Speaker声腔结构设计
扬声器音腔设计
![扬声器音腔设计](https://img.taocdn.com/s3/m/a86364753868011ca300a6c30c2259010202f3c8.png)
优秀案例二:影院扬声器音腔设计
总结词
沉浸式音效
详细描述
影院扬声器音腔设计注重营造沉浸式的音效体验,通过大型 低音喇叭、环绕立体声技术以及特殊音腔结构,实现宽广的 音场和深沉的低音效果,让观众仿佛置身于电影场景之中。
优秀案例三:便携式扬声器音腔设计
总结词
轻便与音质兼备
详细描述
便携式扬声器音腔设计追求轻便与音质的高度结合,通过采用先进的材料和音腔结构优 化技术,减小体积和重量,同时保持出色的音质表现,方便用户在外出时随时随地享受
扬声器音腔设计
目录 CONTENT
• 扬声器音腔设计概述 • 音腔结构设计 • 材料选择与声学特性 • 优化与改进 • 案例分析
01
扬声器音腔设计概述
设计概念与目标
设计概念
扬声器音腔设计是指对扬声器内 部结构的规划和优化,旨在提高 扬声器的声音品质和性能。
设计目标
通过合理的音腔设计,实现更清 晰、更纯净的声音输出,同时减 小失真和噪音,提升扬声器的整 体表现。
实验测试
通过实验测试,验证仿真结果的准确性,并对音 腔设计进行进一步分析,找出差异 原因,提高仿真精度。
参数调整
根据实验结果,调整仿真模型中的参数,使仿真 结果更接近实际表现。
用户反馈与持续改进
用户调研
收集用户对扬声器性能的反馈,了解用户需求和期望。
迭代改进
总结词
材料的非线性行为是导致声音失真的主要原因。
详细描述
当声音强度达到一定水平时,许多材料会表现出非线性行为,这意味着它们的声学特性不再是线性的 ,而是随着声音强度的增加而发生变化。这种非线性行为会导致声音失真,使音质变差。因此,在扬 声器音腔设计中,选择具有较低非线性行为的材料可以减少声音失真,提高音质。
扬声器腔体设计
![扬声器腔体设计](https://img.taocdn.com/s3/m/392e99661ed9ad51f01df21c.png)
A.后声腔设计
注意点1:后声腔设计时,必须保证后出声孔出气畅通
当距离太近时,会形成很大声阻,降低speaker box的整体灵敏度
March 2009
AAC Acoustic
7
A.后声腔设计
注意点2:避免形成多个腔体连接,引起后腔谐振,使得频响曲线出现中频谷 V1 V2
March 2009
AAC Acoustic
March 2009
AAC Acoustic
15
Thank you!
March 2009
AAC Acoustic
16
March 2009
Speaker box可以有效阻挡speaker 背面产生的低频相干波,提升手机 低频重放效果
AAC Acoustic 3
Speaker box 设计的相关参数讨论
A.后腔
B.前腔 & 出声孔
C.泄露孔
March 2009
AAC Acoustic
4
A.后声腔设计
后腔体积增大 低频谐振频率降低
March 2009
AAC Acoustic
5
A.后声腔设计
fb = f 0 * 1 + Va Vb
Va = ρ0 * C 0 2 * Cms * SD 2
°
பைடு நூலகம்
对于不同类型的speaker,后腔体积减小到一定阈值后 Fb会急剧增加。设计时针对不同speaker,尽量满足: 后腔体积>最小后腔阈值
March 2009 AAC Acoustic 6
March 2009
AAC Acoustic
11
C 泄露孔
泄露孔作用: 使得box内外气压相等,避免出现鼓膜、瘪膜等失效
扬声器音腔设计课件-PPT
![扬声器音腔设计课件-PPT](https://img.taocdn.com/s3/m/abc87eaa2b160b4e777fcf7a.png)
2~3
开孔面积在10%左右是可减小尖锐的高频声音和高频破音。
出声孔:131、尽量不要开2在.5±正1中,这样高频较多,声A音、B做不大,并且伴随高频燥2声~3。
5%~15% 5%~15%
4、让声1音5 真实的还原。2.5±1
A、B
2~5
5%~15%
密封性后腔和泄露性后腔对比曲线
如果是两16个相同规格的喇2.叭5±,1 出声面积最好一个控制A、在B10%以内,另一个控制2在.5~145.5%左右,位置5可%~以15适% 当区别。
配合),中频转换效率越高,高频成份越小。
前腔设计形状1
这种锥形结构对声音 反射有影响,因为声 音反射回来,不能提 高声音的利用率。
前腔设计形状2
• 倒锥形和指数性 结构的前腔壁都 可以提高扬声器 的利用率,起到 提高中频音量作 用。
前腔设计形状3
前腔设计形状4
垂直前腔对中高频 段的峰谷没有指数 和倒锥形大
4、电池槽,卡槽孔要远离手机扬声器。
5、前后腔要完全隔开,后腔要密封好。
出声孔设计
• 出声孔作用: • 1、出声。 • 2、出声孔面积影响高频截止频率、中低频的灵敏度。 • 3、出声孔面积一般在扬声器振动面积的5%-15%之间,
过大可导致高频燥音过多,过小可能导致声音变小。
出声孔设计注意点
• 出声孔:1、尽量不要开在正中,这样高频较多,声音 做不大,并且伴随高频燥声。2、开孔面积也不能太大, 因为扬声器本身的原因和后腔因素,高音会显得比较尖 锐,听起来声音刺耳。
机壳尽量要密封,最好不能有声泄露孔。
2、对声音进行修正,防止噪音。
后腔结实构际2 后腔结构2
后腔
减小了机壳处声音泄露、 延长 声音传播路径。扩大了后 腔容积。
有关喇叭的音腔的设计规范
![有关喇叭的音腔的设计规范](https://img.taocdn.com/s3/m/bcca2e267e21af45b307a8de.png)
电压(V)
声压级(dB)
F1 F2
频率(Hz)
F1 F2
频率(Hz)
Speaker的关键参数
❖ 频率响应曲线 ❖ 谐波失真 ❖ 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。
SPL=20log(P/P0)dB
低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
SPEAKER常用种类
❖ 圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. ❖ 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm
泄漏尽量小,离SPK尽量远。
音腔设计参数建议
Thank you for your support !
谐波失真(THD)
<0.15% 0.5W
<5% 300~3400Hz 179mV
谐振频率Fo
900+/-20%Hz
600+/-20%Hz
额定阻抗
8+/-15%ohm
32+/-15%ohm
额定功率/最大功率
0.5W/1W
10mW/30mW
音腔设计
音腔作用: ❖ 腔体的目的是为了隔开前后声波,避免二者干涉 ❖ 腔体的大小左右着SPK/RVR的低频重放
夏新Speaker音腔设计建议
![夏新Speaker音腔设计建议](https://img.taocdn.com/s3/m/55ac2b86ec3a87c24028c4a0.png)
音腔占用最低厚度的计算(3)
• • 例三、侧面出音的音腔设计常规方法 PCB板到机壳外壁之间的最小距离: 3.5mm(SPK) +0.3mm(泡棉)+0.7mm(支架)+ 2mm(音孔)+0.7mm(支架)+ 0.7mm(外壳)
音腔支架的出音孔 (≥2mm) 机壳上的出音孔:
位置请合理选择;面 积需测试实际效果再 定;形状暂不定;
音腔设计和ID、器件、天线的相互协调 ——Nokia N76(超薄折叠)
Camera
Mini USB
3.5mm耳机
存储卡 DC充电
SPK box +antenna
侧面出音的手机,出音孔设计建议
侧面出音方式一 ——供ID设计参考
• • • 外壳上在出音孔处的弧度不能太大,否则可能会影响性能; 出音孔正下方可以有侧键或其他小部件; 请根据结构设计的情况,遵照结构工程师的建议来设计 音腔支架的出音孔 (≥2mm) 机壳上的出音孔 手机外壳 音腔支架
• • 例二:背面出音非常规的音腔设计方法 省掉了支架厚度,PCB板到机壳外壁之间的最小距离: 3.5mm(SPK)+1mm(前腔)+0.7mm(外壳) (说明:由于没有专门的音腔支架,所以天线需选择在别的位置)
前音腔 (≥1mm, ≥ , 建议2mm ) 建议
出音孔 手机外壳
speaker
泡棉垫 PCB LCD
手机外壳
音腔支架
泡棉垫 speaker 可放置侧键或 者连接器等
PCB LCD
音腔占用最低厚度的计算(4)
• • 例四、侧面出音音腔常规设计方法 PCB板到机壳外壁之间的最小距离: 3.5mm(SPK) +0.3mm(泡棉)+0.7mm(支架)+ 2mm(音孔)+0.7mm(支架)+ 0.7mm(外壳)
音腔结构设计思考与总结
![音腔结构设计思考与总结](https://img.taocdn.com/s3/m/9d50672d4b35eefdc8d3338f.png)
音腔结构设计思考与总结通过参观XX电机厂,就音腔与Speaker方面,与其公司技术人员交换意见,结合本公司的产品结构,现归纳如下,如有不同意见,请各位提出您宝贵的意见,进行分析讨论,以比较不同方案优缺点,最后论证及确认这些结构方式适用范围及其可行性。
一、Speaker音腔出声孔的结构设计1、Speaker前腔设计方式及说明:1)音腔出声孔为穿插方式的结构形式:a、红色为硅胶b、黄色为面壳c、青色为Speaker公司目前采用的设计(图1)喇叭前腔H1尺寸较小,以使前腔空间小,同时要防止喇叭振膜在振动中接触到塑胶平面,即要求留有足够的振动空间,当然,这个H1不是越大越好,它有一个相对腔体出声孔面积较佳的权益值(以前是通过试听方式作调整)。
结构方式(2)喇叭前腔之对应的塑胶做成弧面,即可以使得H1尺寸加大,但要考虑H2尺寸,保证面壳胶厚有足够的强度。
其目的是合理增加喇叭之前腔腔体的空间。
此情况,喇叭网粘剂为液体最好。
注意:1、作成弧面的情况,喇叭网若是背双面胶,那么装配就不方便,喇叭网不易装平;2、作成弧面的情况,装配硅胶垫需为平面,以使装配牢固可靠。
2)音腔孔为碰穿方式:3.m m 000. mm50TC700音腔孔(图3)分析:1、 结构及加工上:H=3.0mm,W=0.5mm,模具强度不够好,来料品质不能保证;2、 音腔孔0.50x3.0mm :尺寸太小、太深,喇叭振动过程中需要的气流循环(空气进出音腔孔)出现不连续现象,导致削弱高音,影响音量大小。
改善方法:1、 穿插结构方式:(如TC700S )不仅可以解除模具加工强度不良问题,同时可以很好地控制音腔孔大小,从而改善气流循环,音量大小得以改善。
2、 也可以在TC700音腔孔(图3)上作如下的改善,详见下图(图4)060080.. mm —10020..±RW(示意图4---仅作示意) 说明:在后模开一个沉台,宽度为2.50mm 左右,尽可能圆滑过渡,音腔孔尺寸请上图所示。
【设计规范】喇叭(speaker)原理及音腔设计规范
![【设计规范】喇叭(speaker)原理及音腔设计规范](https://img.taocdn.com/s3/m/6d592f78b94ae45c3b3567ec102de2bd9605de37.png)
【设计规范】喇叭(speaker)原理及音腔设计规范导读喇叭又名扬声器,现如今,人们对手机的要求越来也高,声音也是一个评价手机好坏的因素。
为提高音质,喇叭的结构形式也发生了很多变化,由正出音变成侧出音,有单喇叭变成双喇叭,甚至是喇叭BOX;很多手机厂商都推出音乐手机,试想一下如果音质不好的音乐手机是什么样的,而对于音质的好坏,结构设计及音腔设计都有影响,本文就介绍下音腔的结构设计要求;一、喇叭的基本结构及工作原理喇叭的基本结构图如下:喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。
喇叭实际上是一个电声换能器。
二、喇叭音质的影响因素对手机而言,Speaker、喇叭音腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。
Speaker单体的品质对于音质的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。
喇叭音腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
这里就涉及到结构设计及音腔的设计;音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。
此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。
MIDI选曲对铃声的音质也有一定的影响,表现在当铃声的主要频谱与声腔和Speaker的不相匹配时,会导致MIDI音乐出现较大的变音,影响听感。
三、音腔结构设计规范3.1音腔的基本结构和作用先看一下一般正音腔的结构,如下图:手机的声腔设计主要包括后声腔、前声腔、出声孔、防尘网,密闭性五个方面;每部分的作用和设计都有所不同:后音腔的作用,1.防止扬声器中低频的声短路;2.使低频声音有利,让人感觉声音圆润;后音腔的设计很重要,直接影响手机音质的好坏和大小;前音腔的作用1.前音腔是让声音产生一个高频段的截止频率,并产生一个高频峰2.修正高频噪声3.好的前腔可提高中频,减小高频噪声,降低高频段延伸,提高声音转换效率;出音孔的作用:1.出音2.出音孔面积影响高频截止频率,中低频的灵敏度;出音面积过大导致高频噪音过多,过小可能导致声音变小;防尘网和密封性的作用很明显,就是防尘和密封;具体影响见下表:3.2相关设计要求1.speaker前音腔泡棉高度一般在0.3~1.0mm,同时要避开喇叭震膜范围,注意防尘网的位置,不能让喇叭的震动膜在震动时碰到防尘网,否则会引起异响;2. Speaker出声孔及声腔内部设计要圆滑过渡,尽量避免尖角﹑锐角,否则容易产生异响。
Speaker声腔结构设计
![Speaker声腔结构设计](https://img.taocdn.com/s3/m/28717f66ad02de80d4d84074.png)
电子产品speaker选型及壳体匹配结构设计声音的优劣主要取决于声音的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对小型电子产品而言,Speaker、产品声腔、音频电路和音源是四个关键因素,它们本身的特性和相互间的配合决定了声音的音质。
Speaker单体的品质对于声音的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于声音的低音效果,其失真度大小对于声音是否有杂音都是极为关键的。
声腔结构则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变声音的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,声音就会出现比较明显的杂音。
此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音音源对音质也有一定的影响,表现在当音源主要频谱与声腔和Speaker的不相匹配时,会导致较大的变音,影响听感。
总之,音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
1. Speaker的选型原则1.1 扬声器(Speaker)简介1.1.1 Speaker工作原理扬声器又名喇叭。
喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。
喇叭实际上是一个电声换能器。
对电子产品来说,Speaker是为实现播放说话声音,音乐等的一个元件。
Speaker 音压频率使用范围在500Hz~10KHz。
1.1.2 Speaker主要技术参数及要求a>. 功率Power。
功率分为额定功率Rated Power和最大功率Max Power。
额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 96小时后,而不产生热和机械损坏的相应功率。
有关喇叭的音腔的设计规范 PPT
![有关喇叭的音腔的设计规范 PPT](https://img.taocdn.com/s3/m/66d987b75a8102d277a22f46.png)
低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
SPEAKER常用种类
❖ 圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. ❖ 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm
❖ 一般情况下,后声腔的形状变化对频响曲线影响不大。但是如果后声腔中某 一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音 质急剧变差,因此,在声腔设计中,必须避免出现这种情况。
❖ 前声腔对低频段影响不大,主要影响手机铃声的高频部分。随着前声腔容积 的增大,高频波峰会往不断左移动,高频谐振点会越来越低。
电 压 ( V)
声 压 级 ( dB)
F1 F2
频 率 (Hz)
F1 F2
频 率 (Hz)
Speaker的关键参数
❖ 频率响应曲线 ❖ 谐波失真 ❖ 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。
电:音圈有引线直接连接到端子。音频电流由端子输入,流进音圈,使得音圈中的电流带有 音频信号(电压)一样的波形。设电流 I=E/Rv (Rv是音频阻抗,为一常数)
力:F=BIL,B和L都是常数,则F随音频电流I线性变化,所以F将带有声音的波形
声:带有声音频率波形的力F带动振动膜振动,振动膜也将随着频率和波形振动,从而带动 空气振动,形成差不多频率和波形的疏密波
Speaker声腔结构设计(仅供借鉴)
![Speaker声腔结构设计(仅供借鉴)](https://img.taocdn.com/s3/m/df8afe0bb90d6c85ec3ac6d3.png)
电子产品speaker选型及壳体匹配结构设计声音的优劣主要取决于声音的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对小型电子产品而言,Speaker、产品声腔、音频电路和音源是四个关键因素,它们本身的特性和相互间的配合决定了声音的音质。
Speaker单体的品质对于声音的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于声音的低音效果,其失真度大小对于声音是否有杂音都是极为关键的。
声腔结构则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变声音的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,声音就会出现比较明显的杂音。
此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音音源对音质也有一定的影响,表现在当音源主要频谱与声腔和Speaker的不相匹配时,会导致较大的变音,影响听感。
总之,音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
1. Speake r的选型原则1.1 扬声器(Speaker)简介1.1.1 Speaker工作原理扬声器又名喇叭。
喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。
喇叭实际上是一个电声换能器。
对电子产品来说,Speaker是为实现播放说话声音,音乐等的一个元件。
Speaker 音压频率使用范围在500Hz~10KHz。
1.1.2 Speaker主要技术参数及要求a>. 功率Power。
功率分为额定功率Rated Power和最大功率Max Power。
额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声),96小时后,而不产生热和机械损坏的相应功率。
手机音频声腔设计 Audio
![手机音频声腔设计 Audio](https://img.taocdn.com/s3/m/da9ff48fa0116c175f0e4842.png)
4 3.98 3.96 3.94 3.92 3.9 3.88 3.86 3.84 3.82 3.8 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1200 1000 800 600 200 0 0 2 4 6 8 10
图2 后声腔容积对低频性能影响
• 需要强调的是,SPEAKER单体质量对铃声低频性能的影 需要强调的是,SPEAKER单体质量对铃声低频性能的影
响很大。在一般情况下,装配在声腔中的SPEAKER,即 响很大。在一般情况下,装配在声腔中的SPEAKER, 便能在理想状况下改善声腔的设计, 便能在理想状况下改善声腔的设计,其低频性能也只能接 而无法超过单体的低频性能。 近,而无法超过单体的低频性能。 一般情况下,后声腔的形状变化对频响曲线影响不大。但 是如果后声腔中某一部分又扁、又细、又长,那么该部分 可能会在某个频率段产生驻波,使音质急剧变差,因此, 在声腔设计中,必须避免出现这种情况。
• • • • •
SPEAKER
• SPEAKER的分类 SPEAKER的分类 • SPEAKER的结构 SPEAKER的结构 • SPEAKER的主要技术参数 SPEAKER的主要技术参数
SPEAKER分类 SPEAKER分类
• 根据用途分:低频扬声器,中频扬声器,
高频扬声器和全频带扬声器。 • 根据将电能转换成机械振动形式不同分: 电动式,压电式,静电式和电磁式等几种。 • 我们使用的都是电动式扬声器。
Speaker声腔结构设计
![Speaker声腔结构设计](https://img.taocdn.com/s3/m/1e2f7e1c8e9951e79b8927c3.png)
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】电子产品speaker选型及壳体匹配结构设计声音的优劣主要取决于声音的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对小型电子产品而言,Speaker、产品声腔、音频电路和音源是四个关键因素,它们本身的特性和相互间的配合决定了声音的音质。
Speaker单体的品质对于声音的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于声音的低音效果,其失真度大小对于声音是否有杂音都是极为关键的。
声腔结构则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变声音的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,声音就会出现比较明显的杂音。
此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音音源对音质也有一定的影响,表现在当音源主要频谱与声腔和Speaker的不相匹配时,会导致较大的变音,影响听感。
总之,音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
1. Speake r的选型原则1.1 扬声器(Speaker)简介1.1.1 Speaker工作原理扬声器又名喇叭。
喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。
喇叭实际上是一个电声换能器。
对电子产品来说,Speaker是为实现播放说话声音,音乐等的一个元件。
Speaker 音压频率使用范围在500Hz~10KHz。
1.1.2 Speaker主要技术参数及要求a>. 功率Power。
功率分为额定功率Rated Power和最大功率Max Power。
Speaker声腔结构设计
![Speaker声腔结构设计](https://img.taocdn.com/s3/m/77d50dd7551810a6f424861d.png)
电子产品speaker选型及壳体匹配结构设计声音的优劣主要取决于声音的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对小型电子产品而言,Speaker、产品声腔、音频电路和音源是四个关键因素,它们本身的特性和相互间的配合决定了声音的音质。
Speaker单体的品质对于声音的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于声音的低音效果,其失真度大小对于声音是否有杂音都是极为关键的。
声腔结构则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变声音的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,声音就会出现比较明显的杂音。
此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音音源对音质也有一定的影响,表现在当音源主要频谱与声腔和Speaker的不相匹配时,会导致较大的变音,影响听感。
总之,音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
1. Speake r的选型原则1.1 扬声器(Speaker)简介1.1.1 Speaker工作原理扬声器又名喇叭。
喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。
喇叭实际上是一个电声换能器。
对电子产品来说,Speaker是为实现播放说话声音,音乐等的一个元件。
Speaker 音压频率使用范围在500Hz~10KHz。
1.1.2 Speaker主要技术参数及要求a>. 功率Power。
功率分为额定功率Rated Power和最大功率Max Power。
额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声),96小时后,而不产生热和机械损坏的相应功率。
有关喇叭的音腔的设计规范标准[详]
![有关喇叭的音腔的设计规范标准[详]](https://img.taocdn.com/s3/m/ca96a39ad1f34693daef3ead.png)
SPEAKER常用种类
圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm 12*18mm,13*18,14*20
Speaker与Receiver对比
性能参数 频率响应曲线 有效频率范围 特性灵敏度(SPL) 谐波失真(THD) 谐振频率Fo 额定阻抗 Speaker 0.5W/5cm 600~20KHz 98+/-3dB 1KHz 0.5W/5cm <0.15% 0.5W 900+/-20%Hz 8+/-15%ohm Receiver 179mV 300~3400Hz 110+/-3dB 1KHz 179mV <5% 300~3400Hz 179mV 600+/-20%Hz 32+/-15%ohm
电压(V)
声压级(dB)
F1
F2
频率(Hz)
F1
F2
频率(Hz)
Speaker的关键参数
频率响应曲线 谐波失真 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。 SPL=20log(P/P0)dB 低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。 低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
额定功率/最大功率
Speaker构造及动作原理v1
![Speaker构造及动作原理v1](https://img.taocdn.com/s3/m/dfdf29d2ad51f01dc281f1c0.png)
排板檢查(x2) Inspection on the board
取出間隙規(x1) Remove gauge
壓磁鐵到U杯內(x1) Press magnet into yoke
Confidential
15
ACD / TAMG / FTC
3516框體加工工程_Frame Body Assembly
上橡膠系膠(x1) Inject rubber glue
Confidential
23
ACD / TAMG / FTC
喇叭取用作業說明(錯誤手法)
喇叭磁性強靠太近會 吸在一起
錯誤的拿取位置
外觀凹陷不良
手拇指和食指不可直接捏住兩根線材拿起喇叭,因喇叭有磁性故容易將兩個喇 叭吸在一起,將音膜壓傷,造成外觀不良,嚴重著會造成裡面音圈變形,而產 生動作不良
Confidential
動作試音(x1) Operational sound inspection
測F0(x1) Test F0
點錫膏(x1) Inject solder paste
焊線材(x4) Weld cable
測極性(x1) Test polarity
Confidential
點補強膠(x3) Inject glue
Confidential
27
ACD / TAMG / FTC
高溫試驗(High Temperature)
• Test Method: Exposure the speaker in the +70 ± 2 ° C chamber for 96 hours • Criteria: Compared with pre-test measurement SPL should not deviate by ± 3 dB
有关喇叭的音腔的设计规范标准[详]
![有关喇叭的音腔的设计规范标准[详]](https://img.taocdn.com/s3/m/ca96a39ad1f34693daef3ead.png)
List
1
SPK基本原理
2
SPK关键参数
3
4
音腔设计
Application
Speaker结构(mobile phone SP)
扬声器(Speaker)是一种用来将电的信号转换成声音信号的换能器 (Transducer)
Speaker基本原理
整个过程为: 电-----力-----声 的转换 电:音圈有引线直接连接到端子。音频电流由端子输入,流进音圈,使得音圈中的电流带有 音频信号(电压)一样的波形。设电流 I=E/Rv (Rv是音频阻抗,为一常数) 力:F=BIL,B和L都是常数,则F随音频电流I线性变化,所以F将带有声音的波形 声:带有声音频率波形的力F带动振动膜振动,振动膜也将随着频率和波形振动,从而带动 空气振动,形成差不多频率和波形的疏密波
额定功率/最大功率
0.5W/1W
10mW/30mW
音腔设计
音腔作用: 腔体的目的是为了隔开前后声波,避免二者干涉 腔体的大小左右着SPK/RVR的低频重放
手机的声腔设计主要包括前声腔、后声腔、出声孔、后音腔、防尘网五 个方面,如下图:
音腔设计
后音腔&前音腔
后声腔主要影响铃声的低频部分,对高频部分影响则较小。铃声的低频部分 对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声比较 悦耳。 一般情况下,后声腔的形状变化对频响曲线影响不大。但是如果后声腔中某 一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音 质急剧变差,因此,在声腔设计中,必须避免出现这种情况。
电压(V)
声压级(dB)
F1
F2
频率(Hz)
F1
F2
手机音腔设计
![手机音腔设计](https://img.taocdn.com/s3/m/47e39107cd7931b765ce0508763231126edb77e1.png)
关于手机音腔设计先说单speaker,现在用的最多的了!不过从发展趋势来看为追求好的音效双speaker将成为以后大主题。
不管是双还是单重视后音腔的设计,这对音质有很大的影响:尽量做大些,还要密封好些!现在的趋势是要求音量越来越大,特别是国产手机,有的做到100分贝以上,但是音量不是唯一指标,和谐悦耳的铃声才是设计目标!音源对铃声的影响非常重要,选择合适的音源可以很好的体现设计效果!选择音源1.尽量选用口径大的speaker。
2.对speaker的特性曲线要求低频时也能有高的音压,并且在曲线在1K~10K的区间要曲线平稳,当然能在1K以下做到很好水准就体现speaker研发生产实力了。
结构上的设计受到手机空间的限制,多设计都是用到二合一单边发声的,产品最终的音效都不是很好,扬声器与受话器的设计要领不一样,共用一个音腔确实会有一定问题,有这么些建议:1.Φ13mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm22.Φ15mm Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm23. Φ16~20m/m Speaker 前容积高度:0.3~1.0mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:5~7Cm3 洩漏孔高度:5mm2对于单面发声的后音腔设计,我们一般把整个前端作为后音腔,通过LCD PCB上密封整个前端,较大的后音腔能够能够弥补前期不足!现在的流行趋势是分开,特别是双speaker强烈要求speaker与Receiver分开,这样才能到达要求的立体效果!对于双speaker最好使出声孔的位置避免在一个面上,现在市面上看到最多就是放在翻盖的头部两侧,或者放在转轴两侧(三星x619),这跟声音波形原理有关的,同在一个面上消减幅度很快,效果不会太好的!双speaker的设计关键是要体现立体效果,在设计上有以下要点:1.出声孔的位置,如上所述;2.两个speaker的后音腔要求分开,独立密封;3.两个speaker之间的切线(切线指的是两个水平放置,两个园之间的切线距离)最小距离要求在10mm以上;4.要求大些的后音腔;5.注意音源的选择,其实说道音腔,主要的一个原则就是,前音腔要密闭,后音腔要尽可能大,泻露孔尽可能距离speaker远一点。
Speaker声腔结构设计-工程
![Speaker声腔结构设计-工程](https://img.taocdn.com/s3/m/85af4e12657d27284b73f242336c1eb91a373331.png)
Speaker声腔结构设计-工程Speaker声腔结构设计主要指手机内部所构成的声腔或者泄漏孔对Speaker的性能或者声音产生的影响,如下图所示,声孔、前腔、内腔、泄漏孔等等都会对手机的整机音质表现产生影响,首先要用Rubber Ring,即环形橡胶垫把Speaker与手机外壳密封起来,使声音不会漏到手机内腔,然后就是声孔、前腔、内腔的合理配合,。
泄漏孔主要是由SIM卡、电池盖、手机外接插座等手机无法密封位置的声漏等效而成的,泄漏孔以远离Speaker为宜,即手机无法密封的位置要尽量远离Speaker,这样可以使得手机的整机的音质表现较好。
声腔设计建议值:φ13mmLoudSpeaker:声孔总面积约3mm2 前腔高度0.4mm-1mm 泄漏孔总面积约5mm2 内腔体积约5cm3φ15mmLoudSpeaker:声孔总面积约3.5mm2 前腔高度0.4mm-1mm 泄漏孔总面积约5mm2 内腔体积约6cm3φ16-18mmLoudSpeaker:声孔总面积约4mm2 前腔高度0.4mm-1mm 泄漏孔总面积约5mm2 内腔体积约7cm3Receiver声腔设计主要指手机内部所构成的声腔或者泄漏孔对Receiver的性能或者声音产生的影响,如下图所示,声孔、前腔、内腔、泄漏孔等等都会对手机的整机音质表现产生影响,首先要用Rubber Ring,即环形橡胶垫把Receiver与手机外壳密封起来,使声音不会漏到手机内腔,然后就是声孔、前腔、内腔的合理配合泄漏孔主要是由SIM卡、电池盖、手机外接插座等手机无法密封位置的声漏等效而成的,泄漏孔以远离Receiver为宜,即手机无法密封的位置要尽量远离Receiver,这样可以使得手机的整机的音质表现较好,工程《Speaker声腔结构设计》(https://www.)。
声腔设计建议值:φ13Receiver:声孔总面积约3mm2 前腔高度0.2mm-0.8mm 泄漏孔总面积约5mm2 内腔体积约4cm3φ15Receiver:声孔总面积约3.5mm2 前腔高度0.2mm-0.8mm 泄漏孔总面积约5mm2 内腔体积约5cm3。
夏新Speaker音腔设计建议32页PPT
![夏新Speaker音腔设计建议32页PPT](https://img.taocdn.com/s3/m/9e69a829910ef12d2bf9e7c6.png)
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
夏新Speaker音腔设计建议
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
扬声器原理及音腔设计
![扬声器原理及音腔设计](https://img.taocdn.com/s3/m/b610103810661ed9ad51f348.png)
SPL[dB]
120 110 100
90 80 70 60
100
φ14扬声器背面容积変化时的频率特性変化(0.2W/0.1m)
容積可 変
1000 0.5cc
Frequnecy[Hz]
10000
1cc 3cc 5cc 45cc
100000
Ⅱ- 2)背面容积和 Fo 的变化
由于φ14,16,18扬声器容积変化Fo変化的数据 (扬声器的Fo为800Hz)
2)F h(高域限界周波数): 表示高域再生能力 (Hz)
3)S P L(音压)
: 表示声音的大小 (dB)
3)手机实装时的特性变化
Ⅰ- 1)扬声器背面密封的必要性 通常扬声器的背面都有密封。从扬声器振动板上面产生的声波和其下面产生的声波的相差
为180度。因此若不遮断其上下声波就会由于相差干扰而使声音消失。特别是波长长的低 频是很显著的。因此理想的方法是完全遮断背面声波,使其不再有相差干扰。 ⇒ 手机实装时、若前盖后盖的卡合部或转轴等其他连接部有间隙,背面声波就会漏音、尤 其是波长长的低音会消失、低音质感也会耗损。
4000
3500 3000 2500
・容积和Fo的关系如下图表所示:3cc以下的时候 突然变化很大。 ⇒容积3cc时为重要背景 (3cc时勉强在1kHz的再生帯域)
Foc[Hz]
2000
1500
1000
500
0
0
1
2
3
4
5
6
7
8
9
10
Cavity[cc]
φ14ス扬ピ声ー器カ
φ16ス扬ピ声ー器カ
在干扰 部分声 音消失
密封盒
音圧 [dB] 音圧 [dB]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子产品speaker选型及壳体匹配结构设计声音的优劣主要取决于声音的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。
对小型电子产品而言,Speaker、产品声腔、音频电路和音源是四个关键因素,它们本身的特性和相互间的配合决定了声音的音质。
Speaker单体的品质对于声音的各个方面影响都很大。
其灵敏度对于声音的大小,其低频性能对于声音的低音效果,其失真度大小对于声音是否有杂音都是极为关键的。
声腔结构则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变声音的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。
音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。
例如,当输出信号的失真度超过10%时,声音就会出现比较明显的杂音。
此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音音源对音质也有一定的影响,表现在当音源主要频谱与声腔和Speaker的不相匹配时,会导致较大的变音,影响听感。
总之,音质的改善需要以上四个方面共同配合与提高,才能取得比较好的效果。
1. Speaker的选型原则1.1 扬声器(Speaker)简介1.1.1 Speaker工作原理扬声器又名喇叭。
喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。
喇叭实际上是一个电声换能器。
对电子产品来说,Speaker是为实现播放说话声音,音乐等的一个元件。
Speaker 音压频率使用范围在500Hz~10KHz。
1.1.2 Speaker主要技术参数及要求a>. 功率Power。
功率分为额定功率Rated Power和最大功率Max Power。
额定功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 96小时后,而不产生热和机械损坏的相应功率。
最大功率是指在额定频率范围内馈给喇叭以规定的模拟信号(白噪声), 1分钟后,而不产生热和机械损坏的相应功率。
注:小型智能设备用喇叭一般要求的功率:额定功率≥0.5W,最大功率≥1W。
b>. 额定阻抗Rated Impedance。
喇叭的额定阻抗是一个纯电阻的阻值,它是被测扬声器单元在谐振频率后第一个阻抗最小值,它反映在扬声器阻抗曲线上是谐振峰后曲线平坦部分的最小阻值。
注:手机用喇叭的额定阻抗一般为8Ω。
c>. 灵敏度级又称声压级Sound Pressure Level(S.P.L)。
在喇叭的有效频率范围内,馈给喇叭以相当于在额定阻抗上消耗一定电功率的噪声电压时,在以参考轴上离参考点一定距离处所产生的声压。
注:智能电子产品喇叭的灵敏度一般要求≥87dB(0.1W/0.1m)。
d>. 总谐波失真Total Harmonic Distortion(T.H.D)。
它是指各种失真的总和。
主要包括:谐波失真、互调失真、瞬态失真。
注:智能电子产品用喇叭的总谐波失真在额定功率1KHz时应小于5%。
e>. 共振频率Resonance Frequency (fo)由阻抗曲线可见,在低频某一频率其阻抗值最大,此时的频率称之为扬声器的共振频率,记为fo,即在阻抗曲线上扬声器阻抗模值随频率上升的第一个主峰对应的频率。
注:智能电子产品用喇叭的共振频率一般在800Hz左右。
1.2 智能电子产品用扬声器(Speaker)的评价原则Speaker的品质特性对声音优劣起着决定性作用。
在同一个声腔、同样的音源情况下,不同性能的Speaker在音质、音量上会有较大的差异。
因此选择一个合适的Speaker可较大程度地改善手机的音质。
Speaker的性能一般可以从频响曲线、失真度和寿命三个方面进行评价。
频响曲线反映了Speaker在整个频域内的响应特性,是最重要的评价标准。
失真度曲线反映了在某一功率下,Speaker在不同频率点输出信号的失真程度,它是次重要指标,一般情况下,当失真度小于10%时,都认为在可接受的范围内。
寿命反映了Speaker的有效工作时间。
由于频响曲线是图形,包含信息很多,为了便于比较,主要从四个方面进行评价:SPL 值、低频谐振点f0、平坦度和f0处响度值。
SPL值一般是在1K~4KHz之间取多个频点的声压值进行平均,反映了在同等输入功率的情况下,Speaker输出声音强度的大小,它是频响曲线最重要的指标。
低频谐振点f0反映了Speaker的低频特性,是频响曲线次重要的指标。
平坦度反映了Speaker还原音乐的保真能力,作为参考指标。
f0处响度值反映了低音的性能,作为参考指标。
听感评价是一种主观行为,一般只作为辅助性评价。
在客观数据评定难以取舍或没有相关测试条件时,应组织相关人员或音频工程师进行主观试听评价。
1.3立体声喇叭的选择a>. 二个(或多个)喇叭的电声性能应保持一致。
否则会发生因二个(或多个)扬声器相位特性和声压频率特性不同而产生的声像移位和干扰。
b>. 二个喇叭不能靠得太近,否则声场会变小,左右声道声音容易产生干扰。
c>. 音腔设计时,注意两个后音腔不能导通,要相互隔开且密封设计。
智能电子产品用扬声器(Speaker)的选型推荐详见标准部品库(制定中)。
2. Speaker音腔性能设计音腔对于铃声音质的优劣影响很大。
同一个音源、同一个Speaker在不同声腔中播放效果的音色可能相差较大,有些比较悦耳,有些则比较单调。
合理的声腔设计可以使铃声更加悦耳。
为了提高音效品质,提升声腔设计水平是结构工程师的本职工作。
所以本设计规范主要讲述音腔结构设计,其他影响音效的主要因素Speaker选型﹑音频电路设计及音源需硬件﹑软件工程师的大力配合,共同把设备的音效水平提升到新的高度。
2.1 音腔结构简介声腔设计主要包括后声腔、前声腔、出声孔、密闭性、防尘网五个方面,如下图:出声孔防尘网后声腔图1 声腔结构示意图下面,就分别从以上五个部分详细介绍手机音腔设计必须或尽量遵循的准则2.2后声腔对铃声的影响及推荐值后声腔主要影响铃声的低频部分,对高频部分影响则较小。
铃声的低频部分对音质影响很大,低频波峰越靠左,低音就越突出,主观上会觉得铃声比较悦耳。
一般情况下,随着后声腔容积不断增大,其频响曲线的低频波峰会不断向左移动,使低频特性能够得到改善。
但是两者之间关系是非线性的,当后声腔容积大于一定值时,它对低频的改善程度会急剧下降,如图2示。
120010008006004002000246810图2 后声腔容积对低频性能影响图2横坐标是后声腔的容积(cm3),纵坐标是Speaker单体的低频谐振点与从声腔中发出声音的低频谐振点之差,单位Hz。
从上图可知,当后声腔容积小于一定值时,其变化对低频性能影响很大。
需要强调的是,Speaker单体品质对铃声低频性能的影响很大。
在一般情况下,装配在声腔中的Speaker,即便能在理想状况下改善声腔的设计,其低频性能也只能接近,而无法超过单体的低频性能。
一般情况下,后声腔的形状变化对频响曲线影响不大。
但是如果后声腔中某一部分又扁、又细、又长,那么该部分可能会在某个频率段产生驻波,使音质急剧变差,因此,在声腔设计中,必须避免出现这种异常空间情况,尽量设计形状规则的音腔。
对于不同直径的Speaker,声腔设计要求不太一样,同一直径则差异不太大。
根据不同直径Speaker的低频谐振点f0与后声腔容积的关系测试数据,具体推荐值如下:φ13mm Speaker:它的低频谐振点f0一般在800Hz~1200Hz之间。
当后声腔为0.5cm3时,其低频谐振点f0大约衰减600Hz~650Hz。
当后声腔为0.8cm3时,f0大约衰减400Hz~450Hz。
当后声腔为1cm3时,f0大约衰减300Hz~350Hz。
当后声腔为1.4cm3时,f0大约衰减250Hz~300Hz。
当后声腔为3.5cm3时,f0大约衰减100Hz~150Hz。
因此对于φ13mm SPEAKER,当它低频性能较好(如f0在800Hz左右)时,后声腔要求可适当放宽,但有效容积也应大于0.8cm3。
当低频性能较差时(f0>1000Hz),其后声腔有效容积应大于1cm3。
后声腔推荐值为1.4cm3以上,当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。
当然,对φ13mm Speaker,由于单体偏小,各厂商的产品品质也参差不齐,听感与更大的Speaker相比会有一定差异,一般情况下不推荐使用。
φ15mm Speaker:它的低频谐振点f0一般在750~1000Hz之间。
当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。
当后声腔为1cm3时,f0大约衰减600Hz~750Hz。
当后声腔为1.6cm3时,f0大约衰减400Hz~550Hz。
当后声腔为3.5cm3时,f0大约衰减200Hz~250Hz。
因此对于φ15mm SPEAKER,后声腔有效容积应大于1.6cm3。
当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。
13×18mm Speaker:它的低频谐振点f0一般在780~1000Hz之间。
当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。
当后声腔为1cm3时,f0大约衰减600Hz~750Hz。
当后声腔为1.6cm3时,f0大约衰减400Hz~550Hz。
当后声腔为3.5cm3时,f0大约衰减200Hz~250Hz。
因此对于13X18mm SPEAKER,后声腔有效容积应大于1.6cm3。
当后声腔大于3.5cm3时,其容积变化对低频性能影响会比较小。
13×18mm Speaker 在性能上和φ13mm Speaker有些类似,一般也不推荐使用。
φ16mm Speaker:它的低频谐振点f0一般在750~1100Hz之间。
当后声腔为0.5cm3时,低频谐振点f0大约衰减850Hz~1000Hz。
当后声腔为0.9cm3时,f0大约衰减600Hz~700Hz。
当后声腔为1.5cm3时,f0大约衰减400Hz~550Hz。
当后声腔为2cm3时,f0大约衰减300Hz~350Hz。
当后声腔为4cm3时,f0大约衰减150Hz~200Hz。
因此对于φ16mm Speaker,后声腔有效容积应大于1.5cm3。
后声腔推荐值为2cm3,当后声腔大于4cm3时,其容积变化对低频性能影响会比较小。
φ18mm SPEAKER:它的低频谐振点f0一般在700~900Hz之间。
当后声腔为0.5cm3时,低频谐振点f0大约衰减700Hz~950Hz。