广西壮族自治区贵港市覃塘区2020-2021学年九年级上学期期末数学试题
2020-2021学年九年级上数学期末试卷及答案解析
2020-2021学年九年级[上]数学期末测试卷一.选择题(共10小题)1.(2020•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7B.﹣7 C.11 D.﹣112.(2020•咸宁)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣13.(2020•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4C.﹣4 D.104.(2020•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种5.(2020•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形6.(2020•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个7.(2020•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=38.(2020•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()D.4ac﹣b2<﹣8aA.a<0 B.a﹣b+c<0 C.﹣9.(2020•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.810.(2020•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.B D⊥AC B.A C2=2AB•AEC.△ADE是等腰三角形D.B C=2AD二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.(2020•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.(2020•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2020的坐标为_________.14.(2020•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.(2020•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.(2020•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.(2020•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.(2020•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.(2020•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20202020•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.(2020•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.(2020•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.(2020•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.(2020•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共2020产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.采购数量(件) 1 2 …A产品单价(元/件) 1480 1460 …B产品单价(元/件) 1290 1280 …(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于12020,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A 种产品多少件时总利润最大,并求最大利润.25.(2020•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.(2020•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.(2020•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.(2020•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2020-2021学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2020•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7B.﹣7 C.11 D.﹣11考点: 根与系数的关系.专题: 计算题.分析:根据已知两等式得到a与b为方程x2﹣6x+4=0的两根,利用根与系数的关系求出a+b与ab的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab的值代入计算即可求出值.解答:解:根据题意得:a与b为方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,则原式===7.故选A点评:此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.2.(2020•咸宁)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点: 根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.3.(2020•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为() A.﹣10 B.4C.﹣4 D.10考点: 根与系数的关系.专题: 计算题.分析:利用根与系数的关系表示出m+n与mn,已知等式左边利用多项式乘多项式法则变形,将m+n与mn的值代入即可求出a的值.解答:解:根据题意得:m+n=3,mn=a,∵(m﹣1)(n﹣1)=mn﹣(m+n)+1=﹣6,∴a﹣3+1=﹣6,解得:a=﹣4.故选C点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.4.(2020•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种考点: 利用旋转设计图案;利用轴对称设计图案.专题: 压轴题.分析:根据轴对称的定义,及题意要求画出所有图案后即可得出答案.解答:解:得到的不同图案有:,共6种.故选C.点评:本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.5.(2020•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形考点: 旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF 是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.6.(2020•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个考点: 模拟实验.分析:根据共摸球40次,其中10次摸到黑球,则摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.解答:解:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,4÷=12(个).故选:A.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.7.(2020•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3考点: 抛物线与x轴的交点.分析:关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.解答:解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.点评:本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.8.(2020•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()D.4ac﹣b2<﹣8aA.a<0 B.a﹣b+c<0 C.﹣考点: 二次函数图象与系数的关系;抛物线与x轴的交点.分析:由开口方向,可确定a>0;由当x=﹣1时,y=a﹣b+c>0,可确定B错误;由对称轴在y轴右侧且在直线x=1左侧,可确定x=﹣<1;由二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,可得最小值:<﹣2,即可确定D正确.解答:解:A、∵开口向上,∴a>0,故本选项错误;B、∵当x=﹣1时,y=a﹣b+c>0,故本选项错误;C、∵对称轴在y轴右侧且在直线x=1左侧,∴x=﹣<1,故本选项错误;D、∵二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,∴最小值:<﹣2,∴4ac﹣b2<﹣8a.故本选项正确.故选D.点评:此题考查了图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.9.(2020•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点: 相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.10.(2020•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.B D⊥AC B.A C2=2AB•AEC.△ADE是等腰三角形D.B C=2AD考点: 圆周角定理;等腰三角形的判定;相似三角形的判定与性质.分析:利用圆周角定理可得A正确;证明△ADE∽△ABC,可得出B正确;由B选项的证明,即可得出C正确;利用排除法可得D不一定正确.解答:解:∵BC是直径,∴∠BDC=90°,∴BD⊥AC,故A正确;∵BD平分∠ABC,BD⊥AC,∴△ABC是等腰三角形,AD=CD,∵∠AED=∠ACB,∴△ADE∽△ABC,∴△ADE是等腰三角形,∴AD=DE=CD,∴===,∴AC2=2AB•AE,故B正确;由B的证明过程,可得C选项正确.故选D.点评:本题考查了相似三角形的判定与性质、圆周角定理及圆内接四边形的性质,综合考察的知识点较多,解答本题的关键在于判断△ABC和△ADE是等腰三角形.二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.考点: 换元法解一元二次方程.分析:设2x+2y=t,以t代替已知方程中的(2x+2y),列出关于t的新方程,通过解新方程即可求得t的值.解答:解:设2x+2y=t,则由原方程,得(t+1)(t﹣1)=63,即t2=64,直接开平方,得t=8或t=﹣8.①当t=8时,2x+2y=8,则x+y=4.②当t=﹣8时,2x+2y=﹣8,则x+y=﹣4.综上所述,x+y的值是4或﹣4.故答案是:4或﹣4.点评:本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.12.(2020•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.考点: 根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.专题: 计算题.分析:首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.解答:解:∵,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.点评:本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.13.(2020•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2020的坐标为(0,﹣2).考点: 中心对称;规律型:点的坐标.专题: 压轴题;规律型.分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2020的坐标.解答:解:点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵=335…3,∴点P2020的坐标为(0,﹣2).故答案为:(0,﹣2).点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.14.(2020•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.考点: 概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2,∴其中带有字母的有16张,∴从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:.点评:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.15.(2020•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.考点: 二次函数图象与系数的关系;一次函数图象与系数的关系.专题: 计算题.分析:由抛物线的对称轴在y轴右侧,得到a与b异号,根据抛物线开口向下得到a小于0,故b大于0,再利用抛物线与y轴交点在y轴正半轴,得到c大于0,利用一次函数的性质即可判断出一次函数y=bx+c不经过的象限.解答:解:根据图象得:a<0,b>0,c>0,故一次函数y=bx+c的图象不经过第四象限.故答案为:四.点评:此题考查了二次函数图象与系数的关系,以及一次函数图象与系数的关系,熟练掌握一次、二次函数的图象与性质是解本题的关键.16.(2020•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.考点: 二次函数的性质.专题: 压轴题.分析:根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.解答:解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.点评:本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.17.(2020•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.考点: 抛物线与x轴的交点.专题: 计算题;压轴题.分析:把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.解答:解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:在﹣2<b<2范围内的任何一个数.点评:本题主要考查对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解此题的关键.18.(2020•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).考点: 相似三角形的判定与性质;垂径定理;圆周角定理.专题: 压轴题.分析:①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④首先求得△ADF的面积,由相似三角形面积的比等于相似比,即可求得△ADE的面积,继而求得S△DEF=4.解答:解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=;故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×=3,∵△ADF∽△AED,∴=()2,∴=,∴S△AED=7,∴S△DEF=S△AED﹣S△ADF=4;故④正确.故答案为:①②④.点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.三.解答题(共10小题)19.(2020•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)考点: 一元二次方程的应用;一元一次不等式的应用.专题: 压轴题.分析:(1)设甲队单独完成需要x个月,则乙队单独完成需要x﹣5个月,根据题意列出关系式,求出x的值即可;(2)设甲队施工x个月,则乙队施工x个月,根据工程款不超过1500万元,列出一元一次不等式,解不等式求最大值即可.解答:解:(1)设甲队单独完成需要x个月,则乙队单独完成需要(x﹣5)个月,由题意得,x(x﹣5)=6(x+x﹣5),解得x1=15,x2=2(不合题意,舍去),则x﹣5=10.答:甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月;(2)设甲队施工y个月,则乙队施工y个月,由题意得,100y+(100+50)≤1500,解不等式得,y≤8.57,∵施工时间按月取整数,∴y≤8,答:完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.点评:本题考查了一元二次方程的应用和一元一次不等式的应用,难度一般,解本题的关键是根据题意设出未知数列出方程及不等式求解.20202020•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.考点: 旋转的性质;全等三角形的判定与性质;矩形的性质;正方形的性质.专题: 计算题.分析:(1)根据旋转的性质得CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,则∠CD′E=30°,然后根据平行线的性质即可得到∠α=30°;(2)由G为BC中点可得CG=CE,根据旋转的性质得∠D′CE′=∠DCE=90°,CE=CE′CE,则∠GCD′=∠DCE′=90°+α,然后根据“SAS”可判断△GCD′≌△DCE′,则GD′=E′D;(3)根据正方形的性质得CB=CD,而CD=CD′,则△BCD′与△DCD′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD′与△DCD′为钝角三角形时,可计算出α=135°,当△BCD′与△DCD′为锐角三角形时,可计算得到α=315°.解答:(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,。
2023届广西壮族自治区贵港市覃塘区数学九年级第一学期期末质量检测模拟试题含解析
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=35002.如图,在平行四边形ABCD中,点M为AD边上一点,且AM2DM=,连接CM,对角线BD与CM相交于点N,若CDN 的面积等于3,则四边形ABNM的面积为()A.8B.9C.11D.123.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于A.100°B.80°C.50°D.40°4.在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A. B.C.D.5.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为( )A .1B .2C .3D .46.方程230x x +-=的两根分别是12x x 、,则12x x +等于 ( )A .1B .-1C .3D .-3 7.如图,O 是ABC ∆的外接圆,已知50ACB ︒∠=,则ABO ∠的大小为( )A .30︒B .40︒C .45︒D .50︒8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACBB .∠ADB=∠ABC C .AB 2=AD•ACD . AD AB AB BC = 9.﹣12的绝对值为( ) A .﹣2 B .﹣12 C .12 D .110.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .二、填空题(每小题3分,共24分)11.小慧准备给妈妈打个电话,但她只记得号码的前5位,后三位由5,1,2这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.12.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .13.如果m 是一元二次方程2320x x --=的一个根,那么2262m m -+的值是__________.14.如图,AB 为O 的弦,O 的半径为5,OC AB ⊥于点D ,交O 于点C ,且1CD =,则弦AB 的长是_____.15.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是______.16.如果12a b a -=,那么b a=_________. 17.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 .18.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数y =k x(x >0)的图象经过该菱形对角线的交点A ,且与边BC 交于点F .若点D 的坐标为(3,4),则点F 的坐标是_____.三、解答题(共66分)19.(10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义;(2)求线段AB 所表示的1y 与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?20.(6分)如图,在ABC ∆中,12BA BC cm ==,16AC cm =,点P 从A 点出发,沿AB 以每秒3cm 的速度向B 点运动,同时点Q 从C 点出发,沿CA 以每秒4cm 的速度向A 点运动,设运动的时间为x 秒.(1)当x 为何值时,APQ ∆与CQB ∆相似?(2)当14BCQ ABC S S ∆∆=时,请直接写出BPQ ABCS S ∆∆的值. 21.(6分)如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60︒方向上有一小岛C ,小岛C 在观测站B 的北偏西15︒方向上,码头A 到小岛C 的距离AC 为10海里.(1)填空:BAC ∠= 度,C ∠= 度;(2)求观测站B 到AC 的距离BP (结果保留根号).22.(8分)点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d .定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ;定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ;(1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = . (2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫ ⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.23.(8分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?24.(8分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案) 25.(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染. (1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)n 轮(n 为正整数)感染后,被感染的电脑有________台.26.(10分)在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【详解】设增长率为x ,根据题意得2500×(1+x )2=3500,故选B .【点睛】本题考查一元二次方程的应用--求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).2、C【分析】根据平行四边形判断△MDN∽△CBN,利用三角形高相等,底成比例即可解题.【详解】解:∵四边形ABCD 是平行四边形, 2AM DM ,∴易证△MDN∽△CBN ,MD:BC=DN:BN=MN:CN=1:3,∴S △MDN : S △DNC =1:3, S △DNC : S △ABD =1:4,(三角形高相等,底成比例)∵S CDN =3,∴S △MDN =1,S △DNC =3,S △ABD =12,∴S 四边形ABNM =11,故选C.【点睛】本题考查了相似三角形的性质,相似三角形面积比等于相似比的平方,中等难度,利用三角形高相等,底成比例是解题关键.3、D【解析】试题分析:∵∠ACB 和∠AOB 是⊙O 中同弧AB 所对的圆周角和圆心角,且∠AOB=80°,∴∠ACB=12∠AOB=40°.故选D . 4、B【分析】根据反比例函数k y x =中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可. 【详解】解:A 、图形面积为|k|=1;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=1. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 5、B【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED ,根据等角对等边,即可求得AE 的长,在直角△ABE 中,利用勾股定理求得BE 的长,则CE 的长即可求解.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC=∠ADE ,又∵∠DEC=∠AED ,∴∠ADE=∠AED ,∴AE=AD=10,在直角△ABE 中,BE=, ∴CE=BC ﹣BE=AD ﹣BE=10﹣8=1.故选B .考点:矩形的性质;角平分线的性质.6、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵230x x +-=的两根分别是12x x 、,∴12111x x +=-=-,【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.7、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO,∴∠ABO=(180°-100°)÷2=40°,故选:B.【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9、C【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.﹣12的绝对值为|-12|=-(﹣12)= 12. 点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.10、D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C 选项正确;故选D.二、填空题(每小题3分,共24分)11、16【解析】首先根据题意可得:可能的结果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【详解】∵她只记得号码的前5位,后三位由5,1,2,这三个数字组成,∴可能的结果有:512,521,152,125,251,215; ∴他第一次就拨通电话的概率是:16 故答案为16. 【点睛】考查概率的求法,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的之比.12、1.【解析】试题分析:解方程x 2-13x+40=0,(x-5)(x-8)=0,∴x 1=5,x 2=8,∵3+4=7<8,∴x=5.∴周长为3+4+5=1. 故答案为1.考点:1一元二次方程;2三角形.13、6【分析】根据m 是一元二次方程2320x x --=的一个根可得m 2-3m=2,把2262m m -+变形后,把m 2-3m=2代入即可得答案.【详解】∵m 是一元二次方程2320x x --=的一个根,∴m 2-3m=2,∴2262m m -+=2(m 2-3m)+2=2×2+2=6,故答案为:6【点睛】本题考查一元二次方程的解的定义,熟练掌握定义并正确变形是解题关键.14、1【分析】连接AO ,得到直角三角形,再求出OD 的长,就可以利用勾股定理求解.【详解】连接AO ,∵半径是5,1CD =,∴514OD =-=,根据勾股定理,2222543AD AO OD =-=-=,∴326AB =⨯=,因此弦AB 的长是1.【点睛】解答此题不仅要用到垂径定理,还要作出辅助线AO ,这是解题的关键.15、()214y x =+-【分析】先根据定弦抛物线的定义求出定弦抛物线的表达式,再按图象的平移规律平移即可.【详解】∵某定弦抛物线的对称轴为直线1x =∴某定弦抛物线过点(0,0),(2,0)∴该定弦抛物线的解析式为22(2)2(1)1y x x x x x =-=-=--将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是2(12)13y x =-+-- 即()214y x =+-故答案为:()214y x =+-.【点睛】本题主要考查二次函数图象的平移,能够求出定弦抛物线的表达式并掌握平移规律是解题的关键.16、1 2【分析】将12a ba-=进行变形为112ba-=,从而可求出ba的值.【详解】∵112 a b ba a-=-=∴12 ba=故答案为1 2【点睛】本题主要考查代数式的求值,能够对原式进行适当变形是解题的关键.17、1 2【解析】∵抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴他第二次再抛这枚硬币时,正面向上的概率是:1 218、(6,43).【分析】过点D作DM⊥OB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DM⊥OB,垂足为M,∵D(3,4),∴OM=3,DM=4,∴OD5,∵四边形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的对角线交点,∴A(4,2),代入y=kx,得:k=8,∴反比例函数的关系式为:y=8x,设直线BC的关系式为y=kx+b,将B(5,0),C(8,4)代入得:5084k bk b+=⎧⎨+=⎩,解得:k=43,b=﹣203,∴直线BC的关系式为y=43x﹣203,将反比例函数与直线BC联立方程组得:842033yxy x⎧=⎪⎪⎨⎪=-⎪⎩,解得:11643xy=⎧⎪⎨=⎪⎩,2218xy=-⎧⎨=-⎩(舍去),∴F(6,43),故答案为:(6,43).【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.三、解答题(共66分)19、(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg 时,获得的利润最大,最大值为1.【解析】试题分析:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x 的二次函数,求得最值即可.试题解析:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的1y 与x 之间的函数关系式为11y k x b =+,∵11y k x b =+的图象过点(0,60)与(90,42),∴11160{9042b k b =+=,∴解得:110.2{60k b =-=,∴这个一次函数的表达式为:y=﹣0.2x+60(0≤x≤90);(3)设2y 与x 之间的函数关系式为y kx b =+,∵经过点(0,120)与(130,42),∴120{13042b k b =+=,解得:0.6{120k b =-=, ∴这个一次函数的表达式为0.6120y x =+(0≤x≤130),设产量为xkg 时,获得的利润为W 元,当0≤x≤90时,W=[(0.6120)(0.260)]x x x -+--+=20.4(75)2250x --+,∴当x=75时,W 的值最大,最大值为1;当90≤x130时,W=[(0.6120)42]x x -+-=20.6(65)2535x --+,∴当x=90时,W=20.6(9065)25352160--+=,由﹣0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为1.考点:二次函数的应用.20、(1)当74x =或2-+时,APQ ∆与CBQ ∆相似;(2)916BPQ ABC S S ∆∆= 【分析】(1)APQ ∆与CQB ∆相似,分两种情况:当APQ BQC ∠=∠ 时,APQCQB ∆∆;当APQ QBC ∠=∠时,APQ CBQ ∆∆.分情况进行讨论即可;(2)通过14BCQ ABC S S ∆∆=求出P,Q 运动的时间,然后通过ABQ △作为中间量建立所求的两个三角形之间的关系,从而比值可求. 【详解】(1)由题意得3AP x =,4QC x =,164AQ x =-BA BC =A C ∴∠=∠①当APQ CQB ∆∆时AP AQ CQ BC= 即3164412x x x -= 解得:74x =. ②当APQ CBQ ∆∆时AQ AP CQ BC= 即1643412x x x -=解得:12x =-+22x =--综上所述,当74x =或225-+时,APQ ∆与CBQ ∆相似 (2)当14BCQABC S S ∆∆=时,34ABQ ABC S S =∵BQC 和ABC 等高,∴144QC AC == 此时运动的时间为1秒则3,1239AP BP AB AP ==-=-=∵BPQ 和ABQ △等高∴34BPQ ABQ SS =∴916BPQ ABC S S = ∴916BPQABC S S ∆∆=. 【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定和性质是解题的关键.21、(1)30,45;(2)(3-5)海里【分析】(1)由题意得:906030BAC ︒︒︒∠=-=,9015105ABC ︒︒︒∠=+=,由三角形内角和定理即可得出C ∠的度数; (2)证出BCP ∆是等腰直角三角形,得出=BP PC ,求出3PA BP =,由题意得出310BP BP +=,解得535BP =-即可.【详解】解:(1)由题意得:906030BAC ︒︒︒∠=-=,9015105ABC ︒︒︒∠=+=,18045C BAC ABC ︒︒∴∠=-∠-∠=;故答案为30,45;(2)BP AC ⊥,90BPA BPC ︒∴∠=∠=,45C ︒∠=,BCP ∴∆是等腰直角三角形,BP PC ∴=,30BAC ︒∠=,PA ∴=,PA PC AC +=,10BP ∴+=,解得:5BP =,答:观测站B 到AC 的距离BP 为5)-海里.【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.22、(1)2+(2)610t ≤≤1016-≤≤--(3)325m ≤-或0m ≥ 【分析】(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l 的最大距离为TH +TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解,∴24120b ∆=-⨯⨯=,解得22b =, ∴22y x =-+,联立222y x y x ⎧=-+⎪⎨=⎪⎩,解得22x y ⎧=⎪⎨=⎪⎩,即()2,2P , ∴2PM OM ==,且点P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2,∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ 平分∠AOB ,∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离,∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒,∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则OQ=2,∴22PQ OP OQ =+=+,即()1,22min D H l =+;(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤+ ∴3353TH ≤≤由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =+, ∴6310t ≤+≤, 解得63103t ≤≤103165-≤≤-- (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫ ⎪⎝+-+⎭+, ∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩, ∴182b a =-+, 又∵点(),D a b 恒在直线3l 上,∴直线3l 的表达式为:182y x =-+,∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交,∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称,∵(),28E m m +,∴(),28m m F ---,把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E 运动到直线3l 上时,把点E 代入182y x =-+得:18282m m -+=+,解得:0m =, ∵当点E 沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向上运动,即0m ≥,综上所述,325m ≤-或0m ≥. 【点睛】 本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.23、(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+,∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.24、(1)见解析(2)(1)53或163或1 【分析】(1)根据已知中相似对角线的定义,只要证明△AEF ∽△ECF 即可;(2)AC 是四边形ABCD 的相似对角线,分两种情形:△ACB ~△ACD 或△ACB ~△ADC ,分别求解即可;(1)分三种情况①当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线.②取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD ′,延长CD′交AB 于E ,则可得出 EF 是四边形AECF 的相似对角线.③取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则可证出EF 是四边形AECF 的相似对角线.此时BE=1;【详解】解:(1)∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∵E 为AD 的中点,1AF =,∴AE=DE=2,12∴==AF AE DE CD ∵∠A=∠D=90°,∴△AEF ∽△DCE ,∴∠AEF=∠DCE ,12==EF AF CE DE ∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°,12==AF EF AE EC ∴△AEF ∽△ECF ,∴EF 为四边形AECF 的相似对角线.(2)∵AC 平分BAD ∠,∴∠BAC=∠DAC =60°∵AC 是四边形ABCD 的相似对角线,∴△ACB ~△ACD 或△ACB ~△ADC①如图2,当△ACB ~△ACD 时,此时,△ACB ≌△ACD∴AB=AD=1,BC=CD ,∴AC 垂直平分DB ,在Rt △AOB 中,∵AB=1,∠ABO=10°, 33cos302233︒∴=⋅=∴==BO AB BD OB ②当△ACB ~△ADC 时,如图1∴∠ABC=∠ACD∴AC 2=AB •AD ,∵6AC =,3AB = ∴6=1AD ,∴AD=2,过点D 作DHAB 于H在Rt △ADH 中,∵∠HAD=60°,AD=2,11,332∴====AH AD DH 在Rt △BDH 中,2222419(3)=+=+=BD DH BH 综上所述,BD 的长为:3319(1)①如图4,当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线,设AE=EC=x ,在Rt △BCE 中,∵EC 2=BE 2+BC 2,∴x 2=(6-x )2+42,解得x=133, ∴BE=AB-AE=6-133=53. ②如图5中,如图取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则 EF 是四边形AECF 的相似对角线.∵△AEF ∽△DFC ,∴=AE AF DF DC22623163∴=∴=∴=-=AE AE BE AB AE③如图6,取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则EF 是四边形AECF 的相似对角线.则 BE=1.综上所述,满足条件的BE 的值为53或163或1. 【点睛】 本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25、(1)8;(2)会;(3)9n .【分析】(1)根据题意列出一元二次方程,求解即可.(2)根据题意计算出3轮感染后被感染的电脑数,与700进行比较即可.(3)根据题中规律,写出函数关系式即可.【详解】(1)解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得:()1181x x x +++=解得12810x x = =-,(舍去)(2)81881729700+⨯=>答:3轮感染后,被感染的电脑会超过700台.(3)由(1)得每轮感染中平均每一台电脑会感染8台电脑第一轮:被感染的电脑有9台;第二轮:被感染的电脑有29989+⨯=台;第三轮:被感染的电脑有239+989⨯=台;故我们可以得出规律:n 轮(n 为正整数)感染后,被感染的电脑有9n 台【点睛】本题考查了一元二次方程的实际应用和归纳总结题,掌握解一元二次方程的方法和找出关于n 的函数关系式是解题的关键.26、两次摸到的球都是红球的概率为19. 【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=19.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解.。
2020-2021年九年级上册期末数学试题(含答案)
2020-2021年九年级上册期末数学试题(含答案)一、选择题1.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.4 2.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)3.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .1010B .310C .13D .1034.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=5.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.方程x 2﹣3x =0的根是( ) A .x =0 B .x =3 C .10x =,23x =- D .10x =,23x = 8.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A .2020B .﹣2020C .2021D .﹣20219.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A.4 B.6 C.8 D.1210.如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1:2D.2:111.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.512.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.3B.234C 1433D223313.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.17 xx+=14.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为()A.12×108B.1.2×108C.1.2×109D.0.12×10915.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣2二、填空题16.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l 将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P ,则DP =________.17.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____. 18.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 19.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.20.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.21.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.22.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.23.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.24.一组数据3,2,1,4,x 的极差为5,则x 为______.25.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.26.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .27.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.29.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a = ,b = ,c = .(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.32.如图,在Rt ABC ∆中,90BAC ∠=︒,点G 是BC 中点.连接AG .作BD AG ⊥,垂足为F ,ABD ∆的外接圆O 交BC 于点E ,连接AE .(1)求证:AB AE =;(2)过点D 作圆O 的切线,交BC 于点M .若14GM GC =,求tan ABC ∠的值; (3)在(2)的条件下,当1DF =时,求BG 的长.33.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.34.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.35.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.四、压轴题36.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长.39.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.40.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.C解析:C 【解析】 【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可. 【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ), ∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1). 故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.3.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===.故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.4.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.5.B解析:B 【解析】 【分析】利用概率的意义直接得出答案. 【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B . 【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键.6.B解析:B 【解析】 【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键9.C解析:C【解析】【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB =OC ,BC =8,∴△OBC 是等边三角形,∴OB =BC =8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B .【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.11.C解析:C【解析】 【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB ,∴OCP 和ODQ 为直角三角形, 根据勾股定理:2222OP=OC PC =106--,2222DQ=OD OQ =106--,且OQ=6,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°, ∴CPE ∽DQE ,故CP DQ =PE EQ, 设PE=x ,则EQ=14-x , ∴68=x 14-x,解得x=6, ∴OE=OP-PE=8-6=2,故选:C .【点睛】 本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE 与DQE 相似,并得出线段的比例关系.12.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H的横坐标b,∴a+b==;故选C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.14.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 二、填空题16.1, ,【解析】【分析】分别利用当DP∥AB 时,当DP∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图,当DP ∥AB 时,△PDC ∽△ABC ,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
广西壮族自治区贵港市覃塘区2025届九上数学期末教学质量检测试题含解析
广西壮族自治区贵港市覃塘区2025届九上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,小颖身高为160cm ,在阳光下影长AB=240cm ,当她走到距离墙角(点D )150cm 处时,她的部分影子投射到墙上,则投射在墙上的影子DE 的长度为( )A .50B .60C .70D .802.函数y =ax 2﹣1与y =ax (a≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .3.二次函数()20y ax bx c a =++≠图象如图,下列结论正确的是( )A .0abc >B .若221122ax bx ax bx +=+且12x x ≠,则121x x =+C .0a b c -+>D .当1m ≠时,2a b am bm +>+4.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 5.如图,O 的直径10cm AB =,弦CD AB ⊥于P .若:3:5OP OB =,则CD 的长是( )A.6cm B.4cm C.8cm D.91cm6.函数y=kx与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.7.已知函数:(1)xy=9;(2)y=6x;(3)y=-23x;(4)y=22x;(5) y=31x,其中反比例函数的个数为( )A.1 B.2 C.3 D.48.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.33C.32D.3329.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变B.团队日工资的方差不变C.团队日工资的中位数不变D.团队日工资的极差不变10.如图,在△ABC中,点D是在边BC上,且BD=2CD,=,=,那么等于()A.=+B.=+C.=-D.=+11.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO 缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)12.若32ab=,则a bb+的值等于()A.12B.52C.53D.54二、填空题(每题4分,共24分)13.如图,⊙O的半径OC=10cm,直线l⊥OC,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移____________cm 时能与⊙O相切.14.△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为 .15.在△ABC 中,若AB =5,BC =13,AD 是BC 边上的高,AD =4,则tanC =_____.16.如图,某测量小组为了测量山BC 的高度,在地面A 处测得山顶B 的仰角45°,然后沿着坡度为1:3的坡面AD 走了2003米到D 处,此时在D 处测得山顶B 的仰角为60°,则山高BC =_____米(结果保留根号).17.已知:如图,在ABC ∆中,AD BC ⊥于点D ,E 为AC 的中点,若8CD =,5DE =,则AD 的长是_______.18.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF 的对称中心与原点O 重合,点A 在x 轴上,点B 在反比例函数k y x=位于第一象限的图象上,则k 的值为 .三、解答题(共78分)19.(8分)解下列方程:(1)x 2﹣2x ﹣2=0;(2)(x ﹣1)(x ﹣3)=1.20.(8分)如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC 的延长线交BM 于点D ,CF 为O 的切线交BM 于点F .(1)求证:DF BF =;(2)连接OF ,若10AB =,6BC =,求线段OF 的长.21.(8分)如图,抛物线与x 轴交于A 、B 两点,与y 轴交C 点,点A 的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是直线1x 2=-(1)求抛物线的解析式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求M 点的坐标.22.(10分)根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.23.(10分)如图所示,四边形ABCD 中,AD ∥BC ,∠A =90°,∠BCD <90°,AB =7,AD =2,BC =3,试在边AB 上确定点P 的位置,使得以P 、C 、D 为顶点的三角形是直角三角形.24.(10分)正比例函数y =2x 与反比例函数y =m x的图象有一个交点的纵坐标为1. (1)求m 的值;(2)请结合图象求关于x 的不等式2x≤m x的解集. 25.(12分)如图,在平面直角坐标系中,点, A B 的坐标分别是()0,3 ,()4, 0-.(1)将AOB ∆绕点A 逆时针旋转90︒得到 AEF ∆,点O ,B 对应点分别是E ,F ,请在图中画出AEF ∆,并写出E ,F 的坐标;(2)以O 点为位似中心,将 AEF ∆作位似变换且缩小为原来的23,在网格内画出一个符合条件的111A E F ∆.26.教育部基础教育司负责人解读“2020新中考”时强调要注重学生分析与解决问题的能力,要增强学生的创新精神和综合素质.王老师想尝试改变教学方法,将以往教会学生做题改为引导学生会学习.于是她在菱形的学习中,引导同学们解决菱形中的一个问题时,采用了以下过程(请解决王老师提出的问题):先出示问题(1):如图1,在等边三角形ABC 中,D 为BC 上一点,E 为AC 上一点,如果BD CE =,连接AD 、BE ,AD 、BE 相交于点P ,求APE ∠的度数.通过学习,王老师请同学们说说自己的收获.小明说发现一个结论:在这个等边三角形ABC 中,只要满足BD CE =,则APE ∠的度数就是一个定值,不会发生改变.紧接着王老师出示了问题(2):如图2,在菱形ABCD 中,60A ∠=︒,E 为BC 上一点,F 为CD 上一点,BE CF =,连接DE 、BF ,DE 、BF 相交于点P ,如果4DP =,3BP =,求出菱形的边长.问题(3):通过以上的学习请写出你得到的启示(一条即可).参考答案一、选择题(每题4分,共48分)1、B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:150=160:(160−x),解得:x=60.故选B.【点睛】本题考查相似三角形的判定与性质,解题突破口是过E作EF⊥CG于F.2、B【分析】本题可先通过抛物线与y轴的交点排除C、D,然后根据一次函数y=ax图象得到a的正负,再与二次函数y =ax2的图象相比较看是否一致.【详解】解:由函数y=ax2﹣1可知抛物线与y轴交于点(0,﹣1),故C、D错误;A、由抛物线可知,a>0,由直线可知,a<0,故A错误;B、由抛物线可知,a>0,由直线可知,a>0,故B正确;故选:B.【点睛】此题考查的是一次函数的图象及性质和二次函数的图象及性质,掌握一次函数的图象及性质与系数关系和二次函数的图象及性质与系数关系是解决此题的关键.3、D【分析】根据二次函数的图象得到相关信息并依次判断即可得到答案.【详解】由图象知:a<0,b>0,c>0,12b a-=,∴abc<0,故A 选项错误; 若221122ax bx ax bx +=+且12x x ≠,∴对称轴为1212x x x ==+,故B 选项错误; ∵二次函数的图象的对称轴为直线x=1,与x 轴的一个交点的横坐标小于3,∴与x 轴的另一个交点的横坐标大于-1,当x=-1时,得出y=a-b+c<0,故C 选项错误;∵二次函数的图象的对称轴为直线x=1,开口向下,∴函数的最大值为y=a+b+c ,∴2(1)a b c am bm c m ++>++≠,∴2a b am bm +>+,故D 选项正确,故选:D .【点睛】此题考查二次函数的图象,根据函数图象得到对应系数的符号,并判断代数式的符号,正确理解二次函数图象与系数的关系是解题的关键.4、B【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x .根据题意得:100(1+x )1=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )1.增长用“+”,下降用“-”. 5、C【分析】先根据线段的比例、直径求出OC 、OP 的长,再利用勾股定理求出CP 的长,然后根据垂径定理即可得.【详解】如图,连接OC直径10cm AB =152OC OB AB cm ∴=== :3:5OP OB =3OP cm ∴=在Rt OCP ∆中,2222534()CP OC OP cm =-=-=弦CD AB ⊥于P28CD CP cm ∴==故选:C .【点睛】本题考查了勾股定理、垂径定理等知识点,属于基础题型,掌握垂径定理是解题关键.6、D【分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k <0时,反比例函数y =k x在二、四象限,而二次函数y =kx 2﹣k 开口向下,故A 、B 、C 、D 都不符合题意; ②当k >0时,反比例函数y =k x 在一、三象限,而二次函数y =kx 2﹣k 开口向上,与y 轴交点在原点下方,故选项D 正确;故选:D .【点睛】本题主要考查反比例函数与二次函数的图象,掌握k 对反比例函数与二次函数的图象的影响是解题的关键. 7、C【分析】直接根据反比例函数的定义判定即可.【详解】解:反比例函数有:xy=9;y=6x ;y=-23x . 故答案为C .【点睛】本题考查了反比例函数的定义,即形如y=k x(k ≠0)的函数关系叫反比例函数关系. 8、C【分析】解直角三角形求得AB 3,作HM ⊥AB 于M ,证得△ADG ≌△MHD ,得出AD =HM ,设AD =x ,则BD=23-x,根据三角形面积公式即可得到S△BDH1122BD MH=⋅=BD•AD12=x(23-x)12=-(x3-)232+,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=23,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=23-x,∴S△BDH1122BD MH=⋅=BD•AD12=x(23-x)12=-(x3-)232+,∴△BDH面积的最大值是32.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.9、B【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280;故A 正确; 调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误; 调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D 正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.10、D【解析】利用平面向量的加法即可解答.【详解】解:根据题意得=,+ .故选D.【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.11、D 【详解】试题分析:方法一:∵△ABO 和△A′B′O 关于原点位似,∴△ ABO ∽△A′B′O 且OA'OA =13 .∴A E AD '=0E 0D=13.∴A′E =13AD =2,OE =13OD =1.∴A′(-1,2).同理可得A′′(1,―2). 方法二:∵点A (―3,6)且相似比为13,∴点A 的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2). ∵点A′′和点A′(-1,2)关于原点O 对称,∴A′′(1,―2).故答案选D.考点:位似变换.12、B【分析】将a bb+整理成1ab+,即可求解.【详解】解:∵32ab=,∴512a b ab b+=+=,故选:B.【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.二、填空题(每题4分,共24分)13、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=12AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得2222OA-AH=10-8=6,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.14、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.15、25或14【分析】先根据勾股定理求出BD的长,再分高AD在△ABC内部和外部两种情况画出图形求出CD的长,然后利用正切的定义求解即可.【详解】解:在直角△ ABD中,由勾股定理得:BD=2254-=3,若高AD在△ABC内部,如图1,则CD=BC﹣BD=10,∴tan C=42105 ADCD==;若高AD在△ABC外部,如图2,则CD=BC+BD=16,∴tan C=41164 ADCD==.故答案为:25或14.【点睛】本题考查了勾股定理和锐角三角函数的定义,属于常见题型,正确画出图形、全面分类、熟练掌握基本知识是解答的关键.16、3【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题.【详解】作DF⊥AC于F.∵DF:AF=13AD=3∴tan∠DAF=33,∴∠DAF=30°,∴DF=12AD=12×33,∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=3,∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=3,在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE=3×3300(米),∴BC=BE+EC=3(米);故答案为:3【点睛】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题17、6【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中点,DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2−CD2=12−82=2.∴AD=3.故答案为:3.【点睛】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.18、93【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=33,OM=OB•COS10°=2.∴B的坐标是(2,33).∵B在反比例函数位于第一象限的图象上,∴k=2×33=.三、解答题(共78分)19、(1)x13,x2=3;(2)x1=5,x2=﹣1【分析】(1)用配方法解方程;(2)先化简为一元二次方程的一般形式,再用因式分解法解方程.【详解】解:⑴x 2-2x +1=3,(x -1)2=3,x -1=11x 21x =⑵x 2-x -3x +3=1x 2-4x -5=0(x -5)(x +1)=0x 1=5,x 2=-1【点睛】本题考查用配方法和因式分解法解一元二次方程.用因式分解法解一元二次方程的一般步骤是:①移项,将方程的右边化为0;②化积,把方程左边因式分解,化成两个一次因式的积;③转化,令每个因式都等于零,转化为两个一元一次方程;④求解,解这两个一元一次方程,它们的解就是原方程的解.20、(1)详见解析;(2)254OF = 【分析】(1)根据切线的性质得90CDB DBC ∠+∠=︒,由切线长定理可证FC FB =,从而FCB FBC ∠=∠,然后根据等角的余角相等得到CDB DCF ∠=∠,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC ∽△ABD ,利用相似比得到AD=252,然后证明OF 为△ABD 的中位线,从而根据三角形中位线性质求出OF 的长.【详解】(1)证明:∵AB 是O 的直径,∴90ACB ∠=︒(直径所对的圆周角是90︒),∴90DCB ∠=︒,∴90CDB DBC ∠+∠=︒,∵AB 是O 的直径,MB AB ⊥于点B , ∴MB 是O 的切线(经过半径外端且与半径垂直的直线是圆的切线), ∵CF 是O 的切线,∴FC FB =(切线长定理),∴FCB FBC ∠=∠,∵90FCB DCF ∠+∠=︒,90CDB CBD ∠+∠=︒,∴CDB DCF ∠=∠,∴CF DF =,∵BF DF =.(2)由(1)可知,ABC ∆是直角三角形,在Rt ABC ∆中,10AB =,6BC =,根据勾股定理求得8AC =,在ABC ∆和ADB ∆中90A A ACB ABD ∠=∠⎧⎨∠=∠=︒⎩, ∴ABC ADB ∆∆∽(两个角对应相等的两个三角形相似), ∴AB AC AD AB =, ∴10810AD =, ∴252AD =, ∵DF BF =,AO BO =,∴OF 是ADB ∆的中位线,∴12524OF AD ==(三角形的中位线平行于第三边并且等于第三边的一半).【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,勾股定理,相似三角形得判定与性质,余角的性质,以及三角形的中位线等知识.熟练掌握切线的判定与性质、相似三角形得判定与性质是解答本题的关键.21、(1)211y x x 322=--+ (2)M 点坐标为(0,0)或()323?0,【解析】试题分析:(1)首先将抛物线的解析式设成顶点式,然后将A 、C 两点坐标代入进行计算;(2)首先求出点B 的坐标,然后分三种情况进行计算.试题解析:(1)、依题意,设抛物线的解析式为y=a 21()2x +k.由A(2,0),C(0,3)得250,4{1 3.4a k a k +=+=解得12{25.8a k =-=,∴抛物线的解析式为y=21125()228x -++. (2)、当y=0时,有21125()228x -++=0. 解得x 1=2,x 2=-3.∴B(-3,0). ∵△MBC 为等腰三角形,则①当BC=CM 时,M 在线段BA 的延长线上,不符合题意.即此时点M 不存在;②当CM=BM 时,∵M 在线段AB 上,∴M 点在原点O 上.即M 点坐标为(0,0);③当BC=BM 时,在Rt △BOC 中,BO=CO=3,由勾股定理得BC=22OC OB +=32,∴BM=32.∴M 点坐标为(32-3,0).综上所述,M 点的坐标为(0,0)或(32-3,0).考点:二次函数的综合应用.22、见解析,16【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:分别记厨余垃圾、可回收垃圾、有害垃圾、其它垃圾为A 、B 、C 、D ,画树状图如下:由树状图知,共有12种等可能结果,其中小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的结果有2种,所以小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率为212=16. 【点睛】本题主要考查的是利用树状图求解概率,解此题需要正确的运用树状图,所以掌握树状图是解此题的关键.23、在线段AB 上且距离点A 为1、6、27处. 【分析】分∠DPC =90°,∠PDC =90,∠PDC =90°三种情况讨论,在边AB 上确定点P 的位置,根据相似三角形的性质求得AP 的长,使得以P 、A 、D 为顶点的三角形是直角三角形.【详解】(1)如图,当∠DPC =90°时,∴∠DPA+∠BPC =90°,∵∠A=90°,∴∠DPA+∠PDA=90°,∴∠BPC=∠PDA,∵AD∥BC,∴∠B=180°-∠A=90°,∴∠A=∠B,∴△APD∽△BCP,∴AD AP BP BC=,∵AB=7,BP=AB-AP,AD=2,BC=3,∴273APAP=-,∴AP2﹣7AP+6=0,∴AP=1或AP=6,(2)如图:当∠PDC=90°时,过D点作DE⊥BC于点E,∵AD//BC,∠A=∠B=∠BED=90°,∴四边形ABED是矩形,∴DE=AB=7,AD=BE=2,∵BC=3,∴EC=BC-BE=1,在Rt△DEC中,DC2=EC2+DE2=50,设AP=x,则PB=7﹣x,在Rt△PAD中PD2=AD2+AP2=4+x2,在Rt△PBC中PC2=BC2+PB2=32+(7﹣x)2,在Rt△PDC中PC2=PD2+DC2,即32+(7﹣x)2=50+4+x2,解方程得:27x=.(3)当∠PDC=90°时,∵∠BCD<90°,∴点P在AB的延长线上,不合题意;∴点P的位置有三处,能使以P、A、D为顶点的三角形是直角三角形,分别在线段AB上且距离点A为1、6、27处.【点睛】本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键.24、(1)8;(2)x≤﹣2或0<x≤2【分析】(1)先利用正比例函数解析式确定一个交点坐标,然后把交点坐标代入y=mx中可求出m的值;(2)利用正比例函数和反比例函数的性质得到正比例函数y=2x与反比例函数y=mx的图的另一个交点坐标为(﹣2,﹣1),然后几何图像写出正比例函数图像不在反比例函数图像上方所对应的自变量的范围即可.【详解】解:(1)当y=1时,2x=1,解得x=2,则正比例函数y=2x与反比例函数y=mx的图像的一个交点坐标为(2,1),把(2,1)代入y=mx得m=2×1=8;(2)∵正比例函数y=2x与反比例函数y=mx的图像有一个交点坐标为(2,1),∴正比例函数y=2x与反比例函数y=mx的图的另一个交点坐标为(﹣2,﹣1),如图,当x≤﹣2或0<x≤2时,2x≤mx,∴关于x 的不等式2x≤m x的解集为x≤﹣2或0<x≤2.【点睛】本题主要考查的是正比例函数与反比例函数的基本性质以及两个函数交点坐标,掌握这几点是解题的关键.25、(1)见解析,()3,3E ,()30F ,;(2)见解析【分析】(1)利用网格特点和旋转的性质,画出点O ,B 对应点E ,F ,从而得到△AEF ,然后写出E 、F 的坐标; (2)分别连接OE 、OF ,然后分别去OA 、OE 、OF 的三等份点得到A 1、E 1、F 1,从而得到△A 1E 1F 1.【详解】解:(1)如图,AEF ∆为所作,()3,3E ,()30F , (2)如图,111A E F ∆为所作图形.【点睛】本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.26、(1)60︒;(237;(3)答案不唯一,合理即可【解析】问题(1)根据ABC ∆是等边三角形证明ABD BCE ∆∆≌,得出BAD EBC ∠=∠,再根据三角形外角性质即可得证;问题(2)作DG BF ⊥交BF 于点G ,根据四边形ABCD 是菱形得出BC CD BD ==,在Rt DPG ∆中利用三角函数即可求得23DG =,2PG =,最后根据勾股定理得出答案.问题(3)从个人的积累和心得写一句话即可.【详解】问题(1)∵ABC ∆是等边三角形,∴60ABC C ∠=∠=︒,AB BC =.∵BD CE =,∴ABD BCE ∆∆≌,∴BAD EBC ∠=∠.∵APE ABP BAP ∠=∠+∠,∴60APE ABP EBC ABC ∠=∠+∠=∠=︒,问题(2)如图,作DG BF ⊥交BF 于点G ,∵四边形ABCD 是菱形,∴60C A ∠=∠=︒,BC CD =, ∴BCD ∆是等边三角形,∴BC CD BD ==.由(1)可知60DPG ∠=︒,在Rt DPG ∆中,sin 60DG DP ︒=,即34DG =, ∴3DG =cos 60PG PD ︒=,即142PG =, ∴2PG =.在Rt BDG ∆中,由勾股定理可得222(23)(23)BD =++,∴37BD ===∴BC BD.问题(3)如平时应该注意基本图形的积累,在学习过程中做个有心人等,言之有理即可.【点睛】本题考查了菱形的性质、等边三角形的判定、勾股定理及三角函数,综合性比较强,需要添加合适的辅助线对解决问题做铺垫.。
广西贵港市九年级上学期期末数学试卷
广西贵港市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列方程,是一元二次方程的是()A . 2(x-1)=3x .B . =0.C . .D . x(x-1)=y.2. (2分) (2018·官渡模拟) 如图是用五个相同的立方块搭成的几何体,其主视图是()A .B .C .D .3. (2分)如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A . S△AFD=2S△EFBB . BF=DFC . 四边形AECD是等腰梯形D . ∠AEB=∠ADC4. (2分)在△ABC中,∠C=90°,cosA=,那么sinA的值等于()A .B .C .D .5. (2分)正方形具有,而菱形不一定具有的性质是()A . 四条边都相等B . 对角线垂直且互相平分C . 对角线相等D . 对角线平分一组对角6. (2分) (2016九上·怀柔期末) 如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A . 4 米B . 6 米C . 12 米D . 24米7. (2分) (2019九上·武汉月考) 下列一元二次方程没有实数根的是()A . .B . .C . .D . .8. (2分)(2018·重庆) 如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y= (k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A .B . 3C .D . 59. (2分)(2014·绵阳) 下列命题中正确的是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相垂直平分且相等的四边形是正方形D . 一组对边相等,另一组对边平行的四边形是平行四边形10. (2分)反比例函数y=的图象如图所示,则k的值可能是()A . -1B .C . 1D . 2二、填空题 (共6题;共6分)11. (1分) (2016九上·无锡开学考) 若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.12. (1分)为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼________条.13. (1分)顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.14. (1分) (2019八上·瑞安期末) 如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.15. (1分)一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了36次手,设到会的人数为x人,则根据题意列方程为________.16. (1分)四边形ABCD中AC⊥BD,且AC=4cm,BD=6cm,那么顺次连接四边形ABCD的各边中点所得到的四边形的面积是________ cm2 .三、解答题 (共9题;共76分)17. (5分) (2015九上·南山期末) 解方程:x2+6x﹣7=0.18. (10分)(2017·茂县模拟) 化简计算(1)计算:﹣(﹣1)0﹣2cos30°(2)解方程: + =2.19. (5分)已知:如图,D是BC上一点,△ABC∽△ADE,求证:∠1=∠2=∠3.20. (5分)如图,甲、乙两楼楼顶上的点A和点E与地面上的点C这三点在同一条直线上,点B、D分别在点E、A的正下方且D、B、C三点在同一条直线上,B、C相距30米,D、C相距50米,乙楼高BE为18米,求甲楼高AD.21. (11分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n 的值是________(3)当n=2时,先从袋中任意摸出1个球不放回,再从袋中任意摸出1个球,请用列表或画树状图的方法,求两次都摸到白球的概率.22. (10分) (2017八下·徐州期中) 将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.23. (10分)(2016·泸州) 如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.24. (5分)(2016·自贡) 某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,AB=4米,求该生命迹象所在位置C的深度.≈1.7)25. (15分)(2017·兰山模拟) 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共76分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、25-1、25-2、25-3、。
广西贵港市九年级上学期数学期末考试试卷
广西贵港市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形是轴对称图形的是()A .B .C .D .2. (2分)如图,有三根绳子穿过一片木板,姐妹两人分别站在木板的左、右两边,各选择该边的一根绳子.若每边每根绳子被选中的机会相等,则两人选到同一根绳子的概率为()A .B .C .D .3. (2分)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A . 5πcmB . 6πcmC . 9πcmD . 8πcm4. (2分)已知三点A(x,y)、B (a,b)、C (1,-2)都在反比例函数图象y=上,若x<0,a>0,则下列式子正确的是()A . y<b<0B . y<0<bC . y>b>0D . y>0>b5. (2分) (2020九上·浙江期末) 以下说法正确的是()A . 存在锐角,使得sin²+cos² >1B . 已知∠A为Rt△ABC的一个内角,且∠A<45°,则sinA<cosAC . 在Rt△ABC中,∠C=90°,∠A,∠B为Rt△ABC的两个内角,则sinA不一定等于cosBD . 存在锐角,使得sin ≥tan6. (2分) (2016九上·仙游期末) 如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、M两点,若点M的坐标是(-4,-2),则点N的坐标为()A . (-1,-2)B . (1,2)C . (-1.5,-2)D . (1.5,-2)7. (2分)(2011·苏州) 如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A .B .C .D .8. (2分)(2011·扬州) 某反比例函数象经过点(﹣1,6),则下列各点中此函数图象也经过的是()A . (﹣3,2)B . (3,2)C . (2,3)D . (6,1)二、填空题 (共8题;共18分)9. (1分) (2018九上·鼎城期中) 如图,某地修建高速公路,要从B地向C地修一座隧道(B , C在同一水平上),某工程师乘坐热气球从B地出发,垂足上升100m到达A处,在A处观察C地的俯角为30°,则BC两地之间的距离为________m .10. (2分)已知y是x的反比例函数,当x=3时,y=2,则y与x的函数解析式为________,自变量x的取值范围是________.11. (1分)(2019·玉州模拟) 正方形的边长为10,点在上,,过M作,分别交、于、两点,若、分别为、的中点,则的长为________12. (1分) (2019九上·江阴期中) 如图,直线y=- x-3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是________.13. (1分)如图,△ABC内接于⊙O,如果∠OAC=35°,那么∠ABC的度数是________.14. (1分) (2017七上·东台月考) 规定图形表示运算a﹣b+c ,图形表示运算x+z ﹣y﹣w .则 =________(直接写出答案).15. (1分)(2017·永嘉模拟) 如图,在△ABC中,两条中线BE、CD相交于点O,则S△ADE:S△COE=________.16. (10分)(2018·上海) 如图,已知△ABC中,AB=BC=5,tan∠ABC= .(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.三、解答题 (共12题;共120分)17. (15分)计算:(1(﹣2)( +2)【答案】解:(﹣2)( +2)=5﹣4=1(1)﹣ +3(2)( +3 ﹣)(3)÷ ﹣× + .18. (5分) (2017九上·临川月考) 如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1使它与△ABC的相似比为2;则点B 的对应点B1的坐标是多少?19. (5分)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD的面积.20. (5分)盒子里装有12张红色卡片,16张黄色卡片,4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外都相同,从中任意摸出一张卡片,摸到红色卡片的概率是0.24.(1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少?(2)求盒子里蓝色卡片的个数.21. (5分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进60米到达点E(点E在线段AB上),测得∠DEB=60°,求河的宽度.22. (15分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.23. (10分)(2018·郴州) 在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.24. (10分)(2017·高唐模拟) 如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.(1)猜想ED与⊙O的位置关系,并证明你的猜想;(2)若AB=6,AD=5,求AF的长.25. (10分) (2017八下·汶上期末) 如图,在平面直角坐标系xOy中,已知正比例函数y= x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y= x和y=﹣x+7的图象于点B、C,连接OC.若BC= OA,求△OBC的面积.26. (10分)(2018·广水模拟) 如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y= 的图象于点B,AB= .(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.27. (15分) (2020九上·鞍山期末) 如图,直线y=﹣ x+1与x轴,y轴分别交于A,B两点,抛物线y =ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.28. (15分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠AED的度数;(2)若⊙O的半径为2,则弧AD的长为多少?(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O内接正n边形的一边,求n的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共18分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共12题;共120分)17-1、17-2、17-3、18-1、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-3、28-1、28-2、28-3、。
广西壮族自治区贵港市覃塘区2021-2022学年九年级上学期期末数学试题
2021年秋季期期末教学质量监测试卷九年级数学第1卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为A .B 、C .D 的四个选项,其中只有一个是正确的.1.下列函数中,其图象不经过点()1,1-的是( )A .2y x =-B .1y x=- C .2y x =- D .1y x = 2.已知1x =-是一元二次方程220x mx m ++=的一个实数根,则m 的值为( )A .1-B .0C .1D .23.若将△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( )A 保持不变B .是原来的3倍C .是原来的13D .不能确定 4.若二次函数23y ax bx =+-的图象经过点()2,1-,则代数式2a b -的值为( )A .2-B .2C .1-D .1 5.将一个图形用放大镜放大,这种图形变换应该属于( ) A .平移变换 B .对称变换C .旋转变换D .相似变换 6.已知四条线段2,3,4,x 成比例,则x 的值不可能是( )A .6B .32C .8D .837.若5b c +=,则关于x 的一元二次方程230x bx c +-=的根的情况为( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法确定 8.对于二次函数()221y x =-+的图象,下列说法错误的是( )A .它的顶点坐标为()1,2B .它的对称轴为直线2x =C .它可由2y x =的图象平移而得到D .从左到右,它先降后升 9.已知点()14,A y -、()22,B y -、()32,C y 都在反比例函数2y x =的图象上,则1y ,2y ,3y 为的大小关系是( )A .321y y y >>B .312y y y >>C .213y y y >>D .132y y y >>10如图,在矩形ABCD 中,9AB =,6BC =,若矩形AEFG 与矩形ABCD 位似,且位似比为23,则点C 、F 之间的距离为( )A .2B .3C .10D .1311.如图,在△ABC 中,点D 在AB 边上,BCD A ∠=∠,若3BC =,2BD =,则△ACD 与△BCD 的面积比为( )A .54B .52C .92 D .94 12.如图,二次函数()20y ax bx c a =++≠的图象经过点()3,0A -,顶点为()1,P n -,下列结论错误的是( )A .0abc >B .240ac b -<C .30a c +>D .关于x 的方程21ax bx c n ++=+无实数根第Ⅱ卷(非选择题共84分)二、填空题:(本大题共6小题,每小题3分,满分18分)13.函数21y x =+中,自变量x 的取值范图是______. 14.若α,β是一元二次方程230x x --=的两个实数根,则αβ⋅的值是______.15.若抛物线24y x x m =++与x 轴的一个交点为()1,0,则另一个交点的坐标为______. 16.如图,网格中小正方形的边长均为1,点A ,B 、O 都在格点(小正方形的顶点)上,则tan AOB ∠的值是______.17.如图,点O 为坐标原点,点A 在双曲线()10y x x =>上,点B 在双曲线()50y x x=>上,点C 在x 轴的正半轴上,若四边形OABC 是平行四边形,则四边形OABC 的面积为______.18.如图,AB 与CD 相交于点E ,点F 在线段AD 上,且BD EF AC ∥∥.若5DE =,3DF =,CE AD =,则EF BD的值为______.三、解答题(本大题共8小题,满分66分解答应写出文字说明、证明过程或演算步骤.)19.(本题满分10分,每小题5分)(1)计算:()03222sin 60tan 45π--++︒︒;(2)解方程:()()269x x +-=.20.(本题满分5分)按要求作图(不写作法,保留作图痕迹):如图,已知△ABC 和点O ,以点O 为位似中心,将△ABC 放大为原图形的2倍.21.(本题满分7分)如图,直线43y x =与双曲线k y x=交于(),4A a 和B 两点,动点P 在第一象限内的该双曲线上,且点P 在点A 的右侧,PC y ⊥轴于点C ,与直线AB 交于点E .(1)求双曲线的表达式;(2)连接P A 、BC ,若PAE BCE S S =△△,求点P 的坐标.22.(本题满分8分)某市在中小学举行了“我和我的祖国”主题演讲比赛,为了了解本次比赛成绩情况,从中随机抽取了部分参赛学生的成绩(满分100分,得分均为正整数且无满分,最低分为75分),将所抽成绩进行分析统计,并绘制如下频率分布表和尚不完整的频数直方图请根据图表提供的信息,解答下列问题:(1)本次抽取的样本容量为______,m =______,n =______;(2)将频数直方图补充完整;(3)若成绩在89.5分以上定为优秀,据此推测,该市3000名参赛学生中成绩为优秀的学生约有多少名? 频率分布表分组分数段 频数 频率 A74.5~79.5 24 0.05 B79.5~84.5 72 m C84.5~89.5 168 0.35 D89.5~94.5 n 0.25 E 94.5~99.5 96 0.2023.(本题满分8分)某中学在“全民阅读活动”中,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆250人次,进馆人次逐月增加,到第三个月未累计进馆910人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件有限,学校图书馆每月接纳能力不能超过500人次,在进馆人次的月平均增长率相同的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.24.(本题满分7分)将一副直角三角板如图所示放置,90ACB BDC ∠=∠=︒,60BAC ∠=︒,45CBD ∠=︒,若43AB =,求点A 到BD 所在直线的距离.25.(本题满分11分)如图,已知抛物线26y ax bx =++与直线2y x =+相交于15,22A ⎛⎫ ⎪⎝⎭和()4,B m 两点,动点P 在线段AB 上,PE y ∥轴与抛物线相交于点E .(1)求抛物线的表达式及m 的值;(2)求线段PE 长的最大值; (3)求△P AE 为直角三角形时点P 的坐标.26.(本题满分10分)如图,在□ABCD 中,点E 、F 分别在边BC ,CD 上,AE 与BF 相交于点O ,AE AD =,AE 平分BF ,AF 平分∠DAE .(1)求证:OA OE BE =+;(2)求证:22BE OE AE =⋅.2021年秋季期期末教学质量监测九年级数学参考答案及评分标准一、选择题:1.D 2.C3.A 4.B 5.D 6.C 7.B 8.A9.B 10.D 11.A 12.C二、填空题: 13.1x ≠- 14. 3- 15.()5,0- 16.13 17. 4 18. 35 三、解答题:19.解:(1)原式=22312112--+⨯⨯= (2)原方程化为24210x x --=即()()370x x +-=∴30x +=或70x -=,则13x =-,27x =.20.解:如图,111A B C △和222A B C △为所求;(注:只作出一个三角形给3分)21.解:(1) ∵点(),4A a 在直线4y x a =上,∴44a a = ,则3a =, ∵点()3,4A 在双曲线k y x=上,∴3412k =⨯=, ∴双曲线的表达式为12y x=. (2)如图,连接AC ,PAE BCE S S =△△,∴PAC ABC S S =△△,∵动点P 在双曲线12y x =上,且点P 在点A 的右侧, ∴可设12,P m m ⎛⎫ ⎪⎝⎭,其中3m >,∵PC y ⊥轴于点C , ∴PC m =,12OC m =, ∵点B 与点A 关于原点O 对称,∴点B 的坐标为()3,4--,又1124262PAC S m m m ⎛⎫=-=- ⎪⎝⎭△,()11236332ABC S m m=⨯⨯+=△, ∴由3626m m-=,且3m >,解得:6m =,∴点P 的坐标为()6,2. 22.解:(1)480,0.15,120;(2) 补全频数直方图如图所示(3) 若成绩在89.5分以上定为优秀,则成绩优秀落在D 、E 两组,由()30000.20.251350⨯+=(名)答:该市成绩为优秀的学生约有1350名.23.解: (1) 设进馆人次的月平均增长率为x . 根据题意,得()()225025012501910x x ++++=,化简得2163025x x +-= 解得1120%5x ==,2165x =-(不符题意,舍去), 答:进馆人次的月平均增长率为20%. (2) 因为第四个月的进馆人次为3125014325⎛⎫⨯+= ⎪⎝⎭(人次), 而432500<,所以校图书馆能接纳第四个月的进馆人次.24.解:如图,过点A 作AE CD ⊥交DC 的延长线于点E ,E D C BA∵在Rt △ABC 中,90ACB ∠=︒,60BAC ∠=︒,∴30ABC ∠=︒,∵43AB =∴1232AC AB ==,3sin 604362BC AB =⨯︒=⨯=, ∵在Rt △BCD 中,90BDC ∠=︒,45CBD ∠=︒,∴45BCD ∠=︒, ∴2sin 456322CD BC =⨯︒=⨯=,∵180904545ACE ∠=︒-︒-︒=︒, ∴在Rt △ACE 中,2cos 452362CE AC =⨯︒=⨯=, ∵AE BD ∥,∴点A 、E 到直线BD 的距离相等,∴点A 到直线BD 的距离为632ED EC CD =+=+.25.解:(1)∵点()4,B m 在直线2y x =+上,∴426m =+=, ···················· 1分 ∵抛物线26y ax bx =++经过15,22A ⎛⎫ ⎪⎝⎭和()4,6B , ∴115642216466a b a b ⎧++=⎪⎨⎪++=⎩,解得28a b =⎧⎨=-⎩, ∴抛物线的表达式为2286y x x =-+.(2)如图1,∵动点P 在线段AB 上,PE y ∥轴与抛物线相交于点E .∴可设点P 的坐标为(),2x x +,其中142x ≤≤, 则点E 的坐标为()2,286x x x -+ , ∴()()229492286248PE x x x x ⎛⎫=+--+=--+ ⎪⎝⎭, ∵20-<,∴当94x =时,线段PE 长最大,且最大值为498; (3) ∵由题意可知4590APE ∠=︒≠︒, ∴△P AE 为直角三角形,必有∠P AE 或∠AEP 为直角(如图2所示),.①如图2,当1190P AE ∠=︒时,即1AE AB ⊥,∵直线AB 为2y x =+,且15,22A ⎛⎫ ⎪⎝⎭,∴可求得直线1AE 为3y x =-+, ∴由23286y x y x x =-+⎧⎨=-+⎩解得点1E 的坐标为()3,0, ∵11PE y ∥轴,且1P 在直线2y x =+,∴点1P 的坐标为()3,5;②如图2,当2290AE P ∠=︒时,即222AE P E ⊥,∵22P E y ∥轴,∴2AE x ∥轴, ∵抛物线2286y x x =-+的对称轴为2x =,点2E 在抛物线上,∴点2E 与点15,22A ⎛⎫ ⎪⎝⎭关于直线2x =对称,∴点275,22E ⎛⎫ ⎪⎝⎭, ∴点2P 的坐标为711,22⎛⎫ ⎪⎝⎭; 综上所述,满足题意的点P 的坐标为()3,5或711,22⎛⎫⎪⎝⎭. 26.证明:(1)如图1,过点F 作FP BC ∥,FP 与AE 交于点P ,图 1F OP ED CB A∴FPO BEO ∠=∠,∵AE 平分BF ,即FO BO =,又FOP BOE ∠=∠,∴△POF ≌△EOB ,∴OP OE =,PF EB =, ········································································ 2分 又∵四边形ABCD 是平行四边形,∴PF BC AD ∥∥,∴PFA DAF ∠=∠, ·················································· 3分 ∵AF 平分∠DAE ,∴PFA DAF PAF ∠=∠=∠,∴PA PF BE ==, ················································································· 4分 ∴OA OP PA OE BE =+=+. ································································· 5分(2)如图2,过点F 作FP BC ∥,FP 与AE 交于点P ,连接EF ,PB .图 2F OP ED CB A∵AE AD =,AF 平分∠DAE ,AF AF =,∴△AEF ≌△ADF ,∴AEF D ∠=∠, ························································· 7分 又在□ABCD 中,ABE D ∠=∠,又由(1)知四边形BEFP 是平行四边形,∴BPE AEF ∠=∠,∴BPE ABE ∠=∠,又BEP AEB ∠=∠,∴△BEP ∽△AEB ,∴BE AE PE BE =, ∴2BE PE AE =⋅, ················································································· 9分 又2PE OE =,∴22BE OE AE =⋅.。
贵港市2021年九年级上学期数学期末考试试卷C卷
贵港市2021年九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了().A . 17道B . 18道C . 19道D . 20道2. (1分)(2017九下·萧山开学考) 已知A,B是两个锐角,且满足,,则实数t所有可能值的和为()A . -B . -C . 1D .3. (1分)(2020·龙华模拟) 下列命题中,是真命题的是()A . 三角形的外心到三角形三边的距离相等B . 顺次连接对角线相等的四边形各边中点所得的四边形是菱形C . 方程x²+2x+3=0有两个不相等的实数根D . 将抛物线y=2x²-2向右平移1个单位后得到的抛物线是y=2x²-34. (1分)(2017·陕西模拟) 如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A .B .C .D .5. (1分)已知△ABC,D、E分别为AC、AB中点,BD和CE交于点O,BD和CE是一元二次方程x2﹣kx+24=0的两个不等实根,则△BOE面积的最大值为()A .B . 2C .D . 46. (1分)下列命题中,假命题是()A . 三角形任意两边之和大于第三边B . 方差是描述一组数据波动大小的量C . 两相似三角形面积的比等于周长的比的平方D . 不等式的-x<1的解集是x<-17. (1分)(2020·广西模拟) 下列命题中假命题是()A . 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B . 正五边形的每一个内角等于108°C . 一组数据的平均数、中位数和众数都只有一个D . 方程x2-6x+9=0有两个实数根8. (1分) (2018九上·宜阳期末) 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)a+b+c<0;(2)a﹣b+c>0;(3)abc>0;(4)b=2a.其中正确的结论有()A . 4个B . 3个C . 2个D . 1个9. (1分) (2018九上·宜阳期末) 如图,△ABC内接于⊙O,作OD⊥BC于点D,若∠A=60°,则OD:CD的值为()A . 1:2B . 1:C . 1:D . 2:10. (1分) (2018九上·宜阳期末) 如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2020·海淀模拟) 如图,正方形的边长为,正方形的边长为.如果正方形绕点旋转,那么、两点之间的最小距离是________ .12. (1分)(2019·朝阳模拟) 如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是________.13. (1分)已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1________y2.(填“<”“>”或“=”)14. (1分) (2018九上·宜阳期末) 如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O 的半径为________.15. (1分) (2018九上·宜阳期末) 如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第________秒.三、解答题 (共8题;共16分)16. (2分)(2019·广州模拟) 如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.求:(1)反比例函数与一次函数的解析式;(2)根据图象写出反比例函数的值>一次函数的值的x的取值范围.17. (2分) (2020九上·高平期末) 甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字,2,3且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为的值,两次结果记为 .(1)请你帮他们用画树状图或列表的方法表示所有可能出现的结果;(2)若将记录结果看成平面直角坐标系中的一点,求是第一象限内的点的概率.18. (3分) (2019九上·杭州月考) 在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y= 的图象上的概率.19. (1分) (2018九上·宜阳期末) 如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.20. (1分) (2018九上·宜阳期末) 如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数.21. (1分) (2018九上·宜阳期末) 将一个边长为a的正方形纸片卷起来,恰好可以围住一个圆柱的侧面;又在这个正方形纸片上剪下最大的一个扇形,卷起来,恰好可以围住一个圆锥的侧面,那么该圆柱和圆锥两者的底面半径之比为多少?(如果保留π)22. (3分) (2018九上·宜阳期末) 学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A= .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题:(1)求sad60°的值;(2)对于0°<A<180°,求∠A的正对值sadA的取值范围.(3)已知sinα= ,其中α为锐角,试求sadα的值.23. (3分) (2018九上·宜阳期末) 已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2 .点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC= 时,求∠PAD的正弦值.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共16分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
广西贵港市2021版九年级上学期数学期末考试试卷C卷
广西贵港市2021版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分)(2020·哈尔滨模拟) 下列图案中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (3分)若把抛物线y=x2-2x+1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y=ax2+bx+c,则b、c的值为()A . b=2,c=-2B . b=-8,c=14C . b=-6,c=6D . b=-8,c=183. (3分)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A . AE的垂直平分线与AC的垂直平分线的交点B . AB的垂直平分线与AC的垂直平分线的交点C . AE的垂直平分线与BC的垂直平分线的交点D . AB的垂直平分线与BC的垂直平分线的交点4. (3分)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A . 10cmB . 20cmC . 30cmD . 60cm5. (3分) (2018九上·番禺期末) 用配方法解方程时,配方结果正确的是().A .B .C .D .6. (3分) (2018八上·姜堰期中) 在平面直角坐标系中,点A(-2,-3)关于x轴对称的点的坐标是()A . (-2,-3)B . (-2,3)C . (2,-3)D . (2,3)7. (3分) (2019九上·江汉月考) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A .B .C .D .8. (3分)(2016·徐州) 下列事件中的不可能事件是()A . 通常加热到100℃时,水沸腾B . 抛掷2枚正方体骰子,都是6点朝上C . 经过有交通信号灯的路口,遇到红灯D . 任意画一个三角形,其内角和是360°9. (3分)关于x的一元二次方程x2+kx-1=0的根的情况()A . 有两个不相等的同号实数根B . 有两个不相等的异号实数根C . 有两个相等的实数根D . 没有实数根10. (3分) (2017九上·萝北期中) 如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q 两点,则函数y=ax2+(b-1)x+c的图象可能是()A .B .C .D .二、填空题(共24分) (共6题;共24分)11. (4分) (2016九上·蕲春期中) 刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m=________.12. (4分) (2019九上·慈溪月考) 如图,在扇形OAB看,∠AOB=105°,将扇形OAB沿过点A的直线折叠,点O恰好落在上的点D处,折痕交OB于点C,且OC=2 ,则的长为________.13. (4分)如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连结EF.则∠EAF=________14. (4分) (2017七下·景德镇期末) 小明正在玩飞镖游戏,如果他将飞镖随意投向如图所示的正方形网格中,那么投中阴影部分的概率是________;15. (4分) (2019九上·海陵期末) 点A(-3,y1),B(2,y2)在抛物线y=x2-x上,则y1________y2.(填“>”,“<”或“=”之一)16. (4分)已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直线AB的距离是________三、解答题(一)(共18分) (共3题;共18分)17. (6分) (2018九上·深圳开学考)(1)解分式方程:;(2)解方程:.18. (6分) (2019八上·孝感月考) 如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出关于直线MN对称的;(2)写出的长度;(3)如图(2),A,C是直线MN同侧固定的点,是直线MN上的一个动点,在直线MN上画出点,使最小.19. (6分)已知:如图,在平面直角坐标系xOy中,直线y=mx-4m与x轴、y轴分别交于点A、B,点C在线段AB上,且S AOB=2S AOC .(1)求点C的坐标(用含有m的代数式表示);(2)将△AOC沿x轴翻折,当点C的对应点C′恰好落在抛物线y=x2+mx+m上时,求该抛物线的表达式;(3)设点M为(2)中所求抛物线上一点,当以A、O、C、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.四、解答题(二)(共21分) (共3题;共21分)20. (7.0分)(2017·薛城模拟) 如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.21. (7.0分) (2020八下·安陆期末) 为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题.(1)①中的描述应为“ 6分m% ”,其中的m值为________;扇形①的圆心角的大小是________;(2)求这40个样本数据平均数、众数、中位数;(3)若该校九年级共有160名学生,估计该校理化实验操作得满分的学生有多少人.22. (7.0分)如图,AB为⊙O的直径,弦CD⊥AB于E,∠CDB=15°,OE=2 .(1)求⊙O的半径;(2)将△OBD绕O点旋转,使弦BD的一个端点与弦AC的一个端点重合,则弦BD与弦AC的夹角为________.五、解答题(三)(共27分) (共3题;共27分)23. (9.0分)(2020·铜仁模拟) 在抗击“新冠”疫情后期,我国的的口罩供给和销售已经正常,某小区超市以每个2元的进价购进一批某型口罩售卖,经调查发现,若按定价每个3元销售,每天可销售500个.定价每增加1元,每天将少买100个.按相关政策,该型口罩售价不能超过6元,同时假设定价不低于每个3元.设定价为每个x元,每天销售量为y个.(1)请写出y与x的函数关系式及自变量x的取值范围;(2)设超市一天的利润为w元,求w与x的函数关系式;(3)当超市定价为每个多少元时,每天所获利润最大?最大利润是多少元?24. (9分) (2019八下·江都月考) 在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.25. (9分)(2017·应城模拟) 如图,在平面直角坐标系中,在平面直角坐标系中,抛物线y=ax2+3x+c与x 轴交于A、B两点,与y轴交于点C(0,8),直线l经过原点O,与抛物线的一个交点为D(6,8).(1)求抛物线的解析式;(2)抛物线的对称轴与直线l交于点E,点T为x轴上方的抛物线上的一个动点.①当∠TEC=∠TEO时,求点T的坐标;②直线BT与y轴交于点P,与直线l交于点Q,当OP=OQ时,求点P的坐标.参考答案一、选择题(共30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共24分) (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一)(共18分) (共3题;共18分)17-1、17-2、18-1、18-2、18-3、19-1、四、解答题(二)(共21分) (共3题;共21分) 20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、五、解答题(三)(共27分) (共3题;共27分) 23-1、23-2、23-3、24-1、24-2、24-3、25-1、。
广西贵港市2021年九年级上学期数学期末考试试卷(I)卷
广西贵港市2021年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)抛物线y=(x-1)2-7的对称轴是直线()A . x=2B . x=-2C . x=1D . x=-12. (2分) (2016·北京) 如果a+b=2,那么代数(a﹣)• 的值是()A . 2B . ﹣2C .D . ﹣3. (2分) (2018九上·清江浦期中) 如图,AB是⊙O的直径,若∠BAC=42º,则么∠ABC=()A . 42ºB . 48ºC . 58ºD . 52º4. (2分)(2016·达州) 如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A .B . 2C .D .5. (2分)将二次函数y=x2的图象向左平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A .B .C .D .6. (2分)如图,在△ABC中,D,E分别在AB,AC上,且DE∥BC.若AD=4,DB=2,则AE∶EC等于()A .B . 2C .D .7. (2分)如图两个三角形是位似图形,它们的位似中心是()A . 点PB . 点OC . 点MD . 点N8. (2分)在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为()A . 70°B . 110°C . 120°D . 141°9. (2分)如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A .B .C .D .10. (2分) (2018九上·绍兴期中) 已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB 交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A .B .C .D .二、填空题 (共8题;共9分)11. (1分) (2018九下·宁河模拟) 抛物线y=5(x﹣4)2+3的顶点坐标是________.12. (1分)若扇形的圆心角为60°,弧长为2π,则扇形的半径为________.13. (1分)(2017·贵港) 如图所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中点,⊙O与AC、BC分别相切于点D、E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长线于点G,则BG的长是________.14. (1分) (2016九上·达州期末) 如图,为了测量校园内一棵不可攀的树的高度,数学应用实践小组做了如下的探索实践:根据《物理学》中光的反射定律,利用一面镜子和一根皮尺,设计如图的测量方案:把镜子放在离树(AB)9米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为________米.15. (1分)(2018·福州模拟) 如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,则cos∠ACB的值为________16. (2分) (2016九上·姜堰期末) 若二次函数y=(k﹣2)x2+(2k+1)x+k的图象与x轴有两个交点,其中只有一个交点落在﹣1和0之间(不包括﹣1和0),那么k的取值范围是________.17. (1分)(2017·钦州模拟) 已知⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8,则AC 的长为________.18. (1分)二次函数的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当时,函数y随x的增大而增大;⑤当时,.其中,正确的说法有________ .(请写出所有正确说法的序号)三、解答题 (共10题;共82分)19. (5分)计算:20. (10分)(2018·姜堰模拟) 在平面直角坐标系xOy中,O为坐标原点,二次函数的与y轴交于A点,且顶点B在一次函数的图像上.(1)求n(用含m的代数式表示);(2)若 2,求;(3)若一次函数的图像与x轴、y轴分别交于C、D两点,若,试说明:.21. (5分)(2013·崇左) 自古以来,钓鱼岛及其附属岛屿都是我国固有领土.如图,为了开发利用海洋资源,我勘测飞机测量钓鱼岛附属岛屿之一的北小岛(又称为鸟岛)两侧端点A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了800米,在点D测得端点B 的俯角为45°,求北小岛两侧端点A、B的距离.(结果精确到0.1米,参考数≈1.73,≈1.41)22. (5分)如图:OB是∠AOC的平分线,OD是∠COE的平分线.①若∠AOC=50°,求∠BOC;②∠AOC=50°,∠COE=80°,求∠BOD.23. (10分)(2017·高青模拟) 如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若= ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求tan∠E的值.24. (10分)(2017·瑶海模拟) 已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)25. (15分) (2019八上·江阴月考) 已知一次函数y=kx+b的图像与x轴交于点A(2,0),与y轴交于点B(0,6).(1)求k、b的值;(2)若点C(5,m)在这个一次函数的图像上,求△AOC的面积.26. (2分)(2017·达州) 如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程x+ =m的两实根,且tan∠PCD= ,求⊙O的半径.27. (10分) (2019九上·长春期末) 如图,在平面直角坐标系中,抛物线y=﹣x2+3x与x轴交于O、A两点,与直线y=x交于O、B两点,点A、B的坐标分别为(3,0)、(2,2).点P在抛物线上,且不与点O、B重合,过点P作y轴的平行线交射线OB于点Q ,以PQ为边作R△PQN ,点N与点B始终在PQ同侧,且PN=1.设点P 的横坐标为m(m>0),PQ长度为d .(1)用含m的代数式表示点P的坐标.(2)求d与m之间的函数关系式.(3)当△PQN是等腰直角三角形时,求m的值.(4)直接写出△PQN的边与抛物线有两个交点时m的取值范围.28. (10分)(2019·许昌模拟) 如图,抛物线y=ax2+bx+3交y轴于点A,交x轴于点B(-3,0)和点C(1,0),顶点为点M.(1)求抛物线的解析式;(2)如图,点E为x轴上一动点,若△AME的周长最小,请求出点E的坐标;(3)点F为直线AB上一个动点,点P为抛物线上一个动点,若△BFP为等腰直角三角形,请直接写出点P 的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共82分)19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、27-4、28-1、28-2、28-3、。
广西贵港市2021版九年级上学期数学期末考试试卷(II)卷
广西贵港市2021版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分)(2019·兰州) 如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A . 110°B . 120°C . 135°D . 140°3. (2分) (2018九上·番禺期末) 如果2是方程的一个根,则常数k的值为()A . 1B . ﹣2C . 2D . ﹣14. (2分)(2019·新乡模拟) 将二次函数y=3x2的图象向右平移3个单位,再向下平移4个单位后,所得图象的函数表达式是()A . y=3(x-3)2-4B . y=3(x-3)2+4C . y=3(x+3)2-4D . y=3(x+3)2+45. (2分)如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A . 55°B . 60°C . 65°D . 70°6. (2分) (2016九上·抚宁期中) 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A . x(5+x)=6B . x(5﹣x)=6C . x(10﹣x)=6D . x(10﹣2x)=67. (2分)如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A . 9B . 10C . 3D . 28. (2分)抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是().A . (0.5,0)B . (1,0)C . (2,0)D . (3,0)9. (2分)一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为()A . 7.5米B . 8米C . 14.7米D . 15.75米10. (2分)(2017·芜湖模拟) 已知x=1是方程x2+bx=2的一个根,则方程的另一个根是()A . 1B . 2C . ﹣2D . ﹣1二、填空题 (共6题;共6分)11. (1分) (2019九上·柳江月考) 点A(-2,3)与点A1是关于原点O的对称点,则点A1的坐标是________。
广西贵港市九年级上学期数学期末考试试卷
广西贵港市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分)已知一元二次方程x2+3x+2=0,下列判断正确的是()A . 该方程无实数解B . 该方程有两个相等的实数解C . 该方程有两个不相等的实数解D . 该方程解的情况不确定2. (2分)(2019·阜新) 商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码3637383940数量/双15281395商场经理最关注这组数据的()A . 众数B . 平均数C . 中位数D . 方差3. (2分)(2020·松江模拟) 已知二次函数的图像如图所示,那么下列判断正确()A . ,,B . ,,C . ,,D . ,,4. (2分) (2017九上·下城期中) 如图,,,则下列结论成立的是()A .B .C .D .5. (2分)将一张边长分别为a,b(a>b)的矩形纸片ABCD折叠,使点C与点A重合,则折痕的长为()A .B .C .D .二、填空题 (共12题;共13分)6. (1分) (2017九上·余姚期中) 已知线段a=1,c=5,线段b是线段a,c的比例中项,则线段b的值为________7. (1分) (2018八下·长沙期中) 一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是________.8. (2分)如图,BC是半圆O的直径,∠B=40°,则∠C=________度.9. (1分) (2018八下·永康期末) 请你写出一个有一根为0的一元二次方程:________.10. (1分)(2018·青羊模拟) 如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为________11. (1分)一元二次方程x2+x﹣3=0的根的情况是________.12. (1分)(2018·连云港) 如图,△ABC中,点D、E分别在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE 与△ABC的面积的比为________.13. (1分) (2016九上·惠山期末) 已知二次函数y=﹣x2+bx+c,当2<x<5时,y随x的增大而减小,则实数b的取值范围是________.14. (1分)(2012·朝阳) 如图,△ABC三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点C顺时针旋转到△A′B′C的位置,且A′、B′仍落在格点上,则线段AC扫过的扇形所围成的圆锥体的底面半径是________单位长度.15. (1分) (2019九上·高邮期末) 若二次函数y=(k+1)x2﹣2 x+k的最高点在x轴上,则k=________.16. (1分) (2017九上·北京月考) 当a________,二次函数的值总是负值.17. (1分)如图,在▱ABCD中,AB=, AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE 的长为________.三、解答题 (共10题;共107分)18. (10分)(2018·大连) 阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.19. (10分)解方程:(1)(2x+3)2﹣25=0(2) 2x2﹣4x=﹣1(用公式法解)(3)(2x﹣3)2﹣5(2x﹣3)+6=0(4) x2+2x﹣1=0(用配方法解)20. (10分)(2017·徐州模拟) 某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?21. (10分)(2018·青岛模拟) 一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.22. (10分)(2017·柘城模拟) 九年级七班“数学兴趣小组”对函数的对称变换进行探究,以下是探究发现运用过程,请补充完整.(1)操作发现,在作函数y=|x|的图象时,采用了分段函数的办法,该函数转化为y= ,请在如图1所示的平面直角坐标系中作出函数的图象;(2)类比探究作函数y=|x﹣1|的图象,可以转化为分段函数________,然后分别作出两段函数的图象.聪明的小昕,利用坐标平面上的轴对称知识,把函数y=x﹣1在x轴下面部分,沿x轴进行翻折,与x轴上及上面部分组成了函数y=|x ﹣1|的图象,如图所示;(3)拓展提高如图2右图是函数y=x2﹣2x﹣3的图象,请在原坐标系作函数y=|x2﹣2x﹣3|的图象;(4)实际运用①函数的图象与x轴有________个交点,对应方程|x2﹣2x﹣3|=0有________个实根;②函数的图象与直线y=5有________个交点,对应方程|x2﹣2x﹣3|=5有________个实根;③函数的图象与直线y=4有________个交点,对应方程有________个实根;④关于x的方程有4个实根时,a的取值范围是________.23. (6分) (2016八上·苏州期中) 已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD=________°时,△BE D是等腰直角三角形.24. (16分)(2019·大渡口模拟) 数学综合实践课上,老师提出问题:如图,有一张长为4dm,宽为3dm的长方形纸板,在纸板四个角剪去四个相同的小正方形,然后把四边折起来(实线为剪裁线,虚线为折叠线),做成一个无盖的长方体盒子,问小正方形的边长为多少时,盒子的体积最大?为了解决这个问题,小明同学根据学习函数的经验,进行了如下的探究:(1)设小正方形的边长为xdm,长方体体积为ydm3,根据长方体的体积公式,可以得到y与x的函数关系式是,其中自变量x的取值范围是.(2)列出y与x的几组对应值如下表:x/dm (1)(注:补全表格,保留1位小数点)(3)如图,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;25. (10分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100110120130…月销量(件)200180160140…已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是(________)元;②月销量是(________)件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?26. (10分)(2016·姜堰模拟) 已知:如图,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.(1)用尺规画圆O,使圆O过A、D两点,且圆心O在边AC上.(保留作图痕迹,不写作法)(2)求证:BC与圆O相切;(3)设圆O交AB于点E,若AE=2,CD=2BD.求线段BE的长和弧DE的长.27. (15分)(2017·柘城模拟) 如图,抛物线y=x2+bx+c与直线y= x﹣3交于A、B两点,其中点A在y 轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共12题;共13分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共10题;共107分)18-1、18-2、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、。
广西贵港市九年级上学期数学期末考试试卷
广西贵港市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共17分)1. (2分)方程(3x-1)(x-2)=(4x+1)(x-2)的根是()A . 2B . -2C . ±2D . ±42. (2分)(2020·山西) 泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
金字塔的影长,推算出金字塔的高度。
这种测量原理,就是我们所学的()A . 图形的平移B . 图形的旋转C . 图形的轴对称D . 图形的相似3. (2分)如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=,则tanA=()A .B . 1C .D .4. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论正确的是()A . abc>0B . 方程ax2+bx+c=0有两个实数根分别为-2和6C . a-b+c<0D . 当y=4时,x的取值只能为05. (2分)已知AB=10cm ,以AB为直径作圆,那么在此圆上到AB的距离等于5cm的点共有().A . 无数个B . 1个C . 2个D . 4个6. (2分)下列说法正确的是()A . 顺次连接矩形各边中点得到的四边形是矩形B . 三角形的三条角平分线交于一点,并且这一点到三个顶点的距离相等C . 既是矩形又是菱形的四边形不一定是正方形D . 直角三角形斜边上的中线等于斜边的一半7. (5分)小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).二、填空题 (共10题;共10分)8. (1分)某地某日最高气温为12℃,最低气温为-7℃,该日气温的极差是________℃.9. (1分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是________ .10. (1分)“任意买一张电影票,座位号是5的倍数”,此事件是________.11. (1分) (2017八下·江阴期中) 在一个不透明的口袋中,装有若干个除颜色外,形状、大小、质地等完全相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总数为________个.12. (1分) (2019九上·阳信开学考) 如图,AB是⊙O的直径,C,D是圆上的两点,若∠ABD=40°,则∠BCD=________.13. (1分)(2019·黄浦模拟) 正九边形的中心角等于________°.14. (1分) (2016九上·鼓楼期末) 若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的高为________cm.15. (1分)(2020·房山模拟) 如图,扇形,通过测量、计算,得的长约为________ .(π取3.14,结果保留一位小数)16. (1分)如图,△ABC是⊙O的内接三角形,∠C=50°,则∠OAB=________°.17. (1分) (2017九上·西湖期中) 二次函数的部分图象如图,图象过点,对称轴为直线,下列结论:① ;② ;③ ;④当时,的值随值的增大而增大;⑤当函数值时,自变量的取值范围是或.其中正确的结论有________.三、解答题 (共10题;共100分)18. (10分)(2017·景德镇模拟) 综合题。
广西省2020-2021学年九年级数学上册期末模拟试卷2套(含答案)(部编版)
广西省九年级数学上册期末模拟试题(含答案)(考试时间:90分钟,全卷满分:100分)一、选择题(本题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)1.在单词NAME的四个字母中,是中心对称图形的是A.NB.AC.MD.E2.一个不透明的布袋里装有5个只有颜色不同的球,其中3个红球,2个白球,从布袋中随机摸出一个球,摸出红球的概率是A. B. C. D.3.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为A.60B.70C.80D.904.关于x的方程是一元二次方程,则满足A.a≠lB.a≠-1C. a≠土1D.为任意实数5.如图,P是正△ABC内的一点,若将△BPC绕点B旋转到△BP’A,则∠PBP’的度数是A.45B.60C.90D.1206.如图,⊙O的直径CD垂直弦AB于点E,且CE=1,OB=5,则AB的长为A. B.4 C. 6 D. 47.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是A. B. C. D.8.已知点A(1,a)在抛物线上,则点A关于原点对称的点的坐标为A.(-l,-2)B.(-l,2)C. (1,-2)D.(1,2)9.如图.△ABC为⊙O的内接三角形,AB=2,∠C30,则⊙O的半径为A.lB.2C..3D.410.如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A与x轴平行的直线交抛物线于B、C两点,则BC的长为A. B. C. D.二、填空题(本题共6小题,每小题3分,满分18分)1l.方程的二次项系数是 .12.已知正六边形的边长为2,则这个正六边形的边心距为 .13.将抛物线向左平移2个单位,所得到的抛物线的解析式为 .14.若扇形的半径为3,圆心角120,为则此扇形的弧长是 .15.如图,在△ABC中,∠ACB=90,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则△ABC的面积是 .16.如图,圆心都在x轴正半轴上的半圆,半圆,…,半圆均与直线l相切,设半圆,半圆,…,半圆的半径分别是,,…,,则当直线l与x轴所成锐角为30时,且=1时, .三、解答题(本题共7小题,满分52分.解答应写必要的文字说明、演算步骤或推理过程)17.(5分)解方程:18.(6分)如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)画出将△ABC绕坐标原点O逆时针旋转90图形.(2)填空:以A、B、C为顶点的平行四边形的第四个顶点D的坐标为 .19.(6分)有三张正面分别标有数字1、2、3的卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取一张,记下所标数字,不放回,再任意抽取一张,记下所标数字,将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数,求所组成的两位数是偶数的概率(请用“画树状图”或“列表”的方法写出过程).20.(6分)如图,在长为20cm,宽为16cm的矩形的四个角上截去四个全等的小正方形,使得剩下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.21.(8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)()满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用80元;每间空置的客房,宾馆每日需支出各种费用20元.当房价为多少元时,宾馆当日利润最大?求出最大利润(宾馆当日利润=当日房费收入一当日支出)22.(9分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC 的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是8,求线段BF的长23.(12分)在平面直角坐标系xoy中,抛物线(a≠O)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,O),抛物线的对称轴是直线x=-3,且经过A、C两点的直线为 .(1)求抛物线的函数表达式;(2)将直线AC向下平移m个单位长度后,得到的直线l与抛物线只有一个交点D,求m的值;(3)抛物线上是否存在点Q,使点Q到直线AC的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由参考答案及评分标准一、选择题:(每题3分,共30分)二、填空题:(每题3分,共18分)11.1 12. 3 13. ()223+=x y 14. π2 15. 23 16. 20163三、解答题:(共52分)17.解:()()012=--x x ........................................................... 3分02=-x 或 01=-x .......................................................... 4分21=x 或 12=x ........................................................... 5分18.解:(1)如图所示△DEF 为所求................................................ 3分(2))3,7(1-D 、 )3,3(2D 、 )3,5(3--D ........................................... 6分19.解:画树状图如下:开始十位数 1 2 3个位数 2 3 1 3 1 2结果 12 13 21 23 31 32 ............................................. 4分 即3162(==偶数)P ............................................................ 6分 20. 解:设小正方形的边长为xcm .题号 1 2 3 4 5 6 7 8 9 10 答案ACDCBCBABDD EF根据题意得:()%801162042-⨯⨯=x ........................................................ 3分解得:4±=x ................................................................. 4分x 为正数∴4=x ..................................................................... 5分答:小正方形的边长为cm 4. ............................................................ 6分21. 解:(1)设一次函数的解析式为b kx y +=由表可知,点(200,100)、点(300,50)在一次函数上∴{10020050300=+=+b k b k .......................................................... 2分解得: ............................................................ 3分∴y 与x 之间的函数表达式为:20021+-=x y .....................................4分 (2)设宾馆每日的利润为w 元. 根据题意得:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⨯-⎪⎭⎫ ⎝⎛+--=20021100202002180x x x w 6分14000230212-+-=x x()12450230212+--=x ...................................................... 7分∵21-=a∴w 有最大值,当230=x 时,12450=最大w答:当宾馆的房价为230元时,当日利润最大.最大利润为12450元. ................ 8分200=b 21-=k M22.解:(1)证明:过点O 作OM ⊥AB ,垂足是M∵⊙O 与AC 相切于点D ∴OD ⊥AC∴∠ADO=∠AMO=90° .................................................. 1分 ∵△ABC 是等边三角形, AO ⊥BC∴OA 是∠MAD 的角平分线 .............................................. 2分 ∵OD ⊥AC ,OM ⊥AB∴OM=OD ............................................................ 3分∴AB 与⊙O 相切 ...................................................... 4分(2)解:过点O 作ON ⊥BE ,垂足是N ,连接OF∵A B=AC ,AO ⊥BC ∴O 是BC 的中点 ∴482121=⨯==BC OB................................................. 5分 在直角△ABC 中,∠ABE=90°,∠MBO=60° ∴∠OBN=30° ∵ON ⊥BE ,∠OBN=30°,OB=4 ∴221==OB ON ,322422=-=BN ................................ 6分 ∵AB ⊥BE∴四边形OMBN 是矩形∴32==OM BN ...................................................... 7分 ∵32==OM OF 由勾股定理得()2223222=-=NF ................................... 8分∴2232+=+=NF BN BF ........................................... 9分MN23.解:(12=2=x (2解得 1=k∴直线AC 的函数表达式为4+=x y .......................................... 5分∵直线l 是由直线AC 向下平移m 个单位得到的∴设直线l 的解析式为m x y -+=4 ∵直线l 与抛物线相交∴ ............................................... 7分∵只有一个交点∴0=∆ 即:021422=⨯-m 2=m ........................................................... 8分 (3)()12,221+-Q ........................................................ 9分()12,222+---Q ..................................................... 10分 ()36,263+-Q ........................................................ 11分()36,264+---Q ..................................................... 12分43212++=x x ym x y -+=4广西省九年级数学上册期末考试试卷含答案注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟. 2.答题前,考生将班级、姓名写在答题卡指定的位置.3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡. 一、选择题(本题共 10 题,每小题 3 分,共 30 分) 下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.方程x 2=2x 的解为( )A .x =2B .x = 2C .x 1=2,x 2=0D .x 1=2, x 2=0 2.下列关于反比例函数2y x=-的说法不正确的是( ) A .其图象经过点(-2,1) B .其图象位于第二、第四象限 C .当x <0时,y 随x 增大而增大 D .当x >-1时,y >2 3.下列说法中错误的是( )A .必然事件发生的概率为1B .不可能事件发生的概率为0C .随机事件发生的概率大于等于0、小于等于1D .概率很小的事件不可能发生4.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是( )A .(1,0)B .(0,0)C .(-1,2)D .(-1,1)5.如图,△ABC 的边AC 与⊙O 相交于C 、D 两点,且经过圆心O ,边AB 与⊙O 相切,切点为B . 已知∠A =30°,则∠C 的大小是( )A .30°B .45°C .60°D .40° 6.如图,A 、B 两点在双曲线4y x=上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1, 则S 1+S 2等于( )A .6B .5C .4D .37.甲、乙、丙三人参加数学、物理、英语三项竞赛,每人限报一项,每项限报一人,则甲报英语、乙报数学、丙报物理的概率是( )A .13B .16C .118D .1278.如图,点O 为△ABC 的外心,点I 为△ABC 的内心,若∠BOC =140°,则∠BIC 的度数为( )A .110°B .125°C .130°D .140°(第4题图)(第5题图) (第6题图) (第8题图)(第9题图) (第10题图)9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;③12 a>;④b<1.其中正确的结论个数是( )A.1个B.2个C.3个D.4个10.如图,在半径为6cm的⊙O中,点A是劣弧BC︵的中点,点D是优弧BC︵上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=63cm;③弦BC与⊙O直径的比为32;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④二、填空题:(本题有6个小题,每小题3分,共18分)11.若代数式x2+4x-2的值为3,则x的值为____________.12.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转到△A′B′C,使得点A′恰好落在AB上,则旋转角度为________.14.已知二次函数y1=ax2+bx+c(b≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是________.15.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H 点,连接CF,若CF=5,则HE的长为________.16.如图,点A(m,6),B(n,1)在反比例函数kyx=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是_____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分)如图,已知反比例函数7myx-=的图象的一支位于第一象限.(1)该函数图象的另一分支位于第_____象限,m的取值范围是____________;(2)已知点A在反比例函数图象上,AB⊥x轴于点B,△AOB的面积为3,求m的值.(第16题图)(第13题图)(第14题图)(第15题图)(第17题图)18.(本题满分6分) 如图,已知Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE 、FG 相交于点H .判断线段DE 、FG 的位置关系,并说明理由.19.(本题满分7分)一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小敏从布袋中摸出一球后放回,摇匀后再摸出一球,请用列举法(列表或画树形图)求小敏两次都能摸到黄球的概率.20.(本题满分7分) AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =70°,求∠CAD 的度数;(2)若AB =4,AC =3,求DE 的长.21.(本题满分8分)已知关于x 的一元二次方程x 2-(a -3)x -a =0.(1) 求证:无论a 取何值时,该方程总有两个不相等的实数根;(2) 若该方程两根的平方和为6,求a 的值.22. (本题满分8分)某校九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.时间x (天) 1≤x <50 50≤x ≤90 售价(元/件) x +40 90 每天销量(件) 200-2x 200-2x(第18题图) (第20题图)23.(本题满分8分)已知关于x的一元二次方程ax2-3x-1=0有两个不相等的实数根,且两个实数根都在-1和0之间(不包含-1和0),求a的取值范围.24.(本题满分10分)如图在△ABC中,∠C=90°,点O在AC上,以AO为半径的⊙O交AB于D,BD的垂直平分线交BD于F,交BC于E,连接DE.(1)求证:DE是⊙O的切线;(2)若∠B=30°,BC=43,且AD∶DF=1∶2,求⊙O的直径.25.(本题满分12分)如图,已知抛物线y=ax2+bx+c经过点A(-1,0),点B(3,0)和点C(0,3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上?请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B 为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.(第24题图)九年级数学参考答案及评分标准(共3页) 一、选择题(10×3分=30分)1.C ; 2.D ; 3.D ; 4.C ; 5.A ; 6.A ; 7.B ; 8.B ; 9.B ; 10.B .二、填空题(6×3分=18)11.1或-5; 12.12; 13.60°; 14.x <-2或x >8; 15.532; 16.E (3,0). 三、解答题(72分)17.(6分)解:(1)三,m >7;…………………………………………………………………………3分(2)设A (a ,b ),则AB =b ,OB =a由△AOB 的面积为3,得12ab =3,∴ab =6……………………………………………………………5分即m -7=6,∴m =13. …………………………………………………………………………………3分18.(6分)解:DE ⊥FG .…………………………………………………1分理由:由题知:Rt △ABC ≌Rt △BDE ≌Rt △FEG∴∠A =∠BDE =∠GFE ……………………………………………………3分∵∠BDE +∠BED =90°∴∠GFE +∠BED =90°,即DE ⊥FG . …………………………………6分19.(7分)解:画树形图:(红球记为R ,黄球记为H ,白球记为B)(第25题图)(第18题图)第一次摸球:第二次摸球: ……………………………………………………………5分共有9种等可能性,其中两次都摸到黄球只有1种情况.…………………………………………6分∴P (两次都摸到黄球)=19.……………………………………………………………………………7分 20.(7分)解:(1) 连OC ,则∠B =∠BCO∵OD ∥BC ,∴∠COD =∠OCB =∠B =70°∴∠CAD =12∠COD =35°.……………………………………………3分 (2)∵OD ∥BC ,∴∠B =∠AOD ,∠COD =∠OCB∵∠B =∠BCO ,∴∠AOD =∠COD ,∴OD ⊥AC ,AE =EC ………………………………………4分 在Rt △AOE 中:OE =2222372()2AO OE -=-=………………………………………………6分 ∴DE =DO -OE =2-7.………………………………………………………………………………7分21.(8分) (1) 证明:∵△=[]222(3)41()29(1)8a a a a a ---⨯⨯-=-+=-+>0…………………3分 ∴无论a 取何值时,该方程总有两个不相等的实数根;………………………………………………4分(2)设方程两根分别为x 1,x 2,则123x x a +=-,12x x a =-……………………………………………5分∵222121212()26x x x x x x +=+-= …………………………………………………………………………6分∴2(3)2()6a a ---=,即2430a a -+= ………………………………………………………………7分解得:a =1或a =3…………………………………………………………………………………………8分22.(8分)解:(1)①当1≤x <50时,y =(200-2x )(x +40-30)=-2x 2+180x +2000②当50≤x ≤90时,y =(200-2x )(90-30)=-120x +12000 综上所述:y =221802000(150)12012000(5090)x x x x x ⎧-++≤<⎨-+≤≤⎩; (2)分(2)①当1≤x <50时, y =-2x 2+180x +2000∵a =-2<0,∴二次函数开口向下,二次函数对称轴为x =2b a-=45 ∴当x =45时,y 最大值=-2×452+180×45+2000=6050………………………………………………4分 ②当50≤x ≤90时,y =-120x +12000,∵k =-120<0, ∴y 随x 的增大而减小,∴当x =50时, y 最大值=6000……………………………………………………………………………5分 综上所述,该商品销售到第45天时,利润最大,最大利润是6050元; …………………………6分(3)当20≤x ≤60时,每天销售利润不低于4800元.…………………………………………………8分23.(8分)解:∵关于x 的一元二次方程ax 2-3x -1=0有两个不相等的实数根∴△=2(3)4(1)0a --⨯⨯->,解得,a >94- …………………………………………………………3分令y =ax 2-3x -1,则该二次函数的图象与y 轴交于(0,-1) ………………………………………4分∵方程ax 2-3x -1=0的两个实数根都在-1和0之间∴二次函数y =ax 2-3x -1与x 轴两交点的横坐标都在-1和0之间∴a <0,其大致图象如图所示:当x =-1时,y =ax 2-3x -1=a +2<0解得,a <-2………………………………………………………………………………………………7分综上可得:94-<a <-2. ………………………………………………………………………………8分24.(10分) (1)证明:连OD .∵OD =OA ,∴∠OAD =∠ODA ………………………………………………1分∵EF 垂直平分DB ,∴ED =EB ,∴∠EDB =∠EBD ………………………2分又∵∠A +∠B =90°,∴∠ODA +∠EDB =90°∴∠ODE =90°,即OD ⊥DE ………………………………………………3分∵点D 在⊙O 上, ∴DE 是⊙O 的切线.………………………………………………………………4分(2)解:∵∠B ,∴∠ A =60°,∴△OAD 是等边三角形………………………………………………5分在Rt △ABC 中:设AC =x ,则AB =2x ,由勾股定理,得222(43)(2)x x +=解得,x =4,∴AC =4,AB =8……………………………………………………………………………6分设AD =m ,则DF =BF =2m由AB =AD +2DF =m +4m =8,得m =85 ………………………………………………………………7分∴⊙O 的直径=2AD =165. ………………………………………………………………………………8分25.(12分) (1) 将A (-1,0),B (3,0)和C (0,3)代入y =ax 2+bx +c得93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩……………………………………………………………………………………………1分解得123a b c =-⎧⎪=⎨⎪=⎩…………………………………………………………………………………………………2分 ∴抛物线的解析式为y =-x 2+2x +3,顶点E 的坐标为(1,4). ………………………………………3分(2)点C 在以BE 为直径的圆上,理由如下: ………………………………………………………………4分如图,过点E 分别作x 轴、y 轴的垂线,垂足分别F 、G .在Rt △BOC 中,OB =3,OC =3,∴BC 2=18………………………………………………………………5分在Rt △CEG 中,EG =1,CG =OG -OC =4-3=1,∴CE 2=2 …………………………………………6分在Rt △BFE 中,FE =4,BF =OB -OF =3-1=2, ∴BE 2=20 …………………………………………7分∴BC 2+CE 2=BE 2故△BCE 为直角三角形,点C 在以BE 为直径的圆上.……………………………………………………8分(3)存在,点Q 、R 的坐标分别为Q 1(1,-2),R 1(4,-5); ……………………………………………10分Q 2(1,-8),R 2(-2,-5);R 3(2,3),Q 3(1,0).…………………………………………………………12分。
广西贵港市2021版九年级上学期数学期末考试试卷C卷
广西贵港市2021版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(每小题4分,共48分) (共12题;共48分)1. (4分)下列事件中,属于必然事件的是()A . 抛掷一枚1元硬币落地后,有国徽的一面向上.B . 打开电视任选一频道,正在播放福安新闻.C . 在一条线段的垂直平分线上任选一点,这个点到该线段两端点的距离相等.D . 某种彩票的中奖率是10%,购买10张该种彩票,中奖.2. (4分) (2018九上·泰州期中) 若,则的值是()A .B .C .D .3. (4分) (2019九上·海门期末) 抛物线y=﹣(x﹣2)2+3的顶点坐标是()A . (2,﹣3)B . (﹣2,3)C . (2,3)D . (﹣2,﹣3)4. (4分)(2017·高淳模拟) 在△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A .B .C .D .5. (4分)(2019·昆明模拟) 如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A . 52°B . 64°C . 48°D . 42°6. (4分)如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有()A . 3个B . 2个C . 1个D . 0个7. (4分)抛物线y=(x-1)2+2可以由抛物线y=x2平移而得到,下列平移正确的是().A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位8. (4分)如图,△ABC中,E、D分别是AC、BC的中点,AD、BE交于点O ,则S△DOE:S△AOB=()A . 1:2B . 2:3C . 1:3D . 1:49. (4分)下列说法正确的是()A . 真命题的逆命题都是真命题B . 在同圆或等圆中,同弦或等弦所对的圆周角相等C . 等腰三角形的高线、中线、角平分线互相重合D . 对角线相等且互相平分的四边形是矩形10. (4分) (2019九上·海曙期末) 如图,三角形纸片的周长为,,⊙ 是的内切圆,玲玲用剪刀在⊙ 的左侧沿着与⊙ 相切的任意一条直线剪下一个,则的周长是()A .B .C .D . 根据位置不同而变化11. (4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c<0,△<0;③c-4b>0;④4a-2b+c=16a+4b+c.其中正确结论的个数是()A . 1B . 2C . 3D . 412. (4分)(2019·湟中模拟) 一个滑轮起重装置如图所示,滑轮的半径是15cm,当重物上升15cn时,滑轮的一条半径OA绕轴心O按顺时针方向旋转的角度约为()(π取3.14,结果精确到1º)A . 115ºB . 60ºC . 57ºD . 29º二、填空题(每小题4分,共24分) (共6题;共22分)13. (4分) (2018九上·吴兴期末) 已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为________ .14. (2分) 2016年2月上旬福州地区空气质量指数(AQI)如下表所示,空气质量指数不大于100表示空气质量优良,2016年2月上旬福州地区空气质量指数(AQI)日期12345678910ug/m326344341344878 1 155945如果小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是优良的概率是________ .15. (4分) (2015九下·深圳期中) 如图,已知一次函数的图象与坐标轴分别交于点A,B 两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PQ,切点为Q,则PQ的最小值为________.16. (4分)(2017·钦州模拟) 已知⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8,则AC 的长为________.17. (4分) (2019九下·沈阳月考) 如图,一个正三角形经过变换依次成为正六边形、正十二边形、正二十四边形、….当这些正多边形的周长都相等时,正六边形的面积________正十二边形的面积(填不等的符号).18. (4分) (2019九上·利辛月考) 如图,矩形ABCD中,AB=3,BC=4,点P是对角线AC上一动点,过点P 作PE⊥AD于点E,若点P,A,B构成以AB为腰的等腰三角形时,则线段PE的长是________。
广西贵港市2021版九年级上学期数学期末考试试卷(II)卷
广西贵港市2021版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一元二次方程x2﹣2x=0的根是()A . x=2B . x=0C . x1=﹣2,x2=0D . x1=2,x2=02. (2分) (2016九下·萧山开学考) 计算﹣,正确的结果是()A .B .C .D . 33. (2分) (2019九上·象山期末) 如图,直线1l//l2//l3 ,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A .B .C .D .4. (2分) (2017九上·黑龙江开学考) 若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A . k≤﹣1且k≠0B . k<﹣1且k≠0C . k≥﹣1且k≠0D . k>﹣1且k≠05. (2分)已知直角三角形的两条边的长为3和4,则第三条边的长为()A . 5B . 4C .D . 5或6. (2分)一个事件发生的概率不可能是()A . 0B . 1C .D .7. (2分)如图,在△ABD中,两个顶点A、B的坐标分别为A(6,6),B(8,2),线段CD是以O为位似中心,在第一象限内将线段AB缩小为原来的一半后得到线段,则端点D的坐标为()A . (3,3)B . (4,3)C . (3,1)D . (4,1)8. (2分)(2017·惠山模拟) 已知,AB是⊙O的弦,且OA=AB,则∠AOB的度数为()A . 30°B . 45°C . 60°D . 90°9. (2分) (2020·松江模拟) 已知二次函数的图像如图所示,那么下列判断正确()A . ,,B . ,,C . ,,D . ,,10. (2分)(2017·五华模拟) 阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A . (4,60°)B . (4,45°)C . (2 ,60°)D . (2 ,50°)二、填空题 (共5题;共5分)11. (1分) (2019九下·温州竞赛) 若代数式在实数范围内有意义,则x的取值范围是________。
广西贵港市九年级上学期期末数学试卷
广西贵港市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下面的几何体中,主视图为三角形的是()A .B .C .D .2. (2分)(2017·营口模拟) 一上山坡路(如图所示),小明测得的数据如图中所示,则该坡路倾斜角α的正切值是()A .B .C .D .3. (2分) (2020九上·厦门月考) 二次函数y=3(x﹣1)2+2,下列说法正确的是()A . 图象的开口向下B . 图象的顶点坐标是(1,2)C . 当x>1时,y随x的增大而减小D . 图象与y轴的交点坐标为(0,2)4. (2分)在抛掷一枚均匀硬币的实验中,如果没有硬币,则下列不可作实验替代物的是()A . 一颗骰子B . 一个压平的啤酒瓶盖C . 两张扑克牌(一张黑桃,一张红桃)D . 一颗图钉5. (2分)反比例函数y=的图象上有两个点为(1,y1),(2,y2),则y1与y2的关系是()A . y1>y2B . y1<y2C . y1=y2D . 无法判断6. (2分)某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A . (﹣2a,﹣2b)B . (﹣a,﹣2b)C . (﹣2b,﹣2a)D . (﹣2a,﹣b)7. (2分) (2018九上·渝中期末) 下列命题是真命题的是()A . 一组对边平行,且另一组对边相等的四边形是平行四边形B . 对角线互相垂直的四边形是菱形C . 四边都相等的矩形是正方形D . 对角线相等的四边形是矩形8. (2分) (2019七上·土默特左旗期中) 抛物线的顶点为,与轴的一个交点在点和之间,其部分图象如图所示,则以下结论:① ;② ;③ ;④方程以有两个的实根,其中正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)9. (1分)(2017·奉贤模拟) 计算:(﹣1)2012+20﹣ =________.10. (1分) (2016九上·北仑月考) 如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1、A2、A3…An ,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1、M2、M3、…Mn ,…都在直线L:y=x上;②抛物线依次经过点A1、A2、A3…An、….则顶点M2014的坐标为________.11. (1分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长为________ m.12. (1分)如图,已知AB∥CD,AD与BC相交于点O.若 = ,AD=10,则AO=________.13. (1分)(2016·柳州) 如图,若▱ABCD的面积为20,BC=5,则边AD与BC间的距离为________14. (1分) (2019九上·香洲期中) 若函数y=(a+1)x2﹣2x+1的图象与x轴只有一个交点,则a为________.三、作图题 (共2题;共15分)15. (5分)画出如图所示几何体的主视图,左视图和俯视图.16. (10分) (2020八下·吉林期中) 解下列方程(1)(2)四、四.解答题 (共8题;共76分)17. (5分)(2012·辽阳) 如图,有甲、乙两个可以自由转动的转盘,其中转盘甲被平均分成三个扇形,转盘乙被平均分成五个扇形,小明与小亮玩转盘游戏,规则如下:同时转动两个转盘,转盘停止后,转盘中甲指针所指数字作为点的横坐标,转盘乙指针所指数字作为点的纵坐标,从而确定一个点的坐标为A(m,n).当点A在第一象限时,小明赢;当点A在第二象限时,小亮赢.请你利用画树状图或列表法分析该游戏规则对双方是否公平?并说明理由.18. (15分)(2016·海曙模拟) 张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;(2)求出a的值;(3)求张师傅途中加油多少升?19. (5分)(2011·柳州) 在学习了解直角三角形的有关知识后,一学习小组到操场测量学校旗杆的高度.如图,在测点D处安置测倾器,测得旗杆顶的仰角∠ACE的大小为30°,量得仪器的高CD为1.5米,测点D到旗杆的水平距离BD为18米,请你根据上述数据计算旗杆AB的高度(结果精确到0.1米;参考数据≈1.73).20. (11分) (2019九上·西安月考) 跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为 y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.21. (10分)(2017·微山模拟) 已知如图,△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=CG,连接AE、CD.(1)求证:△AGE≌△DAC;(2)过E做EF∥DC.交BC于F.连接AF.判断△AEF是怎样的三角形.并证明你的结论.22. (10分) (2019九上·路北期中) 某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?23. (10分)(2016·百色) 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.24. (10分)已知:如图,△ABC∽△ADE , AE:EC=5:3,BC=6cm,∠A=40°,∠C=45°.(1)求∠ADE的大小;(2)求DE的长.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、作图题 (共2题;共15分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:四、四.解答题 (共8题;共76分)答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.如图,在 中, 是斜边 的中线, 交 边于点 .
(1)求证: ;
(2)若 ,求 的长.
22.某市为了了解初中学校“高效课堂”的有效程度,并就初中生在课堂上是否具有“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”等学习行为进行评价.为此,该市教研部门开展了一次抽样调查,并将调查结果绘制成尚不完整的条形统计图和扇形统计图(如图所示),请根据图中信息解答下列问题:
∴ ,
即2BC=24.
解得,BC=12,
故选D.
【点睛】
本题考查了相似三角形的性质,熟练掌握性质是解题的关键.
4.B
【分析】
方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
【详解】
方程移项得:x2−6x=1,
配方得:x2−6x+9=10,
即(x−3)2=10,
故选:B.
【点睛】
本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
(1)在图1中,设 与 的交点为 ,则线段AF的长为;
(2)当 时,三角板 旋转到 ,的位置(如图2所示),连接 ,请判断四边形 的形状,并证明你的结论;
(3)当三角板 旋转到 的位置(如图3所示)时,此时点 恰好在 的延长线上.①求旋转角 的度数;②求线段 的长.
参考答案
1.C
【解析】
【分析】
根据反比例函数的性质对各选项进行逐一判断即可.
(1)这次抽样调查的样本容量为.
(2)在扇形统计图中,“主动质疑”对应的圆心角为度;
(3)请补充完整条形统计图;
(4)若该市初中学生共有 万人,在课堂上具有“独立思考”行为的学生约有多少人?
23.两栋居民楼之间的距离 ,楼 和 均为10层,每层楼高为 .上午某时刻,太阳光线 与水平面的夹角为30°,此刻楼 的影子会遮挡到楼 的第几层?(参考数据: , )
25.如图,在平面直角坐标系 中,菱形 的对角线 经过原点 ,与 交于点 轴于点 ,点D的坐标 为反比例函数 的图象恰好经过 两点.
(1)求 的值及 所在直线的表达式;
(2)求证: .
(3)求 的值.
26.把一副三角板按如图1所示放置,其中点 在 边上, ,斜边 .将三角板 绕点 顺时针旋转,记旋转角为 .
A. 且 B. 且
C. 且 D.
7.计算 的结果是()
A. B. C. D.
8.已知 一元二次方程 的两个实数根,且 ,则 的值为()
A. 或 B. C. D.
9.已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+ =0的根的情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
【详解】
设实际距离是xcm,则,
1:500000=25:x,
解得:x=12500000.
1【点睛】
本题考查了比例尺的定义,属于简单题,单位换算是解题关键.
3.D
【分析】
根据在相似三角形中,对应边的比等于相似比可以求得BC的长,本题得以解决.
【详解】
∵△ADE∽△ABC,且相似比为 ,DE=8cm,
C.没有实数根D.无法确定
10.如图,在 中,点 分别在 边上,且 ,若S四边形BCED ,则 的值为()
A. B. C. D.
11.如图,函数 与 的图象相交于点两点 ,则不等式 的解集为()
A. B. 或 C. D. 或
12.如图,在正方形 中, 是 边的中点,将 沿 折叠,使点 落在点 处, 的延长线与 边交于点 .下列四个结论:① ;② ;③ ;④ S正方形ABCD,其中正确结论的个数为()
24.为了满足师生的阅读需求,某校图书馆藏书总量由2021年 万册增加到2021年 万册.
(1)求该校图书馆这两年藏书总量的年均增长率;
(2)经统计知:在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书总量的年均增长率,2021年中外古典名著册数占藏书总量的 ,而在2021年中外古典名著册数仅占当年藏书总量的 ,请求出 的值.
5.C
【分析】
先求出夹角,再根据30度角所对的直角边等于斜边的一半即可求出.
A. 个B. 个C. 个D. 个
二、填空题
13.若 ,则 的值是__________.
14.一组数据2,4,2,3,4的方差s2=_____.
15.如图,渔船在 处看到灯塔 在北偏东 方向上,渔船向正东方向航行了 到达 处,在 处看到灯塔 在正北方向上,则 处与灯塔 的距离是__________.
16.已知 两直角边的长分别是方程 的两个实数根,且 的最小角为 ,则 的值是__________.
广西壮族自治区贵港市覃塘区2020-2021学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列各点不在反比例函数 的图象上的是()
A. B. C. D.
2.在一幅比例尺为 的地图上,若量得甲、乙两地的距离是 ,则甲、乙两地实际距离为()
A.125kmB.12.5kmC.1.25kmD.1250km
3.已知 ,且相似比为 ,若 ,则 的长是()
A. B. C. D.
4.若用配方法解一元二次方程 ,则原方程可变形为()
A. B. C. D.
5.已知一堤坝的坡度 ,堤坝的高度为 米,则堤坝的斜坡长为()
A. 米B. 米C. 米D. 米
6.若关于 的一元二次方程 有两个不相等的实数根,则 的取值范围是()
17.如图,在平行四边形 中,点 在 边上,且 ,若 ,则 的长为__________.
18.如图,已知 中, ,顶点 分别在反比例函数 与 的图象上,则 的值为__________.
三、解答题
19.(1)计算: ;
(2)解方程: .
20.如图,在平面直角坐标系 中, 的顶点为 .
(1)在 轴的右侧,画出 的位似图形 ,使位似中心为原点 ,位似比为
【详解】
A. , 此点在反比例函数的图象上,故不符合题意;
B. 此点在反比例函数的图象上,故不符合题意;
C. 此点不在反比例函数的图象上,故符合题意;
D. 此点在反比例函数的图象上,故不符合题意.
故选C.
【点睛】
本题考查了反比例函数的性质,根据k=xy代入是解题的关键.
2.A
【分析】
根据比例尺=图上距离:实际距离,列比例式即可求解.