圆柱圆锥表面积体积复习课件

合集下载

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

圆柱圆锥圆台体积和表面积课件

圆柱圆锥圆台体积和表面积课件

[答案] 14π
[解析] V=13π×(12+1×2+22)×6=14π.
圆柱圆锥圆台体积和表面积
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
5、棱台的上、下底面面积分别是 2,4,高为 3,则棱台的
体积是( )
A.18+6 2 C.24
B.6+2 2 D.18
[答案] B
[解析] 体积 V=13(2+ 2×4+4)×3=6+2 2.
6、圆台 OO′的上、下底面半径分别为 1 和 2,高为 6,
则其体积等于________.
圆柱圆锥圆台体积和表面积
【例2】一个正三棱锥的底面边长为6,侧棱长为 1 5 , 求这个三 棱锥的体积. 思路点拨:正三棱锥顶点和底面中心的连线与底面垂直,利用 此特点求出棱锥的高即可.
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
圆柱圆锥圆台体积和表面积
A.84π
B.60π
C.54π
D.40π
[答案] A
[解析] V=13π(22+2×4+42)×9=84π.
圆柱圆锥圆台体积和表面积
3.圆锥的高扩大为原来的n倍,底面半径缩小为原来的
1 n
倍,那么它的体积变为原来的( )
A.1倍
B.n倍
C.n2倍
D.1n倍
[答案] D
圆柱圆锥圆台体积和表面积
4.已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正 三角形(如图),则三棱锥B1-ABC的体积为( )

圆柱圆锥表面积体积综合复习课件

圆柱圆锥表面积体积综合复习课件

⑶ 一个圆柱与圆锥等底等积,那么圆柱 柱的高一定是圆锥的 。 锥… … … … … … … … … … ( )
⑷ 如果圆锥的体积是圆柱的 ,那么 它它们一定等底等高。… … …( )

判断下列各题是否正确。
一个圆锥的高不变,底面半径扩大 3 倍倍,体积也扩大 3 倍。 … … ( )
S底=πr2
2
知识回顾
圆柱表面积计算公式
ONE
把圆柱的底面平均分的份数越多,切拼成的立体图形越接近长方体。
第一章节
把圆柱的底面平均分的份数越多,切拼成的立体图形越接近长方体。
3
V=s底h
V=s底h
ONE
圆柱和圆锥等底等高
圆柱和圆锥的底和高有什么关系?
结论:圆柱体积是等底等高圆锥体积的3倍 , 圆锥体积是等底等高圆柱体积的
01
把一根 3米长的圆柱形木料锯成三段段后表面积增加了12 平方分米, 这根木木料的体积是60立方分米。… ( )
02
03
04
哪个圆柱的体积大一些呢?
20厘米
15厘米
拓展题
2
如图,想想办法,你能否求它的体积?( 单位:厘米)
4
6
如图是从一段钢材上截下的一段(单位:厘米),如果每立方厘米的钢材重7.8克,这段钢材重多少克?
等底等高
推导公式:
V柱=SH V锥= SH
圆柱的侧面积
总结公示:
= 底面周长 ×高
圆柱的表面积
= 侧面积+底面积×2
圆柱的体积
= 底面积 ×高
圆锥的体积
= 底面积 × 高×
圆柱与圆锥等底等高
你能说说它们之间的关系吗?
一个圆柱与一个圆锥等底等高,如果高要使它们的体积相等,则圆锥的高要 扩( ) ,或者把圆柱的高 阔( );也可以把圆锥的底面积扩( ) ,或者把圆柱的底面积阔( )。

圆柱圆锥圆台体积和表面积.ppt

圆柱圆锥圆台体积和表面积.ppt

1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得

人教版《圆柱与圆锥》(完美版)PPT课件1

人教版《圆柱与圆锥》(完美版)PPT课件1

解答此类题的关键是明确长方形的长(宽)或 正方形的边长等于圆柱的底面周长,根据公式 C=2πr 或C=πd求出圆的周长,然后与长方形 的长(宽)或正方形的边长进行比较即可确定 答案。
规范解答:选择①和B、②和A或②和C都恰好 能做成圆柱形的盒子。
1.把圆柱的侧面沿高展开,得到一个(长方形),它 的长等于圆柱底面的(周长),宽等于圆柱的 ( 高 )。
思路分析:塔的顶端呈圆锥形,求塔的顶端的体积就
是求圆锥的体积。计算时先根据公式S底=π

出圆锥的底面积,再根据公式V
求出圆锥的体
积。
规范解答::圆锥的底面积: 3.14×(18.84÷3.14÷2)²
=3.14×9 =28.26(m²) 圆锥的体积:
×28.26×6 =2×28.26 =56.52(m³) 答:塔的顶端的体积是 56.52立方米。
20×2×3.14×60+202×3.14=8792(cm²) 答:做这个水桶至少需要8792平方厘米铁皮。
例3 一根钢管,长50厘米,外圆直径是10厘米, 钢管厚2cm(如下图)。铸造这样一根钢管需要 钢材多少立方厘米?
思路分析:求铸造这样一根钢管需要钢材的体积, 就是用大圆柱的体积减去中空的小圆柱的体积。
思路分析:瓶子正放和倒放时的容积与饮料的体积不
变,所以瓶子空余部分的容积相等。因此,饮料瓶的
容积就相当于一个高为(20+4)cm 的圆柱形容器的
容积,可推知饮料体积占瓶子容积的
,即
480mL的

确定瓶中饮料的体积占瓶子容积的几分之几是解答
此题的关键。
规范解答:20+4=24(cm) 480× =400(mL) 答:瓶内现有饮料400毫升。
3.一个内半径是10cm的饮料瓶里,饮料的高度为 4cm,把瓶盖拧紧倒置放平,无水部分是圆柱形, 高度为16cm,这个瓶子的容积是多少?

圆柱圆锥体积,表面积复习

圆柱圆锥体积,表面积复习
一个圆柱的底面直径与高相等,其侧 面沿着高展开后是一个(A )。 A、长方形
C、扇形
B、正方形
D、圆
注意:只有当圆柱底面周长和高相等时,侧面
沿着高展开后才是正方形。
选择:
下列哪个图形是圆柱的展开图(
3 3 3 A 2 6.28 2 B 2 3 B

2
9.42
2
3
C
要点提示:判断一个图形是不是圆柱的侧面展开图,
长=底面周长 宽 =高
圆锥的特征:
圆形
1.圆锥的底面是一个圆
h
o
2.圆锥的侧面是一个曲面, 展开后是一个扇形
扇形
3.圆锥只有一个顶点,一条高。
(从顶点到底面圆心的距离是圆锥的高)
填空:
1.一个圆柱的侧面展开图是一个正方形,这 个圆柱体的底面半径是4厘米,它的高是 ( 25.12 )厘米. 2.将圆锥过顶点垂直于底面切割,则切面 是两个完全一样的( 等腰三角形), 三角形的底等于圆锥的 ( 底面直径 ), 三角形底边上的高等于( 圆锥的高 ) 。
关键是长方形的一边与底面圆的周长是否相等。
选择:
甲乙两人分别利用一张长25厘米,宽 18厘米的纸用两种不同的方法围成一个圆 柱体(接头处不重叠),那么围成的圆柱 ( B )。
A、高一定相等
B、侧面积一定相等
C、侧面积和高都相等
D、侧面积和高都不相等
超链接
圆柱的侧面积 圆柱的侧面
圆柱的侧面积=底面周长×高
牙膏厂将牙膏口的直径由原来的0.5cm改 为0.4厘米。如果每人每天使用牙膏的长度是 2cm左右,一年里(按365天算)每个人大约 要比原来少用多少牙膏?(得数保留整数)
请回答下面的问题,并列出算式。

圆柱、圆锥、圆台、球的表面积和体积 课件-高一下学期数学人教A版(2019)必修第二册

圆柱、圆锥、圆台、球的表面积和体积 课件-高一下学期数学人教A版(2019)必修第二册
3
1
= h(r 2 rr r 2 )
3
(五)布置作业
1、课本P119练习1-4题
2、阅读121-123探究与发现,思考如何利用祖暅原理
推导球的体积
(1)如何根据圆柱的展开图,求圆柱的表面积?
圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母
线).设圆柱的底面半径为r,母线长为l,
则S圆柱侧=2πrl,S圆柱表=2πr(r+l),其中r为圆柱底面半径,l为母线长.
(2)如何根据圆锥的展开图,求圆锥的表面积?
圆锥的侧面展开图为一个扇形,半径是圆锥的母线长,弧长等于圆锥底面
.
答案:20π
1
2
2×3=20π.
解析:圆柱的底面半径是2,高为4,圆锥底面半径是2,高为3,则V=π×2 ×4+ ×π×2
3
3、球的表面积、体积
设球的半径为R,它的表面积只与半径R有关,是以R为自变量的函数.
事实上,如果球的半径为R,那么它的表面积是
问题8:小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法
1
周长,侧面展开图扇形面积为 2×2πrl=πrl,
∴S圆锥侧=πrl,S圆锥表=πr(r+l),其中r为圆锥底面半径,l为母线长.
(3)如何根据圆台的展开图,求圆台的表面积?
圆台的侧面展开图是一个扇环,内弧长等于圆台上底周长,外弧长
l'
等于圆台下底周长
xl r

x r'
r'
x
l
r r'
体”,则它的体积是
VO ABCD
1
S ABCD R .
3

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
分叫作棱台
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形

半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.

圆柱与圆锥体表面积及体积10页课件ppt

圆柱与圆锥体表面积及体积10页课件ppt

10分米 0.5分米
0.8米
把一个棱长是8厘米的正方体木块, 加工成一个最大的圆锥体,圆锥的 体积是多少立方厘米?
圆柱与圆锥体表面积及体积
动画演示
求圆柱体的侧面积
圆柱的表面由上、下两个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
一个圆柱的高是15厘米,底面半径是 5厘米,它的表面积是多少?
(1)侧面积:2 ×3.14 ×5 ×15=471(平方厘米) (2)底面积:3.14 ×52 =78.5(平方厘米) (3)表面积:471+78.5 × 2=628(平方厘米)
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
打谷场上,有一个近似于圆锥的小麦堆, 测得底面直径是4米,高是1.2米。每立方米小 麦约重735千克,这堆小麦大约有多少千克? (得数保留整数)
第一步:求麦堆底面积
每二步:求麦堆的体积
第三步:求小麦重量
返回
4分米
求各圆柱的 体积。
小结:
(1)在实际应用中计算圆柱形物体的表面 积,要根据实际情况计算各部分的面积。
(2)求用料多少,一般采用进一法取近似 值,以保证材料够用。
圆柱体=底面积×高
V=sh =∏r2h
20厘米 25厘米
(1)水桶的底面积:3.14×( 220)2=314(cm2) (2)水桶的容积: 314×25=7850(cm3)

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=

sh

(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积

圆柱与圆锥圆锥圆柱与圆锥复习

圆柱与圆锥圆锥圆柱与圆锥复习
圆柱与圆锥复习
2023-11-05
contents
目录
• 圆柱的几何性质 • 圆锥的几何性质 • 圆柱与圆锥的应用 • 圆柱与圆锥的画法与技巧 • 圆柱与圆锥的解题策略 • 圆柱与圆锥的拓展知识
01
圆柱的几何性质
圆柱的定义
圆柱
以矩形的一边所在直线为旋转轴旋转形成的旋转 体叫做圆柱。
圆柱的轴
旋转轴叫做圆柱的轴。

圆锥的顶点称为“锥顶”,旋 转轴称为“锥轴”。
圆锥的侧面展开图是一个扇形 ,扇形的弧长等于圆锥底面的 周长,扇形的半径等于圆锥的
母线长。
圆锥的底面积与侧面积
圆锥的底面积是一个圆,其半径等于圆锥底面的 半径。
圆锥的侧面积是一个扇形,其弧长等于圆锥底面 的周长,半径等于圆锥的母线长。
圆锥的全面积等于圆锥底面积与侧面积的和。

零部件设计
圆柱和圆锥形状的零部件在各 种机械设备中都有着广泛的应 用,如轴、轴承、螺栓等,因 为这些零部件需要承受一定的
载荷和传递动力。
艺术造型
圆柱和圆锥在建筑、雕塑等艺 术领域中也有着广泛的应用, 因为这些形状具有较好的视觉
效果和艺术表现力。
04
圆柱与圆锥的画法与技巧
圆柱的画法与技巧
确定高度和底面半径
圆柱的体积V=πr²h。
圆柱与圆锥的表面积与体积公式的推导
圆锥的体积公式推导
圆锥的体积由底面积、高和母 线长决定。
底面积为πr²,高为h,母线长 为l。
圆锥的体积V=(1/3)πr²h。
圆柱与圆锥的截面性质
01
02
03
圆柱的截面性质
当截面与轴线垂直时,截面为一个圆 。
当截面与轴线平行时,截面为一个长 方形。

圆柱、圆锥、圆台、球的表面积和体积(PPT)新教材人教A(2019)必修(第二册)

圆柱、圆锥、圆台、球的表面积和体积(PPT)新教材人教A(2019)必修(第二册)

(2)球的表面积(体积)计算中蕴涵的数学思想 ①函数方程思想:根据球的表面积与体积公式可知,球的 半径 R,球的表面积 S,球的体积 V 三个量“知一求二”. ②转化思想:空间问题平面化. (3)球体的截面的特点 ①球既是中心对称的几何体,又是轴对称的几何体,它的 任何截面均为圆,它的三视图也都是圆. ②利用球半径、截面圆半径、球心到截面的距离构建直角 三角形是把空间问题转化为平面问题的主要途径.
(2)用一个完全相同的几何体把题中几何体补成一 个圆柱,如图,则圆柱的体积为 π×22×5=20π,故所
求几何体的体积为 10π.
(3)设圆台的上、下底面半径分别为 r 和 R,母线长为 l,高为 h, 则 S 上=πr2=π,S 下=πR2=4π,∴r=1,R=2,S 侧=π(r+R)l=6π,
答案:A
2.[变条件]将本例(3)变为:圆柱内接于球,圆柱 的底面半径为 3,高为 8,则球的表面积为 ________.
解析:如图,由条件知,O1A=3,OO1=4,所以 OA=5, 所以球的表面积为 100π. 答案:100π
(4)求圆台的体积转化为求圆锥的体积. 根据台体的 定义进行“补形”,还原为圆锥,采用“大圆锥”减去 “小圆锥”的方法求圆台的体积.
3.与球的体积、表面积有关的问题 (1)球的表面积(体积)与半径之间的函数关系 S 球=4πR2 V 球=43πR3 从公式看,球的表面积和体积的大小,只与球的半径 相关,给定 R 都有惟一确定的 S 和 V 与之对应,故表面 积和体积是关于 R 的函数.
3.常见的几何体与球的切、接问题的解决策略 (1)处理有关几何体外接球或内切球的相关问题时,要注意球心 的位置与几何体的关系,一般情况下,由于球的对称性,球心总在 几何体的特殊位置,比如中心、对角线的中点等. (2)解决此类问题的实质就是根据几何体的相关数据求球的直 径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空 间问题转化为平面问题来计算.

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V=s底h
V=s底h
一、观察得结论
想一想:
• 圆柱和圆锥的底和高有什么 关系?
圆柱和圆锥等底等高
结论:圆柱体积是等底等高
圆锥体积的3倍 ,圆锥体积是
⑵ 一个圆锥的体积 是 90 立方厘米,与 是它等底等高的圆柱的体积是( 270 )立 立立方厘米。
⑶ 一个圆柱的体积是 60 立方分米,比 与与它等底等高的圆锥的体积多( 40 ) 立立方分米。
口答下列各题。
⑷ 把一个圆柱切削成一个最大的圆锥, 已已知削去部分的体积比圆锥体积大大 人3.6立方分米,那么圆锥的体积是 (( 3.6 )立方分米。
) ,或者把圆柱的底面积 )。
圆柱与圆锥等底等积
你能说出它们之间的关系吗?
口答下列各题。
⑴ 一个圆柱与一个圆锥的体积和底面积 都都相等,圆柱的高是 9 分米,圆锥的 高高高是2(7 )分米。
⑵ 一个圆锥与一个圆柱等底等积,圆锥 的的高是 24 厘米,圆柱的高比圆锥矮 ( ( 16 ) 厘米。 ⑶ 如果圆柱与圆锥等积等底,它们高的 相相差 12 厘米,则圆柱的高是 ( 6 ) 厘厘米;它们高的和是 ( 24 )厘米。
⑸ 一个圆锥和一个圆柱等底等高,它们 的的体积之和是 120 立方分米,这个 圆圆柱的体积是( 90 )立方分米;圆锥 体体积比圆柱少( 60 )立方分米。
一个圆柱与一个圆锥等底等高,如果高
要使它们的体积相等,则圆锥的高要
扩( 阔( 扩( 阔(
扩大3 倍 缩小3 倍 扩大3 倍 缩小3 倍
) ,或者把圆柱的高 );也可以把圆锥的底面积
一个圆柱形汽油桶,底面直径是10分米, 高是20分米,做这样一个汽油桶需要铁皮 多少平方分米?(得数保留整十平方分米 )
一个圆柱形粮囤,从里面量底面半径是2.5米, 高是2米。如果每立方米稻谷约重545千克, 这个粮囤装的稻谷大约有多少千克?
一个底面直径是20厘米的圆柱形容器里,将 一个不规则的铸铁零件完全浸没后,容器 里的水面升高4厘米,求这铸铁零件的体积 是多少?
木木料的体积是60立方分米。… ( )

20厘米
个 圆
15 厘
柱 的 体







一台压路机的前轮 滚筒宽1.2米,直径 为0.8米。如果它每 分钟滚动10周,每分 钟压路的面积是多 少平方米?
下图中有12根同样的圆柱形木柱,每根高5 米,底面直径是0.4米。如果每平方米需要红 色油漆0.3千克,漆这些木柱需油漆多少千克?
一个用塑料薄膜覆盖的蔬菜大棚长6米,横 截面是一个直径2米的半圆。覆盖这个大棚 至少需要塑料薄膜多少平方米?大棚内的空 间有多大?
• 把一个圆柱的底面平均分成若干个扇形, 然后切开拼成一个近似的长方体,表面积 比原来增加了200平方厘米。已知圆柱高20 厘米,求圆柱的体积。
如图是从一段钢材上截下的一段(单位: 厘米),如果每立方厘米的钢材重7.8克, 这段钢材重多少克?
用一张长9.42米,宽6.28米的长方形铁皮, 再配上底和盖,做成一个容积最大的圆柱 形粮囤(接头处不计),(1)一共要用多 少平方米的铁皮?(2)这个粮囤的容积是 多少立方米?
如果将这个长方体切削 成最大的圆柱,这个圆 柱的表面积是多少?
15cm
10cm
• 一个底面半径为10厘米,高20厘米的圆柱 形玻璃容器中,水深6厘米,在容器中竖直 放入底面直径12厘米,高10厘米的圆柱形 铁块。现在水面高多少厘米?
判断下列各题是否正确。
⑴ 圆锥的体积等于圆柱体积的 1 。 3
是… … … … … … … … … ( )
⑵ 把一段圆柱形的木料削成一个最大的 圆圆锥 ,削去的部分是原体积的 2 。
3
………………………(√ )
判断下列各题是否正确。
⑶ 一个圆柱与圆锥等底等积,那么圆柱 柱的高一定是圆锥的 1 。
等底等高圆柱体积的 1 3推导公式:V柱来自SH等底 等 高
V锥=
1 3
SH
总结公示:
圆柱的侧面积 = 底面周长 高
圆柱的表面积 = 侧面积+底面积2 圆柱的体积 = 底面积 高 圆锥的体积 = 底面积 高 1
3
计算下面圆柱的表面积。(只列式) 底面半径3分米,高2分米。
3×2×3.14×2 +32×3.14×2 底面直径是4米,高3米。 4×31.4×3 +(4÷2)2×3.14×2 底面周长31.4厘米,高10厘米。 31.4×10 +(31.4÷3.14÷2)2×3.14×2
42 3.14 12 1 ⑸ 一个圆柱的体积是84立方3厘米,底 面面积是12平方厘米,它的高是多少?
84÷12 ⑹ 一个圆锥的底面积是15平方厘米, 体体积是60立方厘米,它的高是多少?
60 3 ÷ 15
圆柱与圆锥等底等高
你能说说它们之间的关系吗?
口答下列各题。
⑴ 一个圆柱的体积是 300 立方厘米, 高与它等底等高的圆锥的体积是( 100 ) 立立方厘米。
计算下面圆柱的体积。(只列式) 底面半径4分米,高3分米。
42×3.14×3 底面直径是6米,高5米。 (6÷2)2×3.14×5 底面周长62.8厘米,高12厘米。 (62.8÷3.14÷2)2×3.14×12
下列各题只列式不计算。
⑷ 一个圆锥的底面半径是 4 厘米,高是 是12 厘米,它的体积是多少?
锥… … … … … … …3… … … ( √ )
⑷ 如果圆锥的体积是圆柱的 1 ,那么 3
它它们一定等底等高。… … …( )
判断下列各题是否正确。
⑸ 一个圆锥的高不变,底面半径扩大 3
倍倍,体积也扩大 3 倍。 … … ( )
⑹ 把一根 3米长的圆柱形木料锯成三段 段后表面积增加了12 平方分米, 这根
圆柱圆锥综合复习
圆的周长和面积公 式你还记着吗?
C=πd C=π (2r )
S=πr×r S=π×r 2
圆柱的表面展开图
圆柱的表面展开图
圆柱表面积计算公式
S表=S侧+2S底
S侧=C底×h S底=πr2
圆柱体积公式的推导
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
相关文档
最新文档