人教版八年级数学下册第2课时 三角形的中位线(教案)
八年级数学下册《三角形的中位线》教案、教学设计
4.学生在小组内分享解题思路,教师巡回指导,解答学生的疑问。
(四)课堂练习,500字
1.教师出示一组练习题,要求学生独立完成,运用中位线定理解决问题。
2.学生完成练习题后,教师选取部分题目进行讲解,强调解题方法和技巧。
引导学生思考中位线定理在生活中的应用,激发他们的创新意识。同时,鼓励学生探索其他几何图形的中位线性质,提高他们的几何图形识别和分析能力。
6.总结反馈,情感交流
在课堂结束时,教师组织学生总结本节课的学习内容,分享学习心得。同时,关注学生的情感态度,鼓励他们积极面对学习中的困难,培养自信、坚韧的品质。
7.课后作业,延伸学习
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角形的中位线定理及其证明,这是本章节的核心内容,也是学生学习的重点和难点。学生对中位线定理的理解程度,直接影响到后续几何知识的学习。
2.能够运用中位线定理解决实际问题,培养学生将理论知识应用于实际情境的能力。
3.提高学生的几何证明和逻辑推理能力,使他们能够熟练运用几何知识分析和解决问题。
4.教师详细讲解中位线定理的证明过程,强调证明方法及逻辑推理的重要性。
5.针对学生的疑问,进行个别辅导,确保他们掌握中位线定理。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组发放一张三角形图形,要求学生在图中找出中位线,并讨论中位线的性质。
2.各小组汇报讨论成果,教师点评并总结中位线的认识和运用有了更深入的理解。
5.教师布置适量的课后作业,巩固课堂所学知识,并鼓励学生利用课余时间探索几何知识。
五、作业布置
为了巩固学生对三角形中位线知识的掌握,提高他们的几何图形识别、分析和解决问题的能力,特布置以下作业:
人教版八年级数学下册《三角形的中位线定理》教案
初中数学试卷灿若寒星整理制作《三角形的中位线定理》教案【教学目标】1.知识与技能(1)掌握三角形中位线定理的证明及内容。
(2)正确利永三角形中位线定理解决问题。
2.过程与方法进一步发展合情推理、演绎推理的能力,增强几何直观和几何符号意识。
3.情感态度和价值观培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐。
【教学重点】探索并证明三角形中位线定理。
【教学难点】正确利用三角形中位线定理解决问题【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入【过渡】上节课我们学习了判定平行四边形的方法,现在我们来练习一下,看大家掌握的情况如何。
判断下列条件能否判定一个四边形是平行四边形。
A.一组对边平行,另一组对边相等。
B.一组对角相等,另一组对角互补。
C .一组对角相等,一组邻角互补。
D .一组对边平行,一组对角互补(学生回答)【过渡】看来大家掌握的都不错。
今天我们将随着平行四边形的性质与判定来学习一个新的内容。
二、新课教学1.三角形的中位线定理【过渡】回忆我们前两节课的内容,不难发现,在研究平行四边形的过程中,我们经常会用到三角形的全等的性质,那么,今天我们就来研究一下通过平行四边形得到的三角形的性质。
【过渡】如图所示的三角形,画出△ABC 的AB 、AC 边中点D 、E ,连接DE 。
像DE 这样的就是三角形的中位线。
定义:连接三角形两边中点的线段叫做三角形的中位线.【过渡】现在大家想一想,一个三角形中有几条中位线呢?【过渡】三角形有三条边,那么三条边都有中点,分别连接三条边的中点,我们就会得到三条中位线,这三条中位线围成了一个小三角形。
一个三角形有三条中位线。
【过渡】在学习三角形的相关知识的时候,我们学习过三角形中线的相关知识,那么中线和中位线一样吗?如果不一样,他们有什么区别呢?给出一个三角形,我们画出其中线,发现,中线是中点与顶点的连线。
人教版初中数学八年级下册18.1.3《三角形的中位线定理》教案设计
2.
画一个任意四边形,并画出四边的中点,再顺次连接各中点,得到的四边形的形状是什么?
(平行四边形)
已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。
求证:四边形EFGH是平行四边形。
教师与学生共同分析,适时提供思路
证明过程略.
结论:顺次连结任意四边形四边中点所得的四边形是平行四边形。
四、本课小结
1.熟记三角形中位线的概念:连接三角形两边的中点的线段叫做三角形的中位线。
2.理解并掌握三角形中位线的性质:三角形的中位线平行与第三边,并且等于它的一半。
3.能应用三角形中位线的性质解决有关问题。
当堂检测
1、如图,ΔABC中,DE是中位线,若BC=20cm,则DE=____.
设计意图:巩固三角形中位线定理,基础题.
2、如图,ΔABC中,AB=6㎝,AC=8㎝,BC=10㎝,D﹑E﹑F分别是AB、AC、BC的中点,则ΔDEF的周长是____.。
人教版数学八年级下册教案 18.1.3《 三角形的中位线 》
人教版数学八年级下册教案 18.1.3《三角形的中位线》一. 教材分析《三角形的中位线》是人教版数学八年级下册的教学内容,属于几何章节的第三节。
本节课的主要内容是让学生掌握三角形的中位线的性质,能够熟练运用中位线定理解决相关问题。
教材通过生动的插图和丰富的例题,引导学生探索三角形中位线的性质,培养学生观察、思考、解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平行线、全等三角形的性质等知识,具备了一定的几何思维和观察能力。
但部分学生对几何图形的直观理解仍有一定难度,对中位线定理的应用还不够熟练。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。
三. 教学目标1.让学生掌握三角形的中位线性质,理解中位线与三角形边长的关系。
2.培养学生观察、思考、解决问题的能力,提高学生的几何思维。
3.培养学生合作学习、积极探究的学习习惯。
四. 教学重难点1.三角形中位线的性质及其应用。
2.引导学生探索中位线与三角形边长的关系。
五. 教学方法1.采用问题驱动法,引导学生主动探究三角形中位线的性质。
2.利用直观教具,让学生观察、操作、思考,加深对中位线性质的理解。
3.采用小组讨论法,培养学生的合作意识和团队精神。
4.运用练习法,巩固所学知识,提高解题能力。
六. 教学准备1.准备三角形的中位线模型和教具,方便学生观察和操作。
2.准备相关练习题,用于课堂练习和巩固知识。
3.准备多媒体课件,辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示三角形的中位线模型,引导学生观察并提问:“你们认为三角形的中位线具有什么性质?”让学生思考并激发学习兴趣。
2.呈现(10分钟)教师简要介绍三角形的中位线性质,通过多媒体课件展示中位线的作法和性质。
引导学生理解中位线与三角形边长的关系。
3.操练(10分钟)教师引导学生分组讨论,每组尝试找出其他三角形的的中位线,并观察中位线与边长的关系。
教师巡回指导,解答学生的疑问。
人教版数学八年级下册18.1.2第2课时《 三角形的中位线》教学设计
人教版数学八年级下册18.1.2第2课时《三角形的中位线》教学设计一. 教材分析《三角形的中位线》是人教版数学八年级下册18.1.2第2课时的内容。
本节课主要介绍了三角形的中位线的性质,包括中位线等于底边的一半,以及中位线平行于底边。
同时,还学习了如何利用中位线证明线段的关系。
这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质,三角形的基本概念,以及线段的和差关系。
但是,对于三角形的中位线的性质和应用可能还不够熟悉。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索三角形中位线的性质,提高他们的几何思维能力。
三. 教学目标1.知识与技能:学生能够理解三角形的中位线的性质,学会运用中位线证明线段的关系。
2.过程与方法:学生通过观察、操作、思考、交流等数学活动,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,增强自信心。
四. 教学重难点1.重点:三角形的中位线的性质。
2.难点:如何引导学生自主探索三角形中位线的性质,以及如何运用中位线证明线段的关系。
五. 教学方法1.引导发现法:教师通过提问、引导,激发学生的思考,引导学生自主探索三角形中位线的性质。
2.合作学习法:学生分组进行观察、操作、交流等活动,培养团队合作精神。
3.实践操作法:学生通过动手操作,直观地感受三角形中位线的性质。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件。
2.学具:每人一套几何图形,如三角形、平行四边形等。
七. 教学过程1.导入(5分钟)教师通过提问:“什么是三角形的中位线?”引导学生回顾已学的三角形基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示三角形的中位线,让学生直观地感受中位线与底边的关系。
同时,引导学生观察、思考三角形中位线的性质。
人教版八年级数学下册《三角形的中位线定理》说课稿
人教版八年级数学下册《三角形的中位线定理》说课稿引言大家好,今天我给大家说一下八年级下学期数学教材中的《三角形的中位线定理》这个内容。
本课是对中位线定理的引入和探究,通过学习和实践,帮助学生进一步了解三角形中位线的概念和性质,提高他们的问题解决能力和数学思维能力。
一、教学目标本节课的教学目标主要有以下几个方面: 1. 理解中位线的定义和性质; 2. 探究中位线的几何特点; 3. 运用中位线定理解决实际问题; 4. 培养学生的逻辑思维能力和问题解决能力。
二、教学重难点分析2.1 教学重点 - 中位线的定义和性质; - 中位线定理的应用。
2.2 教学难点 - 运用中位线定理解决实际问题。
三、教学内容分析3.1 教材分析本节课的教材是《人教版八年级数学下册》,主要介绍了三角形中位线定理的概念和性质。
3.2 知识点分析 - 中位线的定义和性质:通过示例和讲解引入中位线的概念,解释中位线的性质,如互相平分的特点等。
- 中位线定理的应用:通过实例和问题解决引导学生理解中位线定理的具体应用,如求中位线的长度、利用中位线定理证明等。
四、教学方法与学法4.1 教学方法 - 情境教学法:通过提出实际问题和情境引导学生主动思考和探究中位线的性质和定理的应用。
- 讨论交流法:通过小组合作、整体讨论等方式促进学生之间的互动和思维碰撞,培养他们的合作精神和思辨能力。
- 归纳演绎法:通过学生自主探究和归纳总结,引导学生由具体例子逐步推广到一般情况,加深他们对中位线定理的理解。
4.2 学法 - 主动学习法:学生在教师的指导下,主动参与学习和探究,通过实践和操作加深对中位线定理的理解。
-合作学习法:学生进行小组合作和集体讨论,促进彼此之间的学习和思维碰撞,培养团队合作和交流能力。
五、教学过程设计5.1 导入部分在导入部分,我将提出一个实际问题:“你是否发现画一个三角形ABC时,只要先任意取一点D,将D分别连接AB和AC的中点,连线段BD和CD,你会发现它一定会和AC和AB的延长线相交于一点E和F。
人教版八年级数学下册18.1.3三角形的中位线(教案)
2.注重培养学生的逻辑思维能力,提高他们在解决问题时的分析能力。
3.更多地鼓励学生参与课堂讨论和实践活动,提高他们的合作意识和交流能力。
4.针对学生的个体差异,制定更具针对性的教学计划,帮助每个学生克服学习难点。
b.难点2:对于定理应用范围的识别,可以通过设置不同类型的题目,让学生练习识别三角形中位线的模型,如隐藏在复杂图形中的中位线,或是需要通过添加辅助线才能发现的中位线。
c.难点3:设计练习题时,从基础题开始,逐步增加难度,如先让学生计算已知中位线长度的三角形边长,再让学生解决需要证明中位线性质的问题,最后进行一些综合性的应用题目,让学生在解决问题的过程中逐步深化对中位线定理的理解。
5.培养学生的合作意识和交流能力:设置小组讨论和课堂交流环节,促进学生合作探究,提升表达和交流能力。
三、教学难点与重点
1.教学重点
-三角形中位线的定义:理解三角形中位线是连接顶点和对边中点的线段,强调中位线是三角形内部的一条特殊线段。
-中位线定理:掌握中位线平行于第三边,并且等于第三边长度的一半的性质,能够准确运用定理进行计算和证明。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形中位线的定义、性质和应用。通过实践活动和小组讨论,加深了对三角形中位线的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课解三角形中位线的基本概念。三角形的中位线是连接一个顶点和对边中点的线段,它具有平行于第三边且等于第三边长度一半的性质。这一性质在解决三角形相关问题中具有重要作用。
新人教版八年级数学下册《三角形的中位线》教学设计
八年级数学下册《三角形的中位线》教案设计一、设计思路(一)指导思想:依据《数学课程标准》及新课程理念要求:“将数学建立在学生的认知发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验。
”学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
(二)教学目标1.理解三角形中位线的概念,会证明三角形的中位线定理,能应用三角形中位线定理解决相关的问题;2.进一步经历“探索—猜想—证明”的过程,发展探究能力、推理论证的能力;培养学生逆向思维及分解构造基本图形解决较复杂问题的能力,培养数学应用意识。
3在命题的证明过程中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力;利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
4.在定理的证明和应用过程中体会归纳、类比、转化等数学思想方法。
(三)教学重难点重点:三角形中位线性质定理的证明及应用。
难点:用添加辅助线的方法来推理证明三角形中位线定理和性质的灵活应用。
(四)教学方法与学法指导对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过操作、探索、猜测等自主探究的方法先获得结论再去证明。
在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。
二、教学准备【策略】课堂组织策略:组织学生复习旧知识,联系实际,创设问题情景,逐层展开,探索新知,并精心设计各环节、练习题、达到巩固知识,解决问题的目的。
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下,通过观察、归纳、抽象、概括等手段,获取知识。
辅助策略:借助“Powerpoint”平台,向学生展示动感几何,化抽象为形象,帮助学生解决学习过程中所遇难题,提高学习效率。
八年级数学下册 三角形中位线教案 新人教版
三角形中位线
(一)引入新课-----生活中的数学
教学媒体出示问题:如何测量池塘两端的距离?提出问题后,学生思考一定的时间后,教师引出课题,为解决这类问题,让我们一起学习------《三角形的中位线》。
(板书课题)
【设计意图】:用生活中的问题引入课题,引起学生的兴趣。
(二)讲授新课
1、回忆三角形中线的定义,由中线定义自然的引出中位线定义,并比较中线和中位线的区
别。
(媒体显示,板书中位线的定义)。
教学时提醒学生中位线相关的一些细节问题。
【设计意图】:夯实基础。
2、提出问题:三角形的中位线由什么特殊的性质?
教学时教师提出问题后,由学生进行猜想,提示学生从数量和位置两个方面去猜想。
学生猜想的可能不到位,教师做补充。
【设计意图】:激活课堂气氛,调动学生的思维。
3、证明猜想(定理)
本题证明属于平行四边形性质和判定的综合应用,要尽量放手让学生独立完成,让他们尽量用多种方法来解决本题;提醒学生要会用数学语言描述。
教学时师生再一起回顾解决引例中提出的问题。
【设计意图】:对定理加深印象。
4、探究:三角形的三条中位线围成的新三角形的周长和面积与原三角形的关系。
教学时学生探究,达成共识。
【设计意图】:丰富自己的内涵,充实自己,备战中考。
5、课堂练习:
教学时安排一组练习,难度有浅有深,适合各类型学生。
【设计意图】:巩固所学知识。
4、总结
学生自己谈收获、谈体会、谈疑惑。
5、作业
(三)板书设计
【教学反思】:。
人教版数学八年级下册18.1.2第2课时《 三角形的中位线》教案
人教版数学八年级下册18.1.2第2课时《三角形的中位线》教案一. 教材分析《三角形的中位线》是人教版数学八年级下册第18章第一节的一部分,主要内容是让学生掌握三角形的中位线的性质,学会运用中位线解决一些几何问题。
本节课的内容是学生学习几何知识的重要环节,也是进一步学习复杂几何图形的基础。
二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质,对图形的对称性有一定的了解。
但部分学生对图形的直观感知能力较弱,对几何图形的性质理解不够深入。
因此,在教学过程中,需要注重培养学生的观察能力、思考能力和动手操作能力。
三. 教学目标1.让学生掌握三角形的中位线的性质,能熟练运用中位线解决一些几何问题。
2.培养学生的观察能力、思考能力和动手操作能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.三角形中位线的性质。
2.运用中位线解决几何问题。
五. 教学方法1.采用直观演示法,让学生通过观察实物,理解三角形中位线的性质。
2.运用归纳法,引导学生总结三角形中位线的性质。
3.采用练习法,让学生在实践中掌握中位线的运用。
4.小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备三角形模型、直尺、圆规等教具。
2.设计相关练习题。
七. 教学过程1.导入(5分钟)利用实物模型,引导学生观察三角形的中位线,提出问题:“三角形的中位线有什么性质?它与三角形有什么关系?”2.呈现(10分钟)通过PPT或黑板,展示三角形的中位线的性质,引导学生总结出:三角形的中位线平行于第三边,等于第三边的一半。
3.操练(10分钟)让学生利用直尺、圆规等工具,自己动手画出一个任意的三角形,然后找出它的中位线,并验证中位线的性质。
4.巩固(10分钟)设计一些有关三角形中位线的练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)引导学生思考:如何利用三角形的中位线解决实际问题?例如,在建筑设计中,如何利用中位线保证建筑物的稳定性?6.小结(5分钟)让学生总结本节课所学的知识点,教师进行补充。
人教版数学八年级下册 三角形的中位线(教案与反思)
第2课时三角形的中位线举世不师,故道益离。
柳宗元 "田墩中心小学何龙【知识与技能】1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.2.理解三角形中位线定理.3.能灵活运用平行四边形的判定定理解决问题.【过程与方法】在“活动操作——观察思考——推理论证”等活动过程中,进一步锻炼学生的分析能力和解决问题能力.【情感态度】在操作活动和观察、分析过程中培养学生主动探索、质疑和独立思考的习惯. 【教学重点】平行四边形的判定定理及三角形中位线定理.【教学难点】平行四边形判定定理的灵活运用.一、情境导入,初步认识问题前面我们通过用细木棒绞在一起的方式感受到“两组对边分别相等的四边形是平行四边形”及“对角线互相平分的四边形是平行四边形”这些重要结论,那么,按如图方式,将两根等长的木条AB、CD平行放置,再用两根木条AD、BC加固,得到的四边形ABCD也能是平行四边形吗?如果是平行四边形,你能说明理由吗?【教学说明】承接上节课的数学思考,通过观察教师展示的实物模型,让学生再次感受平行四边形是现实生活中的重要模型,从而激发学生的学习兴趣,增强求知欲望,导入新课.二、思考探究,获取新知试一试如图,在四边形ABCD中,AB∥CD且AB=CD.求证:四边形ABCD是平行四边形.【教学说明】教师提出问题后,帮助学生分析题设条件和需解决的问题是什么,如何利用现有条件通过添加辅助线达到论证结论的目的,从而完成证明.证明过程由学生完成.【归纳结论】一组对边平行且相等的四边形是平行四边形.想一想(1)你能用几种方法证明“试一试”的问题?不妨试试看,并与同伴交流.(2)说说看,要判定一个四边形是平行四边形,你有哪些方法?【教学说明】通过想一想,即可巩固前面所学过的三个判定定理,又能系统地完成对知识的领悟,并可让学生灵活选用不同方法来解决问题,增强分析问题、解决问题的能力.练一练如图,点D、E分别是△ABC的边AB、AC的中点,连接DE.求证:DE∥BC,且DE=12 BC.【分析】(1)可延长DE至F,使DE=EF,连接CF,CD,AF.由于E为AC中点,从而易知四边形ADCF是平行四边形,有F∥AD,CF=AD.又D为AB中点,故CF∥BD,又有四边形BCFD是平行四边形,故DE∥BC,DE=12DF=12BC,得到结论;(2)过C作CF∥AB交DE延长线于F,∴易证△ADE≌△CFE,∴CF=AD,DE=EF.又D为AB中点,∴AD=BD,∴CF∥BD,故四边形BCFD是平行四边形,也能得到结论.【教学说明】教师分析后,让学生自己完成证明过程.一方面可加深对平行四边形判定定理理解,另一方面可锻炼学生的语言表述能力.教师巡视,关注学生完成情况,对有困难的同学给予帮助.通过上述思考,你能发现其中的规律性特征吗?三角形中位线定理三角形的中位线平行于三角形的第三边,且等于第三边的一半.三、运用新知,深化理解1.如图,在△ABC中,点D在BC上,且DC=AC,CE⊥AD于点E,点F是AB 的中点,求证:EF∥BC.第1题图第题图2.如图,在ABCD的一组对边AD、BC上截取EF=MN连接EM,FN.EM与FN有什么关系?为什么?3.O是△ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G依次连接起来,设DEFG能构成四边形.(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)当点在△ABC外时,(1的结论是否成立?画出图形并说明理由.第3题图第4题图4.如图,E、F是四边形ABCD对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:四边形ABCD是平行四边形.【教学说明】让学生自主探究,独立完成,然后相互交流,探寻结论.教师巡视,发现问题及时予以点拨.【答案】1.证明:∵DC=AC,且CE⊥AD于点E,∴E=ED.又∵点F是AB的中点,∴AF=FB,∴EF是△ABD的中位线.∴EF∥BC.2.解:EM=NF,理由如下:在ABCD中,AD∥BC,又∵EF=MN,∴四边形EMNF是平行四边形,∴EM=NF.3.证明:(1)∵AB、OB、OC、AC中点分别为D、E、F、G,∴DG、EF分别为△ABC和△OBC的中位线,∴DG∥BC,EF∥BC,DG=12BC,EF=12BC,∴DG∥EF且DG=EF,∴四边形DEFG是平行四边形.(2)如图所示,O在△ABC外,∵AB、OB、OC、AC中点分别为D、E、F、G,∴DG、EF分别为△ABC和△OBC的中位线,∴DG∥BC,EF∥BC,DG=1/2BC,EF=1/2BC, ∴DG∥EF且DG=EF,∴四边形DEFG是平行四边形.4.证明:∵DF∥BE,∴∠DFA=∠BEC.在△ADF和△CBE中,DF=BE,∠DFA=∠BEC,AF=CE,∴△ADF≌△CBE,∴AD=BC,∠DAF=∠BCE.∴AD∥BC,∴四边形ABCD是平行四边形.四、师生互动,课堂小结1.平行四边形的判定方法有哪些?如果从边看,可用哪几种方法判定四边形是平行四边形?从角看可用哪种方法论证四边形是平行四边形?从对角线上看呢?2.平行四边形知识的运用有哪些?1.布置作业:从教材“习题18.1”中选取.2.完成练习册中本课时练习.这一课时也是有关平行四边形的判定的内容,教师教学时可沿用上一课时的做法.通过这两节课的学习,学生一般会基本掌握学习几何证明题的方式和方法,基本能应用平行四边形的性质和判定方法解决问题.在以后的学习过程中最主要的任务是让学生落实到笔头上,即要让学生学会反思做完的每一道题.【素材积累】1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。
人教版数学八年级下册《三角形的中位线定理》教学设计1
人教版数学八年级下册《三角形的中位线定理》教学设计1一. 教材分析人教版数学八年级下册《三角形的中位线定理》是初中的重要内容,也是学习几何的基础知识。
本节内容主要介绍三角形的中位线定理,通过定理的学习,使学生能够理解和掌握三角形中位线的相关性质和运用。
二. 学情分析学生在学习本节内容前,已经学习了三角形的基本概念、性质和分类,对三角形有一定的了解。
同时,学生已经掌握了平行线的性质和判定,能够理解和运用平行线的知识。
但是,学生对中位线的概念和性质还不够熟悉,需要通过本节内容的学习来进一步理解和掌握。
三. 教学目标1.知识与技能:使学生理解和掌握三角形的中位线定理,能够运用定理解决相关问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 教学重难点1.重点:理解和掌握三角形的中位线定理。
2.难点:如何运用中位线定理解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:通过设置问题,引导学生思考和讨论,培养学生的解决问题的能力。
3.合作学习法:引导学生分组讨论和合作,培养学生的团队精神和沟通能力。
六. 教学准备1.教学课件:制作课件,展示三角形的中位线定理的相关图片和实例。
2.教学素材:准备一些三角形图形,用于引导学生观察和操作。
3.教学工具:准备直尺、三角板等工具,方便学生进行操作。
七. 教学过程1.导入(5分钟)通过生活中的实例,如桥梁的设计、自行车的车架等,引导学生观察和思考,引发对三角形中位线的兴趣。
2.呈现(10分钟)利用课件,呈现三角形的中位线定理的定义和相关性质,同时展示一些实例,让学生直观地理解和掌握定理。
3.操练(10分钟)学生分组讨论,利用给出的三角形图形,进行操作和观察,验证中位线定理。
教师巡回指导,解答学生的问题。
八年级数学下册《三角形中位线定理》教案、教学设计
-对于作业中的错误,教师要给予及时、具体的反馈,指导学生进行改正。
-鼓励学生家长参与作业的监督和讨论,增强家庭对数学学习的支持。
(四)课堂练习
小组讨论结束后,我安排课堂练习,让学生独立完成。练习题目分为基础题和提高题,旨在巩固学生对三角形中位线定理的理解和应用。
在学生完成练习的过程中,我注意观察他们的解题方法,了解他们在解题过程中遇到的困难。针对学生的个体差异,给予他们个性化的指导和鼓励。
(五)总结归纳
课堂练习结束后,我组织学生进行总结归纳。首先,让学生分享自己在课堂中学到的知识点和解决问题的方法。然后,我对本节课的重点内容进行梳理,强调三角形中位线的性质和定理的应用。
然后,我向学生介绍三角形中位线的概念,并利用几何画板展示一个三角形的图形,指出三角形的中位线,让学生观察中位线的特点。通过这种方式,激发学生的好奇心,为接下来的新课学习做好铺垫。
(二)讲授新知
在学生对三角形中位线产生兴趣的基础上,我开始系统地讲授新课。首先,我详细讲解三角形中位线的定义,让学生明确中位线是连接三角形两边中点的线段。
最后,我布置课后作业,要求学生在课后对所学知识进行巩固。同时,鼓励学生在生活中发现与三角形中位线相关的现象,增强数学应用的意识。
五、作业布置
为了巩固学生对三角形中位线定理的理解和应用,以及检验他们在课堂中的学习效果,我设计了以下作业:
1.基础知识巩固题:要求学生完成课后练习册中与三角形中位线相关的基础题目,这些题目旨在帮助学生回顾和巩固三角形中位线的定义、性质以及定理的证明。
在教学过程中,教师应关注学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂活动,使他们在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
新人教版八年级数学下册《三角形的中位线》教案
学生认真阅读
自学指导
(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE= BC.
如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE= DF,所以DE∥BC且DE= BC.
∵AH=HD,CG=GD,
∴HG∥AC,HG= AC(三角形中位线性质).
同理EF∥AC,EF= AC.
∴HG∥EF,且HG=EF.
∴四边形EFGH是平行四边形.
此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
引导学生认真观察,总结、回答。
讨论切磋
(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.
引导学生总结规律,能够做加深题。
达标检测
如图,△ABC中,D、E、F分别是AB、AC、BC的中点,
(1)若EFБайду номын сангаас5cm,则AB=cm;若BC=9cm,则DE=cm;
(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.
学生分组做题,然后各组展示自己的成果。生课堂练习
归纳总结
可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.
引导学生总结规律,能够做加深题。
作业设计:
已知:三角形的各边分别为8cm、10cm和12cm,求连结各边中点所成三角形的周长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时三角形的中位线
【知识与技能】
1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.
2.理解三角形中位线定理.
3.能灵活运用平行四边形的判定定理解决问题.
【过程与方法】
在“活动操作——观察思考——推理论证”等活动过程中,进一步锻炼学生的分析能力和解决问题能力.
【情感态度】
在操作活动和观察、分析过程中培养学生主动探索、质疑和独立思考的习惯. 【教学重点】
平行四边形的判定定理及三角形中位线定理.
【教学难点】
平行四边形判定定理的灵活运用.
一、情境导入,初步认识
问题前面我们通过用细木棒绞在一起的方式感受到“两组对边分别相等的四边形是平行四边形”及“对角线互相平分的四边形是平行四边形”这些重要结论,那么,按如图方式,将两根等长的木条AB、CD平行放置,再用两根木条AD、BC加固,得到的四边形ABCD也能是平行四边形吗?如果是平行四边形,你能说明理由吗?
【教学说明】承接上节课的数学思考,通过观察教师展示的实物模型,让学生再次感受平行四边形是现实生活中的重要模型,从而激发学生的学习兴趣,增强求知欲望,导入新课.
二、思考探究,获取新知
试一试
如图,在四边形ABCD中,AB∥CD且AB=CD.求证:四边形ABCD是平行四边形.
【教学说明】教师提出问题后,帮助学生分析题设条件和需解决的问题是什么,如何利用现有条件通过添加辅助线达到论证结论的目的,从而完成证明.证明过程由学生完成.
【归纳结论】一组对边平行且相等的四边形是平行四边形.
想一想
(1)你能用几种方法证明“试一试”的问题?不妨试试看,并与同伴交流.
(2)说说看,要判定一个四边形是平行四边形,你有哪些方法?
【教学说明】通过想一想,即可巩固前面所学过的三个判定定理,又能系统地完成对知识的领悟,并可让学生灵活选用不同方法来解决问题,增强分析问题、解决问题的能力.
练一练
如图,点D、E分别是△ABC的边AB、AC的中点,连接DE.求证:DE∥BC,
且DE=1
2 BC.
【分析】(1)可延长DE至F,使DE=EF,连接CF,CD,AF.由于E为AC中点,从而易知四边形ADCF是平行四边形,有CF∥AD,CF=AD.又D为AB中点,
故CF∥BD,又有四边形BCFD是平行四边形,故DE∥BC,DE=1
2
DF=
1
2
BC,得到结
论;
(2)过C作CF∥AB交DE延长线于F,∴易证△ADE≌△CFE,∴CF=AD,DE=EF.又D为AB中点,∴AD=BD,∴CF∥BD,故四边形BCFD是平行四边形,也能得到结论.
【教学说明】教师分析后,让学生自己完成证明过程.一方面可加深对平行四边形判定定理的理解,另一方面可锻炼学生的语言表述能力.教师巡视,关注学生完成情况,对有困难的同学给予帮助.通过上述思考,你能发现其中的规律性特征吗?
三角形中位线定理三角形的中位线平行于三角形的第三边,且等于第三边的一半.
三、运用新知,深化理解
1.如图,在△ABC中,点D在BC上,且DC=AC,CE⊥AD于点E,点F是AB 的中点,求证:EF∥BC.
第1题图第2题图
2.如图,在ABCD的一组对边AD、BC上截取EF=MN,连接EM,FN.EM与FN 有什么关系?为什么?
3.O是△ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、
E、F、G依次连接起来,设DEFG能构成四边形.
(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当点O在△ABC外时,(1)的结论是否成立?画出图形并说明理由.
第3题图第4题图
4.如图,E、F是四边形ABCD对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:四边形ABCD是平行四边形.
【教学说明】让学生自主探究,独立完成,然后相互交流,探寻结论.教师巡视,发现问题及时予以点拨.
【答案】1.证明:∵DC=AC,且CE⊥AD于点E,∴AE=ED.又∵点F是AB的中点,∴AF=FB,∴EF是△ABD的中位线.∴EF∥BC.
2.解:EM=NF,理由如下:在ABCD中,AD∥BC,又∵EF=MN,∴四边形EMNF 是平行四边形,∴EM=NF.
3.证明:(1)∵AB、OB、OC、AC中点分别为D、E、F、G,∴DG、EF分别为△ABC和△OBC的中位线,∴DG∥BC,EF∥BC,DG=12BC,EF=12BC,∴DG∥EF且DG=EF,∴四边形DEFG是平行四边形.
(2)如图所示,O在△ABC外,∵AB、OB、OC、AC中点分别为D、E、F、G,∴DG、EF分别为△ABC和△OBC的中位线,∴DG∥BC,EF∥BC,DG=1/2BC,EF=1/2BC, ∴DG∥EF且DG=EF,∴四边形DEFG是平行四边形.
4.证明:∵DF∥BE,∴∠DFA=∠BEC.在△ADF和△CBE中,DF=BE,∠DFA=∠BEC,AF=CE,∴△ADF≌△CBE,∴AD=BC,∠DAF=∠BCE.∴AD∥BC,∴四边形ABCD是平行四边形.
四、师生互动,课堂小结
1.平行四边形的判定方法有哪些?如果从边看,可用哪几种方法判定四边形是平行四边形?从角看可用哪种方法论证四边形是平行四边形?从对角线上看呢?
2.平行四边形知识的运用有哪些?
1.布置作业:从教材“习题18.1”中选取.
2.完成练习册中本课时练习.
这一课时也是有关平行四边形的判定的内容,教师教学时可沿用上一课时的做法.通过这两节课的学习,学生一般会基本掌握学习几何证明题的方式和方法,基本能应用平行四边形的性质和判定方法解决问题.在以后的学习过程中最主要的任务是让学生落实到笔头上,即要让学生学会反思做完的每一道题.。