小升初重点中学-数学模拟试题及答案(25套)
最新重点中学小升初自主招生数学备考试卷3(含答案)
最新重点中学小升初自主招生数学备考试卷(含答案)(考试时间60分钟,总分100分)学校:_____________ 班级:_____________ 姓名:_____________ 电话:_____________一、计算题(共20分)1.计算下列各题,能简便的请用简便方法(12分)1880×201.1−187.9×2011 25×5÷25×5 89×[34−(716−25%)] 7.2×61310+73.8×2452.请用简便方法计算(8分)(1+12+13+•••+12021)×(12+13+14+•••+12022)−(12+13+•••+12021)×(1+12+13+•••+12022)二、填空题(每题3分,共27分)3.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要赛( )场.4.下图中的阴影部分面积占长方形的( )。
5.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高( )%. 6.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对( )题.7.一个正方形的边长增加2厘米,面积增加了20平方厘米,扩大后正方形的面积是( )平方厘米;8.一个长方形被内部一点分成4个不同的三角形(如图),若红色的三角形面积占长方形面积的18%,兰色的三角形面积是64cm2 则长方形面积是()。
9.一批苹果分装在33个筐内,如果每个筐多装110,可省()个筐。
10.将2022减去它的12,再减去余下的13,再减去余下的14,……最后减去余下的12022,差是()。
11.小明按照如图的方法用灰色和白色正方形摆图形.当中间摆n个灰色的正方形时,四周共需要摆()个白色正方形.三、解决问题(共53分)12.甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调到甲仓,使得乙仓存量是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?(6分)13.一个容器正好装满10升纯酒精,倒出3升后用水加满,再倒出4.5升后,再用水加满,这时容器中溶液的浓度是多少?(6分)14.客车和货车分别从甲乙两站同时相向开出,5小时后相遇,相遇后两车仍按原速度前进,当他们相距196千米时,客车行了全程的35,货车行了全程的80%。
小升初数学模拟试卷及答案(4份)
小升初数学模拟试卷及答案一、填空题(共26分)1、一个数由3个千万,4个万,8个百组成,这个数写作__________,读作__________。
2、=__________÷__________=__________%=__________ (小数).3、一个圆的半径是6cm ,它的周长是________cm ,面积是________cm2.4、在下列括号里填上适当的单位或数字。
数学试卷的长度约是60________;你的脉搏一分钟大约跳________次;8个鸡蛋大约有 500________;小刚跑一百米的时间大约是14________;一间教室的占地面积大约是40________;7.2小时=________ 小时________分:2千克60克=________千克。
5、涛涛将3000元人民币存入银行定期3年,如果年利率是2.5,国家规定利息税为20%,到期后,他应缴纳________元的利息税,实得利息是________元。
6、下图中,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满________杯。
7、在○里填上“>”“<”或“=”。
○ ○ ○12 ○8、方程1.5x -0.4x=0.8的解是x=________。
二、选择题(共5分)1、把35%的“%”去掉,原数就( )A .扩大100倍B .缩小100倍C .大小不变 2、选项中有3个立方体,其中不是用左边图形折成的是( )3、等腰直角三角形的一个底角是内角和的( )A .B .C .4、种一批树,活了100棵,死了1棵,求成活率的正确算式是( ) A .1001100-× 100% B .1100100+×100% C .1100100+ 5. 84÷14=6,那么说( )A .84能整除14B .14能被84整除C .84能被14整除 三、判断题(共6分)1、一条路,修了的米数和未修的米数成反比例。
小升初重点中学招生考试数学模拟卷(三) l (通用版,含答案,双击可编辑 ) (共32张PPT)
2.有 3 个箱子,如果两箱两箱地称它们的质量,分别是 83 千克、85 千克和 86 千克,那么其中最轻的箱子重( A )千克。
A.41 B.42 C.43 D.40
[提示:(83+ 85+86)÷2- 86= 41(千克 )]
3.某人下午 6 点多外出时,看手表上两指针的夹角为 110°, 下午 7 点前回家时发现两指针夹角仍为 110°,他外出( C )分钟。
5.有两瓶相同质量的糖水,甲瓶的糖与水质量的比是 1∶5,
乙瓶的糖与水质量的比是 1∶7。如果将这两瓶糖水混合在一起,
混合后的糖水中糖与水质量的 C.7∶35 D.7∶41
[提示:从“甲瓶的糖与水质量的比是 1∶5”可知,甲瓶糖水
中,糖占糖水质量的1+1 5=16。从“乙瓶的糖与水重量的比是 1∶
A.30 B.35 C.40 D.42
[提示: 110× 2÷5.5= 40(分)]
4.如图,在三角形 ABC 中,∠B=70°,若沿图中的虚线剪 去∠B,则∠1+∠2 等于( A )。
A.250° B.270° C.225° D.290° [提示:三角形 BED 中∠B 以外的另两个内角和是 180°-70° = 110°,∠ 1+∠ 2= 180°× 2- 110°= 250° ]
二、选择。(把正确答案的序号填在括号里)(10 分)
1.小明买了 6 瓶饮料,共付款 7.8 元,喝完全部饮料退瓶时,
他了解到每个空瓶的价钱比瓶中饮料的价钱少 1.1 元,那么小明应
收到退款( B )元。
A.1.2 元
B.0.6 元
C.0.1 元
D.1.0 元
[提示:(7.8÷6-1.1)÷2×6=0.6(元)]
答案:5
六年级下册数学试题-小升初重点中学招生模拟试题(含答案)全国通用
A= 2007 - 2006 +2005 -2004 ++3 -2 +1
2008 2007 2006 2005
432
1
1
1
1
1
1
=[(1-
)-(1-
)]+[(1-
)-(1-
)]+……+[(1- )-(1- )]
2008
2007
2006
2005
4
3
1
+
2
=( 1 1 )+( 1 1 )+……+( 1 1 )+ 1
a1 a2 a3 an 281 ,依次加质数,2+3+5+7+……+43=281,43 是第 14 个质数,n=
14 4 、 解 : 2008 = 1 × 2008 = 2 × 1004 = 4 × 502 = 5 × 251, 所 以
1 2008 1 2008
1
1 1 ,同理:
小升初重点中学招生模拟试题
一、填空(每小题 6 分,共 78 分) 1、如果X是最小自然数的 10 倍,Y比最小的质数多 8,Z比最小的
合数的 2 倍多 2,那么
=_______________________。
2、计算:1990×2.8+199×51+1.99×2100+(6 ÷6.75+20%×5)×= ____________________。 3、如果两个数的最大公约数是 3,最小公倍数是 60,那么这两个数 是__________________。 4、2000 的约数共有_______________个。 5、在□中填上一个相同的数,使下面的等式成立: □+□+□×□+□-□+□÷□=144 □应填的数为_________________。 6、叶平和王军共有钱 1020 元,如果叶平的钱增加 25%,王军的钱增 加 ,则两个的钱相等。叶平和王军有钱分别是___________、 ______________。
小升初重点中学招生考试数学试卷及详细答案解析(50题)
小升初重点中学招生考试数学试卷及详细答案解析(50题)一、选择题1、参加某次数学竞赛的女生和男生人数的比是1:3,这次竞赛的平均成绩是82分,其中男生的平均成绩是80分,女生的平均成绩是( )。
A.82 B.86 C.87 D.882、一种商品,原价98元,先提价10%后,再降价10%,现价与原价相比,价格( )。
A.相同B.高了C.低了D.无法确定3、甲数除以乙数的商是0.6,甲数是甲、乙两数和的( )%。
A.60 B.62.5 C.37.54、在下图中,平行四边形的面积是20平方厘米。
图中甲、乙面积比是( )。
A.3:2 B.5:2 C.3:1 D.5:15、一个口袋里装有红球3个,黄球1个(每次摸一个球再放回袋中),小明摸了三次摸到的都是红球,那么第四次摸到黄球的可能性是( )。
A.100% B.C.D.6、将直角三角形ABC的AB轴旋转一周,得到的圆锥体积是V,那么V=( )。
A.12兀B.25兀C.36兀D.48兀二、填空题7、一个盒子里装有大小、轻重完全一样的黄、红、白球共12个。
其中黄球6个,白球2个,红球4个。
从中任意摸出一个球,摸出白球的可能性是( )。
8、邹老师用一根28厘米长的铁丝围成了一个三角形,这个三角形的一边最长可能是( )厘米。
(取整厘米)9、一个数的小数点向左移动两位后。
得到的数比原数小11.88,原数是( )。
10、一条长1 200米的小路。
甲队单独修6小时修完,乙队单独修8小时修完,两队合作3小时后,还剩( )米没修完。
11、在做两位整数的乘法时。
小丁把被乘数的个位数字看镨了,所得结果是255;小东把被乘数的十位数字看错了。
所得结果365。
那么正确的乘积是( )。
12、实验小学在援助青海地震灾区捐款活动中,师生共捐款56000元。
教师的捐款是全校学生捐款的,教师捐款( )元。
13、有甲、乙两个两位数,甲数的等于乙数的。
这两个两位数的差最多是( )。
14、有83个玻璃球,其中有一个球比其他的球重一些。
小升初数学模拟试卷(有答案解析)
小升初数学模拟试卷(有答案解析)一、填一填。
(第3题每空0.5分,余每空1分,共21分)1.1.5立方米=立方分米4吨50千克=吨2.=÷15=0.8=÷40=折3.千米相当于12千米的,吨是吨的。
4.把米长的绳子平均截成5段,每段占全长的,每段长米.5.新冠疫苗研发功后,中国科学有序推进新冠疫苗接种工作,截止至2022年7月5日,全国已完成3416000000次接种任务。
画线部分的数读作,省略亿位后面的数约是。
6.两个圆的半径比是3:4,那么两个圆的周长比是,面积比是。
7.一件上衣价格是m元,一条裤子的价格比这件上衣价格的2倍少5元,裤子的价格是元。
如果m=80,那么裤子价格是元。
8.等底等高的圆柱和圆锥体积相差28立方分米,圆柱的体积是立方分米,圆锥的体积是立方分米。
9.鸡兔同笼,共有12个头,32条腿,那么鸡有只,兔有只。
10.一种微型零件长3毫米,画在图纸上的长是6厘米,这幅图纸的比例尺是。
11.5名运动员进行乒乓球单打比赛,要求每两名运动员之间进行一场比赛,一共要进行场比赛。
12.一段圆柱形木料,底面积是16平方分米,平行于底面将木料截成三段,则表面积增加平方分米。
二、辨一辨。
对的在括号里画√。
错的画×)(5分)13.1吨的和3吨的一样重.14.用放大10倍的放大镜看一个10度的角,这个角还是10度。
15.因为a×3=b×5,所以a:3=b:5。
16.如果把向北走50米记作+50米,那么向南走30米应该记作﹣30米。
17.圆的面积与它的半径成正比例.三、选一选。
(把正确答案的序号填在括号里)(5分)18.第二十四届冬奥会于2022年2月在北京举行,这一年的第一季度有()天。
A.90 B.91 C.92 D.无法确定19.如图物体从上面看到的形状是()A.B.C.D.20.把红、黄、蓝3种颜色的球各5个放在一个袋子里,至少要取()个球,才能保证取到两个颜色相同的球。
小升初重点中学招生考试数学模拟试卷及答案(共三套)
45 个数是( 4064301 )。
4.三个分数22001167,22001165, 22001175中最大的是 (
2017 2015
),最小
的是 (
2016 2017
)。
5.甲、乙两种糖果混合后,平均每千克 18.5 元,其中甲种糖
果每千克 24.8 元,乙种糖果每千克 16.4 元,乙种糖果是甲种糖果
做对题数: 20-4= 16(道)] 6.小明 7:15 从家出发去学校,到学校的时间是 7:50,那
么这段时间分针走了( 210 )度,时针走了( 17.5 )度。[提示: 从 7:15 到 7:50 经过了 35 分,35÷60=172(时) 172×360°= 210° 172÷12×360°=17.5°]
筐的3,如果从 4
乙筐中取出
40
个放入甲筐,这时乙筐苹果的个数是甲筐的2。甲、 5
乙两筐原有苹果多少个?(7 分)
40÷3+4 4-5+2 2=40÷27=140(个)
140× 3 =60(个) 3+4
140- 60= 80(个 ) 答:甲筐原有苹果 60 个,乙筐原有苹果 80 个。
6.甲、乙两人同时从山脚开始爬山,到达山顶后立即下山, 甲、乙两人下山的速度都是各自上山速度的 2 倍,甲到山顶时乙 距山顶还有 500 米,甲回到山脚时乙刚好下到半山腰,求山脚到 山顶的路程。(7 分)
号。”孙飞说:“丁是 2 号,丙是 3 号。”李亮说:“丁是 1 号,
乙是 3 号。”又知道赵明、钱平、孙飞、李亮每人只说对了一半,
那么丙的号码是( A )。
A.4
B. 3
C.2
D.1
[提示:甲、Βιβλιοθήκη 、丙、丁分别是 1,3,4,2]三、计算。(20 分) 1.下面各题,能简算的要简算。(15 分) (1)4113×34+ 5114× 45+ 6115×56 =124×3+205×4+306×5
小升初数学模拟试题(4套)
小升初数学模拟试题(一)一、选择题(每小题2分,共20分) 1、103的分子增加6,要使分数的值大小不变,分母( )A 、加上20B 、加上6C 、扩大到原来的2倍D 、增加3倍2、用8个球设计摸球游戏,使摸到白球与摸不到白球的可能性一样大,摸到红球的可能性比摸到黄球的可能性大,则游戏可设计满足上述条件的白、红、黄球的个数可能为( )A 、4、2、2B 、3、2、3C 、5、2、1D 、4、3、13、三个数的平均数是2015,增加一个数后,四个数的平均数还是2015,则增加的这个数为( )A 、2016B 、2015C 、2014D 、2154、如果a 、b 、c 、d 四个数满足a+1=b-2=c+3=d-4,那么a 、b 、c 、d 这四个数最大的是()A 、aB 、bC 、cD 、d5、最小的质数与最接近100的质数的乘积是( )A 、194B 、202C 、291D 、3036、设A 和B 都是自然数,并且满足3317311=+B A 那么A+B 等于( ) A 、1B 、2C 、3D 、4 7、某商品去年5月提价25%,今年5月份要回复原价,则应降价( ) A 、15%B 、20%C 、25%D 、30% 8、小明到文具店买东西后又按原路返回,去时每分钟行b 米,回来时每分钟行a 米,求小明来回的平均速度的正确算式( )A 、⎪⎭⎫⎝⎛+÷b a 112 B 、()2÷+b aC 、⎪⎭⎫⎝⎛+÷b a 111D 、()b a +÷29、在分数19142116149138,,,中,最大数与最小数的差是( ) A 、27330 B 、24730 C 、29435D 、2662510、长和宽均为正整数,面积为120cm ²的形状不同的长方形共有()种。
A 、5B 、6C 、7D 、8二、填空题(每小题2分,共20分)1、如图所示,其中有条线段,条直线,条射线。
重点中学小升初分班数学考前强化训练试题及模拟试题(共10套)
重点中学考前强化训练试题(一)一、填空题(每题5分,共60分)1.6.3÷2.2=( )……( ) 2.3.6×++=( )3.=⨯+⋯⋯+⨯+⨯+⨯2002200114313212111( )4.已知a +2=a ×2,那么a=( )5.把三个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是( )平方厘米。
6.某市奥林匹克学校进行速算比赛,共出了1000道题,甲每分可算出30道题,乙每算出50道题比甲算同样多的题少用3秒,乙做完1000题,甲还有(30)题没有做出。
7.有一个分数约成最简分数是,约分前分子分母的和等于48,约分前的分数是( )。
8.甲、乙两人加工同一种零件,甲加工的零件个数比乙少20%,乙加工的时间比甲少,乙的工作效率是甲的( )%。
9.10000千克葡萄在新疆测得含水量是99%,运抵太原后测得含水量为98%,问葡萄运抵太原后还剩( )千克。
(途中损失不计)10.有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根可燃的时间是短的,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短( )。
11.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是( )厘米。
(保留两位小数)12.一个直圆锥的体积是120立方厘米,将圆锥体沿高的处横截成圆台,将这个圆台放入圆柱形纸盒,纸盒的容积至少是( )立方厘米。
二、应用题(写出主要的解答过程或推理过程,每题10分,共60分)1.小明看一本故事书,第一天看了20页,第二天看了余下的,这时,未看的与已看的页数相等,这本书共有多少页?(至少用3种方法)2.修一条公路,将总任务按5:6的比例分配给甲、乙两个工程队,甲队先修了630米,完成了分配任务的70%,后来甲队调走,余下的任务由乙队修完,乙队一共修了多少米?8 有一批书要打包后邮寄,要求每包内所装书的册数相同,用这批书的打了14个包还多35本,余下的书连同第一次多的零头刚好又打了11包,这批书共有多少本?12 水果商店运来桔子、苹果和梨共410千克,其中桔子是梨的2倍,梨比苹果的21少10千克,三种水果各多少千克?13 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小升初重点中学数学模拟试题及答案25套
小升初重点中学-数学模拟试题及答案25套1(首师附中考题)A、B、C、D、E、F六人赛棋,采用单循环制°现在知道:A、B、C、D、E五人已经分别赛过5.4、3、2、l盘°问:这时F已赛过盘°2 (三帆中学考题)甲、乙、丙三人比赛象棋,每两人赛一盘.胜一盘得2分.平一盘得1分,输一盘得0分.比赛的全部三盘下完后,只出现一盘平局.并且甲得3分,乙得2分,丙得1分.那么,甲乙,甲丙,乙丙(填胜、平、负)°3(西城实验考题)A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛(每人都与其它选手赛一场),每天同时在三张球台各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C,问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?4 (人大附中考题)一个岛上有两种人:一种人总说真话的骑士,另一种是总是说假话的骗子°一天,岛上的2003个人举行一次集会,并随机地坐成一圈,他们每人都声明:“我左右的两个邻居是骗子°”第二天,会议继续进行,但是一名居民因病未到会,参加会议的2002个人再次随机地坐成一圈,每人都声明:“我左右的两个邻居都是与我不同类的人°”问有病的居民是_________(骑士还是骗子)°5 (西城实验考题)某班一次考试有52人参加,共考5个题,每道题做错的人数如下:题号 1 2 3 4 5人数 4 6 10 20 39又知道每人至少做对一道题,做对一道题的有7人,5道题全做对的有6人,做对2道题的人数和3道题的人数一样多,那么做对4道题的有多少人?预测1学校新来了一位老师,五个学生分别听到如下的情况:(1)是一位姓王的中年女老师,教语文课;(2)是一位姓丁的中年男老师,教数学课;(3)是一位姓刘的青年男老师,教外语课;(4)是一位姓李的青年男老师,教数学课;(5)是一位姓王的老年男老师,教外语课°他们听到的情况各有一项正确,请问:真实情况如何?预测2某次考试,A,B,C,D,E五人的得分是互不相同的整数°A说:“我得了94分°”B说:“我在五人中得分最高°”C说:“我的得分是A和D的平均分°”D说:“我的得分恰好是五人的平均分°”E说:“我比C多得2分,在我们五人中是第二名°”问:这五个人各得多少分?预测3A,B,C,D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分°已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局°问:D队得几分?逻辑推理篇答案1(首师附中考题)【解】单循环制说明每个人都要赛5盘,这样A 就跟所有人下过了,再看E,他只下过1盘,这意味着他只和A下过,再看B 下过4盘,可见他除了没跟E下过,跟其他人都下过;再看D 下过2,可见肯定是跟A,B下的,再看C,下过3盘,可见他不能跟E,D下,所以只能跟A,B,F下,所以F总共下了3盘°2(三帆中学考题)【解】甲得3分,而且只出现一盘平局,说明甲一胜一平;乙2分,说明乙一胜一负;丙1分,说明一平一负°这样我们发现甲平丙,甲胜乙,乙胜丙°3(西城实验考题)【解】天数对阵剩余对阵第一天 B---D A、C、E、F第二天 C---E A、B、D、F第三天 D---F A、B、C、E第四天 B---C A、D、E、F第五天 A---??从中我们可以发现D已经和B、C对阵了,这样第二天剩下的对阵只能是A---D、B---F;又C已经和E、B对阵了,这样第三天剩下的对阵只能是C---A、B---E;这样B就已经和C、D、E、F都对阵了,只差第五天和A对阵了,所以第五天A---B;再看C已经和A、B、E对阵了,第一天剩下的对阵只能是C---F、A---E;这样A只差和F对阵了,所以第四天A---F、D---E;所以第五天的对阵:A---B、C---D、E---F°4(人大附中考题)【解】:2003个人坐一起,每人都声明左右都是骗子,这样我们可以发现要么是骗子和骑士坐间隔的坐,要不就是两个骗子和一个骑士间隔着坐,因为三个以上的骗子肯定不能挨着坐,这样中间的骗子就是说真话了°再来讨论第一种情况,显然骑士的人数要和骗子的人数一样多,而现在总共只有2003人,所以不符合情况,这样我们只剩下第二种情况°这样我们假设少个骗子,则其中旁边的那个骗子左右两边留下的骑士,这样说明骗子说“我左右的两个邻居都是与我不同类的人”是真话°所以只能是少个骑士°5 (西城实验考题)【解】: 总共有52×5=260道题,这样做对的有260-(4+6+10+20+39)=181道题°对2道,3道,4道题的人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样转化成鸡兔同笼问题:所以对4道题的有 (144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人.预测1【答】姓刘的老年女老师,教数学°提示:假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师°再由(1)知,她不教语文,不是中年人°假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学°由(2)(4)知她是老年人,由(3)知她姓刘°预测2【答】B,E,D,C,A依次得98,97,96,95,94分°解:由B,E所说,推知B第一、E第二;由C,D所说,推知C,D都不是最低,所以A最低;由A最低及C所说,推知C在A,D之间,即D第三、C第四°五个人得分从高到底的顺序是B,E,D,C,A°因为C是A,D的平均分,A是94分,所以D的得分必是偶数,只能是96或98°如果D是98分,则C是(98+94)÷2=96(分), E是96+2=98(分),与D得分相同,与题意不符°因此D是96分,C得95分,E得97分, B得96×5-(94+95+96+97)=98(分)°B,E,D,C,A依次得98,97,96,95,94分°预测3【答】3分°解:B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分°A队总分第一,并且没有胜B队,只能是胜2场平1场(与B队平),得7分°因此C队与B队平局,负于A队,得分是奇数,所以只能得1分°D队负于A队和B队,胜C队,得3分°小升初重点中学真题之比例百分数篇1(清华附中考题)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是________元.2(101中学考题)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100千克的蘑菇现在还有多少千克呢?3(实验中学考题)有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是________升°4(三帆中学考题)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重°如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍°这两堆煤共重()吨°5(人大附中考题)一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,开始时黑棋子,求白棋子各有多少枚?预测1某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?预测2袋子里红球与白球数量之比是19:13°放入若干只红球后,红球与数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11°已知放入的红球比白球少80只,那么原先袋子里共有多少只球?比例百分数篇答案1 (清华附中考题)【解】:设方程:设甲成本为X元,则乙为2200-X元°根据条件我们可以求出列出方程:90%×[(1+20%)X+(1+15%)(2200-X)]-2200=131°解得X=1200°2 (101中学考题)【解】:转化成浓度问题相当于蒸发问题,所以水不变,列方程得:100×(1-99%)=(1-98%)X,解得X=50°方法二:做蒸发的题目,要改变思考角度,本题就应该考虑成“98%的干蘑菇加水后得到99%的湿蘑菇”,这样求出加入多少水份即为蒸发掉的水份,就又转变成“混合配比”的问题了°但要注意,10千克的标注应该是含水量为99%的重量°将100千克按1∶1分配,所以蒸发了100×1/2=50升水°3 (实验中学考题)【解】此题的关键是抓住不变量:差不变°这样原来两桶水差13-8=5升,往两个桶中加进同样多的水后,后来还是差5升,所以后来一桶为5÷(7-5)×5=12.5,所以加入水量为4.5升°4 (三帆中学考题)【解】从甲堆运12吨给乙堆两堆煤就一样重说明甲堆比乙堆原来重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨°5 (人大附中考题)【解】第二次拿走45枚黑棋,黑子与白子的个数之比由2:1(=10:5)变为1:5,而其中白棋的数目是不变的,这样我们就知道白棋由原来的10份变成现在的1份,减少了9份°这样原来黑棋=45÷9×10=50,白棋=45÷9×5+15=40°预测1【解】男生156人,女生147人°如果女生也是增加 4%,这样增加的人数是290×4%=11.6(人).比 13人少 1.4人.因此上年度是 1.4÷(5%- 4%)=140(人).本年度女生有140×(1+5%)= 147(人). 预测2【解】放入若干只红球前后比较,那白球的数量不变,也就是后项不变;再把放入若干只白球的前后比较,红球的数量不变,因此可以根据两次变化前后的不变量来统一,然后比较°红白原来19 :13=57:39加红 5 : 3=65:39加白13 :11=65:55原来与加红球后的后项统一为3与13的最小公倍数为39,再把加红与加白的前项统一为65 与13的最小公倍数65°观察比较得出加红球从57份变为65份,共多了8份,加白球从39份变为55份,共多了16份,可见红球比白球少加了8份,也就是少加了80只,每份为10只,总数为(57+39)×10=960只°北京小升初重点中学真题之找规律篇1(西城实验考题)有一批长度分别为1,2,3,4, 5,6,7,8,9,10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形;如果规定底边是11厘米,你能围成多少个不同的三角形?2(三帆中学考题)有7双白手套,8双黑手套,9双红手套放在一只袋子里°一位小朋友在黑暗中从袋中摸取手套,每次摸一只,但无法看清颜色,为了确保能摸到至少6双手套,他最少要摸出手套()只°(手套不分左、右手,任意二只可成一双) °3(人大附中考题)某次中外公司谈判会议开始10分钟听到挂钟打钟(只有整点时打钟,几点钟就响几下),整个会议当中共听到14下钟声,会议结束时,时针和分针恰好成90度角,求会议开始的时间结束的时间及各是什么时刻°4(101中学考题)4道单项选择题,每题都有A、B、C、D四个选项,其中每题只有一个选项是正确的,有800名学生做这四道题,至少有_________人的答题结果是完全一样的?5 (三帆中学考题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少.这时间等于_________分钟.预测 1在右图的方格表中,每次给同一行或同一列的两个数加1,经过若干次后,能否使表中的四个数同时都是5的倍数?为什么?1 24 3预测 2甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服°两厂合并后,每月(按30天计算)最多能生产多少套衣服?找规律篇之答案1 (西城实验考题)【解】由于数量足够多,所以考虑重复情况;现在底边是11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于11.情况如下:一边长度取11,另一边可能取1~11总共11种情况;一边长度取10,另一边可能取2~10总共9种情况;……一边长度取6,另一边只能取6总共1种;下面边长比6小的情况都和前面的重复,所以总共有1+3+5+7+9+11=36种°2 (三帆中学考题)【解】考虑运气最背情况,这样我们只能是取了前面5双颜色相同的后再取三只颜色不同的,如果再取一只,那么这只的颜色必和刚才三只中的一只颜色相同故我们至少要取5×2+3+1=14只°3(人大附中考题)【解】因为几点钟响几下,所以14=2+3+4+5,所以响的是2、3、4、5点,那么开始后10分钟才响就是说开始时间为1点50分°结束时,时针和分针恰好成90度角,所以可以理解为5点过几分钟时针和分针成90度角,这样我们算出答案为10÷11/12=1010/11分钟,所以结束时间是5点1010/11分钟°(可以考虑还有一种情况,即分针超过时针成90度角,时间就是40÷11/12)4 (101中学考题)【解】: 因为每个题有4种可能的答案,所以4道题共有4×4×4×4=256种不同的答案,由抽屉原理知至少有: [799/256]+1=4人的答题结果是完全一样的.5 (三帆中学考题)【解】不难得知应先安排所需时间较短的人打水.不妨假设为:第一个水龙头第二个水龙头第一个 A F第二个 B G第三个 C H第四个 D I第五个 E J显然计算总时间时,A、F计算了5次,B、G计算了4次,C、H计算了3次,D、I计算了2次,E、J计算了1次.那么A、F为1、2,B、G为3、4,C、H为5、6,D、I为7、8,E、J为9、10.所以有最短时间为(1+2)×5+(3+4)×4+(5+6)×3+(7+8)×2+(9+10)×1=125分钟.评注:下面给出一排队方式:第一个水龙头第二个水龙头第一个 1 2第二个 3 4第三个 5 6第四个 7 8第五个 9 10预测 1【解】:要使第一列的两个数1,4都变成5的倍数,第一行应比第二行多变(3+5n)次;要使第二列的两个数2,3都变成5的倍数,第一行应比第二行多变(1+5m)次°因为(3+5n)除以5余3,(1+5m)除以5余1,所以上述两个结论矛盾,不能同时实现°注:m,n可以是0或负数°预测2【解】:应让善于生产上衣或裤子的厂充分发挥特长°甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣°因为甲厂 30天可生产裤子 448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产°设乙厂用x天生产裤子,用(30-x)天生产上衣°由甲、乙两厂生产的上衣与裤子一样多,可得方程960+720÷18×x=720÷12×(30-x),960+40x=1800-60x,100x=840,x=8.4(天)°两厂合并后每月最多可生产衣服960+40×8.4=1296(套)°北京小升初重点中学真题之方程篇1 (清华附中考题)10名同学参加数学竞赛,前4名同学平均得分150分,后6名同学平均得分比10人的平均分少20分,这10名同学的平均分是________分.2 (西城实验考题)某文具店用16000元购进4种练习本共6400本°每本的单价是:甲种4元,乙种3元,丙种2元,丁种1.4元°如果甲、丙两种本数相同,乙、丁两种本数也相同,那麽丁种练习本共买了_________本°3(人大附中考题)某商店想进饼干和巧克力共444千克,后又调整了进货量,使饼干增加了20千克,巧克力减少5%,结果总数增加了7千克°那么实际进饼干多少千克?4 (北大附中考题)六年级某班学生中有1/16的学生年龄为13岁,有3/4的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是_________岁°5 (西城外国语考题)某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是__________°6 (北京二中题)某自来水公司水费计算办法如下:若每户每月用水不超过5立方米,则每立方米收费1.5元,若每户每月用水超过5立方米,则超出部分每立方米收取较高的定额费用,1月份,张家用水量是李家用水量的,张家当月水费是17.5元,李家当月水费27.5元,超出5立方米的部分每立方米收费多少元?方程篇答案:1 (清华附中考题)【解】:设10人的平均分为a分,这样后6名同学的平均分为a-20分,所以列方程:[ 10a-6×(a-20)]÷4=150 解得:a=120°2 (西城实验考题)【解】:设甲、丙数目各为a,那么乙、丁数目为(6400-2a)/2,所以列方程4a+3×(6400-2a)/2+2a+1.4×(6400-2a)/2=16000 解得:a=1200°3(人大附中考题)【解】:设饼干为a,则巧克力为444-a,列方程:a+20+(444-a)×(1+5%)-444=7 解得:a=184°4 (北大附中考题)【解】:因为是填空题,所以我们直接设这个班有16人,计算比较快°所以题目变成了:1个学生年龄为13岁,有12个学生年龄为12岁,3个学生学生年龄为11岁,求平均年龄?(13×1+12×12+11×3)÷16=11.875,即平均年龄为11.875岁°如果是需要写过程的解答题,则可以设这个班的人数为a,则平均年龄为:=11.875°5 (西城外国语考题)【解】:设这个五位数为x,则由条件(x+200000)×3=10x+2,解得x=85714°6 (北京二中题)【解】:设出5立方米的部分每立方米收费X,(17.5-5×1.5)÷X+5=[(27.5-5×1.5)÷X+5]×(2/3)解得:X=2°北京小升初重点中学真题之计数篇1 (人大附中考题)用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数.2 (首师附中考题)有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需32元,买甲4件,乙10件,丙1件,共需43元,则甲、乙、丙各买1件需________元钱?3 (三帆中学考题)某小学有一支乒乓球队,有男、女小队员各8名,在进行男女混合双打时,这16名小队员可组成__对不同的阵容.预测有10个箱子,编号为1,2,…,10,各配一把钥匙,10把各不相同,每个箱子放进一把钥匙锁好,先撬开1,2号箱子,取出钥匙去开别的箱子,如果最终能把所有箱子的锁都打开,则说是一种好的放钥匙的方法°求好的方法的总数°计数篇答案:1 (人大附中考题)【解】1) 9×8×7=504个2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个(减去有2个数字差是1的情况,括号里8个数分别表示这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123 234 345 456 567 789这7种情况)2 (首师附中考题)【解】:3甲+7乙+丙=324甲+10乙+丙=43组合上面式子,可以得到:甲+3乙=11,可见:甲+乙+丙=4甲+10乙+丙-3甲-9乙=43-3×11=10°3 (三帆中学考题)【解】先把男生排列起来,这就有了顺序的依据,那么有8名女生全排列为8!=40320.预测【解】:设第1,2,3,…,10号箱子中所放的钥匙号码依次为k1,k2,k3,…,k10°当箱子数为n(n≥2)时,好的放法的总数为an°当n=2时,显然a2=2(k1=1,k2=2或k1=2,k2=1)°当n=3时,显然k3≠3,否则第3个箱子打不开,从而k1=3或k2=3,于是n=2时的每一组解对应n=3的2组解,这样就有a3=2a2=4°当n=4时,也一定有k4≠4,否则第4个箱子打不开,从而k1=4或k2=4或k3=4,于是n=3时的每一组解,对应n=4时的3组解,这样就有a4=3a3=12°依次类推,有a10=9a9=9×8a8=…=9×8×7×6×5×4×3×2a2=2×9!=725760°即好的方法总数为725760°北京小升初重点中学真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身°如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__°3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____°4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次°2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.140,225,293被某大于1的自然数除,所得余数都相同°2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________°5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的°试说明,所有幸运车票号码的和能被13整除°数论篇一答案:1 (人大附中考题)【解】:62 (101中学考题)【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45°3 (人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____°【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90°4 (人大附中考题)【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D°数论篇二答案:1 (清华附中考题)【解】:处理成余数相同的,则888、518-7、666-10的余数相同,这样我们可以转化成同余问题°这样我们用总结的知识点可知:任意两数的差肯定余0°那么这个自然数是888-511=377的约数,又是888-656=232的约数,也是656-511=145的约数,因此就是377、232、145的公约数,所以这个自然数是29°2 (三帆中学考题)【解】:这样我们用总结的知识点可知:任意两数的差肯定余0°那么这个自然数是293-225=68的约数,又是225-140=85的约数,因此就是68、85的公约数,所以这个自然数是17°所以2002除以17余13 (人大附中考题)【解】:“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61°4 (101中学考题)【解】:设后面这个两位数为ab,前面数字和为26除以3余2,所以补上的两位数数字和要除以3余2°同理要满足除以4余2;八位数中奇数位数字和为(2+7+3+a),偶数位数字和为(5+6+3+b)这样要求a=b+2,所以满足条件的只有865 (实验中学考题)【解】1、[ ]=999个°2、对于每一个三位数×××来说,在1 ×××、2×××、3 ×××和4×××这4个数中恰好有1个数的数字和能被4整除.所以从1000到4999这4000个数中,恰有1000个数的数字和能被4整除.同样道理,我们可以知道600到999这400个数中恰有100个数的数字和能被4整除,从200到599这400个数中恰有100个数的数字和能被4整除.现在只剩下10到199这190个数了.我们还用一样的办法.160到199这40个数中,120到159这40个数中,60到88这40个数中,以及20到59这40个数中分别有10个数的数字和能被4整除.而10到19,以及100到1t9中则只有13、17、103、107、112和116这6个数的数字和能被4整除.所以从10到4999这4990个自然数中,其数字和能被4整除的数有1000+100×2+10×4+6=1246个.[方法二]:解:第一个能数字和能够被4整除的数是13,最后一个是4996,这中间每4位数就有一个能够满足条件,所以4996-13=4983,4983÷4=1245(个),而第一个也是能够满足的,所以正确答案是1245+1=1246(人)或者就直接用4996-12=4984,用4984÷4=1246(个)[拓展]:1到9999的数码和是等于多少?北京小升初重点中学真题之工程问题篇1 (三帆中学考题)原计划18个人植树,按计划工作了2小时后,有3个人被抽走了,于是剩下的人每小时比原计划多种1棵树,还是按期完成了任务.原计划每人每小时植______棵树.2 (首师附中考题)一项工程,甲做10天乙20天完成,甲15天乙12也能完成°现乙先做4天,问甲还要多少天完成?3 (人大附中考题)一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成°如果先由甲打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时,……两人如此交替工作°那么,打完这部书稿时,甲、乙二人共用了多少小时?4 (西城四中考题)如果用甲、乙、丙三那根水管同时在一个空水池里灌水,1小时可以灌满;如果用甲、乙两管,1小时20分钟可以灌满;如果用乙、丙两根水管,1小时15分钟可以灌满,那么,用乙管单独灌水的话,灌满这一池的水需要 ______小时°预测有A,B两堆同样多的煤,如果只装运一堆煤,那么甲车需要20时,乙车需要24时,丙车需要30时°现在甲车装运A堆煤,乙车装运B堆煤,丙车开始先装运A堆煤,中途转向装运B堆煤,三车同时开始,同时结束装完这两堆煤°丙车装运A堆煤用了多少时间?预测单独完成一件工程,甲需要24天,乙需要32天°若甲先做若干天以后乙接着做,则共用26天时间,问:甲独做了几天?预测某水池有甲、乙、丙3个放水管,每小时甲能放水100升,乙能放水125升°现在先使用甲放水,2小时后,又开始使用乙管,一段时间后再开丙管,让甲、乙、丙3管同时放水,直到把水放完°计算甲、乙、丙管的放水量,发现它们恰好相等°那么水池中原有多少水?工程问题答案1 (三帆中学考题)【解】: 3人被抽走后,剩下15人都多植树1棵,这样每小时都总共多植树15棵树,因为还是按期完成任务,所以这15棵树肯定是3人原来要种的,所以原来每人要植树15÷3=5棵°2 (首师附中考题)【解】:甲10天+乙20天=1;甲15天+乙12天=1,所以工作量:甲10天+乙20天=甲15天+乙12天,等式两端消去相等的工作量得:乙8天=甲5天,即乙工作8天的工作量让甲去做只要5天就能完成,那么整个工程全让甲做要15+12× =22.5天°现在乙了4天就相当于甲做了4× =2.5天,所以甲还要做20天°3 (人大附中考题)【解】:甲的工作效率= ,乙的工作效率= ,合作工效= ,甲乙交替工作相当于甲乙一起合作1小时,这样1÷ = =8…,所以合作了8小时,这样还剩下就是甲做的,所以甲还要做÷ =3 ,所以两人总共作了8+8+ 小时°4 (西城四中考题)【解】:方法一:(编者推荐用法)甲、乙、丙60分钟可以灌满,甲、乙两管80分钟可以灌满,乙、丙两根水管75分钟可以灌满;这样我们先找出60、80、75的最小公倍数,即1200,所以我们假设水池总共有1200份,这样甲、乙、丙每分钟灌1200÷60=20份,甲、。
重点中学小升初中入学试卷
小升初分班考试模拟试题及答案(一)1.著名的数学家斯蒂芬巴纳赫于1945年8月31日去世,他在世时的某年的年龄恰好是该年份的算术平方根(该年的年份是他该年年龄的平方数).则他出生的年份是_____ ,他去世时的年龄是______ .【答案】1892年;53岁。
【解】首先找出在小于1945,大于1845的完全平方数,有1936=442,1849=432,显然只有1936符合实际,所以斯蒂芬巴纳赫在1936年为44岁.那么他出生的年份为1936-44=1892年.他去世的年龄为1945-1892=53岁.【提示】要点是:确定范围,另外要注意的“潜台词”:年份与相应年龄对应,则有年份-年龄=出生年份。
2.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有___ 人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同.【答案】46【解】十项比赛,每位同学可以任报两项,那么有=45种不同的报名方法.那么,由抽屉原理知为45+1=46人报名时满足题意.3.如图,ABCD是矩形,BC=6cm,AB=10cm,AC和BD是对角线,图中的阴影部分以CD为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π=3.14)【答案】565.2立方厘米【解】设三角形BOC以CD为轴旋转一周所得到的立体的体积是S,S等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。
即:S= ×62×10×π-2××32×5×π=90π,2S=180π=565.2(立方厘米)【提示】S也可以看做一个高为5厘米,上、下底面半径是3、6厘米的圆台的体积减去一个高为5厘米,底面半径是3厘米的圆锥的体积。
4.如图,点B是线段AD的中点,由A,B,C,D四个点所构成的所有线段的长度均为整数,若这些线段的长度的积为10500,则线段AB的长度是______。
上海重点中学小升初数学模拟试卷及答案
重点中学小升初数学试卷A一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.2012年重点中学小升初数学试卷B一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?2012年重点中学小升初数学试卷C一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.2012年重点中学小升初数学试卷D一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?2012年重点中学小升初数学试卷E一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?2012年重点中学小升初数学试卷F一、填空题:2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.大的分数为______.4.如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.二、解答题:1.求在8点几分时,时针与分针重合在一起?2.如图中数字排列:问:第20行第7个是多少?3.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?4.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?。
小升初数学试卷汇编及答案(15套)
小升初模拟试卷(一)时间:80分钟姓名分数一填空题(6分×10=60分)1.。
2.。
3.计算,三个同学给出三个不同的答案分别为632254965、632244965、632234965其中有一个是正确的,则正确的是。
4.甲村与乙村间要开挖一条长580米的水渠,甲村比乙村每天可以多挖2米,于是乙村先开工5天,然后甲村再动工与乙村一起挖。
从开始到完成共用了35天,那么乙村每天挖米。
5.一辆汽车从A到B,每小时行40千米,当行到全程的2/3时,速度增加了1/2,因此比预定时间提早1小时到达B。
全程千米。
6.一个底面是正方形的容器里盛着水,从里面量边长是13厘米,水的高度是6厘米。
把一个15厘米高的铁质实心圆锥直立在容器里,水的高度上升到10厘米。
则圆锥的体积是立方厘米。
7.浓度为60%的酒精溶液200克,与浓度为30%的酒精溶液300克混合后所得到的酒精溶液的浓度是。
8.有2分、5分、1角的硬币共20枚,共计1.20元,其中5分的有枚,1角的有枚。
9.一个自然数可以分解为三个质因数的积,如果三个质因数的平方和是7950,这个自然数是。
10.22003与20032的和除以7的余数是。
二解答题(10分×4=40分)1. 操场上有很多人,一部分站着,另一部分坐着,如果站着的人中有25%坐下,而坐着的人中有25%站起,那么站着的人就占操场上人数的70%,求原站着的人占操场上人数的百分之几?2. 时速4千米的A追赶时速3千米的B,两人相距0.5千米时,有一只蜜蜂从A的帽子上开始回在两人中间飞,直飞到A追及B为止,若蜜蜂时速10千米.问:蜜蜂为了多少千米?3. 某书店出售一种挂历,每出售一本可获利18元,出售2/5后,每本减价10元,全部售完,共获利3000元.这个书店出售这种挂历多少本?4. 如图,一头羊被7米长的绳子拴在正五边形建筑物的一个顶点上,建筑物边长3米,周围都是草地,这头羊能吃到草的草地面积可达多少平方米?( =3)小升初模拟试卷(一)参考答案一填空题1. 1482.3. 63225496555779是3的倍数,所以乘积必然是3的倍数,只有632254965是3的倍数。
小升初数学模拟真题测试卷含答案可打印完整版
人教版小升初测试卷(压轴)时间:90分钟满分:100分题序一二三四五六七总分得分一、填空题。
(25分)1.世界上最高的珠穆朗玛峰比海平面高8844米,如果把这个高度表示为+8844米,那么比海平面高出1524米的东岳泰山的高度应表示为( )米;我国的艾丁湖湖面比海平面低154米,应记作( )米。
2.在直线上,从0出发,向右移动5个单位长度到点A,点A表示的数是( );向左移动4个单位长度到点B,点B表示的数是( )。
3.如果xy=9.8,那么x和y成( )比例。
4.如果气温上升5 ℃记作+5 ℃,那么气温下降3 ℃记作( )。
5.七八折是( )%,二成五是( )%,66%是( )折,23%是( )成( )。
6.在存折上“存入(+)”或“支出(-)”栏目中,“+1000”表示( ),“-800”表示( )。
7.妈妈将20000元钱存入银行,定期三年,年利率为2.75%,到期后妈妈可取回本息( )元。
8.东、西为两个相反的方向,如果-8 m表示一个物体向西运动8 m,那么+3 m表示这个物体向( )运动( )m,物体原地不动记作( )m。
9.欢欢妈妈从微信账户转出( )元,需要交0.1%的手续费,手续费是60元。
10.在表示数的直线上,所有的负数都在0的( )边,所有的负数都比0( );所有的正数都在0的( )边,所有的正数都比0( )。
11.2018年10月1日起,个人所得税起征点调整至每月5000元,爸爸每月需要按3%的税率缴纳个人所得税36.9元,他每月的收入是( )元。
12.如果3x=2y,那么x和y成( )比例;如果x∶6=5∶y,那么x和y 成( )比例;如果x+y=12,那么x和y( )比例。
二、选择题。
(把正确答案的序号填在括号里)(15分)1.学校种50棵树,有48棵成活,这批树的成活率是( )。
A.48%B.96%C.98%2.一个不透明的盒子中有7个红球,5个白球和10个黄球。
人教版数学小升初模拟题附参考答案【满分必刷】
人教版数学小升初模拟题一.选择题(共8题,共16分)1.百货大楼卖一条裤子,如果每条售价为150元,那么售价的60%是进价,售价的40%就是赚的钱,现在要搞促销活动,为保证一条裤子赚的钱不少于30元,应该打()。
A.六折B.七折C.八折2.王老师把3000元存入银行,定期2年,年利率按2.25%计算,到期可得本金和税后利息共()元。
A.3000B.3135C.1083.把一块圆柱形状的木料削成一个最大的圆锥,削去部分的体积是4立方厘米.原来这块木料的体积是()。
A.12立方厘米B.8立方厘米C.6立方厘米4.在-8、3.6、0、19、-20、+6、-16、-0.5这八个数中,下列说法错误的是()。
A.负数有4个B.正数有4个C.正数有3个5.在-3、2.5、1、0、5、中,不是正数的是()。
A.-3B.-3和0C.6.把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米7.小明写字的个数一定,他写每个字的时间与写字的总时间()。
A.成正比例B.成反比例C.不成比例8.求做一个汽油桶至少需要多少铁皮,就是求汽油桶的()。
A.体积B.侧面积C.表面积二.判断题(共8题,共16分)1.一个比例的两内项互为倒数,两外项之积一定为1。
()2.教室的面积一定,铺的瓷砖块数和瓷砖的面积成反比。
()3.如果一个圆柱体的侧面展开后是一个正方形,那么圆柱的高是底面半径的2π倍。
()4.“降价二成”与“打二折”表示的意义相同。
()5.商品打“七五折”出售就是降价75%出售。
()6.3∶4=120∶160还可以写成=。
()7.圆的周长计算公式是c=2πr,其中c与r成正比例。
()8.圆的周长和它的面积成正比例。
()三.填空题(共8题,共20分)1.0.5小时:45分钟化成最简比是(),比值是()。
2.在14:63=中,比的前项是(),63是比的(),比值是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初重点中学真题之逻辑推理篇1(首师附中考题)A、B、C、D、E、F六人赛棋,采用单循环制。
现在知道:A、B、C、D、E五人已经分别赛过5.4、3、2、l盘。
问:这时F已赛过盘。
2 (三帆中学考题)甲、乙、丙三人比赛象棋,每两人赛一盘.胜一盘得2分.平一盘得1分,输一盘得0分.比赛的全部三盘下完后,只出现一盘平局.并且甲得3分,乙得2分,丙得1分.那么,甲乙,甲丙,乙丙(填胜、平、负)。
3(西城实验考题)A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛(每人都与其它选手赛一场),每天同时在三张球台各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C,问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?4 (人大附中考题)一个岛上有两种人:一种人总说真话的骑士,另一种是总是说假话的骗子。
一天,岛上的2003个人举行一次集会,并随机地坐成一圈,他们每人都声明:“我左右的两个邻居是骗子。
”第二天,会议继续进行,但是一名居民因病未到会,参加会议的2002个人再次随机地坐成一圈,每人都声明:“我左右的两个邻居都是与我不同类的人。
”问有病的居民是_________(骑士还是骗子)。
5 (西城实验考题)某班一次考试有52人参加,共考5个题,每道题做错的人数如下:题号 1 2 3 4 5人数 4 6 10 20 39又知道每人至少做对一道题,做对一道题的有7人,5道题全做对的有6人,做对2道题的人数和3道题的人数一样多,那么做对4道题的有多少人?预测1学校新来了一位老师,五个学生分别听到如下的情况:(1)是一位姓王的中年女老师,教语文课;(2)是一位姓丁的中年男老师,教数学课;(3)是一位姓刘的青年男老师,教外语课;(4)是一位姓李的青年男老师,教数学课;(5)是一位姓王的老年男老师,教外语课。
他们听到的情况各有一项正确,请问:真实情况如何?预测2某次考试,A,B,C,D,E五人的得分是互不相同的整数。
A说:“我得了94分。
”B说:“我在五人中得分最高。
”C说:“我的得分是A和D的平均分。
”D说:“我的得分恰好是五人的平均分。
”E说:“我比C多得2分,在我们五人中是第二名。
”问:这五个人各得多少分?预测3A,B,C,D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分。
已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局。
问:D队得几分?逻辑推理篇答案1(首师附中考题)【解】单循环制说明每个人都要赛5盘,这样A 就跟所有人下过了,再看E,他只下过1盘,这意味着他只和A下过,再看B 下过4盘,可见他除了没跟E下过,跟其他人都下过;再看D 下过2,可见肯定是跟A,B下的,再看C,下过3盘,可见他不能跟E,D下,所以只能跟A,B,F下,所以F总共下了3盘。
2(三帆中学考题)【解】甲得3分,而且只出现一盘平局,说明甲一胜一平;乙2分,说明乙一胜一负;丙1分,说明一平一负。
这样我们发现甲平丙,甲胜乙,乙胜丙。
3(西城实验考题)【解】天数对阵剩余对阵第一天 B---D A、C、E、F第二天 C---E A、B、D、F第三天 D---F A、B、C、E第四天 B---C A、D、E、F第五天 A---??从中我们可以发现D已经和B、C对阵了,这样第二天剩下的对阵只能是A---D、B---F;又C已经和E、B对阵了,这样第三天剩下的对阵只能是C---A、B---E;这样B就已经和C、D、E、F都对阵了,只差第五天和A对阵了,所以第五天A---B;再看C已经和A、B、E对阵了,第一天剩下的对阵只能是C---F、A---E;这样A只差和F对阵了,所以第四天A---F、D---E;所以第五天的对阵:A---B、C---D、E---F。
4(人大附中考题)【解】:2003个人坐一起,每人都声明左右都是骗子,这样我们可以发现要么是骗子和骑士坐间隔的坐,要不就是两个骗子和一个骑士间隔着坐,因为三个以上的骗子肯定不能挨着坐,这样中间的骗子就是说真话了。
再来讨论第一种情况,显然骑士的人数要和骗子的人数一样多,而现在总共只有2003人,所以不符合情况,这样我们只剩下第二种情况。
这样我们假设少个骗子,则其中旁边的那个骗子左右两边留下的骑士,这样说明骗子说“我左右的两个邻居都是与我不同类的人”是真话。
所以只能是少个骑士。
5 (西城实验考题)【解】: 总共有52×5=260道题,这样做对的有260-(4+6+10+20+39)=181道题。
对2道,3道,4道题的人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样转化成鸡兔同笼问题:所以对4道题的有 (144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人.预测1【答】姓刘的老年女老师,教数学。
提示:假设是男老师,由(2)(3)(5)知,他既不是青年、中年,也不是老年,矛盾,所以是女老师。
再由(1)知,她不教语文,不是中年人。
假设她教外语,由(3)(5)知她必是中年人,矛盾,所以她教数学。
由(2)(4)知她是老年人,由(3)知她姓刘。
预测2【答】B,E,D,C,A依次得98,97,96,95,94分。
解:由B,E所说,推知B第一、E第二;由C,D所说,推知C,D都不是最低,所以A最低;由A最低及C所说,推知C在A,D之间,即D第三、C第四。
五个人得分从高到底的顺序是B,E,D,C,A。
因为C是A,D的平均分,A是94分,所以D的得分必是偶数,只能是96或98。
如果D是98分,则C是(98+94)÷2=96(分), E是96+2=98(分),与D得分相同,与题意不符。
因此D是96分,C得95分,E得97分, B得96×5-(94+95+96+97)=98(分)。
B,E,D,C,A依次得98,97,96,95,94分。
预测3【答】3分。
解:B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分。
A队总分第一,并且没有胜B队,只能是胜2场平1场(与B队平),得7分。
因此C队与B队平局,负于A队,得分是奇数,所以只能得1分。
D队负于A队和B队,胜C队,得3分。
北京小升初重点中学真题之比例百分数篇1(清华附中考题)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是________元.2(101中学考题)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100千克的蘑菇现在还有多少千克呢?3(实验中学考题)有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是________升。
4(三帆中学考题)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。
如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。
这两堆煤共重()吨。
5(人大附中考题)一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,开始时黑棋子,求白棋子各有多少枚?预测1某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?预测2袋子里红球与白球数量之比是19:13。
放入若干只红球后,红球与数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11。
已知放入的红球比白球少80只,那么原先袋子里共有多少只球?比例百分数篇答案1 (清华附中考题)【解】:设方程:设甲成本为X元,则乙为2200-X元。
根据条件我们可以求出列出方程:90%×[(1+20%)X+(1+15%)(2200-X)]-2200=131。
解得X=1200。
2 (101中学考题)【解】:转化成浓度问题相当于蒸发问题,所以水不变,列方程得:100×(1-99%)=(1-98%)X,解得X=50。
方法二:做蒸发的题目,要改变思考角度,本题就应该考虑成“98%的干蘑菇加水后得到99%的湿蘑菇”,这样求出加入多少水份即为蒸发掉的水份,就又转变成“混合配比”的问题了。
但要注意,10千克的标注应该是含水量为99%的重量。
将100千克按1∶1分配,所以蒸发了100×1/2=50升水。
3 (实验中学考题)【解】此题的关键是抓住不变量:差不变。
这样原来两桶水差13-8=5升,往两个桶中加进同样多的水后,后来还是差5升,所以后来一桶为5÷(7-5)×5=12.5,所以加入水量为4.5升。
4 (三帆中学考题)【解】从甲堆运12吨给乙堆两堆煤就一样重说明甲堆比乙堆原来重12×2=24吨,这样乙堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨。
5 (人大附中考题)【解】第二次拿走45枚黑棋,黑子与白子的个数之比由2:1(=10:5)变为1:5,而其中白棋的数目是不变的,这样我们就知道白棋由原来的10份变成现在的1份,减少了9份。
这样原来黑棋=45÷9×10=50,白棋=45÷9×5+15=40。
预测1【解】男生156人,女生147人。
如果女生也是增加 4%,这样增加的人数是290×4%=11.6(人).比 13人少 1.4人.因此上年度是 1.4÷(5%- 4%)=140(人).本年度女生有140×(1+5%)= 147(人). 预测2【解】放入若干只红球前后比较,那白球的数量不变,也就是后项不变;再把放入若干只白球的前后比较,红球的数量不变,因此可以根据两次变化前后的不变量来统一,然后比较。
红白原来19 :13=57:39加红 5 : 3=65:39加白13 :11=65:55原来与加红球后的后项统一为3与13的最小公倍数为39,再把加红与加白的前项统一为65与13的最小公倍数65。
观察比较得出加红球从57份变为65份,共多了8份,加白球从39份变为55份,共多了16份,可见红球比白球少加了8份,也就是少加了80只,每份为10只,总数为(57+39)×10=960只。
北京小升初重点中学真题之找规律篇1(西城实验考题)有一批长度分别为1,2,3,4, 5,6,7,8,9,10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形;如果规定底边是11厘米,你能围成多少个不同的三角形?2(三帆中学考题)有7双白手套,8双黑手套,9双红手套放在一只袋子里。