七年级下学期数学知识梳理

合集下载

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全

一、集合与函数1.集合的定义和表示2.集合的基本运算:交集、并集、差集、补集3.集合的性质:含有或不含有、相等、相互包含等4.函数的定义和表示5.函数的增减性和单调性6.函数的图像和性质二、方程与不等式1.一元一次方程的解法和应用2.一元一次方程组的解法和应用3.一元二次方程的解法和应用4.一元二次方程图像的性质5.一元二次不等式的解法和应用6.一元一次不等式的解法和应用三、图形的性质与运动1.平面图形的基本概念:点、线、面、角、边、顶点等2.直线与平面的交点3.角的基本概念:对顶角、对角线、同位角、内错角、同旁内角等4.相似图形的性质5.三角形的性质:等边三角形、等腰三角形、直角三角形等6.四边形的性质:矩形、正方形、菱形等7.多边形的性质:正多边形、等边多边形等8.平移、旋转和翻折的概念9.判断平行线和垂直线的方法10.射线、线段和弧的基本概念四、数的性质与运算1.整数的定义和性质2.分数的定义和性质3.小数的定义和性质4.科学计数法的应用5.数的绝对值及其性质6.有理数的运算规则:加法、减法、乘法、除法等7.有理数的大小比较8.数轴与有理数的对应关系9.分数的加法、减法、乘法与约分10.小数的加法、减法、乘法与约简五、数据的收集与统计1.数据的收集与整理2.数据的统计指标:频数、频率、中位数、众数、平均数等3.概率的定义和计算六、函数的运算与应用1.函数的复合运算2.反函数的概念和表示3.函数的平移和反射4.函数的应用:约会花费、收入与支出、裁剪图案等七、三角形的性质与应用1.三角形内角和外角的性质2.三角形的余弦定理和正弦定理3.直角三角形的性质与应用4.三角形面积的计算八、图像的对称与相似1.图形的对称性:轴对称、中心对称等2.相交线的性质:垂直交线、平行线等3.图形的相似性:比例因子、相似比等4.相似图形的面积比与周长比。

七年级数学下知识点笔记

七年级数学下知识点笔记

七年级数学下知识点笔记一、大数比大小1.万以内数的比较(1)数位法:个十百千数位按从左到右依次比较,有且仅有有一位数不同,就是大的。

(2)绝对值法:将数的大小与它们的绝对值相比较,数值处于正号数靠右边的更大。

二、相反数与绝对值的概念1.相反数如果a+b=0,那么b就是a的相反数,a就是b的相反数2.绝对值-|a|=a|a|=a三、整数的加减法1.同号相加(保留符号)2.异号相减(绝对值相加,结果符号为绝对值较大的符号)3.加数和被加数的互换律和结合律四、一次函数1.函数:自变量和因变量之间的关系(输入和输出之间的关系)2.一次函数: y=kx+b (k表示斜率,b表示截距)3.斜率为正,函数图像右上升;斜率为负,函数图像左上升。

4.平行于坐标轴的直线的斜率为0或不存在。

五、图形的计算1.平移:将一个图形固定在一个点上,将这个图形沿着一个方向进行移动。

2.旋转:将一个图形固定在一个点上,将这个图形绕着这个点进行旋转。

3.对称:点、线、面的对称性概念4.比例尺:尺度所表示的两个单位之比。

六、图形的计算1.图形体积 V=Sh2.立方体 6V=a³3.正方体 S=a²,V=a³4.长方体 L×W×H七、锐角三角函数的概念1.三角函数定义:告诉我们三角形的某些角的度数和与它们所对边之间的比例关系。

2.正弦函数: sinA=BC/AC3.余弦函数: cosA=AB/AC4.正切函数: tanA=BC/AB以上便是七年级数学下知识点的笔记,需要牢记的知识点不在这里一一列举,希望大家平时多做练习,巩固掌握学过的知识点。

(完整word版)湘教版七年级下册数学知识点梳理

(完整word版)湘教版七年级下册数学知识点梳理

湘教版七年级数学下册知识点归纳第一章 二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。

②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。

2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。

注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。

二元一次方程组的解的讨论:已知二元一次方程组①、 当a1/a2 ≠ b1/b2 时,有唯一解; ②、 当a1/a2 = b1/b2 ≠ c1/c2时,无解; ③、当a1/a2 = b1/b2 = c1/c2时,有无数解。

例如:对应方程组:①、 ②、 ③、例:判断下列方程组是否为二元一次方程组:①、 ②、 ③、④、3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y ,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X ,则相当于把Y 看成已知数,把X 看成未知数。

例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x 为:____________。

4、根据二元一次方程的定义求字母系数的值:a1x + b1y = c1 a2x + b2y = c2x + y = 4 3x - 5y = 9 x + y = 3 2x + 2y = 5x + y = 4 2x + 2y = 8a +b = 2 b +c = 3 x = 4 y = 5 3t + 2s = 5 ts + 6 = 0 x = 11 2x + 3y = 0要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a-2)x^(/a/-1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全

七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。

七年级下数学第一章知识点

七年级下数学第一章知识点

七年级下数学第一章知识点数学是一门需要认真学习的学科,对于初中生来说,七年级下数学第一章是非常重要的,因此我们需要认真学习掌握。

在本篇文章中,我们将全面介绍七年级下数学第一章的知识点,并给出相关的例子和题目。

一、有理数及其表示法1.有理数的概念:有理数是指可以用两个整数的比表示出来的数,包括整数和分数。

因为它们可以在数轴上表示出来,所以也被称为数轴上的点。

例如,-2,0.5和3/4都是有理数。

2.有理数的表示法:通常表示有理数的方法有三种:分数表示法、小数表示法和百分数表示法。

在这里,我们主要介绍分数表示法和小数表示法。

分数表示法:a/b(a和b都是整数,b不等于0),其中a被称为分子,b被称为分母。

同一个有理数可以有不同的分数表示法,例如2/4和1/2是同一个有理数。

小数表示法:例如,3/4可以表示为0.75,或者0.750000。

在小数表示法中,我们将数字按照一定的方法排列,例如,0.75是3/4的小数表示法,小数点后面的数字表示分数的十分位和百分位。

二、有理数的比较在比较有理数大小时,我们需要将它们转化成同样的形式。

例如,我们可以将分数化简,或者将小数补零。

以下是一些比较有理数大小的示例:1.将小数补零:例如,将0.25和0.2比较大小。

我们将0.25乘以10,得到2.5,将0.2乘以10,得到2。

因此,0.25>0.2。

2.将分数化简:例如,比较1/3和2/5的大小。

我们将1/3化简为5/15,将2/5化简为6/15。

因此,1/3<2/5。

三、有理数的加减法有理数的加减法可以用数轴,或者数表等方式表示出来。

举例来说,如果我们要计算-3+5,我们可以用数轴表示出来:首先,我们在数轴上找到-3的位置,并标记出来。

然后,在它的右侧找到5的位置,并标记出来。

最后,从-3的位置开始,向右移动5个单位,我们可以得到答案2。

四、有理数的乘除法有理数的乘法和除法很容易理解,但需要记住一些规律。

七年级数学下重点概念整理(实数)

七年级数学下重点概念整理(实数)
6.1 实数
一、无理数
1.定义:无限不循环小数叫做无理数。 2.判断方法 (1)根据定义判断 (2)整数和分数统称为有理数,整数可以看作是分母为 1 的分数,有理数都可以写成分 数的形工,而无理数则不能写成分数的形式。
3.无理数都是无限小数,但无限小数不定是无理数。 4.判断一个数是不是无理数时,不要把分数化成小数再判断。 二、实数
1.定义:有理数和无理数统称为实数。 2.分类: (1)根据定义分: 实数 有理数 整数 正整数:1,2,3------
0 负整数:-1,-2,-3-----分数 正整数
有限小数或无限不循环小数
负整数
无理数 正无理数 无限不循环小数
负无理数
(2)根据正负之分: 实数 正实数 正有理数
正无理数
0 负实数 负有理数
每一个点都表示一个实数。
2.实数的大小比较 (1)数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 (2)正实数大于 0,负实数小于 0,正实数大于一切负实数,两个负实数比较,绝对值 大的反而小。
四、实数的有关概念及运算
6.1 实数
1.相反数 如果 a 表示任何一个实数,那么-a 就是 a 的相反数,a 与-a 互为相反数; 0 的相反数是 0. 2.绝对值 一个正实数的绝对值是它本身; 一个负实数的绝对值是它的相反数; 0 的绝对值是 0.
系 任何一个有理数,在数轴上都有一个唯一确定的点与之对应,但是,数轴上的点并不是
都表示有理数,无理数也可以用数轴上的点表示。由此可见,数轴上表示有理数的点并
不是连续的,只有将有理数、无理数合在一起,才能填满整个数轴,所以实数与数轴上
的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的

七年级下第十章数学知识点

七年级下第十章数学知识点

七年级下第十章数学知识点本章节主要是讲述七年级学生需要掌握的数学知识点,包括整式的基本概念和运算、二次根式及其运算、平面直角坐标系、函数的基本概念和表示等内容。

整式的基本概念和运算
整式是由常数和字母及它们的乘积之和组成的代数式。

其中,常数是没有字母的代数式,而字母则代表未知数。

整式的加减运算通过去括号、合并同类项的方式实现,而乘法运算则需要使用分配律和结合律。

此外,整式还涉及到反比例函数,其图像关于点(0,0)对称。

二次根式及其运算
二次根式是形如√(n)的代数式,其中n为正实数。

二次根式的加减运算只能在根数相同的情况下进行,而乘法运算可通过将根号前的乘积与根号内的乘积相乘的方式实现。

需要注意的是,二次根式的化简要尽可能将根号内的式子化为最简式。

平面直角坐标系
平面直角坐标系是由横坐标和纵坐标表示的二维坐标系,x轴和y轴分别作为坐标系的横轴和纵轴。

在平面直角坐标系中,点的坐标用有序数对(x, y)表示,其中x为横坐标,y为纵坐标。

此外,本章还介绍了中垂线和斜率对于平面直角坐标系的意义和应用。

函数的基本概念和表示
函数是表示两个数集之间关系的一种数学工具,通常用字母f 表示。

在函数中,一个数集称为定义域,另一个数集称为值域。

通常用f(x)表示函数的值,其中x为定义域中的某一个数。

本章还介绍了种植面积模型和运动时空模型对函数图像的影响。

总结
本章的内容涉及到了整式的基本概念和运算,二次根式及其运算、平面直角坐标系和函数的基本概念和表示等内容。

学生需要
重点掌握这些数学知识点,在实际的数学应用中能够准确地运用这些知识来解决问题。

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。

②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。

③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。

7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。

平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。

本文介绍了平面几何中的角度和平行线的相关概念和性质。

其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。

此外,文章还介绍了命题和定理的概念,以及平移变换的性质。

最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。

科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。

平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。

其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。

横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。

点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。

对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。

2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。

3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。

4.整式是单项式和多项式的统称。

二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。

逆用:a的m+n次方等于a的m次方乘以a的n次方。

2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。

逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。

3.幂的乘方法则:a的m次方的n次方等于a的mn次方。

逆用:a的mn次方等于a的m次方的n次方。

4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。

逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。

5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。

6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。

7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。

8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。

9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。

推广:有一项完全相同,另一项只有符号不同,结果等于相同。

连用变化。

10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。

a-b)的平方等于a的平方减去2ab加上b的平方。

逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。

a的平方减去2ab加上b的平方等于(a-b)的平方。

完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。

2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

七年级下数学第四章知识点

七年级下数学第四章知识点

七年级下数学第四章知识点:本章主要是关于一次函数的知识,包括一次函数的定义、图像、性质以及一次函数在实际问题中的应用等方面。

下面将针对这些知识点进行详细讲解。

一、一次函数的定义一次函数指的是定义域为实数集合的形如y=kx+b(k,b为常数)的函数。

在一次函数中,k又被称为斜率,b被称为截距。

一次函数还可以表述为y=ax+b的形式,其中a是k的值。

二、一次函数的图像一次函数的图像一般呈直线状,斜率k决定了这条直线的倾斜程度,斜率为正数时向右上方倾斜,斜率为负数时向右下方倾斜,斜率为0时则为水平线。

截距b决定了一次函数图像与y轴的交点。

三、一次函数的性质1. 一次函数的定义域为实数集合。

2. 一次函数的值域也是实数集合。

3. 当斜率k>0时,函数是单调递增的;当斜率k<0时,函数是单调递减的。

4. 当斜率k=0时,函数是水平的;当截距b=0时,函数是经过原点的。

5. 一次函数的最大值和最小值不存在。

四、一次函数在实际问题中的应用1. 一次函数在直线运动的问题中有着广泛应用。

例如汽车以每小时50千米的速度行驶,则汽车行驶x个小时后行驶的距离y就可以用一次函数y=50x来表示。

2. 一次函数在成本、收入和利润等问题中也有着重要的应用。

例如,设某公司的定期成本为100万元,每生产1个单位产品的边际成本为50万元,每售出1个单位产品的售价为100万元,则公司销售x个单位产品的利润可以用一次函数y=50x-100表示。

3. 一次函数还可以用于解决分数的加、减、乘、除等问题。

例如,若x、y为正整数,且x/y=2/3,则x-y/y可以用一次函数y=3x-2y来表示。

综合来看,一次函数是我们数学学科中非常重要的基础内容。

希望学生们能够通过本章学习,掌握一次函数的定义、图像和性质,以及在实际问题中的应用,为更深入的数学学习打下坚实的基础。

七年级数学(下)期末复习知识点整理

七年级数学(下)期末复习知识点整理

期末复习二:第五章相交线与平行线知识点概括 一、相交线1、如图1若a 、b 相交,∠1与∠2互为 ,∠1与∠3互为 , 与∠3互为补角的有 。

2、如果∠α与∠β是对顶角,那么一定有∠α ∠β;反之如果∠α=∠β,那么∠α与∠β 对顶角。

3、如果∠α与∠β互为邻补角,则一定有∠α+∠β= °;反之如果∠α+∠β=180°,则∠α与∠β一定互为 ,∠α与∠β (是、不一定是、不是)邻补角。

二、垂直 ?1、如图2,若AB 与CD 相交于点O ,且∠ = °,则AB 与CD 垂直,记作AB CD ,垂足为 。

2、垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)3、垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

如图3,线段PA 、PB 、PC 最短的是 。

(4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如图3点P 到直线a 的距离是 。

5、垂线的画法。

三、三线八角1、两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线b a ,被直线l 所截同位角:内错角:同旁内角:三线八角也可以成模型中看出。

同位角是 型;内错角是 型;同旁内角是 型。

2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

—例如:a b】l12 3 45 6 7 \ 8) D 23 4 如图,判断下列各对角的位置关系: ⑴∠1与∠2;( )⑵∠1与∠7;( )A BC D O —PABC图3a % 12 图1a b-四、平行线的判定与性质1、平行线的概念:在,的两条直线叫做平行线,直线a与直线b互相平行,记作。

2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:3、平行公理――平行线的存在性与惟一性经过,有且只有与这条直线平行`4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行几何语言:#5、两直线平行的判定方法:判定1:相等,两直线平行判定2:相等,两直线平行判定3:,两直线平行几何符号语言:∵∠3=∠2∴()∵∠1=∠2∴()∵∠4+∠2=180°∴()<判定4:垂直于同一直线的两直线平行。

七年级数学下第七章知识点

七年级数学下第七章知识点

七年级数学下第七章知识点本文将介绍七年级数学下册第七章的知识点,包括代数表达式、平方根和立方根等内容。

一、代数表达式代数表达式是用字母和数字表示数学关系的式子。

在七年级数学中,我们需要学会使用代数表达式来表示数学问题。

例如:如果一条长为x米的线段需要减去4米,我们可以用代数表达式x-4来表示这个问题。

当我们学习代数表达式时,我们需要掌握一些基本的代数运算法则,例如加法结合律、乘法分配律等。

这些法则可以帮助我们简化代数表达式,更容易解决复杂的数学问题。

二、平方根和立方根平方根和立方根也是我们在七年级数学中需要掌握的知识点。

平方根表示一个数的平方等于这个数本身,如√9=3,表示9的平方根是3;立方根表示一个数的立方等于这个数本身,如³√27=3,表示27的立方根是3。

在解决数学问题中,我们需要用到平方根和立方根求解,例如:一个正方形的面积是16平方米,我们需要求出它的边长。

我们可以使用求平方根的方法来解决这个问题,16的平方根为4,所以这个正方形的边长为4米。

三、绝对值绝对值也是七年级数学下册第七章的一个重要知识点。

绝对值表示一个数距离0的距离,即一个数的绝对值是这个数到0的距离。

例如:3的绝对值为3,-3的绝对值也为3,因为它们到0的距离都是3。

在解决数学问题中,我们需要使用绝对值来求解,例如:求-5和3的和的绝对值。

我们可以先求出它们的和-2,再求出-2的绝对值2。

总结七年级数学下册第七章主要介绍了代数表达式、平方根和立方根、绝对值等知识点。

通过学习这些知识点,我们可以更好地解决数学问题,提高我们的数学能力。

七年级数学下册几何知识点

七年级数学下册几何知识点

七年级数学下册几何知识点七年级数学下册,几何是一个非常重要的知识点。

在这一学期中,学生们需要掌握许多几何概念和技巧,如图形的分类、长度和面积等基本概念。

本文将带领读者一起回顾这些重要知识点,以帮助大家更好地准备考试。

1.图形的分类在几何学中,图形的分类是最基础的知识点。

在学习几何时,学生需要掌握各种常见的图形,并能够准确地描述它们的属性。

常见的几何图形包括:点、线、线段、射线、角、平面角、平面、圆等。

2.长度和面积的计算在几何学中,长度和面积的计算是非常重要的。

学生需要理解如何计算这些属性,才能更好地理解几何中的相关概念。

一些常见的长度单位包括:米、毫米、厘米、千米等。

一些常见的面积单位包括:平方米、平方厘米、公顷等。

3.直线和角度直线和角度是几何学中另一个重要的概念。

学生需要理解直线和角度的定义和相关的基本知识。

例如,学生需要知道:一条直线有无限个点,而一个角度有三个重要的部分:顶点、起始边和结束边。

4.三角形和其它多边形三角形是几何学中最常见的图形之一。

学生需要掌握不同种类的三角形,包括等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。

除了三角形,学生还需要理解其它多边形的相关知识,如四边形、五边形、六边形等。

5.圆和环圆是几何学中的一个基本概念。

学生需要掌握圆的定义,以及如何计算它的直径、周长和面积等属性。

此外,学生还需要了解环的相关知识,如何计算环的周长和面积等。

总结几何是一个非常基础的数学学科,而且在许多实际问题中有着广泛的应用。

因此,一个扎实的几何学习基础对于学生们来说非常重要。

在学习几何时,学生最好能够理解每一个基本概念和知识点,以此为基础,逐步提高自己的几何水平。

七年级下册数学7章知识点

七年级下册数学7章知识点

七年级下册数学7章知识点第七章数学内容是找规律,寻找数列中的规律,并利用它们预测数列中下一个数字。

这一章的学习内容是让学生养成观察事物及分析问题的好习惯,同时提高他们的数学能力。

一、数列和常数项数列是有规律地排列的一系列数字,例如:1,4,7,10,…。

数列的第一个数字称为首项,用a1表示,而整个数列常被表示成{a1,a2,a3,…}的形式。

常数项,则是指每一项的值和第一个数之间的固定差值。

例如,这个数列有一个常数项3。

二、公差公差是指数列中每个值之间的恒定差异,根据数列中的值,公差可以为正数或负数。

例如:2,4,6,8,公差是2,而5,2,-1,-4,公差是-3.三、等差数列当数列的每个项与前一项之间的差异都是一样的时候,这个数列就是等差数列。

一个等差数列可以按公差和首项来直接表示它的项,具体公式如下:an = a1 +(n-1)d。

四、通项公式为了找到等差数列中的任意一项,我们可以使用通项公式, 通项公式是关于n的函数,表示等差数列中第n项的值。

根据等差数列的定义和公差的定义可知:an = a1 +(n-1)d。

五、练习题1. 请对以下等差数列,求出公差d及首项a1。

1,3,5,7,9,...2. 在一个等差数列{a1,a2,a3,…}中,已知a5 =4,d =2。

请求出a1和a10。

参考答案:1.公差d=2,首项a1=12. a1 = -6,a10 = 18总结:数列和常数项、公差、等差数列和通项公式是算术变化的重要概念,通过这一章的学习,学生能够提高分析问题和找规律的能力,并为更加复杂的数学问题做出准确的预测。

数学中的规律和科学中的规律一样,都是有迹可循的。

对于学习者来说需要多通过实际问题的观察,掌握寻找规律的技巧。

在以后的数学研究中,随着学习的深入,更多有趣的数学知识将开启大家的眼界。

七年级数学下册知识点归纳

七年级数学下册知识点归纳

七年级数学下册知识点归纳第五章相交线与平行线5.1 相交线一、相交线两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

③对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

5.2 平行线及其判定(一) 平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。

七年级下数学的思维导图

七年级下数学的思维导图

级下数学的思维导图
级(下)知识点总结
第十三章相交线平行线
主要知识点:
1.平面上两直线的位置关系;垂线;对顶角;邻补角。

2.同位角、内错角、同旁内角。

3.两点的距离、点到直线的距离、两条平行线间的距离。

4.平行线的判定、性质。

中考分值:
可能会考一题选择或填空(4分);但它是几何证明的基础,也是从现在开始接触几何证明
重难点:
1.三线八角的准确辨析与应用
2.本章是第一次见到几何证明题,证明题的理解和证明过程的书写都有很大的难度
第十四章三角形
主要知识点:
1.三角形的有关概念与性质
2.全等三角形的概念与性质
3.全等三角形的判定
4.等腰三角形的性质与判定
5.等边三角形的性质与判定
中考分值:
几何题目很少单独某个知识点出一题,但本章是做所有几何题目的基础,每个几何题目必然会用到本章的知识;
重难点:
1.本章知识概念比较多,记忆起来比较麻烦
2.几何知识学的更多,几何题目更难,需要一定的证明技巧
第十五章平面直角坐标系
主要知识点:
1.平面直角坐标系
2.直角坐标平面内点的运动
中考分值:
可能会有一题选择或填空(4分);但它是学好函数必须的基础
重难点:
1.直角坐标平面内点的坐标特征
2.直角坐标平面内对称点的坐标特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质对顶角的性质:对顶角相等。

垂线的性质:EDCBA性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

四、经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。

例2 如图AD 平分∠CAE ,∠B = 350,∠DAE=600,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。

A .450、450、900 B .300、600、900C .250、250、1300D .360、720、720ED CB A21例4 已知如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数。

例5 如图,AB ∥CD ,EF 分别与AB 、CD 交于G 、H ,MN ⊥AB 于G ,∠CHG=1240,则∠EGM 等于多少度?第六章 平面直角坐标系一、知识结构图有序数对 平面直角坐标系平面直角坐标系用坐标表示地理位置 坐标方法的简单应用用坐标表示平移 二、知识定义有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对,记做(a,b )平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P ,过P 分别向x 轴,y 轴作垂线,垂足分别在x 轴,y 轴上,对应的数a,b 分别叫点P 的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

三、经典例题例1 一个机器人从O 点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐标为(3,0),求点 A5•的坐标。

FEDCBAN MH GFE DCBA例2 如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( ) A 、(0,3) B 、(2,3) C 、(3,2) D 、(3,0)例3 如图2,根据坐标平面内点的位置,写出以下各点的坐标:A( ),B( ),C( )。

例4 如图,面积为12cm2的△ABC 向x 轴正方向平移至△DEF 的位置,相应的坐标如图所示(a ,b 为常数), (1)、求点D 、E 的坐标 (2)、求四边形ACED 的面积。

例5 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( ) A 、经过原点 B 、平行于y 轴 C 、平行于x 轴 D 、以上说法都不对第七章 三角形一、知识结构图边A BC例2与三角形有关的线段高中线角平分线三角形的内角和多边形的内角和三角形的外角和多边形的外角和二、知识定义三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

多边形的内角:多边形相邻两边组成的角叫做它的内角。

多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

三、公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(n-2)〃180°多边形的外角和:多边形的内角和为360°。

多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有23)-n(n条对角线。

四、经典例题例1 如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确例2 如图,结合图形作出了如下判断或推理:①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠ACD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是( )个.(A)1 (B)2 (C)3 (D)4例3在如图所示的方格纸中,画出,△DEF 和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能说明它们为什么全等吗?例4 测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管口径AB正对着量具上的50mm刻度,那么小管口径AB的长是多少?例5 在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。

第八章 二元一次方程组二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是 ax+by=c(a ≠0,b ≠0)。

二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

三、经典例题例1 用加减消元法解方程组,由①×2—②得。

例2 如果是同类项,则、的值是( )A 、=-3,=2B 、=2,=-3C 、=-2,=3D 、=3,=-2例3 计算:例4 王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。

其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。

问王大伯一共获纯利多少元?例5 已知关于x 、y 的二元一次方程组的解满足二元一次方程,求的值。

第九章 不等式与不等式组一、知识结构图解 不 等式 组检验二、知识定义不等式:一般地,用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。

不等式的解:使不等式成立的未知数的值,叫做不等式的解。

不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

三、定理与性质 不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变四、经典例题例1 当x 时,代数代2-3x 的值是正数。

例 2 一元一次不等式组的解集是 ( )A .-2<x <3B .-3<x <2C .x <-3D .x <2例3已知方程组的解为负数,求k的取值范围。

例4 某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。

5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)例5 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。

相关文档
最新文档