lnk363做开关电源

合集下载

开关电源各模块原理实图讲解

开关电源各模块原理实图讲解

开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWMF3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

三、功率变换电路:1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。

也称为表面场效应器件。

由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。

在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。

从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。

34063使用方法

34063使用方法

34063 34063A的使用34063的应用34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。

在ADSL应用中,34063的开关频率对传输速率有很大影响,在器件选择及PCB设计时需要仔细考虑。

线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。

开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。

开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。

斩波型开关电源斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。

降压型开关电源电路通常如图1所示。

图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。

当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。

设电感的初始电流为iL0,则流过电感的电流与时间t的关系为:iLt= iL1+(Vi-Vo-Vs)t/L,Vs为T的导通电压。

当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系:iLt="iL1-"(Vo+Vf)t/L,Vf为D1的正向饱和电压。

图1降压型开关电源基本电路34063的特殊应用● 扩展输出电流的应用DC/DC转换器34063开关管允许的峰值电流为1.5A,超过这个值可能会造成34063永久损坏。

由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。

如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。

例如,输入电压为9V,输出电压为3.3V,采用220μH 的电感,输出平均电流达到900mA,峰值电流为1200mA。

单纯依赖34063内部的开关管实现比900mA更高的输出电流不是不可以做到,但可靠性会受影响。

开关电源原理与设计_陶老师

开关电源原理与设计_陶老师

开关电源原理与设计_陶老师开关电源是一种将输入的电能通过适当的控制,变换为输出电能的电源。

相比传统的线性电源,开关电源具有高效率、小体积、轻重量的优点,因此得到了广泛应用。

开关电源的工作原理如下:首先,将输入电源通过矩形波振荡器产生高频交变电压。

然后,经过变压器将其变换为在输出侧所需的直流电压。

接下来,经过整流、滤波电路将高频输出变为纯净的直流电压。

最后,经过稳压电路将输出电压保持在稳定的值。

开关电源的设计主要包括变压器、整流滤波电路、调节稳定电路和保护电路四个部分。

变压器是开关电源的核心组件之一、它用于将高频交变电压变换为所需的直流电压。

变压器主要由铁芯和线圈组成。

在设计变压器时,需要根据输入输出电压、输出电流和工作频率等参数来确定铁芯的尺寸和线圈的匝数。

整流滤波电路用于将高频输出转换为稳定的直流电压。

这个电路通常包括整流管、滤波电容和负载电阻等组件。

整流管用于将交流信号转换为直流信号,滤波电容则用于去除残留的纹波,负载电阻用于负载电流的平衡。

调节稳定电路用于保持输出电压的稳定性。

这个电路主要包括反馈控制器、比较器和调节元件等组件。

反馈控制器用于检测输出电压,并将其与参考电压进行比较,从而产生相应的控制信号。

比较器用于将控制信号转换为相应的开关信号,控制开关管的通断。

调节元件则用于调节开关管的通断时间,从而控制输出电压的稳定性。

保护电路用于保护开关电源在故障情况下的安全运行。

这个电路通常包括过压保护、过流保护和短路保护等功能。

过压保护用于在输出电压超过额定值时切断电路,以防止损坏负载。

过流保护则用于在输出电流超过额定值时切断电路,以防止损坏开关管和负载。

短路保护则用于在输出短路时切断电路,以防止损坏开关管和负载。

总之,开关电源是一种高效率、小体积、轻重量的电源,其工作原理主要包括矩形波振荡器产生高频交变电压、变压器将其变换为直流电压、整流滤波电路将输出变为纯净的直流电压、调节稳定电路保持输出电压稳定以及保护电路保护开关电源在故障情况下的安全运行。

5V,2A隔离式开关电源电路图

5V,2A隔离式开关电源电路图

5V,2A隔离式开关电源电路图
5V/2A隔离式开关电源电路图开关电路如下图所示:C1为输人滤波电容,VDz和VD1组成一次侧钳位保护电路。

R1为控制端电阻,C2是旁路电容。

TOP414GC-S端之间并联的C10是防止在控制端出现高频干扰时而引起触发断电电路误动作。

VD2为输出整流二极管、C3、C4、L、C5
5V/2A隔离式开关电源电路图
开关电路如下图所示:C1为输人滤波电容,VDz和VD1组成一次侧钳位保护电路。

R1为控制端电阻,C2是旁路电容。

TOP414GC-S端之间并联的C10是防止在控制端出现高频干扰时而引起触发断电电路误动作。

VD2为输出整流二极管、C3、C4、L、C5和C6构成的输出滤波器,C9为输出端消噪电容。

外部误差放大器由并联稳压器TL431组
成。

当输出电压发生波动时,经R3、R4分压后得到取样电压,就与TL431的基准电压进行比较,产生一个外部控制信号,再通过光耦合器PC817A来改变TOP414G控制端电流,进而调节占空比使Uo趋于稳定。

控制环路的增益是由R2来设定的。

反馈绕组电压经VD3、C7整流滤波后,给PC817A中的红外接收管供电。

LNK362,LNK363,LNK364

LNK362,LNK363,LNK364
1. 85 VAC输入时,DC最小输入电压是90 V或更高,亦或 当230 VAC输入或115 VAC输入并使用倍压整流时,最 小DC电压是240V或更高。输入电容值的选择应足够适 用不同AC输入电压的要求。
2. 使用一个快速的PN二极管作为次级6 V输出的整流。 3. 假设效率是70%。 4. 只是恒电压输出(无次级恒流电路)。 5. 非连续模式操作 (KP >1)。 6. 使用了初级箝位 (RCD 或 Zener)。 7. 器件通过源极引脚焊接到PCB板足够大的铜铂区域上,
反馈(FB)引脚: 在正常操作下,功率MOSFET的开关由此引脚控制。当流 向这个引脚的电流超过49 µA时,MOSFET开关就被关闭。
S1
8S
S2
7S
BP 3
FB 4
5D
3a
源极(S)引脚: 这个引脚是功率MOSFET的源极连接点。它也是旁路和反 馈引脚的接地参考。
图 3.引脚配置
D Package (SO-8C)
LNK362-364
LinkSwitch®-XT 产品系列
高效率、低功率离线式开关IC
产品特色
通过优化实现最低的系统成本 • 专利的IC参数调整技术及变压器结构技术令LNK362实
现无箝位Clampless™电路设计-更低的系统成本、更 少的外围元件数目及更高的效率 • 完全集成的自动重启动用于短路及开环故障保护 • 自供电电路–省去变压器的辅助绕组及相关的偏置供 电元件 • 频率抖动极大地降低了EMI • 无论在PCB板上还是在封装上都保证高压漏极与其它 所有引脚之间满足高压漏电要求 • 外围元件数目最少的开关器件方案
自动重启动 一旦出现故障,例如在输出过载、输出短路或开环情况 下,LinkSwitch-XT进入自动重启动操作。每当FB引脚 电压被拉高时,一个由振荡器记时的内部记数器会重 新置位。如果在40 ms内FB引脚电压未被拉高时,功率 MOSFET会关闭800 ms。自动重启动电路对功率MOSFET 进行交替使能和关闭,直到故障排除为止。

lnk362-364

lnk362-364
出功率降低95%以上 • 高带宽提供快速的无过冲启动及出色的瞬态负载响应
EcoSmart®– 极高效率 • 无需任何附加元件,轻松达到全球所有的节能标准 • 在265 VAC输入时无偏置绕组状况下的空载能耗 <300 mW
(有偏置绕组时<50 mW) • 开/关控制可在极轻负载时具备恒定的效率–是达到
LNK362-364
LinkSwitch®-XT 产品系列
高效率、低功率离线式开关IC
产品特色
通过优化实现最低的系统成本 • 专利的IC参数调整技术及变压器结构技术令LNK362实
现无箝位Clampless™电路设计-更低的系统成本、更 少的外围元件数目及更高的效率 • 完全集成的自动重启动用于短路及开环故障保护 • 自供电电路–省去变压器的辅助绕组及相关的偏置供 电元件 • 频率抖动极大地降低了EMI • 无论在PCB板上还是在封装上都保证高压漏极与其它 所有引脚之间满足高压漏电要求 • 外围元件数目最少的开关器件方案
使用此简单的输入级电路,加上LinkSwitch-XT的频率抖 动、一个低数值的Y1电容及在T1内部使用的PI E-Shield™屏 闭绕组技术,可使该设计满足传导及辐射EMI的要求并具 备大于10 dBµV的裕量。而一些适配器通常要求一个极低 的接触电流(流经CY1的交流输入频率的电流),往往低 于10 µA,那么使用低数值的CY1就比较重要。
电阻R3给VR1提供1 mA的电流,此偏置电流将稳压管电压 稳在接近其测试条件的水平。电阻R2可用来调节输出电 压,以弥补在某些设计中因稳压管稳压值不理想而造成的 输出电压偏差。因为稳压管的稳压值通常是在一个离散的 电压范围。要达到更高的输出电压精度,可使用一个参考 IC如TL431来替代稳压管。

常用开关电源芯片大全之欧阳育创编

常用开关电源芯片大全之欧阳育创编

常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。

【开关电源设计】开关电源经典设计步骤

【开关电源设计】开关电源经典设计步骤
步骤 8 根据电子数据表和所需 IP 值 选择 TOPSwitch 芯片 ① 考虑电流热效应会使 25℃下定义的极限电流降低 10%,所选芯片的极限电流最小值 ILIMIT(min)应满足:0.9 ILIMIT(min)≥IP
步骤 9 和 10 计算芯片结温 Tj ① 按下式结算: Tj=[I2RMS×RDS(ON)+1/2×CXT×(VImax+VOR) 2 f ]×Rθ+25℃ 式中 CXT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果 Tj>100℃,应选功率较大的芯片
u(V)
固定输入:100/115 通用输入:85~265 固定输入:230±35
初级感应电压 VOR(V)
60 135 135
钳位二极管 反向击穿电压 VB(V)
90 200 200
步骤 5 根据 Vimin 和 VOR 来确定最大占空比 Dmax
VOR
Dmax=
×100%
VOR+VImin-VDS(ON)
步骤 33 选定反馈电路
步骤 34 选择输入整流桥
① 整流桥的反向击穿电压 VBR≥1.25√2 umax
3 设输入有效值电流为 IRMS,整流桥额定有效值电流为 IBR,使 IBR≥2IRMS。计算 IRMS
公式如下:
PO IRMS=
ηumincosθ
cosθ为开关电源功率因数,一般为 0.5~0.7,可取 cosθ=0.5
确定 CIN,VImin 值
PO(W) 已知 已知 已知
比例系数(μF/W) 2~3 2~3 1
CIN(μF) (2~3)×PO (2~3)×PO
PO
VImin(V) ≥90 ≥90 ≥240

开关电源毕业设计设计

开关电源毕业设计设计
drive MOS, IGBT, etc., suitable for the production of 20 ~ 80W
low-power switching power supply. As the device is cleverly designed,
launched by the main power supply voltage directly to form circuit
求。开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含
量高、耗能低、使用方便,并取得了较好的经济效益。
UC3842是一种性能优良的电流控制型脉宽调制器。假如由于某种原因
使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空
比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。UC3842
河南科技大学(论文)
I开关电源的毕业设计
摘 要
电源是实现电能变换和功率传递的主要设备。在信息时代,农业、能
源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要
求,如节能、节材、减重、环保、安全、可靠等。这就迫使电源工作者不
断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要
III目 录
前 言 ............................................................ 1
第1章 开关电源的简介 ............................................ 2
1.1 开关电源概述 ............................................. 2

开关电源工作原理及电路图

开关电源工作原理及电路图

开关电源工作原理及电路图2018-01-24 开关电源电路图随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

LNK303P小功率AC-DC恒压恒流开关电源控制芯片

LNK303P小功率AC-DC恒压恒流开关电源控制芯片
FSW = 1 2 × TDEMAG
(4)
因为消磁时间 TDEMAG 和电感量成反比, 通过频率锁定,LP 和 FSW 的乘积保持不变。所以最大输出功率和恒 流模式下的恒流电流不会随原边电感量变化。 LNK303P芯片能最大补偿电感量±10%的变化。 抖频
LNK303P芯片提供可选择的抖频功能模块,客户可以根据自身需求选用带有抖频功能的芯片还是不带有抖
管脚说明
名称 DRAIN CS FB COMP VDD GND 管脚序号 7、8 1 2 3 4 5、6 功能说明 内置高压 MOS 管的 DRAIN,同时芯片启动时,也做芯片的启动 电流检测输入 反馈输入,反映系统的输出电压,PWM 占空比变化取决于 FB 误差放大和 SENSE 脚的输入电压 恒压环路补偿管脚 芯片电源 芯片地
Io 1 / 4 N I P
注:Io 为输出电流;N 为变压器匝比; 为转换效率 辅助绕组电压值反映了系统的输出电压,其关系可表示为:
(1)
VA =
NA × (Vo + VD ) NS
(2)
其中 VD 是输出二极管的正向压降,VA 为辅助绕组电压,NA 为辅助绕组匝数,NS 为输出绕组匝数。系统将 辅助绕组的电压通过一个电阻分压电路,输入到芯片的反馈端 FB,芯片采样辅助绕组消磁时的电压,并将采 样的电压值一直保持到下一次采样。每次采样得到的电压会和芯片内部的基准电压 Vref 进行比较,得到放大的 误差信号。从而使误差放大器的输出脚 COMP 反映了负载情况,并且通过误差信号控制 PWM 的开关频率从而 调整输出电压,使得输出电压保持恒定。 当采样电压低于 Vref 时,误差放大器的输出电压 VCOMP 会达到最大值,开关频率由反馈采样电压控制,通过 输出电压来调整输出电流,从而获得稳定恒流电流。 恒流电流和输出功率调整

LNK364PN开关电源芯片应用方案-奥伟斯科技

LNK364PN开关电源芯片应用方案-奥伟斯科技

LNK364PN开关电源芯片应用方案-奥伟斯科技●内容导航:LNK362PN/LNK362GN/LNK362DNLNK363PN/LNK363GN/LNK363DNLNK364PN/LNK364GN/LNK364DN●公司简介●LNK364PN产品规格书●产品图片●优势产品简介●公司简介深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED 台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。

奥伟斯科技优势行业集中在家用电器和汽车电子领域,包括:智能电子锁、饮水机、抽烟机、空调、洗衣机、冰箱、洗碗机、电饭煲、电磁炉、微波炉、电动自行车、汽车仪表、汽车音响、汽车空调等。

销售网络覆盖华东、华南及华北地区。

奥伟斯科技已为众多世界著名企业提供服务如:美的、小米、云米、长虹、创维、三星、LG、飞利浦、TCL、海尔、美菱、沁园、等众多中国一流品牌电家厂商主要品牌产品:OWEIS-TECHOWEIS触摸芯片 OWEIS接口芯片 OWEIS电源芯片 OWEIS语音芯片 OWEIS场效应管一.电容式触摸芯片ADSEMI触摸芯片代理芯邦科技触控芯片万代科技触摸按键芯片博晶微触摸控制芯片海栎创触摸感应芯片启攀微触摸IC 融和微触摸感应IC 合泰触摸按键IC 通泰触摸芯片二.汽车电子/电源管理/接口芯片/逻辑芯片:IKSEMICON一级代理 ILN2003ADT IK62783DT IL2596 IL2576 ILX485 ILX3485 ILX232 ILX3232 三.功率器件/接收头/光电开关:KODENSHI AUK SMK系列MOS管SMK0260F SMK0460F SMK0760F SMK1260F SMK1820F SMK18T50F四. LED显示驱动芯片:中微爱芯AIP系列 AIP1668 AIP1628 AIP1629 AIP1616天微电子TM系列 TM1628 TM1668 TM1621 五.电源管理芯片:Power Integrations LNK364PN LNK564PN 芯朋微PN8012 PN8015 AP5054 AP5056 力生美晶源微友达天钰电子FR9886 FR9888六.语音芯片:APLUS巨华电子AP23085 AP23170 AP23341 AP23682 AP89085 AP89170 AP89341 AP89341K AP89682七.运算放大器:3PEAK运算放大器聚洵运算放大器圣邦微运算放大器八.发光二极管:OSRAM欧司朗发光二极管 Lite-On光宝发光二极管 Everlight亿光发光二极管 Kingbright今台发光二极管九. CAN收发器:NXP恩智浦CAN收发器 Microchip微芯CAN收发器十.分销产品线:ONSEMI安森美 TI德州仪器 ADI TOSHIBA东芝 AVAGO安华高十一 MCU单片机ABOV现代单片机MC96F系列 Microchip微芯单片机PIC12F PIC16F PIC18F系列 FUJITSU富仕通单片机MB95F系列 STM单片机STM32F STM32L系列 CKS中科芯单片机CKS32F系列 TI单片机MSP430系列 TMS320F系列 NXP单片机LPC系列LNK362-364LinkSwitc h®-XT Family Energy Efficient, Low Power Off-Line Switcher ICProduct HighlightsOptimized for Lowest System Cost•Proprietary IC trimming and transformer construction techniques enable Clampless™ designs with LNK362for lower system cost, component count and higherefficiency•Fully integrated auto-restart for short circuit andopen loop protection•Self-biased supply – saves transformer auxiliary winding and associated bias supply components•Frequency jittering greatly reduces EMI•Meets HV creepage requirements between DRAIN and all other pins both on the PCB and at the package•Lowest component count switcher solutionFeatures Superior to Linear/RCC•Accurate hysteretic thermal shutdown protection –automatic recovery improves field reliability•Universal input range allows worldwide operation•Simple ON/OFF control, no loop compensation needed •Eliminates bias winding – simpler, lower costtransformer•Very low component count – higher reliability and single side printed circuit board•Auto-restart reduces delivered power by 95% during short circuit and open loop fault conditions•High bandwidth provides fast turn-on with no overshoot and excellent transient load responseEcoSmart®– Extremely Energy-Efficient•Easily meets all global energy efficiency regulations with no added components•No-load consumption <300 mW without bias winding at 265 VAC input (<50 mW with bias winding)•ON/OFF control provides constant efficiency to very light loads – ideal for mandatory CEC regulations Applications•Chargers/adapters for cell/cordless phones, PDAs, digital cameras, MP3/portable audio players, and shavers •Supplies for appliances, industrial systems, and metering DescriptionLinkSwitch-XT incorporates a 700 V p ower MOSFET, oscillator, simple O N/OFF c ontrol s cheme, a h igh-voltage s witched c urrent source, frequency jittering, cycle-by-cycle current limit and thermal shutdown circuitry onto a monolithic IC. The startup Figure 1. Typical Application with LinkSwitch-XT.Table 1. Output Power Table.Notes:1. Minimum continuous power in a typical non-ventilated enclosedadapter measured at 50 °C ambient.2. Minimum practical continuous power in an open frame designwith adequate heat sinking, measured at 50 °C ambient.3. Packages: P: DIP-8B, G: SMD-8B, D: SO-8C. Please see PartOrdering Information.4. See K ey A pplication C onsiderations s ection f or c omplete d escriptionof assumptions.and operating power are derived directly from the DRAIN pin, eliminating the need for a bias winding and associated circuitry.DCFigure 2. Functional Block Diagram.Pin Functional DescriptionDRAIN (D) Pin:Power MOSFET drain connection. Provides internal operating current for both startup and steady-state operation. BYPASS (BP) Pin:Connection point for a 0.1 μF external bypass capacitor for the internally generated 5.8 V supply. If an external bias winding is used, the current into the BP pin must not exceed 1 mA. FEEDBACK (FB) Pin:During normal operation, switching of the power MOSFET is controlled by this pin. MOSFET switching is disabled when a current greater than 49 μA is delivered into this pin.SOURCE (S) Pin:This pin is the power MOSFET source connection. It is also the ground reference for the BYPASS and FEEDBACK pins.Figure 3. Pin Configuration.P Package (DIP-8B)LinkSwitch-XTFunctional DescriptionLinkSwitch-XT combines a high-voltage power MOSFET switch with a power supply controller in one device. Unlike conventional PWM (pulse width modulator) controllers, a simple ON/OFF control regulates the output voltage. The controller consists of an oscillator, feedback (sense and logic) circuit, 5.8 V regulator, BYPASS pin undervoltage circuit, over-temperature protection, frequency jittering, current limit circuit, and leading edge blanking integrated with a 700 V power MOSFET. The LinkSwitch-XT incorporates additional circuitry for auto-restart.OscillatorThe typical oscillator frequency is internally set to an average of 132 kHz. Two signals are generated from the oscillator: the maximum duty cycle signal (DC MAX ) and the clock signal that indicates the beginning of each cycle.The oscillator incorporates circuitry that introduces a small amount of frequency jitter, typically 9 kHz peak-to-peak, to minimize EMI emission. The modulation rate of the frequency jitter is set to 1.5 kHz to optimize EMI reduction for both average and quasi-peak emissions. The frequency jitter should be measured with the oscilloscope triggered at the falling edge of the DRAIN waveform. The waveform in Figure 4 illustrates the frequency jitter.Feedback Input CircuitThe feedback input circuit at the FB pin consists of a low impedance source follower output set at 1.65 V for LNK362 and 1.63 V for LNK363/364. When the current delivered into this pin exceeds 49 μA, a low logic level (disable) is generated at the output of the feedback circuit. This output is sampled at the beginning of each cycle on the rising edge of the clock signal. If high, the power MOSFET is turned on for that cycle (enabled), o therwise t he p ower M OSFET r emains o ff (disabled). Since the sampling is done only at the beginning of each cycle, subsequent changes in the FB pin voltage or current during the remainder of the cycle are ignored.5.8 V Regulator and6.3 V Shunt Voltage ClampThe 5.8 V regulator charges the bypass capacitor connected to the BYPASS pin to 5.8 V by drawing a current from the voltage on the DRAIN, whenever the MOSFET is off. The BYPASS pin is the internal supply voltage node. When the MOSFET is on, the LinkSwitch-XT r uns off of the e nergy stored in the b ypass capacitor. Extremely low power consumption of the internal circuitry allows the device to operate continuously from the current drawn from the DRAIN pin. A bypass capacitor value of 0.1 μF is sufficient for both high frequency decoupling and energy storage.In addition, there is a 6.3 V shunt regulator clamping the BYPASS pin at 6.3 V when current is provided to the BYPASS pin through an external resistor. This facilitates powering of the device externally through a bias winding to decrease the no-load consumption to less than 50 mW.BYPASS Pin UndervoltageThe BYPASS pin undervoltage circuitry disables the power MOSFET when the BYPASS pin voltage drops below 4.8 V. Once the BYPASS pin voltage drops below 4.8 V, it must rise back to 5.8 V to enable (turn-on) the power MOSFET.Over-Temperature ProtectionThe thermal shutdown circuitry senses the die temperature. The threshold is set at 142 ︒C typical with a 75 ︒C hysteresis. When the die temperature rises above this threshold (142 ︒C) the power MOSFET is disabled and remains disabled until the die temperature falls by 75 ︒C, at which point it is re-enabled.Current LimitThe current limit circuit senses the current in the power MOSFET. When this current exceeds the internal threshold (I LIMIT ), the power MOSFET is turned off for the remainder of that cycle. The leading edge blanking circuit inhibits the current limit comparator for a short time (t LEB ) after the power MOSFET is turned on. This leading edge blanking time has been set so that current spikes caused by capacitance and rectifier reverse recovery time will not cause premature termination of the switching pulse.Auto-RestartIn the event of a fault condition such as output overload, output short circuit, or an open loop condition, LinkSwitch-XT enters into auto-restart operation. An internal counter clocked by the oscillator gets reset every time the FB pin is pulled high. If the FB pin is not pulled high for approximately 40 ms, the power MOSFET switching is disabled for 800 ms. The auto-restart alternately enables and disables the switching of the power MOSFET until the fault condition is removed.600500400300200100510Time (μs)Figure 4. Frequency Jitter.P I -4047-110205Figure 5. 2 W Universal Input CV Adapter Using LNK362.Applications ExampleA 2 W CV AdapterThe schematic shown in Figure 5 is a typical implementation of a universal input, 6.2 V ±7%, 322 mA adapter using LNK362. This circuit makes use of the Clampless technique to eliminate the primary clamp components and reduce the cost and complexity of the circuit.The EcoSmart features built into the LinkSwitch-XT family allow this design to easily meet all current and proposed energy e fficiency s tandards, i ncluding t he m andatory C alifornia Energy Commission (CEC) requirement for average operating efficiency.The AC input is rectified by D1 to D4 and filtered by the bulk storage capacitors C1 and C2. Resistor RF1 is a flameproof, fusible, wire wound type and functions as a fuse, inrush current limiter and, together with the π filter formed by C1, C2, L1 and L2, differential mode noise attenuator. Resistor R1 damps ringing caused by L1 and L2.This simple input stage, together with the frequency jittering of LinkSwitch-XT, a low value Y1 capacitor and PI’s E-Shield™ windings within T1, allow the design to meet both conducted and radiated EMI limits with >10 dBμV margin. The low value of CY1 is important to meet the requirement for a very low touch current (the line frequency current that flows through CY1) often specified for adapters, in this case <10 μA.The rectified and filtered input voltage is applied to the primary winding of T1. The other side of the primary is driven by the integrated MOSFET in U1. No primary clamp is required as the low value and tight tolerance of the LNK362 internal current limit allows the transformer primary winding capacitance to provide adequate clamping of the leakage inductance drain voltage spike.The secondary of the flyback transformer T1 is rectified by D5, a low cost, fast recovery diode, and filtered by C4, a low ESR capacitor. The combined voltage drop across VR1, R2 and the LED of U2 determines the output voltage. When the output voltage exceeds this level, current will flow through the LED of U2. As the LED current increases, the current fed into the FEEDBACK pin of U1 increases until the turnoff threshold current (~49 μA) is reached, disabling further switching cycles of U1. At full load, almost all switching cycles will be enabled, and at very light loads, almost all the switching cycles will be disabled, giving a low effective frequency and providing high light load efficiency and low no-load consumption. Resistor R3 provides 1 mA through VR1 to bias the Zener closer to its test current. Resistor R2 allows the output voltage to be adjusted to compensate for designs where the value of the Zener may not be ideal, as they are only available in discrete voltage ratings. For higher output accuracy, the Zener may be replaced with a reference IC such as the TL431.O POOR The L inkSwitch-XT i s c ompletely s elf-powered f rom t he D RAIN 2. For designs where P O ≤ 2 W, a two-layer primary should be pin, requiring only a small ceramic capacitor C3 connected to the BYPASS pin. No auxiliary winding on the transformer is used to ensure adequate primary intra-winding capacitance in the range of 25 pF to 50 pF.required.3. For designs where 2 < P ≤ 2.5 W, a bias winding should beKey Application ConsiderationsLinkSwitch-XT Design ConsiderationsOutput Power TableThe data sheet maximum output p ower table (Table 1) represents the maximum practical continuous output power level that can be obtained under the following assumed conditions:1. The minimum DC input voltage is 90 V or higher for 85 VAC input, or 240 V or higher for 230 VAC input or 115 VAC with a voltage doubler. The value of the input capacitance should be large enough to meet these criteria for AC input designs.2. Secondary output of 6 V with a fast PN rectifier diode.3. Assumed efficiency of 70%.4. Voltage only output (no secondary-side constant current circuit).5. Discontinuous mode operation (K >1).6. A primary clamp (RCD or Zener) is used.7. The part is board mounted with SOURCE pins soldered to a sufficient area of copper to keep the SOURCE pin temperature at or below 100 °C. 8. Ambient temperature of 50 °C for open frame designs and an internal enclosure temperature of 60 °C for adapter designs.Below a value of 1, K P is the ratio of ripple to peak primary current. Above a value of 1, K P is the ratio of primary MOSFET OFF time to the secondary diode conduction time. Due to the flux density requirements described below, typically a LinkSwitch-XT design will be discontinuous, which also has the benefits of allowing lower cost fast (instead of ultra-fast) output diodes and reducing EMI.Clampless DesignsClampless designs rely solely on the drain node capacitance to limit the leakage inductance induced peak drain-to-source voltage. Therefore, the maximum AC input line voltage, the value of V OR , the leakage inductance energy, a function of leakage inductance and peak primary current, and the primary winding capacitance determine the peak drain voltage. With no significant dissipative element present, as is the case with an external clamp, the longer duration of the leakage inductance ringing can increase EMI.The following requirements are recommended for a universal input or 230 VAC only Clampless design:1. A Clampless design should only be used for P ≤2.5 W, using the LNK362†and a V ** ≤ 90 V. added to the transformer using a standard recovery rectifier diode to act as a clamp. This bias winding may also be used to externally power the device by connecting a resistor from the bias-winding capacitor to the BYPASS pin. This inhibits the internal high-voltage current source, reducing device dissipation and no-load consumption.4. For designs where P O > 2.5 W Clampless designs are not practical and an external RCD or Zener clamp should be used.5. Ensure that worst-case high line, peak drain voltage is below the BV DSS specification of the internal MOSFET and ideally ≤ 650 V to allow margin for design variation.†For 110 VAC only input designs it may be possible to extend the power range of Clampless designs to include the LNK363. However, the increased leakage ringing may degrade EMI performance.**V OR is the secondary output plus output diode forward voltage drop that is reflected to the primary via the turns ratio of the transformer during the diode conduction time. The V OR adds to the DC bus voltage and the leakage spike to determine the peak drain voltage.Audible NoiseThe cycle skipping mode of operation used in LinkSwitch-XT can generate audio frequency components in the transformer. To limit this audible noise generation, the transformer should be designed such that the peak core flux density is below 1500 Gauss (150 mT). Following this guideline and using the standard transformer production technique of dip varnishing practically eliminates audible noise. Vacuum impregnation of the transformer should not be used due to the high primary capacitance a nd i ncreased l osses t hat r esult. H igher f lux d ensities are possible, however careful evaluation of the audible noise performance should be made using production transformer samples before approving the design.Ceramic capacitors that use dielectrics, such as Z5U, when used in clamp circuits may also generate audio noise. If this is the case, try replacing them with a capacitor having a different dielectric or construction, for example a film type.LinkSwitch-XT Layout ConsiderationsSee Figure 6 for a recommended circuit board layout for LinkSwitch-XT (P & G package).Single Point GroundingUse a single point ground connection from the input filter capacitor to the area of copper connected to the SOURCE p ins.Figure 6. Recommended Printed Circuit Layout for LinkSwitch-XT using P Package in a Flyback Converter Configuration.Bypass Capacitor C BPThe BYPASS pin capacitor should be located as near as possible to the BYPASS and SOURCE pins.Primary Loop AreaThe area of the primary loop that connects the input filter capacitor, transformer primary and LinkSwitch-XT together should be kept as small as possible.Primary Clamp CircuitA clamp is used to limit peak voltage on the DRAIN pin at turn-off. This can be achieved by using an RCD clamp or a Zener (~200 V) and diode clamp across the primary winding. In all cases, to minimize EMI, care should be taken to minimize the circuit path from the clamp components to the transformer and LinkSwitch-XT .Thermal ConsiderationsThe copper area underneath the LinkSwitch-XT acts not only as a single point ground, but also as a heatsink. As this area is connected to the quiet source node, it should be maximized for good heat sinking of LinkSwitch-XT . The same applies to the cathode of the output diode.Y-CapacitorThe placement of the Y-type cap should be directly from the primary input filter capacitor positive terminal to the common/ return terminal of the transformer secondary. Such a placement will route high magnitude common-mode surge currents away from the LinkSwitch-XT device. Note that if an input pi (C, L, C) EMI filter is used, then the inductor in the filter should be placed between the negative terminals of the input filter capacitors.OptocouplerPlace the optocoupler physically close to the LinkSwitch-XT to minimize the primary-side trace lengths. Keep the high current, high-voltage drain and clamp traces away from the optocoupler to prevent noise pick up.Output DiodeFor best performance, the area of the loop connecting the secondary winding, the output diode and the output filterTL i n k S w i t c h -X TFigure 7. Recommended Printed Circuit Layout for LinkSwitch-XT using D Package in a Flyback Converter Configuration. capacitor should be minimized. In addition, sufficient copperarea should be provided at the anode and cathode terminalsof the diode for heat sinking. A larger area is preferred at thequiet cathode terminal. A large anode area can increase highfrequency radiated EMI.Quick Design ChecklistAs with any power supply design, all LinkSwitch-XT designsshould be verified on the bench to make sure that componentspecifications a re n ot e xceeded u nder w orst-case c onditions. T hefollowing minimum set of tests is strongly recommended:1.Maximum drain voltage – Verify that VDS does not exceed650 V at the highest input voltage and peak (overload) outputpower. The 50 V margin to the 700 V BVDSS specificationgives margin for design variation, especially in Clampless designs.2.Maximum d rain c urrent –At m aximum a mbient t emperature,maximum input voltage and peak output (overload) power, verify drain current waveforms for any signs of transformersaturation and excessive leading-edge current spikes at startup.Repeat under steady state conditions and verify that the leading- edge current spike event is below ILIMIT(MIN)at the end of the tLEB(MIN). Under all conditions, the maximum drain current should be below the specified absolute maximum r atings. 3.Thermal Check –At specified maximum output power,minimum i nput v oltage a nd maximum a mbient t emperature, verify that the temperature specifications are not exceeded for LinkSwitch-XT, transformer, output diode and output capacitors. Enough thermal margin should be allowed for part-to-part variation of the RDS(ON)of LinkSwitch-XT as specified in the data sheet. Under low line, maximum power,a maximum LinkSwitch-XT SOURCE pin temperature of105 °C is recommended to allow for these variations. Design ToolsUp-to-date information on design tools can be found at the Power Integrations web site: .TLinkSwitch-XTNotes:DRAIN Voltage ............................................................ V to 700 V Peak DRAIN Current: LNK362. .............. 200 mA (375 mA)(2)Notes:1.All voltages referenced to SOURCE, TA= 25 ︒C.LNK363/364. ....... 400 mA (750 mA)(2) FEEDBACK Voltage ....................................................... V to 9 V FEEDBACK Current ................................................... 100 mA BYPASS Voltage. ............................................................. V to 9 V Storage Temperature .....................................-65 ︒C to 150 ︒C Operating Junction Temperature(3) ................-40 ︒C to 150 ︒C Lead Temperature(4) ................................................................................................. 260 ︒C 2.The higher peak DRAIN current is allowed while theDRAIN voltage is simultaneously less than 400 V.3.Normally limited by internal circuitry.4.1/16 in. from case for 5 seconds.5.Maximum ratings specified may be applied, one at a time,without causing permanent damage to the product.Exposure to Absolute Maximum Rating conditions forextended periods of time may affect product reliability.NOTES:A. Total current consumption is the sum of IS1 and IDSSwhen FEEDBACK pin voltage is ≥2 V (MOSFET notswitching) and the sum of IS2 and IDSSwhen FEEDBACK pin is shorted to SOURCE (MOSFET switching).B Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at theDRAIN. An alternative is to measure the BYPASS pin current at 6 V.C. See Typical Performance Characteristics section Figure 15 for BYPASS pin startup charging waveform.D. This current is only intended to supply an optional optocoupler connected between the BYPASS and FEEDBACKpins and not any other external circuitry.E. For current limit at other di/dt values, refer to Figure 14.F. This parameter is guaranteed by design.G. This parameter is derived from characterization.H. Breakdown voltage may be checked against minimum BVDSS specification by ramping the DRAIN pin voltage upto but not exceeding minimum BVDSS.I. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional tofrequency).Figure 8. LinkSwitch-XT General Test Circuit.DCFigure 9. LinkSwitch-XT Duty Cycle Measurement. Figure 10. LinkSwitch-XT Output Enable Timing.Typical Performance Characteristics-50 -25 0 25 50 75 100 125 150Junction Temperature (︒C)-50 -250 25 50 75 100 125Junction Temperature (︒C)Figure 11. Breakdown vs. Temperature.Figure 12. Frequency vs. Temperature.-5050100150Temperature (︒C)1.41.2 1.0 0.8 0.6 0.4 0.2 0 12345Normalized di/dtFigure 13. Current Limit vs. Temperature. Figure 14. Current Limit vs. di/dt.765 4 3 2 1500.20.40.60.81.00 24 68 10 12 14 16 18 20Time (ms)Figure 15. BYPASS Pin Startup Waveform.DRAIN Voltage (V)Figure 16. Output Characteristics.C u r r e n t L i m i t (N o r m a l i z e d t o 25 ︒C )B r e a k d o w n V o l t a g e (N o r m a l i z e d t o 25 ︒C )B Y P A S S P i n V o l t a g e (V )P I -4093-081605P I -4092-081505P I -2680-012301Typical Performance Characteristics (cont.)1000100101 0100200300400500600Drain Voltage (V)Figure 17. C OSS vs. Drain Voltage.D r a i n C a p a c i t a n c e (p F )P I -4094-081605Pin-E-.240 (6.10) .260 (6.60).137 (3.48)MINIMUM.367 (9.32)DIP-8BNotes:1. Package dimensions conform to JEDEC specification MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP) package with .300 inch row spacing.2. Controlling dimensions are inches. Millimeter sizes are shown in parentheses.3. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15) on any side.4. Pin locations start with Pin 1, and continue counter-clock- wise to Pin 8 when viewed from the top. The notch and/or dimple are aids in locating Pin 1. Pin 6 is omitted.5. Minimum metal to metal spacing at the package body for the omitted lead location is .137 inch (3.48 mm).6. Lead width measured at package body..125 (3.18) .145 (3.68).387 (9.83).057 (1.45) .068 (1.73) (NOTE 6).015 (.38) MINIMUM7. Lead spacing measured with the leads constrained to be perpendicular to plane T..100 (2.54) BSC.014 (.36).120 (3.05) .140 (3.56).048 (1.22)E D S .010 (.25) M .008 (.20) .015 (.38).300 (7.62) BSC (NOTE 7).300 (7.62).390 (9.91)P08BPI-2551-121504.367 (9.32) SEATING PLANE -T- -D-1.004 (.10)D S ⊕For the latest updates, visit our website: Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Patent InformationThe products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at . Power Integrations grants its customers a license under certain patent rights as set forth at /ip.htm.Life Support PolicyPOWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii)whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to causethe failure of the life support device or system, or to affect its safety or e ffectiveness.The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective c ompanies.©2007, Power Integrations, Inc.。

采用LNK-TN系列芯片的开关电源电路简介与检修方法

采用LNK-TN系列芯片的开关电源电路简介与检修方法

采用LNK-TN系列芯片的开关电源电路简介与检修方法
瞿贵荣
【期刊名称】《家电维修》
【年(卷),期】2023()1
【摘要】LNK-302/304/305/306(P/G)系列开关电源芯片被命名为LNK-
TN(LinkSwitch-TN),意为外围电路极简单的离线式开关电源集成电路。

一、UNK-TN系列功能简介:LNK-TN系列开关电源芯片主要由基准电压稳压器、时钟振荡器、RS触发器、反馈输入电路、过载检测电路、电流限制比较器、滞回比较器、超温
闭锁电路、恒流源、控制逻辑电路及高压MOSFET场效应功率开关管等组成,内部结构框图如图1所示。

该系列采用8脚双列直插式封装,有DIP-8B(P封装)和
SMD-8B(G封装)两种,各脚功能及工作电压如表1所列,输出功率(AC230V±15%
和AC85V~265V)如表2,极限应用参数如表3。

【总页数】4页(P50-53)
【作者】瞿贵荣
【作者单位】不详
【正文语种】中文
【中图分类】TN8
【相关文献】
1.《家用电器中微电脑及相关电路的检修方法》系列讲座:第三讲彩电遥控电路
的2.采用Topswitch系列芯片的单片开关电源效率研究3.数字机开关电源输出电
路检修方法与实例4.采用UC384×系列芯片的变频器开关电源维修要点5.信息化背景下职业院校学生信息素养评价指标体系的构建思路
因版权原因,仅展示原文概要,查看原文内容请购买。

开关电源设计53665

开关电源设计53665

毕业设计(论文)题目:开关电源设计系部:电气工程与自动化专业:机电一体化班级:机电A1003班姓名:卢怡帆指导教师:宋坤伟山西职业技术学院毕业设计任务书指导教师签名:2012 年月日计划进度表摘要 (1)引言 (2)第一章开关电源概述 (3)1.1 开关电源发展历史与应用力 (3)1.2 开关电源的工作原理 (3)第二章输入电路 (5)2.1 输入保护器件 (5)2.2 输入电压保护 (5)2.3 输入整流滤波电路原理 (6)第三章隔离单端反激式变换器电路 (7)3.1 单端反激式变换器电路中的开关晶体管 (7)3.2 单端反激式变换器电路中的变压器绕组 (8)第四章UC3842的原理及技术参数 (9)4.1 UC3842的原理和概述 (9)4.2 UC3842的技术参数 (10)第五章12V/5A单端反激开关电源原理 (12)5.1 12V/5A电路原理图 (12)5.2 原理分析 (12)5 .2. 1 系统原理 (12)5 .2. 2 启动电路 (12)5 .2. 3 15V/5A电路的短路过流、过压、欠压保护 (13)5. 2. 4 反馈电路 (13)5. 2. 5 输出整流滤波电路 (14)总结 (16)参考文献 (17)本文介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于该电流型PWM控制芯片、实现输出电压可调的开关稳压电源电路。

开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET 构成。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。

开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

关键词:UC3842、开关电源、PWM开关电源是运用现代电力电子技术,控制开关开启和关闭的时候,这个比率的输出电压稳定的电源,电源一般由脉宽调制控制集成电路和场效应晶体管。

LNK306在高压永磁直流无刷电机控制器中的应用

LNK306在高压永磁直流无刷电机控制器中的应用

LNK306在高压永磁直流无刷电机控制器中的应用唐翔【期刊名称】《通信电源技术》【年(卷),期】2011(028)005【摘要】主要介绍了一款新型非隔离高耐压开关电源芯片LNK306,详细说明了其工作原理。

并在某型高压永磁直流无刷电机控制器开发中,以LNK306为核心,设计了一款宽输入电压范围的12V直流稳压电源,依据实际使用结果得出了积极结论。

LNK306配合几个小型廉价的外围器件,便可构成一套稳定可靠的小型开关电源,是目前线性及电容降压式非隔离电源的优秀替代方案。

%In this article,a new kind of non-isolated high voltage switcher: IC LNK306 was introduced,and its basic operating theory was specified.On the research of a certain type controller for high-voltage-BLDC,by applying this wide range input voltage IC in a high voltage BLDC system,the author gets a positive conclusion.With several low cost components,LNK306 can form a small reliable switcher power supply,and replaces all linear and capacitor-fed non-isolated power supplies.【总页数】2页(P55-56)【作者】唐翔【作者单位】中国航天科技集团公司第四研究院401所,陕西西安710025【正文语种】中文【中图分类】TM33;TN703【相关文献】1.鲁棒PID控制器在直流无刷电机系统中的应用 [J], 钱坤;谢寿生;高梅艳;屈志宏2.基于STM8S105的直流永磁无刷电机控制器设计 [J], 张升;王立峰;王爽3.永磁直流无刷电机数字式控制器 [J], 戴国骏;戴钧4.一款军用永磁直流无刷电机控制器的高可靠性设计 [J], 唐煌生;武院;冯浩;吴玉新;张朝晖;祝恒洋5.基于DSP的实时T-S型模糊控制器设计及其在直流无刷电机控制中的应用 [J], 韩安太;王树青因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚开始做开关电源,现在要做个全电压输入,24V/0.1A 5V/0.1A两路输出,我用PIEXPERT 7设计的变压器,制作的样品中空载时
发现5V的输出是5.25V,24V输出是38V,24V加上个6.2K电阻后是25V.当对他们加上额定负载后,5.25V变为5.1V,25V变为24.6V.
我一个有设计开关电源的朋友告诉我,24V输出即使是空载时也应该能稳到24V 左右,不应该是38V,还有让我检测2路输出二极管
的反向耐压和LNK363的FB脚的波形!我用示波器抓了一下,2路输出二极管的反向耐压应该能满足二极管的耐压要求.但FB端好
像不对,不知道有什么问题?大家帮我看一下.有什么问题,谢谢!
相关帖子>>>:
FB脚对S脚波形【图片】1274255463-252043.jpg(102
字)liangzuolin[31次]2010-5-26 14:42:19
5V输出侧反向二极管波形【图片】1274255463-252043.jpg(102字)liangzuolin[25次]2010-5-26 14:43:16
24V输出反向二极管波形【图片】1274255463-252043.jpg(102字)liangzuolin[31次]2010-5-26 14:44:02
∙邪门了,我问的问题经常被冷落!!!!(0字)liangzuolin[13次]2010-5-26 15:20:52
o上原理图再说...(0字)贴片机[14次]2010-5-26 15:38:35
o那是因为你的问题太高深(0字)8202R[12次]2010-5-26 15:44:37
∙反激电源的话你的情况就是正常的,后级都需要有一个很小的假负载,否则不可靠(0字)wangshujun[14次]2010-5-26 15:51:59
o加假负载我知道,我朋友说在5V哪里加了假负载和反馈光耦,5V 那里稳定了,24V也应该能稳定下来,我也不知道对不对!(0
字)liangzuolin[14次]2010-5-26 16:00:26
▪他说2个线圈有比例的关系,5V能稳定出来,成比例的
24V输出也应该能稳出来!(0字)liangzuolin[13
次]2010-5-26 16:01:50
▪你采样的那个是精确的反馈控制,其他绕组都是按照匝
数比控制的,基本上准,误差不超过5%都算过得去的(0
字)wangshujun[20次]2010-5-26 18:03:51
原理图来了!!!【图片】1274255463-252043.jpg(102
字)liangzuolin[42次]2010-5-26 15:58:42
o现在5V能稳定了吗?然后:1\你是用的稳压二极管做的电压采样反馈,肯定得不到标准的5V,有点误差是必然的;2\光耦那边有必
要加一个100欧左右的电阻;3\24V\5V 加假负载1K左右...(0字)
贴片机[13次]2010-5-26 16:12:09
▪4\24V端不加假负载得到有电压是虚的,加了假负载才能
说算;5\你稳的是5V,24V端肯定不是标准的24V,它随5V端
的负载大小而定...(0字)贴片机[17次]2010-5-26
16:14:34
▪另外贴片机兄弟你用过LNK363没?我朋友说FB端
应该是个占空比的波形,不应该是我量出来的这种波
形?(0字)liangzuolin[13次]2010-5-26 16:40:29
▪FB脚怎么可能是个占空比的波形呢?这
个脚是用来控制LNK363内部的PWM
发生器占空比的,FB脚步的电压直接反应在
PWM的占空比上面...FB电压升高,占
空比减小,电压下降;FB电压降低,占空比
增大,电压上升...这样才能实现稳压...(66
字)贴片机[23次]2010-5-26 16:49:41
至于你测到FB上面那些个杂波,不要太担心,
可也是你测量的干扰...
▪多谢兄弟指点,这样我心里踏实多
了!(0字)liangzuolin[8
次]2010-5-26 17:03:13
▪我又做了一台,这个误差更大,达到5.5V,我量了一下稳
压二极管是4.3V,它串联的电阻是100R的,电流是10多个
毫安,是不是应该能稳出来3.9V啊?会不会买元件的小妹给
我拿的4.3V的稳压管啊?(0字)liangzuolin[14
次]2010-5-26 16:38:13
o5V端有反馈有负载可以稳压,24V端无负载将输出峰值电压,
即便是加了负载,将输出平均电压但也不准确,与自身负载和5V
负载都有关联(0字)MG_wmj[14次]2010-5-26 16:20:44
o滤波电容不配套,还要加一个负载电阻,24v和5v都是反激时间内充电的,你得让他们同时冲完电,遗憾得是:输出不平衡是无法
改变得.(60字)pengkewei[19次]2010-5-26 17:46:38
计算方法要根据电容得参数来算同等时间内分别充电道24v和5v
o把稳压管换成tl431效果会好很多,价格也不贵(0字)wangshujun[19次]2010-5-26 1。

相关文档
最新文档