基于FPGA的FIR数字滤波器的设计与实现

合集下载

基于FPGA的FIR滤波器设计与实现

基于FPGA的FIR滤波器设计与实现

目录引言................................... 错误!未定义书签。

第一章 FPGA的设计流程 ................... 错误!未定义书签。

1.1 FPGA概述 ................................... 错误!未定义书签。

1.2 FPGA设计流程................................. 错误!未定义书签。

1.3硬件描述语言HDL(Hardware Description Language) 错误!未定义书签。

1.4 FPGA开发工具Quartus Ⅱ软件设计流程 ......... 错误!未定义书签。

第二章有限冲激响应(FIR)滤波器的原理及设计.... 错误!未定义书签。

2.1数字信号处理基础原理.......................... 错误!未定义书签。

2.2 FIR滤波器背影知识........................... 错误!未定义书签。

2.3 FIR数字滤波器原理............................ 错误!未定义书签。

2.4 利用窗函数法设计FIR滤波器................... 错误!未定义书签。

第三章 FIR 数字滤波器的FPGA实现........... 错误!未定义书签。

3.1串行FIR滤波器原理............................ 错误!未定义书签。

3.2分布式算法基础................................ 错误!未定义书签。

3.3直接型FIR滤波器的原理结构图.................. 错误!未定义书签。

3.4具有转置结构的FIR滤波器...................... 错误!未定义书签。

第四章结论与总结......................... 错误!未定义书签。

基于FPGA的FIR数字滤波器的实现

基于FPGA的FIR数字滤波器的实现
数 字 量 编 码 的 方 法
G r a p h ) 算法进 一步 简化 C S D编码 . 然后采 用 A l t e r a 公
司的 F P G A芯片来实现信号处理中的 F I R数字滤波器.
实验证 明这是 一种 F I R数 字 滤 波 器 的 较 好 的 设 计 选 择, 具 有 应 用 价值
HUA Z e , ZHAO Xi n g -h a n g , F U Z h a o - y a n g , L U Yo u , Z HANG Ni
( 1 ) 从最低有效位开始 . 用 1 0 …( ) - 1 取 代 所 有 大 于 2的 1 序 列 。此 外 还 需 用 1 1 0 — 1 取代 1 0 1 1 。 ( 2 ) 从最高有效位开始 , 用0 1 1 代替 1 0 - 1 。 例如 :
( 9 1 ) 1 0 = ( 1 0 1 1 0 1 1 ) 2 - ( 1 1 0 旷1 0 - 1 ) 佳c s D
收稿 日期 : 2 01 3 — 0 9 —1 0 修稿 日期 : 2 0 1 3 —1 0 —1 0
作 者 简介 : 陈剑 冰 , 男, 本科 , 研 究 方 向 为信 号 处理

④ 现 代 计算 机 2 0 1 3 . 1 0 中
Ap p l i c a t i o n o f He t e r O g e n e Ou S Sy s t e m I n t e g r a t i o n i n I n t e l l i g en t Tr a n s p or t a t i o n I n t e g r a t e d I n f o r ma t i o n PI a t f Or m
★基 金 项 目: 广 东省 科 技 厅 产 学研 项 目( No _ 2 0 1 2 B 0 9 1 1 0 0 3 4 9 ) 、 广 东省 经 信 委 项 目( No . G DE I D2 0 1 0 I s 0 3 4 ) 、 广 州市 越 秀 区科 技 项 目 ( No . 2 0 1 2 一 G X一 0 0 4 )

基于FPGA的FIR数字滤波器设计与实现

基于FPGA的FIR数字滤波器设计与实现

基于FPGA的FIR数字滤波器设计与实现作者:单文军周雪纯李文华来源:《现代电子技术》2013年第14期摘要:简要介绍了FIR数字滤波器的结构特点和基本原理,提出基于FPGA和DSP Builder的FIR数字滤波器的基本设计流程和实现方案。

在Matlab/Simulink环境下,采用DSP Builder模块搭建FIR模型,根据FDATool工具对FIR滤波器进行了设计,然后进行系统级仿真和ModelSim功能仿真,其仿真结果表明其数字滤波器的滤波效果良好。

通过SignalCompiler把模型转换成VHDL语言加入到FPGA的硬件设计中,从QuartusⅡ软件中的虚拟逻辑分析工具SignalTapⅡ中得到数字滤波器实时的结果波形图,结果符合预期。

关键词: FPGA; DSP Builder; FIR数字滤波器; ModelSim功能仿真中图分类号: TN911⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)14⁃0123⁃04Design and implementation of FIR digital filter based on FPGASHAN Wen⁃jun, ZHOU Xue⁃chun, LI Wen⁃hua(China Flight Test Establishment,Xi’an 710089, China)Abstract: The structure feature and the basic principle of FIR digital filter is introduced briefly. The basic design process and implementation scheme of the FIR digital filter based on FPGA and DSP Builder is proposed in this paper. FIR model is structured with DSP Builder module in the Matlab/Simulink environment. The FIR digital filter is designed according to the FDATool. The system level simulation and ModelSim function simulation were completed. The simulation results show that the filter has excellent effect. The model is converted to VHDL language through SingalCompiler and added to FPGA hardware design. The real⁃time waveform graph of the FIR digital filter was received by the virtual logic analysis tool SignalTapⅡ in QuartusⅡ. The results conform to the expected requirement.Keywords: FPGA; DSP Builder; FIR digital filter; ModelSim function simulation在信息信号处理过程中,数字滤波器是信号处理中使用最广泛的一种方法。

基于FPGA的FIR数字滤波器的设计与实现

基于FPGA的FIR数字滤波器的设计与实现

基于FPGA 的FIR 数字滤波器的设计与实现杨国庆(天津城市建设学院 天津 300384)摘 要:介绍了基于FP GA 的FIR 数字滤波器的设计与实现,该设计利用Matlab 工具箱设计窗函数计算FIR 滤波器系数,并通过V HDL 层次化设计方法,同时FP GA 与单片机有机结合,采用C51及V HDL 语言模块化的设计思想及进行优化编程,有效实现了键盘可设置参数及L CD 显示。

结果表明此实现结构能进一步完善数据的快速处理和有效控制,提高了设计的灵活性、可靠性和功能的可扩展性。

关键词:FP GA ;滤波器;V HDL ;窗函数;模块化;可扩展性中图分类号:TN713 文献标识码:B 文章编号:10042373X (2008)192184203Design and R ealization of FIR Digital Filter B ased on FPG AYAN G Guoqing(Tianjin Institute of Urban Construction ,Tianjin ,300384,China )Abstract :This paper introduces a design and realization of FIR digital filter based on FP GA.The design uses window function of Matlab toolbox to calculate FIR filter coefficient.Through V HDL level of design ,FP GA and MCU organic integra 2tion ,C51and V HDL used modular design and optimize programming ,the effective realization of the keyboard can also set the parameters and L CD display ,the results show that this structure can be f urther improved to achieve the rapid data processing and effective control ,the design flexibility ,reliability and extendibility f unction are improved as well.K eywords :FP GA ;filter ;V HDL ;window function ;modulization ;extendibility收稿日期:20082042221 引 言数字滤波是通信、语音与图像处理、模式识别和谱分析等应用中的一种基本的处理部件,它可以满足滤波器对幅度和相位特性的严格要求,避免模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题。

fir数字滤波器的设计与实现

fir数字滤波器的设计与实现

FIR数字滤波器的设计与实现介绍在数字信号处理中,滤波器是一种常用的工具,用于改变信号的频率响应。

FIR (Finite Impulse Response)数字滤波器是一种非递归的滤波器,具有线性相位响应和有限脉冲响应。

本文将探讨FIR数字滤波器的设计与实现,包括滤波器的原理、设计方法和实际应用。

原理FIR数字滤波器通过对输入信号的加权平均来实现滤波效果。

其原理可以简单描述为以下步骤: 1. 输入信号经过一个延迟线组成的信号延迟器。

2. 延迟后的信号与一组权重系数进行相乘。

3. 将相乘的结果进行加和得到输出信号。

FIR滤波器的特点是通过改变权重系数来改变滤波器的频率响应。

不同的权重系数可以实现低通滤波、高通滤波、带通滤波等不同的滤波效果。

设计方法FIR滤波器的设计主要有以下几种方法:窗函数法窗函数法是一种常用简单而直观的设计方法。

该方法通过选择一个窗函数,并将其与理想滤波器的频率响应进行卷积,得到FIR滤波器的频率响应。

常用的窗函数包括矩形窗、汉宁窗、哈密顿窗等。

不同的窗函数具有不同的特性,在设计滤波器时需要根据要求来选择合适的窗函数。

频率抽样法频率抽样法是一种基于频率抽样定理的设计方法。

该方法首先将所需的频率响应通过插值得到一个连续的函数,然后对该函数进行逆傅里叶变换,得到离散的权重系数。

频率抽样法的优点是可以设计出具有较小幅频纹波的滤波器,但需要进行频率上和频率下的补偿处理。

最优化方法最优化方法是一种基于优化理论的设计方法。

该方法通过优化某个性能指标来得到最优的滤波器权重系数。

常用的最优化方法包括Least Mean Square(LMS)法、Least Square(LS)法、Parks-McClellan法等。

这些方法可以根据设计要求,如通带波纹、阻带衰减等来得到最优的滤波器设计。

实现与应用FIR数字滤波器的实现可以通过硬件和软件两种方式。

硬件实现在硬件实现中,可以利用专门的FPGA(Field-Programmable Gate Array)等数字集成电路来实现FIR滤波器。

基于FPGA的FIR数字滤波器的设计及仿真设计

基于FPGA的FIR数字滤波器的设计及仿真设计

1 绪论本章主要论述该课题的研究意义,目前在世界上的发展情况,以及我在这篇论文中所用到的主要的设计方法与设计工作。

1.1 课题研究的意义许多工程领域都涉及到如何能在强背景的噪声信号和干扰信号中提取到真正的信号。

如:遥感和遥测系统,通信系统,雷达系统,航天系统等,这就要求有信号的滤波。

滤波器的带宽等性能,处理速度的要求随着现在对高速,宽带,实时信号处理的要求越来越高,也随之提高。

系统的稳定性和后续信号的处理受滤波器的性能好坏程度影响常大。

[1]1.2 国内外研究动态1.2.1 数字信号处理的发展动态一般可以用两类方法来实现FIR滤波器的设计。

一类通过软件来设计实现,使用常见的电脑语言如高层次的C / C + +跟MATLAB语言。

此方法用于教学或算法仿真。

但是采用软件的方法不能实现实时性。

目前可以通过以下几种方式在硬件中来实现,。

一种是使用可编程的主要数学单位是一个乘法累加器(MAC)的通用DSP 芯片编程。

实时数字信号能够实现高速的处理,是因为MAC在一台机器时钟周期就能完成乘法累加操作,同时在硬件上还辅助与不同的流水结构和哈佛架构。

然而,在应用时受到了限制,是由于硬件结构和流水结构是固定不变的。

一种是使用专用的ASIC数字信号处理芯片。

这种方法是芯片尺寸小,高性能,保密性好。

其缺点是一个单一功能的芯片,多是针对一定的功能而设计,灵活性不够。

另一种方法是使用可编程逻辑器件(FPGA / CPLD)。

FPGA所具有得可编程逻辑的灵活性突破了流水线结构和并行处理的局限性,可以很好的实现实时信号处理功能。

研发过程中它的可移植性更好,可以缩短开发周期。

[2~11]1.2.2 FIR数字滤波器的FPGA实现使用FPGA技术设计的FIR数字滤波器在目前通常采用的是乘法器结构和分布式算法结构。

乘法器结构,有乘累加结构与并行乘法器结构两种形式。

乘累加结构是最简单的一种,占用资源少,缺点是处理速度慢;并行乘法器结构比较复杂,但是如果能够加上流水结构,信号就能够实现高速的处理,但是它还是会受到处理速度和数量的限制。

基于FPGA的FIR滤波器的设计与实现

基于FPGA的FIR滤波器的设计与实现

基于FPGA 的FIR 滤波器的设计与实现马才根(东南大学 江苏南京 210018)摘 要:提出了一种基于FP GA 的FIR 滤波器设计方案。

介绍了基于F PGA 的F IR 滤波器的数字信号处理的算法设计,采用直接型的基本结构来设计,通过1位乘以8位的乘法,然后再移位相加的方法即可得到结果,其运算效率明显提高,并结合先进的EDA 软件进行高效的设计和实现,并给出了用Max+Plus Ⅱ运行的仿真结果。

该设计对FP GA 硬件资源的利用高效合理,用VHDL 编程,在F PGA 中实现了高采样率的F IR 滤波器。

关键词:F IR 滤波器;F PGA ;VHDL ;电子设计自动化中图分类号:TN713+.7 文献标识码:B 文章编号:1004373X (2005)2207302Design of FIR Filt er Based on FPGAMA Caigen(Southeast U niversity,N anjing,210018,China )Abstra ct :T his paper intr oduces the design scheme of F IR filter based on FP GA ,intr oduces that the design t echnology of F IR filter based on F PGA about digital syst em processing a rit hmetic .F IR filter adopts the basic structure of dir ect type ,the result s ar e got by the multiplication of 1×8,then shifting and adding.Integr ating advanced sof twar e of EDA to design and achieve,and giving some emulat or r esults.T his design ma kes high use of har dwar e r esource about F PGA,pr ogram ming with VHDL language,achieving F IR filter with high sampling level based on F PGA .Ke ywords :FIR filter ;FP GA ;VHDL ;EDA收稿日期:20050809 FIR 滤波器有多种设计和实现方法。

基于 FPGA 的数字滤波器设计与实现

基于 FPGA 的数字滤波器设计与实现

基于 FPGA 的数字滤波器设计与实现引言:数字滤波器是现代信号处理的重要组成部分。

在实际应用中,为了满足不同信号处理的需求,数字滤波器的设计与实现显得尤为重要。

本文将围绕基于 FPGA的数字滤波器的设计与实现展开讨论,介绍其工作原理、设计方法以及优势。

同时,还将介绍一些实际应用场景和案例,以展示基于 FPGA 的数字滤波器在实际应用中的性能和效果。

一、数字滤波器的基本原理数字滤波器是一种将输入信号进行滤波处理,改变其频谱特性的系统。

可以对频率、幅度和相位进行处理,实现信号的滤波、去噪、增强等功能。

数字滤波器可以分为无限脉冲响应滤波器(IIR)和有限脉冲响应滤波器(FIR)两种类型。

IIR滤波器是通过递归方式实现的滤波器,其输出信号与过去的输入信号和输出信号相关。

FIR滤波器则是通过纯前馈结构实现的,其输出信号仅与过去的输入信号相关。

两种类型的滤波器在性能、复杂度和实现方式上存在一定差异,根据具体的应用需求选择适合的滤波器类型。

二、基于 FPGA 的数字滤波器的设计与实现FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,通过可编程逻辑单元(PLU)、可编程连线(Interconnect)和可编程I/O(Input/Output)实现。

其可编程性使得 FPGA 成为数字滤波器设计与实现的理想平台。

1. FPGA的优势FPGA具有以下几个优势,使得其成为数字滤波器设计与实现的首选平台:灵活性:FPGA可以根据设计需求进行自定义配置,可以通过修改硬件逻辑来满足不同应用场景的需求。

可重构性:FPGA可以重复使用,方便进行修改和优化,减少芯片设计过程中的成本和风险。

高性能:FPGA具有并行处理的能力,可以实现多通道、高速率的实时数据处理,满足对于实时性要求较高的应用场景。

低功耗:FPGA可以进行功耗优化,通过减少冗余逻辑和智能布局布线来降低功耗。

2. 数字滤波器的实现方法基于 FPGA 的数字滤波器的实现方法主要有两种:直接法和间接法。

基于Matlab和FPGA的FIR数字滤波器设计及实现

基于Matlab和FPGA的FIR数字滤波器设计及实现
以上为一个乘法器设置方法,16个乘法器的整体模 块图如图6所示。
4.4截位输出 截位是滤波器设计的关键,此处的处理方法是:14位
的输入数据(14 b的ADC),18位二进制补码表示的滤波 器系数,除去符号位,相乘后小数位是13+17—30,加法运 算不改变小数位数。另外系统测试电路板用的是USB总 线,USB控制器的数据位宽是16,因而把输出数据截到 16位,然后送给FIFO,从而传到计算机.截位用Verilog HDL实现的语句是:
上接第85页图3提取的子密钥图像图4用提取的子密钥恢复的水印叠加结果都?能恢复原始的明文信息只有4幅子密钥的叠加结果才能恢复原始的明文信息当然可视密钥的形成是将明文图像的每一个像素分成多个子像素来表示恢复时会有对比度的损失恢复得图像会变暗
基于Matlab和FPGA的FIR数字滤波器设计及实现
孙耀奇,高火涛,熊 超,饶 坤
具有对称结构的直接型FIR滤波器结构如图1所示, 用加窗的设计方法,经比较后窗函数选用海明窗。根据实 际指标要求在Matlab的“Filter Design”工具里设置各参 数,然后算得系数矗(卵),如图3所示,得到的系数是用十进 制表示的,需要将其转换成系统要求精度(如18位)的定 点二进制小数。把所有系数乘以2”后再四舍五入即可, 最终数据如表l所示。
根据以上分析,可以把对称结构的FIR数字滤波器分 成“移位相加单元、乘法器、输出相加及截位输出”四块,如
89
图2所示。
剖移篝徽:P H篙赫嚣H锬涮5H淼P
图2分块后系统框图
对于长度为2M的滤波器,其运算次数只有M量级, 减少了乘法次数,也提高了运算速度。在用FPGA实现时 可以节约不少资源。
3用Matlab设计FIR数字滤波器
n—

基于FPGA的数字滤波器设计与实现

基于FPGA的数字滤波器设计与实现

基于FPGA的数字滤波器设计与实现数字滤波器是信号处理中常用的工具,可以通过滤除不需要的频率成分或者增强需要的频率成分对信号进行处理。

在数字信号处理领域,基于FPGA的数字滤波器设计与实现是一项重要的研究课题。

本文将介绍FPGA数字滤波器的设计原理、实现方法和应用领域。

首先,我们来了解一下FPGA(可编程逻辑门阵列)是什么。

FPGA是一种可重构的硬件平台,它由大量的可编程逻辑门电路构成。

相比于传统的ASIC(专用集成电路)设计,FPGA具有更高的灵活性和可重构性,可以实现多种不同的电路功能。

在数字滤波器设计中,FPGA可以用来实现各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

FPGA数字滤波器的设计通常包括以下几个步骤:1. 规格定义:确定滤波器的工作频率范围、滤波器类型(如FIR滤波器或IIR滤波器)、滤波器阶数和滤波器的性能指标等。

2. 滤波器设计:根据规格定义,选择适合的滤波器结构和滤波器系数设计方法,如窗函数法、频率采样法或者最小二乘法等。

设计好的滤波器可以通过MATLAB等工具进行模拟验证。

3. 滤波器实现:将滤波器设计转化为可在FPGA上实现的硬件描述语言(如VHDL或Verilog)。

在这个步骤中,需要将滤波器结构转化为逻辑电路,并根据具体的FPGA平台选择适合的资源分配和布局策略。

4. 仿真验证:使用EDA(电子设计自动化)工具对滤波器进行仿真验证,确保其在FPGA上的功能和性能与设计规格一致。

5. 实际实现:将经过仿真验证的滤波器设计烧录到FPGA 芯片中,并进行实际的性能测试。

测试结果可以与仿真结果进行比较,来评估滤波器的实现质量。

FPGA数字滤波器的设计和实现具有以下几个优势:1. 高性能:FPGA提供了大量的逻辑资源和高速IO接口,可以实现复杂的滤波器结构和算法,并能够处理高速数据流。

2. 低功耗:相比于通用处理器,FPGA的功耗较低,可以在不牺牲性能的情况下降低系统的功耗。

基于fpga的滤波器设计与实现

基于fpga的滤波器设计与实现

基于fpga的滤波器设计与实现基于FPGA的滤波器设计与实现一、引言滤波器是信号处理中常用的一种工具,它可以通过剔除或增强信号中的特定频率分量来改变信号的特性。

而基于FPGA的滤波器是一种利用可编程逻辑器件FPGA来实现滤波功能的方法。

本文将介绍基于FPGA的滤波器的设计与实现过程。

二、滤波器的基本原理滤波器主要通过改变信号的频谱特征来实现滤波效果。

它可以分为两类:低通滤波器和高通滤波器。

低通滤波器通过剔除高频分量,保留低频分量;高通滤波器则相反,剔除低频分量,保留高频分量。

滤波器的设计需要根据具体的需求选择合适的滤波器类型和参数。

三、基于FPGA的滤波器设计与实现基于FPGA的滤波器设计与实现可以分为以下几个步骤:1. 确定滤波器类型和参数:根据实际需求,选择合适的滤波器类型和参数。

例如,如果需要设计一个低通滤波器,需要确定截止频率和滤波器阶数等参数。

2. 数字滤波器设计:将滤波器的模拟设计转化为数字滤波器的设计。

常见的数字滤波器设计方法有FIR滤波器设计和IIR滤波器设计。

FIR滤波器是一种无反馈的滤波器,具有线性相位特性;IIR滤波器则具有反馈结构,可以实现更高阶的滤波器。

3. 将数字滤波器转化为FPGA可实现的结构:将数字滤波器转化为FPGA可实现的结构,可以采用直接形式实现、级联形式实现或者管线化实现等方法。

其中,直接形式实现是最简单直观的方法,但其硬件资源占用较多;级联形式实现可以减少硬件资源的占用,但增加了延迟;管线化实现则可以兼顾硬件资源和延迟。

4. 使用HDL语言进行FPGA设计:使用HDL语言,如VHDL或Verilog,进行FPGA设计。

根据设计的结构和功能,编写相应的HDL代码。

在编写代码时,需要注意代码的可重用性和可维护性,以便后续的设计和调试。

5. 硬件验证和性能优化:完成HDL代码后,进行FPGA的硬件验证和性能优化。

通过仿真和验证,确保设计的正确性和稳定性。

同时,可以根据实际需求对硬件进行优化,如减小资源占用、降低功耗等。

基于FPGA的FIR数字滤波器的设计和实现

基于FPGA的FIR数字滤波器的设计和实现

基于FPGA的FIR数字滤波器的设计和实现摘要:本文基于FPGA平台实现了一种FIR数字滤波器,通过对滤波器的设计与实现过程的详细介绍,展示了FPGA在数字滤波器中的应用优势。

首先介绍了数字滤波器的原理及其在信号处理中的重要性,并对FPGA及其特点进行了概述。

接着,详细介绍了FIR滤波器的原理以及其在FPGA上的实现步骤,分析了滤波器设计中需要考虑到的各种因素。

最后,通过实验验证了FPGA上实现的FIR滤波器的性能,并对优化策略进行了讨论。

关键词:FPGA,FIR滤波器,数字信号处理,性能优化1. 引言数字滤波器是现代信号处理的重要组成部分,通过选择性地传递或抑制输入信号的特定频率组成部分,对信号进行处理和改善。

FIR滤波器是数字滤波器中最常用的一种类型,具有线性相位特性、稳定性较强以及易于实现等优势。

而FPGA作为一种可编程逻辑器件,具有灵活性高、可重构性强等特点,成为实现数字滤波器的理想平台。

2. FIR滤波器的原理FIR滤波器是一种线性时不变系统,其输出仅和当前输入值以及过去若干个输入值有关。

该滤波器的输出可以通过输入信号的线性加权和来计算,其中,每个输入值的加权系数通过FIR 滤波器的系数来确定。

FIR滤波器的系数决定了它对不同频率分量的响应,从而实现了信号的滤波目的。

3. FIR滤波器在FPGA上的实现步骤(1)选择合适的FPGA平台和开发工具,如Xilinx FPGA平台和Vivado开发工具。

(2)根据所要设计的滤波器的需求,确定其采样频率、截止频率和滤波器类型等参数,并进行系统级设计。

(3)根据所选参数,设计FIR滤波器的传递函数,并确定滤波器的阶数和系数。

(4)通过数学运算或者通过滤波器设计软件生成滤波器的差分方程。

(5)根据生成的差分方程,使用HDL(HardwareDescription Language)进行滤波器的编写。

(6)进行FPGA的综合、布局与布线、下载与验证,完成滤波器的硬件实现。

基于FPGA的FIR滤波器的设计(毕业设计) 可用

基于FPGA的FIR滤波器的设计(毕业设计)    可用

目录摘要 (2)英文摘要 (3)1 引言 (3)1.1国内外研究现状 (4)1.2本论文的研究内容及主要工作 (6)2 FIR数字滤波器设计 (6)2.1数字滤波器基础 (6)2.1.1 数字滤波器简介 (6)2.1.2 FIR数字滤波器的结构 (7)2.2 FIR数字滤波器设计方法 (8)2.2.1 窗函数法 (8)2.2.2 频率采样法 (9)2.2.3 等波纹最佳逼近法 (11)2.2.4 三种设计方法的比较......................... 错误!未定义书签。

3 FPGA 设计优点以及分布式算法 (12)3.1 使用FPGA器件进行开发的优点 (13)3.2分布式算法 (14)3.2.1 分布式算法基础 (14)3.2.2 有符号的DA系统 (15)4 基于FPGA的FIR滤波器设计 (15)4.1基于M ATLAB的FIR数字低通滤波器抽头系数的提取 (16)4.1.1 滤波器的设计指标 (16)4.1.2 滤波器的具体设计方法 (16)4.1.3 参数提取与量化 (17)4.2FIR滤波器的FPGA实现 (19)4.2.1 模块划分 (19)4.2.2 FIR滤波器各模块的实现 (20)4.2.3 FIR滤波器的顶层设计 (30)4.3FIR滤波器的系统仿真验证 (32)4.4系统硬件 (36)4.4.1 系统框图 (36)4.4.2 部分芯片简介 (36)4.4.3 AD、DA电路原理图 (39)4.5测试波形及现场照片 (39)4.6数据误差分析 (40)结论 (41)参考文献 (41)附件 (42)基于FPGA的FIR滤波器的设计摘要:本文设计了一个基于FPGA的16阶FIR低通滤波器,使用分布式算法作为滤波器的硬件实现算法,并对其进行了详细的讨论。

针对分布式算法中LUT规模过大的缺点,采用多块查找表的方式减小硬件规模。

在设计中采用了自顶向下的层次化、模块化的设计思想,将整个滤波器划分为多个模块,利用VHDL语言的描述方法进行了各个功能模块的设计,最终完成了FIR数字滤波器的系统设计。

基于fpga的滤波器设计与实现

基于fpga的滤波器设计与实现

基于fpga的滤波器设计与实现基于FPGA的滤波器设计与实现一、引言滤波器是信号处理中常用的工具,用于去除信号中的噪声或不需要的频率成分。

在数字信号处理中,滤波器可以通过软件算法实现,但随着现代电子技术的发展,使用基于FPGA的滤波器可以实现更高效、实时的信号处理。

本文将介绍基于FPGA的滤波器设计与实现的方法和步骤。

二、FPGA的基本原理FPGA(Field Programmable Gate Array)是一种可编程逻辑器件,由大量的逻辑门、存储单元和可编程连接组成。

FPGA的特点是可重构性强,可以根据需要编程实现各种逻辑功能。

在数字信号处理中,可以将滤波器的算法实现在FPGA中,利用其并行处理的能力来提高处理速度和效率。

三、滤波器的基本原理滤波器可以根据其频率响应的特点分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

滤波器的设计目标是在保留需要的信号成分的同时,去除不需要的噪声或频率成分。

常用的滤波器设计方法有FIR滤波器和IIR滤波器。

四、基于FPGA的滤波器设计步骤1. 确定滤波器的类型和设计要求:根据信号处理的需求,确定滤波器的类型(低通、高通等)和性能指标(截止频率、通带衰减等)。

2. 确定滤波器的结构:选择合适的滤波器结构,如直接形式、级联形式等。

3. 设计滤波器的传递函数:根据滤波器的类型和设计要求,设计出满足要求的传递函数。

4. 将传递函数转化为差分方程:根据所选滤波器结构,将传递函数转化为差分方程。

5. 实现差分方程的计算:将差分方程转化为FPGA可以计算的形式,使用硬件描述语言(如Verilog、VHDL)编写计算模块。

6. 将计算模块综合到FPGA中:使用相应的工具将计算模块综合到FPGA中,生成比特流文件。

7. 下载比特流文件到FPGA:将生成的比特流文件下载到FPGA中,使其开始工作。

8. 测试和优化:对设计的滤波器进行测试,并根据测试结果进行优化,以满足设计要求。

基于FPGA的FIR数字滤波器设计

基于FPGA的FIR数字滤波器设计

基于FPGA的数字滤波器设计院系:信息科学与工程学院专业班:通信工程1102班姓名:李羚学号:20111181082指导教师:周忠强王军舰2015年5月基于FPGA的FIR数字滤波器设计摘要随着公元的第二十一个世纪的到来,今天我们进入了一个科技日新月异的时代。

在现代电子数字系统中,滤波器都以一个不可缺少的身份出现。

其中,FIR数字滤波器又以其良好的线性特性被广泛和有针对性的大量使用。

众所周知,灵活性和实时性是工程实践中对数字信号处理的基本要求。

在以往使用的各种滤波器技术中,不难发现有许许多多的问题。

但是,随着现代计算机技术在滤波问题上的飞跃,派生出一个全新的分支——数字滤波器。

利用可编程逻辑器件和EDA技术,使用FPGA来实现FIR 滤波器,可以同时兼顾实时性和灵活性。

基于FPGA的FIR数字滤波器的研究势在必行。

本论文讨论基于FPGA的FIR数字滤波器设计,针对该毕业设计要做的基本工作有如下几点:(一)掌握有限冲击响应FIR(Finite Impulse Response,FIR)的基本结构,研究现有的实现方法。

对各种方案和步骤进行比较和论证分析,然后针对目前FIR数字滤波器需要的特点,速度快和硬件规模小,作为指导思想进行设计计算。

(二)基于硬件FPGA的特点,利用Matlab软件以及窗函数法设计滤波器。

对整个FPGA 元件,计划采用模块化、层次化设计思想,从而对各个部分功能进行更为详细的理解和分工设计。

最终FIR数字滤波器的设计语言选择VHDL硬件编程语言。

(三)设计中的软件仿真使用Altera公司的综合性PLD开发软件Quartus II,并且利用Matlab工具进行对比仿真,在仿真的过程中,对比证明,本论文设计的滤波器的技术指标已经全部达标。

关键词:数字滤波器Matlab 可编程逻辑元件模块化算法Based On FPGA Design Of FIR Digital FiltersMajor:Electronic And Information Engineering Department(Information Engineering)Student: YangChengjie Supervisor:FengLiuAbstractAs we have entered the twenty first century,our technology is changing continuously with the times. In the modern electronic digital systems,filters are indispensable. Among them,the FIR digital filters are widely used with the excellent linear characteristic. As is well-known to us all,flexibility and real-time quality are the basic requirements in digital signal processing of engineering practice. Since we have used a variety of filter technology in the past,it is not difficult for us to find many problems in it. Moreover,with the development of modern computer technology in filter,a new branch - digital filter has derived. We make use of the programmable logic devices and EDA technology,together with the FPGA to design the FIR filter,which is real-time and flexible. In a nutshell,it is imperative to do the research in the FIR digital filters based on the technology of FPGA. This thesis is focused on the design of the FIR digital filters based on the technology of FPGA. Several points are worth mentioning here:(1)To understand and master the basic structure of the limited shock Response FIR (Finite Impulse Response,FIR),research existing realization method,to use various solutions to compare and analyze the steps and demonstrations; then,to do the self design and correction concerning the characteristics of the present FIR digital filters,that is,fast in speed and small scale in hardware.(2) To design FIR filter based on the characteristics of FPGA hardware. In the design process,ready to use of Matlab software and window function method design filter. As far as the whole FPGA components are concerned,we plan to carry on the modularized and hierarchic design,in order to have a more detailed understanding of the function of eachpart and make a division of design. Eventually,FIR digital filters will adopt the VHDL hardware programming language.(3) To adopt the comprehensive PLD development software Quartus II of the Altera company in the design of the software simulation. And we will use of the Matlab tools for the simulation 。

fir数字滤波器的设计与实现

fir数字滤波器的设计与实现

fir数字滤波器的设计与实现一、引言数字滤波器是数字信号处理中的重要组成部分,它可以用于去除信号中的噪声,平滑信号等。

其中,fir数字滤波器是一种常见的数字滤波器。

本文将介绍fir数字滤波器的设计与实现。

二、fir数字滤波器概述fir数字滤波器是一种线性相位、有限脉冲响应(FIR)的数字滤波器。

它通过一系列加权系数对输入信号进行卷积运算,从而实现对信号的过滤。

fir数字滤波器具有以下特点:1. 稳定性好:由于其有限脉冲响应特性,使得其稳定性优于IIR(无限脉冲响应)数字滤波器。

2. 线性相位:fir数字滤波器在频域上具有线性相位特性,因此可以保持输入信号中各频率分量之间的相对时延不变。

3. 设计灵活:fir数字滤波器可以通过改变加权系数来实现不同的频率响应和截止频率。

三、fir数字滤波器设计步骤1. 确定需求:首先需要确定所需的频率响应和截止频率等参数。

2. 选择窗函数:根据需求选择合适的窗函数,常用的有矩形窗、汉明窗、布莱克曼窗等。

3. 计算滤波器系数:利用所选窗函数计算出fir数字滤波器的加权系数。

常见的计算方法有频率采样法、最小二乘法等。

4. 实现滤波器:将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。

四、fir数字滤波器实现方法1. 直接形式:直接将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。

该方法简单易懂,但是需要大量运算,不适合处理较长的信号序列。

2. 快速卷积形式:利用快速傅里叶变换(FFT)来加速卷积运算。

该方法可以大大减少计算量,适合处理较长的信号序列。

五、fir数字滤波器应用案例1. 语音处理:fir数字滤波器可以用于去除语音信号中的噪声和杂音,提高语音质量。

2. 图像处理:fir数字滤波器可以用于图像去噪和平滑处理,提高图像质量。

3. 生物医学信号处理:fir数字滤波器可以用于生物医学信号的滤波和特征提取,如心电信号、脑电信号等。

六、总结fir数字滤波器是一种常见的数字滤波器,具有稳定性好、线性相位和设计灵活等优点。

基于FPGA技术的FIR数字滤波器的设计

基于FPGA技术的FIR数字滤波器的设计
( ) ( ) () =xn
通常一个长度为M的有 限冲激响应滤波器 由M个系数描述 , 并 静 且需要M个乘法器和( M—1个双输入加法器 来实现 。 ) 图l 中显示 了一个典型的直 接I 阶F R 型4 I 滤波器 , 其输出序列y 执 束瓣 一 ~ () 足 下 列 等 式 : n满
应 用 研 究
基于 F G P A技术的 F R数字滤波器的设计 I
李俊 ’刘淮霞 ,朱丹 ,贺曼2
(. 1 安徽理工大学电气与信息工程 学院 安徽淮南 22 0 ;2西安交通大学电气工程学院 陕西西安 70 4) 30 1 . 10 9
摘要 : 数 字化技 术在 各 个领 域得 到广 泛 运 用的今 天 , 字滤波 器是 数 字 系统 中信 号 处理 关键 的一 环 。 字滤 波器和 模拟 滤 波 器相 比具有 在 数 数 更 高的精 度 、 噪 比 , 及不 可 比拟 的 可 靠性 。 于在 性 能 、 信 以 由 成本 、 活性和 功耗 等方 面 的优 势 , 于F GA的信 号 处 理 器 已广泛 应 用 于各 种信 灵 基 P
: ;
yn ()=h O xn +h 1xn一1 h 2x n一2 +h S xn一3 () () ( ) ( )+ ( ) ( ) () ( )
图 2D ule 设 计 流 程 SP B i r d
在这个FR滤波器 中 , I 总共存 在3 个延时节,个乘法单元, 4 一个 4 入 的加 法 器 。 输
1 I 、FR数字滤波器设计原理
有 限长脉冲响 应( I 滤波器 的系统 函数 只有零点 , F R) 除原 点 外 , 有 极 点 , 而 FR滤 波 器 总 是 稳 定 的【 没 因 I 长度 为M的因果有 限冲激 响应滤波器 由传 输函数H() z 描述 :

基于FPGA的FIR数字滤波器设计及实现

基于FPGA的FIR数字滤波器设计及实现

第35卷㊀第10期2020年10月㊀㊀㊀㊀㊀㊀㊀液晶与显示㊀㊀㊀C h i n e s e J o u r n a l o fL i q u i dC r y s t a l s a n dD i s p l a ys ㊀㊀㊀㊀㊀V o l .35㊀N o .10㊀O c t .2020㊀㊀收稿日期:2020G04G09;修订日期:2020G06G04.㊀㊀基金项目:吉林省科技厅技术攻关项目(N o .20190302086G X ,N o .20200403067S F )S u p p o r t e db y K e y S c i e n c ea n dT e c h n o l o y Fo u n d a t i o no f J i l i nP r o v i n c e ,C h i n a (N o .20190302086G X ,N o .20200403067S F )㊀㊀∗通信联系人,E Gm a i l :z h i q i a n _w a n g@s i n a .c o m 文章编号:1007G2780(2020)10G1073G06基于F P G A 的F I R 数字滤波器设计及实现宋卓达1,2,王志乾1∗,李建荣1,沈铖武1,2,刘绍锦1(1.中国科学院长春光学精密机械与物理研究所,吉林长春130033;2.中国科学院大学,北京100049)摘要:针对应变信号采集系统中的信号处理环节,设计并实现一种基于现场可编程门阵列(F P G A )的F I R 数字滤波器.首先,基于M a t l a b 采用克莱德曼窗函数设计一个长度为16的15阶数字滤波器,并生成高斯白噪声与频率为2k H z㊁8k H z 正弦波的合成信号,然后量化12位系数,将系数文件导入Q u a r t u s Ⅱ13.1软件,结合F P G A 内部数字滤波器I P 核,采用自上而下的方式设计出F I R 数字滤波器,最终在S i m u l i n k 环境下对其进行仿真.实验结果表明,滤波前后合成信号的均方误差下降28.5%,提高了低频信号质量,增强了应变信号采集系统的功能性和集成度.关㊀键㊀词:信号采集;F I R 数字滤波器;F P G A ;I P 核中图分类号:T N 911.72;T N 713.7㊀㊀文献标识码:A㊀㊀d o i :10.37188/Y J Y X S 20203510.1073D e s i g na n d i m p l e m e n t a t i o no f F I Rd i gi t a l f i l t e r b a s e d o nF P G A S O N GZ h u o Gd a 1,2,WA N GZ h i Gq i a n 1∗,L I J i a n Gr o n g1S H E N C h e n g Gw u 1,2,L I US h a o Gji n 1(1.C h a n g c h u nI n s t i t u t e o f O p t i c s ,F i n eM e c h a n i c s a n dP h y s i c s ,C h i n e s eA c a d e m y o f Sc i e n c e s ,C h a n gc h u n 130033,C h i n a ;2.U n i v e r s i t y o f C h i n e s eA c ade m y of S c i e n c e s ,B e i j i ng 100049,C h i n a )A b s t r a c t :A F i n i t eI m p u l s eR e s p o n s e (F I R )d i g i t a l f i l t e rb a s e do nF i e l dP r o g r a mm a b l eG a t e A r r a y(F P G A )i s d e s i g n e d a n d i m p l e m e n t e d f o r s i g n a l p r o c e s s i n g i n s t r a i n s i g n a l a c q u i s i t i o n s y s t e m.F i r s t l y,b a s e do n MA T L A B ,B l a c k m a n w i n d o wf u n c t i o ni su s e dt od e s i g na15o r d e rd i g i t a l f i l t e rw i t h16l e n g t h ,a n d t h e s i g n a l i s c o m p o s e d o fw h i t eG a u s s i a nn o i s e a n d s i n ew a v ew i t h f r e q u e n c y o f 2k H z a n d 8k H z .T h e n t h e 12b i t c o e f f i c i e n t s a r e q u a n t i z e d ,a n d t h e c o e f f i c i e n t f i l e i s i m po r t e d i n t oQ u a r t u s Ⅱ13.1s o f t w a r e .C o m b i n i n g w i t h t h e I P c o r e o f d i g i t a l f i l t e r i nF P G A ,F I Rd i g i t a l f i l t e r i s d e s i gn e d f r o m t o p t ob o t t o m.F i n a l l y,i t i ss i m u l a t e di nS i m u l i n ke n v i r o n m e n t .T h er e s u l t ss h o wt h a tt h e m e a n s q u a r ee r r o ro ft h es y n t h e s i z e ds i g n a ld e c r e a s e sb y 28.5%b e f o r ea n da f t e rf i l t e r i n g ,w h i c hc a n i m p r o v e t h e q u a l i t y o f l o wf r e q u e n c y s i g n a l a n d e n h a n c e d t h e f u n c t i o n a n d i n t e g r a t i o n o f t h e s t r a i n s i gGn a l a c q u i s i t i o n s ys t e m.K e y wo r d s :s i g n a l a c q u i s i t i o n ;F I Rd i g i t a l f i l t e r ;F P G A ;I Pc o r e . All Rights Reserved.1㊀引㊀㊀言㊀㊀在高速旋转部件的性能测试㊁强度及疲劳试验过程中,通常采用应变测量技术,实时采集旋转部件载荷的应变信号,进行分析和处理,为旋转部件的结构设计提供理论分析数据[1].在应变信号采集的过程中,应变电桥的输出电压信号的变化十分微小,达到μV级.为获得高质量的低频电压信号,本文采用一种基于F P G A的F I R数字滤波器进行信号处理,在高转速㊁气动性复杂㊁震动环境恶劣的情况下,提高所采集应变信号的精度.采用软硬件协同设计技术,利用F P G A定制I P,每一个模块都能单独完成,又能轻松整合在一起形成一个系统[2].F I R滤波器的实质是将输入的连续时间信号按照设定的算法转换成离散时间信号的滤波装置[3],而F PG A内含丰富的I P核和L U T表结构,能够完整地将F I R数字滤波器移植到F P G A 上,并且可以根据实际需求在线修改滤波器的参数,大幅缩减了产品的设计周期,并增强应变信号采集系统本身的集成度和灵活性.利用可编程逻辑器件和E D A技术实现F I R 数字滤波器是现代嵌入式系统信号处理环节普遍采用的手段[4],随着F P G A逻辑单元数量和集成度不断提高,可在F P G A上实现F I R数字滤波器的算法复杂程度㊁量化系数位宽㊁阶数等也随之提高,具有可观的发展前景.2㊀系统框架应变信号采集系统的总体框架如图1所示,整个系统分为模拟部分和数字部分.图1㊀应变信号采集系统流程框图F i g.1㊀B l o c kd i a g r a mo f s t r a i n s i g n a l a c q u i s i t i o n s y s t e m其中模拟部分有4个应变信号采集通道,每个采集通道包含对应变电桥的模拟信号进行预放大㊁调理和A/D采集,数字信号部分包括对模拟板前端电压信号偏移量修正和温度补偿控制㊁程控自动增益㊁A/D采集的读写控制和接收经过A/D采集后的信号,并对其进行缓存和处理[5].最后将信号通过U A R T串行总线传输至P C端显示[6].3㊀F I R数字滤波器的设计3.1㊀基本原理和结构F I R数字滤波器为单位脉冲响应有限长序列[7],是非递归性线性时不变因果系统,对于N阶F I R滤波器输入时间序列x(n)的输出表达式为:y n()=ðn-1i=0hi()x n-i(),(1)系统传递函数可表示为:H z()=ðn-1i=0h n()z-n=h(0)+h(1)z-1+ +h(n-1)zG(n-1),(2)式中:h(n)为滤波器第级n抽头系数,x(n-i)为延时i个抽头输入.F I R滤波器按构成形式主要有直接型㊁级联型㊁线性相位F I R滤波器等[8].其中直接型结构如图2所示,该结构需要N个乘法器,每次采样y(n)都需要进行n次乘法和n-1次加法实现乘累加之和[9].图2㊀直接型F I R滤波器网络结构F i g.2㊀N e t w o r ks t r u c t u r e o f d i r e c tF I Rf i l t e r对于线性相位F I R滤波器,其单位响应是对称或反对称的,即h(n)=ʃh(N-1-n),利用其对称性可以简化网络结构,当h(n)为偶对称且N为偶数时:y n()=ðnG1i=0hi()x n-i()=ðN2G1i=0hi()x n-i()+n-N+m()[].(3)4701㊀㊀㊀㊀液晶与显示㊀㊀㊀㊀㊀㊀第35卷㊀. All Rights Reserved.其线性网络结构如图3所示,仅需要N/2个乘法器.F I R滤波器实际上是一个分节的延时线,把每一节的输出加权累加得到滤波器的输出[10].本设计采用线性相位F I R数字滤波器.图3㊀F I R滤波器线性相位网络结构F i g.3㊀L i n e a r p h a s en e t w o r ks t r u c t u r e o fF I Rf i l t e r 3.2㊀F I R滤波器设计流程F I R数字滤波器设计流程如图4所示,整个F I R数字滤波器的设计可以分为滤波器系数设计和滤波器在F PG A上实现两个部分.利用M a t l a b 软件设计出F I R数字滤波器各级抽头系数,并将F I R数字滤波器的功能移植到F P G A上.图4㊀F I R滤波器设计流程图F i g.4㊀F l o wc h a r t o fF I Rf i l t e r d e s i g n4㊀F I R数字滤波器的F P G A实现4.1㊀M a t l a b设计滤波器系数通过使用M a t a l b中F D A T o o l工具箱设计出一个15阶低通线性相位F I R数字滤波器,其采样频率为20k H z,截止频率为3k H z,长度为16位,并采用布莱克曼窗实现,将滤波器浮点系数量化为12位.运行所编辑的滤波器,并将量化后的滤波器系数写入F I R C O E.T X T文件中.滤波器设计界面如图5所示.4.2㊀S i m u l i n k仿真滤波器输入信号将S i m u l i n k中正弦波信号产生模块s i n e w a v e㊁高斯白噪声模块AWG N通过多信号叠加模块a d d生成一个采样频率为20k H z的信号干扰源,并生成12位量化系数,再与2k H z和图5㊀F D A t o o l滤波器设计界面F i g.5㊀D e s i g n i n t e r f a c e o fF D A T o o l f i l t e r8k H z的正弦波信号合成作为F P G A的输入信号.信号发生模块如图6所示.图6㊀合成信号发生模块F i g.6㊀S c h e m a t i c d i a g r a mo f s y n t h e t i c s i g n a l g e n e r aGt i n g m o d u l e4.3㊀I P核设计F I R数字滤波器进入Q u a r t u sⅡI P核设置界面,设计一个15阶低通线性滤波器,将4.2中的F I R C O E系数文件导入到C o e f f i c i e n t s e t中[11],配置好滤波器各项参数,生成F I R数字滤波器模块,并将其实例化引用.数字滤波器R T L级原理如图7所示,其中a s t_s i n k_ d a t a[11..0]和a s t_s o u r c e_d a t a[25..0]分别为信号输入端口和数据输出端口.整个模块只占用2199个逻辑元,占用率不到10%.图7㊀数字滤波器R T L级原理图F i g.7㊀R T L l e v e l s c h e m a t i c d i a g r a mo f d i g i t a l f i l t e r 5㊀F I R数字滤波器仿真与性能测试5.1㊀F I R数字滤波器功能仿真搭建F P G A与S i m u l i n k联合实时环路平台,在S i m u l i n k创建测试模块,通过测试模块产生信号,再传送到F P G A,F P G A将信号处理后返回S i m u l i n k显示[12].首先在S i m u l i n k中创建用户5701第10期㊀㊀㊀㊀㊀宋卓达,等:基于F P G A的F I R数字滤波器设计及实现. All Rights Reserved.板卡,配制板卡上F P G A 芯片信息,本设计F P G A 采用的是C y c l o n e Ⅳ系列E P 4C E 6E 22C 8N .然后采用J T A G 连接方式,设置J T A G 接口类型㊁时钟信号频率㊁引脚号㊁时钟类型㊁复位信号引脚㊁复位电平等信息,并将配置的信息保存在l o gi c _b o a r d .x m l 文件中.创建S i m u l i n k 模型,将配置好的l o g i cb o a r d .x m l 文件导入,加载R T L 文件即V e r i l o g 代码文件,并将其设置为顶层文件,自动配置I O 口,将数据传送到S i m u l i n k 中.仿真结果如图8㊁图9所示.图8㊀合成信号滤波前(a )后(b )时域波形图F i g.8㊀T i m ed o m a i nw a v e f o r m b e f o r e (a )a n da f t e r (b )f i l t e r i n g o f s y n t h e t i c s i gn a l (a)滤波前合成信号频域波形(a )F r e q u e n c y d o m a i n w a v e f o r m o f s yn t h e s i z e d s i g n a l b e f o r e f i l t e r i ng(b)滤波后合成信号频域波形(b )F r e q u e n c y do m a i n w a v e f o r m o f f i l t e r e d s y n t h e t i c s i gn a l 图9㊀合成信号滤波前后频域波形图F i g .9㊀F r e q u e n c y do m a i nw a v e f o r mb e f o r e a n d a f t e r f i l t e r i n g o f s y n t h e t i c s i gn a l 由图8㊁图9可知,滤波后的合成信号在时域和频域上趋于缓和,毛刺噪声已经滤除,并且同时滤除了8k H z 高频信号分量,滤波后的信号已形成规则平滑的频率为2k H z 的单频正弦信号,因此,F I R 线性相位低通滤波功能在F P G A 上已经实现.5.2㊀F I R 数字滤波器性能分析将应变信号采集系统的4个应变采集通道分别对高速旋转部件的4个点进行应变测量,并且通过串口将F I R 数字滤波前后量化结果的文本文件导入M a t l a b 中,进行数据处理,得到F I R 数字滤波前后的均方差,如表1所示.表1㊀F I R 数字滤波前后均方差T a b .1㊀M e a n s qu a r e d e v i a t i o n b e f o r e a n d a f t e r F I R d i g i t a l f i l t e r i n g 通道测量次序测试数据量数据均值数字滤波前均方差数字滤波后均方差第一通道130015-884671237.1907.6235494-897361126.5875.3338772-854731283.1910.4第二通道140913-21073972.5674.1258209-19386856.4600.8349328-19758782.3545.0第三通道17963570394709.2539.526397971834693.6528.436429870936707.0545.5第四通道110090152043607.8406.527036552864583.4384.338493252567594.6379.6由表1F I R 数字滤波前后量化信号均方差的对比可知,经过F I R 数字滤波器后,信号的均方差大幅度下降,4个通道的采集信号均方差平均下降28.5%,具有良好的滤波效果.5.3㊀界面显示为了能够将4个应变采集通道中的最终采样结果通过串口在P C 端实时显示,使用M a t l a b 中G U I 工具箱设计出显示界面,并且通过式(4)将6701㊀㊀㊀㊀液晶与显示㊀㊀㊀㊀㊀㊀第35卷㊀. All Rights Reserved.采样结果转化为对应的电压值.U o =V r e f -GN D ()ˑA D C R e s e l t2N+G N D ,(4)式中:V r e f 为AD C 参考电压㊁G N D 为输出结果为0时的最低电压,A D C R e s e l t 为采样结果,N 为A D C 位数.同时根据式(5),在全桥测量的情况下将电压转换成相应的应变量.U o =E K ε,(5)式中:E 为电桥电压,K 为应变灵敏系数,ε为应变量.显示界面如图10所示.图10㊀界面显示F i g .10㊀I n t e r f a c e d i s p l a y6㊀结㊀㊀论本文针对应变信号采集系统提出一种基于F P G A 的F I R 线性相位低通数字滤波器方案,构建了数字滤波器设计与仿真体系,最终在F P G A 上实现,而且仿真系统可以任意改变合成信号的类型㊁数字滤波器的种类和各项参数,相比传统的通过编写t e s t b e n t c h 脚本仿真文件导入M o d e l s i m 来实现仿真结果,简化了复杂的仿真步骤,不需要在F P G A 上增添信号发生模块,同时保证了实验可靠性.通过高速旋转部件的多次应变测量,结果表明数字滤波前后量化信号的均方差下降28.5%,具有良好的滤波效果.增加显示界面,便于观察采样结果的动态变化.对于接触式应变信号采集系统而言,将整个F I R 数字滤波器的功能移植在F P G A 上,增强功能的同时,系统的体积㊁质量㊁电路复杂程度均不受影响,从而不会影响直升机在飞行测试中旋翼系统的动态平衡.参㊀考㊀文㊀献:[1]㊀魏国波.直升机旋转动部件载荷测试技术研究[D ].西安:西安电子科技大学,2013.W E IGB .T h e i n v e s t i g a t i o n i n t h eF l i g h tT e s tT e c h n i q u e o fR o t a r y p a r t s o nh e l i c o pt e r [D ].X i a n :X i d i a nU n i v e r s i Gt y ,2013.(i nC h i n e s e )[2]㊀黄学业,凌朝东,黄锐敏,等.基于F P G A 的多路微弱医学生物电信号处理系统[J ].液晶与显示,2014,29(2):245G250.HU A N G X Y ,L I N GCD ,HU A N GR M ,e t a l .M u l t i c h a n n e lw e a km e d i c a l b i o e l e c t r i c a l s i g n a l p r o c e s s i n g s ys t e m b a s e do nF P G A [J ].C h i n e s eJ o u r n a l o f L i q u i dC r y s t a l s a n dD i s p l a y ,2014,29(2):245G250.(i nC h i n e s e )[3]㊀杜勇.数字滤波器的MA T L A B 与F P G A 实现[M ].2版.北京:电子工业出版社,2014.D U Y.M A T L A Ba n dF P G AI m p l e m e n t a t i o no f D i gi t a lF i l t e r [M ].2n de d .B e i j i n g :P u b l i s h i n g H o u s eo fE l e c Gt r o n i c s I n d u s t r y,2014.(i nC h i n e s e )[4]㊀卢雍卿,李剑文,许雯雯,等.基于F P G A 的数字滤波器设计与仿真[J ].软件导刊,2017,16(2):85G88.L U Y Q ,L I JW ,X U W W ,e t a l .D e s i g na n ds i m u l a t i o no f d i g i t a l f i l t e rb a s e do nF P G A [J ].S o ft w a r eG u i d e ,2017,16(2):85G88.(i nC h i n e s e)[5]㊀安都勋,霍建华,王留全.基于MA X 1452的应变测试系统前端模块的设计[J ].电子设计工程,2012,20(2):118G120.A N DX ,HU OJH ,WA N GLQ.D e s i g n o f s t r a i n t e s t i n g s ys t e mf r o n t Ge n dm o d u l e b a s e d o nMA X 1452[J ].E l e c Gt r o n i cD e s i g nE n g i n e e r i n g ,2012,20(2):118G120.(i nC h i n e s e )[6]㊀罗杰.V e r i l o g H DL 与F P G A 数字系统设计:Q u a r t u s Ⅱ[M ].北京:机械工业出版社,2015.L U OJ .D e s i g n o f V e r i l o g HD La n dF P G A D i g i t a l S ys t e mQ u a r t u s Ⅱ[M ].B e i j i n g :C h i n aM a c h i n eP r e s s ,2015.(i nC h i n e s e)[7]㊀王艳芬,张晓光,王刚,等.关于F I R 滤波器窗函数设计法的若干问题讨论[J ].电气电子教学学报,2017,39(2):83G88.WA N G YF ,Z HA N GXG ,WA N GG ,e t a l .D i s c u s s i o no n s o m e p r o b l e m s a b o u t t h e d e s i gno fw i n d o wf u n c t i o no f 7701第10期㊀㊀㊀㊀㊀宋卓达,等:基于F P G A 的F I R 数字滤波器设计及实现. All Rights Reserved.F I Rf i l t e r[J].J o u r n a l o f E l e c t r i c a l&E l e c t r o n i cE d u c a t i o n,2017,39(2):83G88.(i nC h i n e s e)[8]㊀刘福泉.基于F P G A的F I R数字滤波器实现[D].北京:北京邮电大学,2012.L I U FQ.I m p l e m e n t a t i o no fF I Rd i g i t a l f i l t e r b a s e do nF P G A[D].B e i j i n g:B e i j i n g U n i v e r s i t y o fP o s t s a n dT e l eGc o mm u n i c a t i o n s,2012.(i nC h i n e s e)[9]㊀郭晓伟,陈钟荣,夏利娜.基于F P G A的高速高阶F I R滤波器的频域改进方法[J].现代电子技术,2016,39(11):55G58,62.G U O X W,C H E NZR,X I ALN.F r e q u e n c y d o m a i n i m p r o v e m e n tm e t h o d f o r h i g hGs p e e d a n d h i g hGo r d e r F I R f i l t e rb a s e do nF P G A[J].M o d e r nE l ec t r o n i c sT e c h n i q u e,2016,39(11):55G58,62.(i nC h i n e s e)[10]㊀王辉.F I R数字滤波器的设计与研究[J].装备制造技术,2018(1):48G49,62.WA N G H.D e s i g n a n d r e s e a r c ho f F I Rd i g i t a l f i l t e r[J].E q u i p m e n tM a n u f a c t u r i n g T e c h n o l o g y,2018(1):48G49,62.(i nC h i n e s e)[11]㊀陈媛媛,刘有耀.F I R滤波器的F P G A设计与实现[J].电子设计工程,2017,25(24):65G69,73.C H E N Y Y,L IY Y.F I Rf i l t e ro f t h eF P G A d e s i g na n di m p l e m e n t a t i o n[J].E l e c t r o n i cD e s i g nE n g i n e e r i n g,2017,25(24):65G69,73.(i nC h i n e s e)[12]㊀李亮.基于S i m u l i n k的软件无线电硬件协同仿真技术[D].成都:电子科技大学,2013.L IL.S i m u l i n kGb a s e ds o f t w a r er a d i oh a r d w a r ec oGs i m u l a t i o nt e c h n o l o g y[D].C h e n g d u:U n i v e r s i t y o fE l e c t r o n i c S c i e n c e a n dT e c h n o l o g y o fC h i n a,2013.(i nC h i n e s e)作者简介:㊀宋卓达(1993-),男,吉林长春人,硕士研究生,2016年于南昌大学获得学士学位,主要从事F P G A嵌入式系统设计方面的研究.EGm a i l:453474362@q q.c om ㊀王志乾(1969-),男,吉林省吉林市人,研究员,2009年于吉林大学获得博士学位,主要从事光电测量㊁数字信号处理方面的研究.EGm a i l:z h i q i a n_w a n g @s i n a.c o m8701㊀㊀㊀㊀液晶与显示㊀㊀㊀㊀㊀㊀第35卷㊀. All Rights Reserved.。

基于FPGA的FIR数字滤波器的设计与实现

基于FPGA的FIR数字滤波器的设计与实现

基于FPGA的FIR数字滤波器的设计与实现
杨国庆
【期刊名称】《现代电子技术》
【年(卷),期】2008(31)19
【摘要】介绍了基于FPGA的FIR数字滤波器的设计与实现,该设计利用Matlab 工具箱设计窗函数计算FIR滤波器系数,并通过VHDL层次化设计方法,同时FPGA 与单片机有机结合,采用C51及VHDL语言模块化的设计思想及进行优化编程,有效实现了键盘可设置参数及LCD显示.结果表明此实现结构能进一步完善数据的快速处理和有效控制,提高了设计的灵活性、可靠性和功能的可扩展性.
【总页数】3页(P184-186)
【作者】杨国庆
【作者单位】天津城市建设学院,天津,300384
【正文语种】中文
【中图分类】TN713
【相关文献】
1.基于FPGA的FIR数字滤波器的设计与实现 [J], 蒋小燕;孙晓薇;胡恒阳;钱显毅
2.基于FPGA的FIR数字滤波器的设计与实现 [J], 熊洁;黄蕾
3.基于FPGA的FIR数字滤波器设计与实现 [J],
4.基于FPGA的FIR数字滤波器的设计与实现 [J], 陈昭明
5.基于FPGA的抗混叠FIR数字滤波器的设计与实现 [J], 金燕; 王明; 葛远香
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【中图分类号】TN713
【文献标识码】A
【文章编号】1008-1151(2009)11-0048-02
(一)引言
在现代数字信号处理过程中,经常采用滤波器对信号进 行过滤、检测等处理。FIR 滤波器是有限长单位冲激响应滤波 器,在结构上是非递归型的,具有严格的线性相位和任意的 幅度特性,并且系统是稳定的。因而在线性相位要求严格的 场合,如在数据通信、图像处理、语音信号处理及自适应等 领域具有广泛的应用。
查找表 LUT h(3) h(3)+h(0) h(3)+h(1) h(3)+h(1)+h(0) h(3)+h(2) h(3)+h(2)+h(0) h(3)+h(2)+h(0) h(3)+h(2)+h(1)+h(0)
图 4 低 4 位查找表的 FIR 结构
实现查找表的部分 Verilog HDL 源程序代码如下: always @(posedge clk or negedge reset) begin //lookup table;
(1)
∑ 即: y(n) = N −1 h(i)x(n − i) i=0
(2)
从上式可以看出,FIR 滤波器的主要组成模块是乘累加单
元(MAC),如果按照直观结构构造乘法器和系数寄存器来实现
会占用大量的逻辑资源,显然不可取。由于对称线性相位 FIR
滤波器的冲激响应系数具有对称特性,即有
h(n) = ±h(N − n −1)(N 为偶数时取正,N 为奇数时取负),
2009 年第 11 期 (总第 123 期)
大众科技 DA ZHONG KE JI
No.11,2009 (Cumulatively No.123)
基于 FPGA 的 FIR 数字滤波器的设计与实现
陈昭明
(中国航天科技集团第四研究院 401 所,陕西 西安 710025)
【摘 要】FIR 数字滤波器具有稳定性高、严格的线性相位等特点,因而在现代数字信号处理中得到广泛的应用。文章采
图 3 FIR 滤波器频率响应特性 生成的滤波器系数如下: h(0)=h(7)= 0.02642614;h(1)=h(6)= -0.12341665; h(2)=h(5)= 0.06484731;h(3)=h(4)= 0.51439919;
(四)FIR 滤波器的 FPGA 实现
由于 MATLAB 求出的滤波器系数是用浮点数表示的,而且 有正有负,而 FPGA 是采用定点数运算,因此要将浮点数转化 为定点数。把 MATLAB 求出的滤波器系数乘以 210 倍,将结果 量化为整数,并用 11 位二进制补码表示如下:
(下转第 15 页)
- 49 -
图 2 车站监控模块与无线列调车站电台接口结构图
车站监控模块可以在车站电台正常工作时采集部分参 数,也可以在车站电台空闲时进行自检,把采集到的参数进 行自动更新、分析、存储,并把最终结果信息通过有线通道 或 PSTN 通道传输给监测总机,完成并显示、存储、查询和打 印监测结果,如果有异常情况自动发出告警提示。
(四)软件设计
监测总机的上位机管理软件主要实现信息查询功能和接 受下位机的主动告警功能,即对每个车站电台的工作运行情 况进行定时查询,其中的定时时间间隔为 30 秒,实现对各个 车站电台的巡检一遍,包括发送车站监控模块的地址,接收 数据,将运行信息记录数据库等,以供管理人员或维护人员 查询、分析和打印监测结果。整个软件系统分为:1.通信模 块;2.历史记录和存储模块;3.显示和报警模块(包括历史记 录和当前数据的显示);4.报表和打印模块。程序结构框图如 图 3 所示。
if(!reset) table_out<=0; else begin
case(table_in) 4'b0000: table_out<=0; 4'b0001: table_out<=h_0; 4'b0010: table_out<=h_1; 4'b0011: table_out<=h_0+h_1; ………… 4'b1111: table_out<=h_3+h_2+h_1+h_0;
采用 FDATool 工具来设计滤波器,使设计过程更加简洁、 精确。本文以一个低通滤波器为例进行说明。滤波器的性能 指标为:8 阶低通 FIR 滤波器,输入数据位宽 8bit,系数数 据位宽 8bit,窗函数采用 kaiser 窗,采样频率 Fs=6MHz,截 止频率 Fc=1.8 MHz。设计结果如图 3 所示。
表 1 查找表 LUT
低4位 0000 0001 0010 0011 0100 0101 0110 0111
查找表 LUT 0 h(0) h(1) h(0)+h(1) h(2) h(2)+h(0) h(2)+h(1) h(2)+h(1)+h(0)
低4位 1000 1001 1010 1011 1100 1101 1110 1111
用分布式算法,给出了利用现场可编程门阵列器件(FPGA)并采用窗函数的方法来实现 FIR 滤波器的设计。整个程序采用 Verilog
HDL 语言编写,并在 ISE Foundation 环境下进行了仿真,结果表明该方法的可行性。
【关键词】FPGA;FIR 滤波器;Verilog HDL;分布式算法;窗函数
2.分布式算法
N −1
h 一个线性时不变系统的输出为:y
(n)
=<
h,
x
>=

i=0
hi
xi
,假设
i
为已知常数, xi 为 w 位二中假设变量 xi 的表达式为:
w−2
∑ xi = −2w−1 xi,w−1 + xi, j 2 j j=0
(4)
其中, xi,w−1 表示 xi 的第 w-1 位, xi 表示 x 的第 i 次采
default: table_out<=0; endcase end end 在设计中,FPGA 选用的是 Xilinx 公司的 Virtex-Ⅱpro 系列 XC2VP30 器件,使用的软件是 Xilinx 公司的 ISE10.1, 综合工具为 ISE Foundation 自带的 XST。采用 Verilog HDL 语言对 FIR 滤波器进行行为描述编程。实现 FIR 滤波器的顶 层原理图及其时序仿真波形分别如图 5 和图 6 所示。其中 clk 为系统时钟,reset 为复位信号,低电平有效,data_in 为输 入数据,fir_out 为滤波器的输出结果。该滤波器既可以单独 使用,也可以作为子模块调用,多个该模块可以组成 16 阶、 32 阶、64 阶等高阶滤波器,在工程实践中可以灵活处理。
(二)FIR 滤波器的基本原理
1.FIR 滤波器结构 假 设 FIR 滤 波 器 的 输 入 信 号 为 x(n) , 冲 激 响 应 为 h(0), h(1), h(2),..., h(N −1) ,即滤波器系数,则滤波器的输出为: y(n) =h(0)x(n)+h(1)x(n−1)+h(2)x(n−2)+L+h(N −1)x[n−(N −1)]
h(0)=h(7)= 00000011011;h(1)=h(6)= 11110000010; h(2)=h(5)= 00001000010;h(3)=h(4)= 01000001110;
其中,最高位为符号位,0 表示正数,1 表示负数。需要 注意的是最终输出结果应除以 210,即将输出右移 10 位。在对 滤波器的系数由浮点数转化为定点数时进行尾数舍入,以及 在对输出结果进行截尾操作时会产生一定的误差,这都是由 有限精度算法造成的,而误差的减小可以通过系统优化的方 法来实现。
+ 20 (h0 x0,0 + h1x1,0 + L + hN −1xN −1,0 )
(6)
+ 21(h0 x0,1 + h1x1,1 + L + hN −1xN ) −1,1 + L
+ 2w−2 (h0 x0,w−2 + h1x1,w−2 + L + hN −1xN −1,w−2 ) 从(6)式可知该方法与传统算法实现乘累加运算的区别 在于执行部分积运算的先后顺序不同。传统算法是在所有乘 积已经生成之后再相加完成乘加运算,而 DA 算法是采用查找 表(LUT)实现输入向量的映射,经过查找表直接输出部分积,
由于 8 阶的线性相位 FIR 滤波器系数的对称特性,只有 4 个独立的滤波器系数,因此只需一个 4 输入查找表来实现 DA 算法。对于输入数据是 8bit,可以分为高 4 位和低 4 位来查 表。以低 4 位为例,其查找表如表 1 所示。采用查找表的 FIR 滤波器结构如图 4 所示。采用查找表来实现的 FIR 滤波器本 质上是用滤波器的系数 h(n)做运算,输入的 8 位采样值只是 作为查找表的地址而并没有参与运算。查找表的输出值与位 权 2N 相乘,在程序中是通过移位操作来实现的。
Matlab 是由美国的 MathWorks 公司推出的一套高性能数 字计算和可视化软件。它起源于矩阵运算,并已经发展成一 种高度集成的计算机语言,集数值分析、矩阵运算、信号处 理和图形显示于一体,构成一个方便友好的用户环境界面。 Matlab 内部集成了信号处理、自动控制、计算机仿真等种类 繁多的工具箱,还提供了允许用户自定义功能的 m 文件,便 捷的实现与其他程序和语言接口的功能,从而大大扩展了它 的适用范围。
现场可编程门阵列 FPGA 具有密度大、功耗低、速度快、 可靠性高、设计方法灵活等优势,能够反复编程、反复探测, 可以很好的满足通用性和实时性的要求,是实现 FIR 数字滤 波器的有效手段。
本文采用 Matlab 下的 FDATool 滤波器设计工具进行预设 计,得到滤波器的系数,然后利用 FPGA 进行 FIR 滤波器的设 计与实现。
相关文档
最新文档