长的经验公式。 出了氢原子光谱可见光区域光谱线波长的经验公式。19 13年 玻尔(Bohr,N.H.D.1885 19 13年,玻尔(Bohr,N.H.D.1885—19 (Bohr,N.H.D.1885 62)引入量子概念提出的氢原子模型假说, 62)引入量子概念提出的氢原子模型假说,给出了氢光 谱线系规律的理论解释。 谱线系规律的理论解释。
五.数据记录与处理
1.高压汞灯 入射线= 入射线
φ0 右 + φ
2
0左
2、氢灯
特征 谱线
谱线位置
波数Leabharlann 红青蓝若此时仍保持入射角i不变, 若此时仍保持入射角 不变,用未知波长的光线入 不变 射,测出相应的偏向角θ′,便可从定标曲线上找 测出相应的偏向角 , 出它所对应的波长来。 出它所对应的波长来。本实验用汞原子光谱作出 定标曲线,再测出氢原子三条可观察到的光谱线 定标曲线, 的偏向角,在定标曲线上求出它们所对应的波长, 的偏向角,在定标曲线上求出它们所对应的波长, 验算里德伯常数。 验算里德伯常数。
氢原子光谱
引言
每种原子、分子都有其特征光谱。 每种原子、分子都有其特征光谱。因此分析其特征 光谱,对研究不同原子、分子及其结构有着重大的意义。 光谱,对研究不同原子、分子及其结构有着重大的意义。 光谱学已成为光学的一个重要分支, 光谱学已成为光学的一个重要分支,并被广泛用于科研 和生产中。 和生产中。 氢原子是最简单的原子,其光谱线在按波长( 氢原子是最简单的原子,其光谱线在按波长(或波 数)大小的排列次序上显示出简单的规律性。研究原子 大小的排列次序上显示出简单的规律性。 结构,很自然氢原子首先被关注。 结构,很自然氢原子首先被关注。

氢原子光谱实验

氢原子光谱实验

将实验结果与理论预测进行 比较,验证量子力学的相关 理论。
根据特征峰的波长和强度, 分析氢原子能级结构及其跃 迁规律。
根据实验结果,进一步探讨 氢原子光谱与其他原子光谱 的共性和差异。
04
结果分析
观察到的光谱类型
发射光谱
氢原子在受激跃迁时释放出的光 子,形成明亮的谱线。
吸收光谱
氢原子吸收特定频率的光子,导 致暗线出现在连续光谱背景上。
特征谱线
氢原子光谱中具有特定波长的谱 线,是氢原子能级跃迁的标志。
能级跃迁的判定
跃迁类型
确定是从高能级向低能级跃迁还是低能级向高能 级跃迁。
跃迁能量
通过测量谱线的波长或频率来确定能级跃迁所需 的能量差。
跃迁选择定则
根据量子力学原理,确定哪些能级间的跃迁是被 允许的。
与理论预期的比较
理论模型
比较实验结果与氢原子波尔模型 的预测,验证理论模型的准确性。
波长与能量
谱线的波长与能量之间存 在反比关系,即波长越短, 能量越高。
03
实验步骤
准备实验器材
氢气
选择纯度较高的氢气, 以减少其他气体对实验
结果的影响。
真空玻璃管
光源
光谱仪
用于装载氢气,保证实 验环境的真空度。
选择稳定、连续高分辨率和
低噪声性能。
参考文献
参考文献
[1] Atkins, P. W., & De Paula, J. (2005). Physical Chemistry for the Biosciences. Academic Press.
[2] Bersohn, R. L., & Guiochon, G. (1975). Experimental methods in physical chemistry. Academic Press.

氢原子光谱课件

氢原子光谱课件

氢原子光谱课件引言氢原子光谱是量子力学和原子物理学领域的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。

本课件旨在介绍氢原子光谱的基本原理、实验观测和理论解释,帮助读者深入理解氢原子的能级结构和光谱特性。

一、氢原子的基本结构1.1电子轨道和量子数氢原子由一个质子和一个电子组成,电子围绕质子旋转。

根据量子力学的原理,电子在氢原子中只能存在于特定的轨道上,这些轨道被称为能级。

每个能级由主量子数n来描述,n的取值为正整数。

1.2能级和能级跃迁氢原子的能级可以用公式E_n=-13.6eV/n^2来表示,其中E_n 是第n能级的能量,单位为电子伏特(eV)。

当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,这个频率与能级之间的能量差有关。

二、氢原子光谱的实验观测2.1光谱仪和光谱图氢原子光谱可以通过光谱仪进行观测。

光谱仪将入射光分解成不同频率的光谱线,并将这些光谱线投射到感光材料上,形成光谱图。

通过观察光谱图,可以得知氢原子的能级结构和光谱特性。

2.2巴尔末公式实验观测到的氢原子光谱线可以通过巴尔末公式来描述,公式为1/λ=R_H(1/n1^21/n2^2),其中λ是光谱线的波长,R_H是里德伯常数,n1和n2是两个能级的主量子数。

巴尔末公式可以准确地预测氢原子光谱线的位置。

三、氢原子光谱的理论解释3.1玻尔模型1913年,尼尔斯·玻尔提出了氢原子的量子理论模型,即玻尔模型。

该模型假设电子在氢原子中只能存在于特定的轨道上,每个轨道对应一个能级。

当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子。

3.2量子力学解释1925年,海森堡、薛定谔和狄拉克等人发展了量子力学理论,为氢原子光谱提供了更为精确的解释。

量子力学认为,电子在氢原子中的状态可以用波函数来描述,波函数的平方表示电子在空间中的概率分布。

通过解薛定谔方程,可以得到氢原子的能级和波函数。

四、结论氢原子光谱是量子力学和原子物理学的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。

氢原子光谱

氢原子光谱

e2
rn
0h
2 2
π me
n r1n (n 1,2,3,)
2 2
n 1 , 玻尔半径 r1
0h
2 2
π me
5.2910 m
11
氢原子能级公式 第 n 轨道电子总能量
1 e2 2 En mvn 2 4π 0 rn
me 1 E1 En 2 2 2 2 8 0 h n n
答案C
2.具有下列哪一能量的光子,能被处在n = 2的能 级的氢原子吸收? (A) 1.51 eV. (B) 1.89 eV.
(C) 2.16 eV.
(D) 2.40 eV.
答案B
例题1. 实验发现基态氢原子可吸收能量为 12.75 eV的 光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级? (2) 受激发的氢原子向低能级跃迁时,可能发出哪几 条谱线?请画出能级图(定性),并将这些跃迁画在能 级图上. (3)巴耳末线系有几条? 莱曼系有几条?
e +
玻尔(1885-1962)丹麦人,是原子 物理学的奠基人。他在研究量子运动 时,提出了一整套新观点,建立了原 子的量子论,首次打开了人类认识原 子结构的大门,为近代物理研究开辟 了道路。近代物理学大厦的基础-量 子力学,是以玻尔为领袖的一代杰出 物理学家集体才华的结晶。1922年诺 贝尔物理学奖获得者。
例题2. 求巴耳末系光谱的最大和最小波长
解:
玻尔频率条件 h Ei E f
ch Ei E2
最大波长 最小波长
ch 658 nm E3 E2
ch 366 nm E E 2
例题3
欲使氢原子能发射巴耳末系中波长为

氢原子光谱ppt课件

氢原子光谱ppt课件

03
氢原子光谱实验观测与分析
氢原子光谱实验装置介绍
光源
氢原子灯或放电管,产生氢原子 光谱。
单色仪
将复合光分解为单色光,并可选 择特定波长的光通过。
光探测器
如光电倍增管或CCD,将光信号 转换为电信号进行记录和分析。
数据采集与处理系统
对实验数据进行采集、处理和分 析,得出实验结果。
氢原子光谱观测方法
氢原子光谱研究挑战与机遇
实验技术挑战
01
尽管精密测量技术取得了显著进展,但进一步提高测量精度仍
面临诸多挑战,如如何消除系统误差、提高信噪比等。
理论模型挑战
02
现有理论模型在描述某些复杂现象时仍存在一定局限性,需要
进一步完善和发展。
交叉学科机遇
03
氢原子光谱研究与粒子物理、宇宙学等领域密切相关,这些领
04
氢原子光谱理论解释与应用
薛定谔方程与波函数概念
薛定谔方程
描述了微观粒子状态随时间变化 的规律,是量子力学的基本方程
之一。
波函数
量子力学中用来描述粒子状态的函 数,其模平方表示粒子在特定位置 被发现的概率。
量子数
描述原子或分子中电子运动状态的 参数,如主量子数、角量子数等。
氢原子光谱理论解释
玻尔模型
玻尔提出的氢原子模型,假设电子在 特定轨道上运动,且能量是量子化的。
能量级与光谱线
选择定则
解释了为何只有特定能级间的跃迁才 会产生光谱线,如偶极跃迁选择定则 等。
氢原子光谱由一系列分立的谱线组成, 对应着电子在不同能级间的跃迁。
氢原子光谱在物理、化学等领域应用
01
02
03
04
原子钟
利用氢原子光谱的稳定性和精 确性,制成高精度原子钟,用

氢原子光谱

氢原子光谱

氢原子光谱
氢原子的发现和光谱特性
氢原子是最简单的原子之一,在光谱学中具有重要的地位。

氢原子光谱是研究
原子结构和光谱学的基础。

它对研究光谱的性质和发展原子理论有着重要的意义。

氢原子光谱的基本原理
氢原子光谱是指氢原子在特定条件下发射或吸收的光线的谱线。

氢原子光谱是
由氢原子的特有能级结构和跃迁引起的。

氢原子的光谱具有一定的规律性,可以通过一系列的数学模型进行描述和解释。

氢原子光谱的光谱线
氢原子光谱的典型谱线分为巴尔末系列、帕邢系列和莱曼系列。

这些系列分别
对应不同的跃迁过程,反映了氢原子的不同能级结构和性质。

巴尔末系列
巴尔末系列是氢原子光谱中最常见的系列之一,对应着n元素的n=2的跃迁。

巴尔末系列谱线主要在紫外和可见光区域,具有重要的实验和理论价值。

帕邢系列
帕邢系列对应着n元素的n=3的跃迁。

帕邢系列谱线分布在可见光区域,是
研究氢原子光谱的重要线系之一。

莱曼系列
莱曼系列对应着n元素的n=1的跃迁。

莱曼系列包含了氢原子最基本的谱线,是氢原子光谱中的重要部分。

氢原子光谱的应用
氢原子光谱不仅在基础科学研究中具有重要意义,还在实际应用中发挥着重要
作用。

氢原子光谱在天文学、材料科学、化学等领域有着广泛的应用。

结语
氢原子光谱是原子光谱学中的重要内容,研究氢原子光谱有助于深入理解原子
结构和光谱现象。

通过对氢原子光谱的研究,人们可以更好地认识原子的结构和性质,推动光谱学领域的进步与发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轨道及转动频率不断变化,辐射电磁波频 率也是连续的, 原子光谱应是连续的光谱。 实验表明原子相当稳定,这一结论与实验 不符。实验测得原子光谱是不续的谱线。
第三节 氢原子光谱
早在17世纪,牛顿就发现了日光 通过三棱镜后的色散现象,并把 实验中得到的彩色光带叫做光谱
一、光谱
光谱是电磁辐射(不论是在可见光区域还 是在不可见光区域)的波长成分和强度分 布的记录。有时只是波长成分的记录。
1.发射光谱
物体发光直接产生的光谱叫做发射光 谱。 发射光谱可分为两类:连续光谱和明线光 谱。
各种光谱的特点及成因:
{ 发

定义:由发光体直接产生的光谱 产生条件:炽热的固体、液体和高压气体发
光 连续光谱 光形成的

光谱的形式:连续分布,一切波长的光都有
光 谱
{ 线状光谱 产生条件:稀薄气体发光形成的光谱
(原子光谱) 光谱形式:一些不连续的明线组成,不同 元素的明线光谱不同(又叫特征光谱)
二、氢原子光谱
氢原子是最简单的原子,其光谱也最简单。
1


1 R( 22

Байду номын сангаас1 n2
) n
3, 4,5,...
巴耳末公式 R=1.10107m1 里德伯常量
三、卢瑟福原子核式模型的困难
卢瑟福原子核式模型无法解释氢原子光谱的规 律。
按经典理论电子绕核旋转,作加速运动,电子将 不断向四周辐射电磁波,它的能量不断减小,从 而将逐渐靠近原子核,最后落入原子核中。
• (1)连续光谱 • • •
• 连续分布的包含有从红光到紫光 各种色光的光谱叫做连续光谱。 炽热的固体、液体和高压气体的 发射光谱是连续光谱。例如白炽 灯丝发出的光、烛焰、炽热的钢 水发出的光都形成连续光谱。
(2)明线光谱
只含有一些不连续的亮线的光谱叫做明线光 谱。明线光谱中的亮线叫谱线,各条谱线对应 不同波长的光。稀薄气体或金属的蒸气的发射 光谱是明线光谱。明线光谱是由游离状态的原 子发射的,所以也叫原子的光谱。实践证明, 原子不同,发射的明线光谱也不同,每种原子 只能发出具有本身特征的某些波长的光,因此 明线光谱的谱线也叫原子的特征谱线。
定义:连续光谱中某些波长的光被物质吸收后产生的
吸 光谱
收 光
产生条件:炽热的白光通过温度较白光低的气体后,
谱 再色散形成的
光谱形式:用分光镜观察时,见到连续光谱背景上 出现一些暗线(与特征谱线相对应)
(4)光谱分析
由于每种原子都有自己的特征谱线,因此可以根据 光谱来鉴别物质和确定的化学组成。这种方法叫做光 谱分析。 原子光谱的不连续性反映出原子结构的不连续性, 所以光谱分析也可以用于探索原子的结构。
(3)吸收光谱
• 高温物体发出的白光(其中包含连续分布 的一切波长的光)通过物质时,某些波长的光 被物质吸收后产生的光谱,叫做吸收光谱。各 种原子的吸收光谱中的每一条暗线都跟该种原 子的原子的发射光谱中的一条明线相对应。这 表明,低温气体原子吸收的光,恰好就是这种 原子在高温时发出的光。因此吸收光谱中的暗 谱线,也是原子的特征谱线。太阳的光谱是吸 收光谱。
相关文档
最新文档