直流脉宽调速系统驱动电源的设计

合集下载

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

直流调速系统用的可控直流电源

直流调速系统用的可控直流电源
(6)直流电源采用不控整流时,电网功率 因数比相控整流器高。
小结
三种可控直流电源,V-M系统在上世 纪60~70年代得到广泛应用,目前主要用 于大容量系统。
直流PWM调速系统作为一种新技术, 发展迅速,应用日益广泛,特别在中、 小容量的系统中,已取代V-M系统成为 主要的直流调速方式。
返回目录
直流斩波器或脉宽调制变换器——用恒定 直流电源或不控整流电源供电,利用电力 电子开关器件斩波或进行脉宽调制,以产 生可变的平均电压。
1.1.1 旋转变流机组
图1-1旋转变流机组供电的直流调速系统(G-M系统)
• G-M系统工作原理
由原动机(柴油机、交流异步或同步 电动机)拖动直流发电机 G 实现变流, 由 G 给需要调速的直流电动机 M 供电, 调节G 的励磁电流 if 即可改变其输出电 压 U,从而调节电动机的转速 n 。
• PWM系统的优点
(1)主电路线路简单,需用的功率器件少; (2)开关频率高,电流容易连续,谐波少,
电机损耗及发热都较小; (3)低速性能好,稳速精度高,调速范围宽,
可达1:10000左右; (4)若与快速响应的电机配合,则系统频带
宽,动态响应快,动态抗扰能力强;
PWM系统的优点(续)
(5)功率开关器件工作在开关状态,导通 损耗小,当开关频率适当时,开关损耗 也不大,因而装置效率较高;
根据前面分析,调压调速是直 流调速系统的主要方法,而调节电 枢电压需要有专门向电动机供电的 可控直流电源。
本节介绍几种主要的可控直流 电源。
常用的可控直流电源有以下三种
旋转变流机组——用交流电动机和直流发 电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整 流器,以获得可调的直流电压。

8第八章PWM直流脉宽调速系统

8第八章PWM直流脉宽调速系统
上一页 下一页 返回
8.1 直流脉宽调制电路的工作原理
8.1.3.可逆PWM变换器
为了克服不可逆变换器的缺点,提高调速范围,使电动机在四 个象限中运行,可采用可逆PWM变换器。可逆PWM变换器在控制方式 上可分双极式、单极式和受限单极式三种。 1.双极式PWM变换器 双极式PWM变换器主电路的结构形式有H型和T型两种,我们主 要讨论常用H型变换器。如图8—5所示,双极式H型PWM变换器由四个 晶体管和四个二极管组成,其连接形状如同字母H,因此称为“H 型”PWM变换器。它实际上是两组不可逆PWM变换器电路的组合。
8.1.2.不可逆、有制动力PWM变换器
图8-2所示的简单不可逆电路中,电流id不能反向,因此不能 产生制动作用,只能作单象限运行。需要制动时,必须具有反向电 流一id的通路。因此应该设置控制反向通路的第二个功率晶体管, 如图8-4(a)所示。这种电路组成的PWM传动系统可在一、二两个象 限运行。
在一个周期内,当0≤t<ton 时,ub1和ub4 为正,晶体管VT1 和 VT4饱和导通;而ub2和ub3为负,VT2和VT3截止。这时,电动机电枢AB 两端电压uAB=+US,
上一页 下一页 返回
8.1 直流脉宽调制电路的工作原理
电枢电流id从电源US的正极→VT1→电动机电枢 →VT4→到电 源US的负极。 当ton ≤t<T时,ub1和ub4变负,VT1和VT4截止;ub2和ub3变正, 但VT2和VT3并不能立即导通,因为在电动机电枢电感向电源US 释放 能量的作用下,电流id沿回路2经VD2和VD3形成续流,在VD2和VD3上 的压降使VT2 和VT3 的集电极—发射极间承受反压,当id过零后, VT2和VT3导通,id反向增加,到t=T时id达到反向最大值,这期间电 枢AB两端电压uAB=-US。 由于电枢两端电压uAB 的正负变化,使得电枢电流波形根据负 载大小分为两种情况。

T型双极式PWM直流调速系统设计

T型双极式PWM直流调速系统设计

T型双极式PWM直流调速系统设计自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器--直流电动机调速系统,简称直流脉宽调速系统,即直流PWM调速系统。

直流PWM调速系统作为一种新技术,发展迅速,应用日益广泛,特别在中、小容量的系统中,已取代V-M系统成为主要的直流调速方式。

直流PWM调速系统与可控整流式调速系统相比有下列优点:主电路线路简单,需用的功率器件少;开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;低速性能好,稳速精度高,调速范围宽;若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;直流电源采用不控整流时,电网功率因数比相控整流器高。

1 系统设计方案调速系统可设计成转速电流双闭环直流调速系统,因为其打破了单闭环直流系统不能随心所欲地控制电流和转矩的动态过程。

转速、电流双闭环控制的直流调速系统实现了在允许条件下的最快起动,起动过程,只有电流负反馈,没有转速负反馈;稳态时,只有转速负反馈,没有电流负反馈。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。

二者之间串级联接,如图1所示。

图1 转速、电流双闭环直流调速系统结构其中,ASR—转速调节器ACR—电流调节器TG—测速发电机TA—电流互感器UPE—电力电子变换器图1中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。

这就形成了转速、电流双闭环调速系统。

2 调节器的设计双闭环直流调速系统设计的一般原则:“先内环后外环”。

从内环开始,逐步向外扩展。

在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。

直流脉宽调速实验报告

直流脉宽调速实验报告

直流脉宽调速实验报告直流脉宽调速实验报告引言直流脉宽调速是一种常见的电机调速方法,通过改变电机供电的脉宽来控制电机转速。

本实验旨在通过搭建直流脉宽调速系统,研究不同脉宽对电机转速的影响,并探讨调速系统的性能。

实验装置与原理本实验采用直流电源、直流电机、脉宽调制器、功率放大器和速度检测装置构成的调速系统。

直流电源为调速系统提供稳定的电压,直流电机作为被调电机,脉宽调制器负责改变电机供电的脉宽,功率放大器用于放大脉宽调制器输出的信号,速度检测装置用于测量电机转速。

实验步骤1. 将实验装置按照电路连接图连接好,确保电路无误。

2. 调整直流电源的输出电压,使其满足电机的额定电压要求。

3. 通过脉宽调制器设置不同的脉宽,记录下不同脉宽对应的电机转速。

4. 分析实验数据,得出不同脉宽对电机转速的影响规律。

实验结果与分析实验中我们选择了不同的脉宽值,分别为10%、30%、50%、70%和90%。

通过实验测量,得到了如下数据:脉宽(%) 电机转速(rpm)10 100030 200050 300070 400090 5000从实验结果可以看出,随着脉宽的增加,电机转速也呈现出逐渐增加的趋势。

这是因为脉宽调制器改变了电机供电的脉宽,使得电机得到的平均电压增加,从而提高了电机的转速。

这种调速方法具有调节范围广、响应速度快等优点。

然而,脉宽调制器也存在一些问题。

首先,当脉宽过大时,电机容易受到过电压的损害,因此在实际应用中需要进行合理的限制。

其次,在低速调节时,脉宽调制器的分辨率较低,难以实现精确的调速效果。

因此,在实际应用中需要结合其他调速方法,如PID控制,来提高调速系统的性能。

结论通过本次实验,我们搭建了直流脉宽调速系统,并研究了不同脉宽对电机转速的影响。

实验结果表明,脉宽调制器能够有效地改变电机供电的脉宽,实现电机的调速。

但是,脉宽调制器在实际应用中还存在一些问题,需要综合其他调速方法来提高调速系统的性能。

总结直流脉宽调速是一种常见的电机调速方法,具有调节范围广、响应速度快等优点。

直流(PWM)脉宽调速系统--触发电路设计

直流(PWM)脉宽调速系统--触发电路设计

目录1绪论 (1)1.1直流电动机的调速方法 (1)1.2选择PWM控制系统的理由 (2)1.3采用转速电流双闭环的理由 (2)1.4设计技术指标要求 (3)2 PWM直流调速系统主电路设计 (4)2.1主电路结构设计 (4)2.2主电路逆变工作原理 (5)2.3 PWM变换器介绍 (6)2.4 参数设计 (9)3直流脉宽调速系统触发电路设计 (11)3.1触发控制电路设计 (11)3.2 PWM信号发生器 (11)3.3 SG3525芯片的主要特点 (12)4转速、电流双闭环设计 (16)4.1电流调节器设计 (16)4.2转速调节器设计 (16)5参数测定 (17)5.1测定晶闸管直流调速系统主电路电阻值R、电感值L (17)5.2测定晶闸管直流调速系统主电路电磁时间常数Td (18)5.3测定直流电动机电势常数Ce和转矩常数Cm (19)5.4测定晶闸管直流调速系统机电时间常数Tm (19)6系统调试 (20)6.1单元部件调试 (20)6.2闭环系统特性测试 (21)6.3系统动态特性观察 (22)7结束语 (24)8参考文献 (25)1绪论1.1直流电动机的调速方法直流调速技术的研究和应用已达到比较成熟的地步,尤其是随着全数字直流调速的出现,更提高了直流调速系统的精度及可靠性。

目前国各大专院校,科研单位和厂家也都在开发直流调速装置,但大多数调速技术都是结合工业生产中,而在民用中应用相对较少,所以应用已有的成熟技术开发性能价格比高的,具有自主知识产权的直流调速单元,将有广阔的应用前景。

本系统采用转速环和电流环双闭环结构,因此需要实时检测电机的电枢电流并把它作为电流调节器的反馈信号。

由电动机理论知,直流电动机的机械特性方程为T R C C C U n m e e Nφφ2N -=式中 n N ——直流电动机的转速(r/min )U N ——电动机的额定电压(v):R ——电动机电枢电路总电阻(Ω)C e——电动势常数(v·min /r); C m ——转矩常数,C m =9.55C e ;T ——电动机电磁转矩(N·m);φ——电动机磁通(wb)。

基于PWM控制直流电机自动调速系统设计

基于PWM控制直流电机自动调速系统设计

1 绪论1.1 课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。

长期以来,直流电动机一直占据着调速控制的统治地位。

由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。

近年来,直流电动机的结构和控制方式都发生了很大变化。

随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制 (PulseWidthModulation,简称PWM)控制方式已成为绝对主流。

这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。

五十多年来,直流电气传动经历了重大的变革。

首先,实现了整流器件的更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。

再到脉宽调制 (PulsewidthModulation)变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。

另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。

随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。

以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。

由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。

技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调速、高精度的电气传动领域中一直居于垄断地位[1]。

目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。

姚勇涛等人提出直流电动机及系统的参数辨识的方法。

该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具有较高的精度,方法简便易行。

直流电机数字脉宽调速实验系统的研究与设计

直流电机数字脉宽调速实验系统的研究与设计

路, 有 以下优点 : ( 1 ) 大量模拟器件或专用集成 电路 组 成 的硬 件工 作 可 以直接 由软 件 取代 实 现 , 简 化 了 电路 , 操作维护简单 , 可以大幅度降低系统的功耗和 维护成本 ; ( 2 ) 当今各种先进的控制算法和策略的应 用 实 现成 为可 能并 变 得较 为简 单 , 可 以灵活 运 用各 种控制方案 , 提高性能和增强功能 ; ( 3 ) 灵活性和适 应 性好 , 通用 移植性 强 , 只需升级 更新 软件 ; 四、 温漂 效应低 , 无零点漂移 , 抗扰能力强 , 稳定性好 , 控制精 度高[ 1 。正 是基 于上 述考虑 , 本 研究 基 于此实 验 台, 进 行 了实验 改进 、 发展 与创 新 。 1 主 要研究 内容 在 全面熟 悉 E L . DS . I I I 型 电 气 控 制 综 合 实 验 台, 以模拟分离器件和专用集成芯片构成控制器的 直 流 电机 P WM 脉宽 调速 系统 的基 础上 ,并 拟定实 验方案 测定 了转速 、 电流双 闭环模 拟 P I 调节 器参数 后, 结合 此 系统设计 原理并 保 留该系 统主 电源 电路 、 变换 器 电路 等被控 制 电路 和 执行 机 构 , 以计 算 机技 术最新发展成果——美国德州仪器( T I ) 公司推出的 最 佳测 控应 用 的定点数 字信 号处 理器 ( Ds P ) T MS 3 2 0 F 2 0 0 0系列 T MS 3 2 0 F 2 8 1 2为核 心控 制处 理 器, 代替 E L . D S — I I I 型实验台传统模拟控制器电路 , 设 计 了 一 个 直 流 电机 转 速 、 电 流 双 闭 环 数 字 化 P WM 脉宽 调 速实 验 系统 , 实现 了速度 给定 、 速 度 实 时测 量 、 速 度实时 显示 和转 向控制及 空载 和带 负载 、 抗扰 运行 的各项 动静态 特性 的最佳 控制 。 2 实验 系统 技术 方案 在控制策略方面 , 实验教学中, 广泛使用的是 电 机拖 动 自动 控制 理论 。其 中 阐述过 , 若 采 用转 速 负 反馈和 P I 调 节 器 的单 闭环 调 速 系统 尽 管 能在 维 持 系统稳定的基础上达 到无静差转速 , 但是如果在要 求快速启动制动 、 突加突卸负载动态转速变化较大 等对系统的动态性能要求较高的场合 , 单闭环调速 系统则不能符合需要 , 原因在于在单闭环调速系统 中, 动态过程的电流或转矩不能全部根据需要来进 行 控制 。在单 闭环 系 统 中 , 控 制 电流 只依 赖 电流截 止负反馈环节 , 但它只有在大于电流临界值之后 , 通

直流脉宽调制电路的工作原理

直流脉宽调制电路的工作原理
第1八章自动PW控M制直的流基本脉概宽念调速系统
系统框图
8.1 直流脉宽调制电路的工作原理
8.2 脉宽调速系统的控制电路
8.3 PWM直流调速装置的系统分析 8.4 由PWM集成芯片组成的直流 脉宽调速系统实例
8
PWM直流脉宽调速系统
以大功率晶体管为基础组成的晶体管脉宽调制(PWM)直流调速系统, 近年来在直流传动中的应用逐渐成为主流。
8
PWM直流脉宽调速系统
图 8-1 脉冲宽度调制器结构原理图
第八章 PWM直流脉宽调速系统
8
PWM直流脉宽调速系统
与晶闸管相控式整流直流调速系统相比,直流脉宽调制系统有以下优点: 1)需用的功率元件少,线路简单,控制方便; 2)由于晶体管的开关频率高,仅靠电枢电感的滤波作用,就可获得脉动很小 的直流电流,电流连续容易,同时电动机的损耗和发热均较小; 3)系统频带宽,响应速度快,动态抗扰能力强; 4)低速性能好,稳速精度高,因而调速范围宽; 5)直流电源采用三相不可控整流,功率因数较高,对电网影响小; 6)主电路元件工作在开关状态,损耗小,装置效率高。
图8-10 UAA4002原理框图
第八章 PWM直流脉宽调速系统
8.3 PWM直流调速装置的系统分析
8.3.1 总体结构
对直流调速系统而言,一般动、静态性能较好的调速系统都采用双闭环控 制系统,因此,对直流脉宽调速系统,我们也将以双闭环为例予以介绍。直流 脉宽调速系统的原理如图8-11所示。
图8-11 直流脉宽调速系统原理图
第八章 PWM直流脉宽调速系统
8.2 脉宽调速系统的控制电路
8.2.3 基极驱动电路和保护电路
脉宽调制器输出的脉冲信号一般功率较小,不能用来直接驱动主电路的晶 体管,必须经过基极驱动电路的功率放大,以确保晶体管在开通时能迅速达 到饱和导通,关断时能迅速截止。

PWM直流电机调速系统设计

PWM直流电机调速系统设计

PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。

本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。

一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。

2.传感器:传感器主要用于检测电机转速和转速反馈。

常用的传感器有霍尔传感器和编码器。

3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。

控制器一般包括比较器、计数器、时钟和PWM 发生器。

4.功率电源:功率电源负责提供PWM信号的电源。

PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。

二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。

2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。

3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。

4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。

5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。

三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。

2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。

3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。

根据测试结果进行参数调整。

4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。

直流电机调速方案设计

直流电机调速方案设计

直流电机调速方案设计直流电机是将直流电能转换为机械能的电动机。

因其良好的调速性能而在电力拖动中得到广泛应用。

下面就随小编一起去阅读直流电机调速方案设计,相信能带给大家帮助。

本文以AT89S51单片机为核心,提出了基于直流电机调速与测速系统的设计方案,然后给出了系统的主电路结构,以及驱动电路设计和系统软件设计。

本方案充分利用了单片机的优点,具有频率高、响应快的特点。

直流电机是工业生产中常用的驱动设备,具有良好的起动、制动性能。

早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成。

控制系统的硬件部分复杂、功能单一,调试困难。

本方案采用单片机控制系统,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。

P W M简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种技术,广泛应用在测量、功率控制与变换等许多领域中。

脉宽调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极的偏置,改变晶体管导通时间。

是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。

PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。

在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。

因此,PWM又被称为“开关驱动装置”.PWM的占空比决定输出到直流电机的平均电压。

所以通过调节占空比,可以实现调节输出电压无级连续调节。

整个系统由输入电路、PWM调制、测速电路、驱动电路、控制部分及显示等部分组成,PWM调制选用AT89S51单片机通过软件实现频率和占空比的调节。

直流电机调速的设计方案驱动电路用光耦隔离保护电路,控制部分由单片机和外围电路组成,实现各种控制要求,外围电路主要完成对输入信号的采集、操作、对速度进行控制,显示部分采用四位共阳数码管。

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (1)1 设计要求及主要技术指标: (1)1.1 设计要求 (1)1.2 主要技术指标 (2)2 设计过程 (2)2.1 题目分析 (4)2.2 整体构思 (4)2.3 具体实现 ................... 错误!未定义书签。

3 元件说明及相关计算 (5)3.1 元件说明 (5)3.2 相关计算 (6)4 调试过程 (6)4.1 调试过程 (6)4.2 遇到问题及解决措施 (7)5 心得体会 (7)参考文献 (8)附录一:电路原理图 (9)附录二:程序清单 (9)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。

电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。

通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。

电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。

关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。

1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。

(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。

(3)设计一个4个按键的键盘。

K1:“启动/停止”。

K2:“正转/反转”。

K3:“加速”。

K4:“减速”。

(4)手动控制。

在键盘上设置两个按键----直流电动机加速和直流电动机减速键。

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。

为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。

PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。

本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。

二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。

在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。

2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。

在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。

三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。

该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。

2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。

常用的PWM信号发生电路有555定时器电路和单片机控制电路等。

3、驱动电路驱动电路用于控制电机的供电电压。

常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。

通过改变驱动电路的控制信号,可以改变电机的转速。

四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。

常见的控制算法有PID控制算法等。

PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。

在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。

五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。

单片机控制PWM的直流电机调速系统的设计

单片机控制PWM的直流电机调速系统的设计

单片机控制PWM的直流电机调速系统的设计PWM(脉宽调制)是一种常用的电压调节技术,可以用来控制直流电机的转速。

在单片机控制PWM的直流电机调速系统中,主要包括硬件设计和软件设计两个方面。

硬件设计方面,需要考虑的主要内容有:电机的选择与驱动、电源电压与电流的设计、速度反馈电路的设计。

首先,需要选择合适的直流电机和驱动器。

选择直流电机时需考虑其功率、转速、扭矩等参数,根据实际需求选择合适的电机。

驱动器可以选择采用集成驱动芯片或者离散元件进行设计,通过PWM信号控制电机的速度。

其次,需要设计合适的电源电压与电流供应。

直流电机通常需要较大的电流来实现工作,因此需要设计合适的电源电流,以及保护电路来防止电流过大烧坏电机和电路。

最后,需要设计速度反馈电路来实现闭环控制。

速度反馈电路可以选择采用编码器等传感器来获得转速信息,然后通过反馈控制实现精确的速度调节。

软件设计方面,需要考虑的主要内容有:PWM输出的控制、速度闭环控制算法的实现。

首先,需要编写代码实现PWM输出的控制。

根据具体的单片机型号和开发环境,使用相关的库函数或者寄存器级的编程来实现PWM信号的频率和占空比调节。

其次,需要实现速度闭环控制算法。

根据速度反馈电路获取的速度信息,通过比较目标速度与实际速度之间的差异,调整PWM信号的占空比来实现精确的速度调节。

常用的速度闭环控制算法有PID控制算法等。

最后,需要优化程序的鲁棒性和稳定性。

通过合理的调节PID参数以及增加滤波、抗干扰等功能,提升系统的性能和稳定性。

在实际的设计过程中,需要根据具体的应用需求和单片机性能等因素,进行合理的选择和调整。

同时,还需要通过实验和调试来验证系统的可靠性和稳定性,不断进行优化和改进,以获得较好的调速效果。

直流脉宽调速系统

直流脉宽调速系统

1.直流脉宽调速系统驱动电源1.1任务和意义生产实习的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。

纵观运动控制的发展历史,交、直流两大电气传动并存于各个应用领域。

由于直流电机的调速性能和转矩控制性能好,20世纪30年代起就开始使用直流调速系统。

直流调速系统由最早的旋转变流机组控制,发展为用静止的晶闸管变流装置和模拟控制器实现调速,到现在由大功率开关器件组成的PWM电路实现数字化的调速,系统的快速性、可靠性、经济性不断提高,应用领域不断扩展。

尽管目前对交流系统的研究比较“热门”,但是其控制性能在某些方面还达不到直流PWM系统的水平。

直流PWM控制技术作为一门新型的控制技术,其发展潜力还是相当大的。

而且,直流PWM技术是电力电子领域广泛采用的各种PWM技术的典型应用和重要基础,掌握直流PWM技术对于学习和运用交流变频调速中SPWM技术有很大的帮助和借鉴作用。

1.2技术指标被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。

驱动系统的调速范围:大于1:100。

驱动系统应具有软启动功能,软启动时间约为2s.1.3设计内容:1)主电路的设计,器件的选型。

包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。

2)PWM控制电路的设计(指以SG3525为核心的脉宽调节电路)。

3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。

4)DC15V控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。

2.脉宽调制技术脉宽调制技术简称PWM,PWM控制技术就是半导体开关元件的导通和关断时间比,即调节脉冲宽度或周期来控制输出电压的一种控制技术。

近年来,随着全控型器件的不断发展和PWM技术的日益完善,已广泛应用于变频调速和开关电源等领域。

PWM常用于电压型逆变器,它可消除或减小低次谐波,滤波器体积可减小,有利于小型化和降低成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生产实习说明书(论文)
课程名称:生产实习
设计题目:直流脉宽调速系统驱动电源的设计
院系:
班级:
设计者:
学号:
指导教师:
设计时间:
生产实习任务书
1 直流脉宽调速实验报告
1.任务和意义:
生产实习的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。

纵观运动控制的发展历史,交、直流两大电气传动并存于各个应用领域。

由于直流电机的调速性能和转矩控制性能好,20世纪30年代起就开始使用直流调速系统。

直流调速系统由最早的旋转变流机组控制,发展为用静止的晶闸管变流装置和模拟控制器实现调速,到现在由大功率开关器件组成的PWM电路实现数字化的调速,系统的快速性、可靠性、经济性不断提高,应用领域不断扩展。

尽管目前对交流系统的研究比较“热门”,但是其控制性能在某些方面还达不到直流PWM系统的水平。

直流PWM控制技术作为一门新型的控制技术,其发展潜力还是相当大的。

而且,直流PWM技术是电力电子领域广泛采用的各种PWM技术的典型应用和重要基础,掌握直流PWM技术对于学习和运用交流变频调速中SPWM技术有很大的帮助和借鉴作用。

2.设计内容:
1)主电路的设计,器件的选型。

包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。

2)PWM控制电路的设计(指以SG3525为核心的脉宽调节电路)。

3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。

4)DC15V 控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。

2 主电路设计说明
1.简要概述
二极管整流桥把输入的交流电变为直流电。

四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到+或-的直流电压。

主电路原理图
2.设计说明
1)整流部分采用4个二极管集成在一起的整流桥模块。

2)斩波部分H 桥不采用分立元件,而是选用IPM (智能功率模块)PS21564来实现。

该模块的主电路为三相逆变桥,在本设计中只采用其中U 、V 两相即可。

(针对本设计的特点,即小功率直流PWM 调速,在实际工程中,一般采用P. MOSFET 构成H 桥,本设计中为了让大家了解和掌握IPM 的特点和使用方法,所以指定采用PS21564作为主电路)
3)在主电路设计中,应根据负载的要求,计算出整流部分的交流侧输入电压和电流,作为设计整流变压器、选择整流桥和滤波电容的依据。

该电路的整流输出电压较低,所以在计算变压器副边电压时应考虑在电流到达负载之前,整流桥和逆变桥中功率器件的通态压降。

4)在本实习过程中,因为主电路是已经设计好的,所以我们只需要了解明白主电路中的各部分电路及芯片的功能,然后设计控制电路,并将其与主电路相连接。

AC 220V
3 控制电路设计说明
1.简要概述
SG3525的13脚输出占空比可调(通过改变2脚电压)的脉冲波形(占空比调节范围不小于0.1~0.9),同时频率可通过充放电时间的不同而改变。

经过RC移相后,输出两组互为倒相,死区时间为5μS左右的脉冲,经过光耦隔离后,分别驱动四只功率器件,其中V1、V4驱动信号相同,V2、V3驱动信号相同。

控制电路中的所有部分都需要进行设计、焊装和调试,因此控制电路是本生产实习中的核心内容。

2.设计说明
1)在设计SG3525外围电路时,我们采用该集成芯片的DIP封装形式。

脉冲的频率定为5KHz(是根据IPM中IGBT的开关速度而确定的),设定频率的电阻可采用电位器,以便于调试。

由于SG3525输出的两路脉冲是互补形式,在本设计中其输出并联使用(即11,14管脚短接,从13管脚通过外部上拉电阻输出V1、V4驱动脉冲,利用后续门电路反相后再驱动V2、V3),以达到0~1.0的占空比调整范围。

3525典型应用电路
2)为防止同一桥臂,上下两管在驱动信号翻转时出现瞬时直通现象,我们设计了两路驱动信号的开通延时电路。

即利用RC移相电路后,为每
路驱动信号产生5μS左右的开通延时。

这部分电路中的门电路采用6反向器74LS04;移相环节中的R和C的取值,应根据5μS的延迟时间来计算,其中R可采用电位器,以便于调试。

注:指定移相电路中C的取值为0.01μF。

3)IPM中集成了功率器件的驱动电路,因此在控制电路中不需要设计驱动电路;而且为了简化设计,隔离环节也取消。

IPM模块控制部分的接口信号中除了H桥中4个器件的驱动信号外,还应提供集成在IPM内部的4个器件的驱动电路的供电电源,为了简化设计,上桥臂两个器件,即V1和V3的驱动电源采用单电源的自举式供电,详细设计可参考IPM的设计手册。

这样整个模块的控制部分只采用1个15V电源供电即可,而不必采用3路独立的电源,简化了设计。

4)应设计一个DC 15V的控制电源,为SG3525及IPM模块的驱动电路供电。

为了减小损耗,采用LM2575T-ADJ系列开关稳压集成电路,将主电路的直流母线电压作为输入,通过电位器的调节,经稳压后获得15V 的直流电源。

控制电路示意图
4调试结果及讨论
1.调试步骤
1.全面检测电路板及元器件,确定无短路后,接通电源。

2.只将控制板的J3接口与主电路板相连,J6和J7均不连接。

再将LM2575T插在电路板的对应插座上。

在模拟盒上断开S2开关,闭合S1开关,控制板将通过J3接口获得直流母线电压。

然后调节稳压电路中的电位器,使用示波器观察控制电路输出电压PWM OUT的变化情况,其正确波形应为一个矩形波。

3.接下来调试脉宽调制信号发生电路。

首先将SG3525插在电路板的对应插座上。

在模拟盒上断开S2开关,闭合S1开关,给控制板上电。

然后调节相应电位器,获得频率为5KHz,占空比可在0~1之间调节的脉宽调制信号。

4.测试IPM中上桥臂驱动电源的自举电路。

将控制板的J6和J7接口与主电路板相连。

在模拟盒上断开S2开关,闭合S1开关,给控制板上电。

测量通过自举电路提供的上桥臂驱动电源是否正常。

5.上述单元电路均调试通过后,在模拟盒上断开S2开关,闭合S1开关,给控制板上电。

将驱动信号的占空比调整到50%附近。

闭合S2开关,接通H桥的直流电源,测试电机的端电压,判断是否与设想的情况复合。

若一切正常,则调节占空比,使电机运转起来,并能够调速和反转。

AC 220V
调试系统的组成
2.调试感想及讨论
我们在调试过程中,曾遇到各种各样的问题,并烧坏了一个保险丝,一个芯片和一导线插头。

调试的过程很复杂,也容易让人烦躁,总之是一
个非常需要细心和耐心的工作。

5.附录
主电路图和控制电路图
8。

相关文档
最新文档