精品专题整体法和隔离法

合集下载

整体法与隔离法总结知识点

整体法与隔离法总结知识点

整体法与隔离法总结知识点一、整体法整体法是一种财务报告编制方法,它适用于企业拥有多个经济实体,但这些实体之间相互依存、相互制衡,并且经营活动彼此密切相关的情况。

在整体法下,多个实体的会计核算被合并为一个整体,通过合并报表展示企业整体的财务状况和经营成果。

整体法的适用范围主要包括以下几个方面:1. 股权控制:母公司对子公司具有绝对控制,可以决定子公司的经营政策和财务决策。

2. 互为附属:母子公司之间存在着密切的业务关系和财务交易,彼此之间相互制约,共同为整个企业实体服务。

3. 总体经济实体:多个经济实体共同进行经营活动,具有相互合作、互相支持的特点。

在整体法下,多个经济实体的会计核算被合并为一个整体,通过合并报表展示企业整体的财务状况和经营成果。

整体法的核算方法主要包括以下几个步骤:1. 合并范围的确定:首先确定被合并的范围,包括哪些经济实体参与合并。

2. 资产负债表的合并:将合并范围内各经济实体的资产、负债、所有者权益合并为一个整体资产负债表。

3. 损益表的合并:将合并范围内各经济实体的收入、成本、费用、利润等合并为一个整体损益表。

4. 合并报表的编制:根据合并的资产负债表和损益表编制合并报表,反映企业整体的财务状况和经营成果。

整体法的优劣势:优势:能够全面、真实地反映企业整体的财务状况和经营成果,为外部利益相关方提供全面、客观的信息。

缺点:合并报表的编制复杂,需要耗费大量人力、物力和财力;合并范围内的财务数据可能存在重复计算或遗漏计算的情况。

二、隔离法隔离法是一种财务报告编制方法,它适用于企业拥有多个经济实体,但这些实体之间相互独立、相互独立经营的情况。

在隔离法下,每个实体按照独立的会计核算方法编制财务报告,反映各自的财务状况和经营成果。

隔离法的适用范围主要包括以下几个方面:1. 股权独立:母公司对子公司没有绝对控制,子公司可以自主制定经营政策和财务决策。

2. 互为独立:母子公司之间不存在业务关系和财务交易,各自独立经营,互不受彼此影响。

(完整版)整体法和隔离法专题(带答案)

(完整版)整体法和隔离法专题(带答案)

n e i n g整体法和隔离法1、用轻质细线把两个质量未知的小球悬挂起来,如右图所示.今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大的恒力,最后达到平衡. 表示平衡状态的图可能是( A )2、如图<1>,在粗糙的水平面上放一三角形木块a ,若物体b 在a 的斜面上匀速下滑,则( A )A 、a 保持静止,而且没有相对于水平面运动的趋势;B 、a 保持静止,但有相对于水平面向右运动的趋势;C 、a 保持静止,但有相对于水平面向左运动的趋势;D 、因未给出所需数据,无法对a 是否运动或有无运动趋势作出判断;3、A 、B 、C 三物块质量分别为M 、m 和m 0,作图<2> 所示的联结. 绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计. 若B 随A 一起沿水平桌面作匀速运动,则可以断定( A )A 、物块A 与桌面之间有摩擦力,大小为m 0g ;B 、物块A 与B 之间有摩擦力,大小为m 0g ;C 、桌面对A ,B 对A ,都有摩擦力,两者方向相同,合力为m 0g ;D 、桌面对A ,B 对A ,都有摩擦力,两者方向相反,合力为m 0g ;4、质量为m 的物体放在质量为M 的物体上,它们静止在水平面上。

现用水平力F 拉物体M,它们仍静止不动。

如右图所示,这时m 与M 之间,M 与水平面间的摩擦力分别是( C ) A .F ,F B .F ,0 C .0,F D .0,05、如右图所示,物体a 、b 和c 叠放在水平桌面上,水平力F b =4N 、F c =10N 分别作用于物体b 、c 上,a 、b 和c 仍保持静止。

以f 1、f 2、f 3分别表示a 与b 、b 与c 、c 与桌面间的静摩擦力的大小。

则f 1= 0 ,f 2= 4N ,f 3= 6N 。

6、质量为m 的四块砖被夹在两竖夹板之间,处于静止状态,如右图所示,则砖2对砖1的摩擦力为 mg 。

整体法和隔离法

整体法和隔离法
B保持静止,且F≠0。则下列描述正确的是( )
A
F
B
❖ A、B可能受到3个或者4个力的作用 ❖ B、斜面对B的摩擦力方向可能沿斜面向下 ❖ C、A对B的摩擦力可能为0 ❖ D、AB整体可能受到三个力作用
思考:
1、用整体法还是隔离法?
2、是先整体后隔离?还是先 隔离后整体?
分析方法:对于受力复杂的系统,先整体
研究对象的选择:
1、对于连结体问题,通常用隔离法,但有时也可 采用整体法.
2、如果能够运用整体法,我们应该优先采用整体 法,这样涉及的研究对象少,未知量少,方程少, 求解简便;
3、 不计物体间相互作用的内力,或物体系内的物 体的运动状态相同,一般首先考虑整体法.
4、 对于大多数动力学问题,单纯采用整体法并不 一定能解决,通常采用整体法与隔离法相结合的 方法.
G 2G
❖ 整体法:求系统外力
N
f地
F
ABC
3G
由图中可知:AB间的摩擦力为0,BC、 C与地面间的摩擦力为F。
(2)、若A、B、C一起以加速度a向右加速运动, AB、BC、C与地间的摩擦力又为多少?
(注:学生在练习本画受力分析)
❖ 练习题、如图所示,固定斜面上叠放着A、B两木块,木块 A与B的接触面是水平的,水平力F作用于木块A,使木块A、
后隔离。
N
N1
FN
f
f
F AB
FA
f f’ B mAg
G (1)、整体法
mAg
mBg
(2)、隔离法
❖ 例2、如图所示,人的质量为60kg,木板A的质量 为30kg,滑轮及绳的质量不计,若人想通过绳子拉 住木板,他必须用力的大小( )
❖ A. 225N B. 300N C. 450N D. 600N

隔离法和整体法

隔离法和整体法

二、整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。

采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。

运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。

可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。

采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。

运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体和局部是相对统一的,相辅相成的。

隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力F N。

解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。

比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。

高中物理整体法、隔离法受力分析专题讲解

高中物理整体法、隔离法受力分析专题讲解

受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。

隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。

当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。

2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。

整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。

(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。

(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。

3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。

考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。

3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。

(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。

(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。

(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。

力学专题:整体法和隔离法

力学专题:整体法和隔离法

专题整体法和隔离法法。

在力学中,就是把几个物体视为一个整体作为研究对象,受力分析时,只分析这一整体之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。

整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。

通常在分析外力对系统的作用时,用整体法。

法。

在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。

隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。

在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。

例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。

由平衡条件有垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。

(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。

但并非所有情况都可以用整体法,当要求出物体之间的相互作用力时,则必须用隔离法求出物体间的相互作用力,因为整体法不能暴露出物体之间的相互作用力。

例2. 如图2所示,在两块相同的竖直木板之间,有质量均为m的四块完全相同的砖,用两个同样大小的水平力压木板,使砖静止不动。

小力学专题3 整体法与隔离法—2021届高三物理一轮复习讲义

小力学专题3  整体法与隔离法—2021届高三物理一轮复习讲义

专题3 整体法与隔离法1. 整体法和隔离法:连接体、叠加问题首先想到整体隔离法,尤其是求底层物体与地面、墙壁等接触的摩擦力与弹力问题时,优先选择整体法,对于力少的物体采用隔离法分析;①初级整体法:系统各个物体都处于平衡状态,例如一个物体匀速,一个静止,分析整体合力为0;②中级整体法:系统各个物体有共同的加速度,一般先隔离系统一部分求到加速度,再对整体用牛二;(牛顿定律中会详细分析)③一些物体是平衡的,一些物体有加速度;∑ F 外⋅⋅⋅+++= 332211a m a m a m或者∑ F 外x ⋅⋅⋅+++=3x 32x 21x 1a m a m a m , ∑F 外y ⋅⋅⋅+++= 3y 32y 21y 1a m a m a m 。

2.整体法的口诀整体法的三个层次:初级-中级-高级外力整体内隔离,优先分析简单体;初级整体都平衡,中级整体共加速;高级整体随意用,矢量性与系统性。

注意:内力与外力、天生的外力初级整体例1.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶3C.1∶2D.2∶1例2.质量均为m的a、b两木块叠放在水平面上,如图3所示,a受到斜向上与水平面成θ角的力F 作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力例3.a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止,以下图示哪个是正确的()例4.(多选)如图所示,质量为m、顶角为α的直角劈和质量为M的正方体放在两竖直墙和一水平面间,处于静止状态。

若不计一切摩擦,则()A.水平面对正方体的弹力大小为(M+m)gB.墙面对正方体的弹力大小为mgtan αC.正方体对直角劈的弹力大小为mg cos αD.直角劈对墙面的弹力大小为mg sin α例5.如图所示,两个光滑金属球a、b置于一个桶形容器中,两球的质量m a>m b,对于图中的两种放置方式,下列说法正确的是()A.两种情况对于容器左壁的弹力大小相同B.两种情况对于容器右壁的弹力大小相同C.两种情况对于容器底部的弹力大小相同D.两种情况两球之间的弹力大小相同例6.如图所示,水平地面粗糙,竖直墙面光滑,A是一个光滑圆球,B是与A半径相等的半圆球,A、B均保持静止。

微专题07 整体法与隔离法在平衡中的应用-2025版高中物理微专题

微专题07  整体法与隔离法在平衡中的应用-2025版高中物理微专题

微专题07整体法与隔离法在平衡中的应用【核心要点提示】1.系统:几个相互作用的物体组成的整体2.内力与外力:系统内物体之间作用力为内力,外界对系统内任何一个物体的作用力即为外力。

【核心方法点拨】1.当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法;(注意整体法不分析内力)2.当分析系统内各物体(或一个物体各部分)间的相互作用时,宜用隔离法.【微专题训练】【经典例题选讲】【例题1】(2018·杭州七校联考)如图所示,甲、乙两个小球的质量均为m,两球间用细线连接,甲球用细线悬挂在天花板上。

现分别用大小相等的力F水平向左、向右拉两球,平衡时细线都被拉紧。

则平衡时两球的可能位置是下面的()解析:用整体法分析,把两个小球看作一个整体,此整体受到的外力为竖直向下的重力2mg、水平向左的力F(甲受到的)、水平向右的力F(乙受到的)和细线1的拉力,两水平力相互平衡,故细线1的拉力一定与重力2mg等大反向,即细线1一定竖直;再用隔离法,分析乙球受力的情况,乙球受到向下的重力mg,水平向右的拉力F,细线2的拉力F2。

要使得乙球受力平衡,细线2必须向右倾斜。

答案:A【变式1-1】(2016·河北省邯郸市高三教学质量检测)如图所示,用等长的两根轻质细线把两个质量相等的小球悬挂起来。

现对小球b施加一个水平向左的恒力F,同时对小球a施加一个水平向右的恒力3F,最后达到稳定状态,表示平衡状态的图可能是图中的()【解析】把两球连同之间的细线看成一个整体,对其受力分析,水平方向受向左的F和向右的3F ,故上面绳子一定向右偏,设上面绳子与竖直方向夹角为α,则T sin α=2F ,T cos α=2mg ,设下面绳子与竖直方向夹角为β,则T ′sin β=F ,T ′cos β=mg ,联立可得α=β,故选D 。

【答案】D【变式1-2】a 、b 两个带电小球的质量均为m ,所带电荷量分别为+q 和-q ,两球间用绝缘细线连接,a 球又用长度相同的绝缘细线悬挂在天花板上,在两球所在的空间有方向斜向下的匀强电场,电场强度为E ,平衡时细线都被拉紧,则平衡时可能位置是()【解析】首先取整体为研究对象,整体受到重力、电场力和上面绳子的拉力,由于两个电场力的矢量和为:0电()F qE qE =+-=,所以上边的绳子对小球的拉力与总重力平衡,位于竖直方向,所以上边的绳子应保持在绳子竖直位置,再对负电荷研究可知,负电荷受到的电场力斜向右上方,所以下面的绳子向左偏转,故A 正确,BCD 错误。

高中物理整体法和隔离法

高中物理整体法和隔离法

整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。

当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。

运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。

二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。

为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。

运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。

三、应用整体法和隔离法解题的方法1、合理选择研究对象。

这是解答平衡问题成败的关键。

研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。

但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。

为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。

但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。

2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。

3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。

所以,注意灵活、交替地使用整体法和隔离法, 不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。

整体法和隔离法

整体法和隔离法

整体法和隔离法
整体法和隔离法是国际贸易中常用的两种逆差核算方法,它们两者有所不同,一般情况下,贸易双方可以根据实际情况,根据情况,使用其中一种方法。

整体法是指将一个国家或地区的出口总额与其进口总额相加,以此来计算国家或地区的贸易逆差。

也就是说,如果一个国家或地区的出口总额大于其进口总额,那么这个国家或地区就有一个正逆差,反之,则有一个负逆差。

隔离法是指将一个国家或地区的出口与其进口分开计算,即把出口单独计算,把进口单独计算,然后相减,计算出这个国家或地区的贸易逆差。

例如,如果一个国家的出口总额为200亿美元,而其进口总额为100亿美元,那么这个国家就有一个正逆差,即100亿美元。

整体法和隔离法各有优劣,整体法更容易理解,比较简单,但是它不能够显示具体的情况,因此很难掌握真实的情况。

而隔离法更加精细,能够更好地反应出真实的情况,但是它复杂,计算量较大,容易出错,因此不太容易理解。

在实际应用中,一般情况下,贸易双方可以根据实际情况,根据情况,使用其中一种方法。

如果要对一个国家或地区的总体贸易情况进行简单的了解,那么使用整体法
更好;如果要对贸易双方的情况进行详细的了解,那么使用隔离法更好。

归纳起来,整体法和隔离法都是国际贸易中常用的逆差核算方法,它们有所不同,贸易双方可以根据实际情况,根据情况,使用其中一种方法。

整体法更容易理解,比较简单,但是隔离法更加精细,能够更好地反应出真实的情况,因此可以根据实际情况,根据情况,使用其中一种方法。

(完整word版)高考专题整体法与隔离法

(完整word版)高考专题整体法与隔离法

隔离法和整体法的运用一、隔离法隔离法的含义:所谓隔离法就是指对物理问题的某些研究对象或某些过程、状态从系统或全过程中隔离出来进行研究的方法.隔离法的思维特点:隔离法是从全局到局部的思维过程.通过隔离法分析物理问题,可弄清系统内每个物体的受力情况,弄清物体在每阶段的运动情况(包括运动的具体过程和细节)及几个过程间的相互联系.隔离法的适用情况:①求解某个物体的力和运动(如连结体中的某个物体)情况时.②求解某段运动中物体的运动规律时.③求解物体间的相互作用.④运用适用于单个或可视为单个物体的物理规律(如牛顿运动定律、动量定理、动能定理)解题.运用隔离法解题的基本步骤:①明确研究对象或过程、状态.这是隔离法解题的关键.选择隔离对象的原则:一是要包含待求量;二是所选隔离对象和所列方程数应尽可能地减少.②将研究对象从系统中隔离出来;或将所研究的某段过程、某种状态从运动的全过程中隔离出来.③对被隔离的研究对象、过程、状态分析研究,画出某状态下的受力图和某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.下面来归类分析应用隔离法的几种情况:1 隔离研究对象为了求解涉及系统中某个物体的力和运动,寻求与该物体有关的所求量与已知量之间的关系,必须将某个物体从系统中隔离出来研究.[例1]如图1所示,C是水平地面,A、B是两个长方形物块,F是作用在物块B上沿水平方向的力,物体A和B以相同的速度作匀速直线运动,由此可知,A、B间的动摩擦因数μ1和B、C间的动摩擦因数μ2有可能是[]A.μ1=0,μ2=0B.μ1=0,μ2≠0C.μ1≠0,μ2=0D.μ1≠0,μ2≠0[解析]将B隔离分析,由题知B处于平衡状态,一定受C的摩擦力f,且大小f = F≠0,方向与F 相反,故μ2≠0.将A隔离分析,由题知A与B既无相对运动趋势,也无相对运动,可见A、B间没有摩擦力,但无法判断μ1是否为零,故μ1可能为零,也可能不为零.正确选项为B、D[说明]为分析μ1和μ2,本题必须采用隔离法分别研究A和B,如此,根据运动情况分别研究它们的受力情况,十分清楚.2、隔离运动的过程物体往往会参与几个运动过程,为了求解涉及某个运动过程中的物理量,寻求所求量与未知量之间的联系,必须将某个运动过程从运动的全过程中隔离出来研究.[例3]木球从距水面高20m处自由下落,共经过10s又返回到水面,求:①木球的密度.②木球在水中下沉的最大深度(取g= 10m/s2)[解析] 木球在空中作自由落体运动,在水中先向下以匀减速运动下沉至最大深度处,后向上作相同加速度的匀加速运动.①木球的密度:运动过程示意图如图4所示,木球在空中自由下落,落至水面速度由运动的对称性知,木球自水面运动至最深处时间与从最深处运动至水面的时间相等,故木球自水面运动至最深处时间木球在水中的加速度木球在水中的动力学方程为ρ水Vg -ρ木Vg=ρ水Va②木球在水中下沉的最大深度[说明]本题中,为了求出落至水面的速度v和在空中运动的时间t1,需隔离木球在空中自由下落过程分析.为了求出木球在水中的加速度a和在水中落至最深处的时间t2,并最终求得木球的密度ρ木和下沉的最大深度h2,需隔离木球在水中下沉过程分析.3、隔离的优化选择一些物理问题中,往往涉及几个研究对象和几个运动过程,为了使解题快捷,必须认真审题,揭示物理现象的本质,优化选择所要隔离的某个研究对象和某段运动过程.[例4]一个质量可不计的活塞将一定量的理想气体封闭在上端开口的直立圆筒形气缸内,活塞上堆放着铁砂,如图5所示.最初活塞搁置在气缸内壁的固定卡环上,气体柱的高度为H0,压强等于大气压强p0.现对气体缓慢加热,当气体温度升高了△T = 60K时,活塞(及铁砂)开始离开卡环而上升.继续加热直到气柱高度为H1=1.5H0.此后,在维持温度不变的条件下逐渐取走铁砂,直到铁砂全部取走时,气柱高度变为H2 = 1.8H0,求此时气体的温度.(不计活塞与气缸之间的摩擦.)[解析]研究对象应选封闭在气缸中的气体,在状态变化过程中质量保持不变.状态变化过程:气体先等容升温,至压强为p时活塞开始上升,再等压升温至高度H1,然后等温降压至高度H2.设气体最初温度为T0,则活塞刚离开卡环时温度为T0+△T,压强为p1.由等容升温过程得设气柱高度为H1时温度为T1,由等压升温过程得设气柱高度为H2时温度为T2,由等温膨胀过程(T2 = T1)得由②和④式求得将⑤式代入⑥式,并利用T2 = T1,得代入数据解得T2 = 540K[说明]为使解题简明,必须注意优化选择被隔离的物体、状态、过程.上述解法中,研究对象选择了封闭在气缸中的气体,而没有选择活塞.状态变化过程隔离为初态I(p0、H0、T0)→(等容升温)至状态Ⅱ(p1、H0、T0+△T)→(等压升温)至状态Ⅲ(p1、H1、T1)→(等温降压)至状态Ⅳ(p0、H2、T2)三个过程,建立的方程较多,解答显得冗长繁琐.如果将所隔离的过程优化组合,则复杂过程简单化:将状态Ⅱ变化至状态Ⅲ隔离出来分析,压强不变(均为p1),因而将状态Ⅰ和状态Ⅳ隔离出来分析,压强也不变(均为p0),因而代入数据同样解得T2=540K.二、整体法整体法的含义:所谓整体法就是指对物理问题的整个系统或整个过程进行研究的方法.整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的具体运用,它把一切系统都当作一个整体来研究.通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的运动情况,整体上揭示事物的本质和变化规律,而不必追究系统内各物体的相互作用和每个运动阶段的细节.从而避开了中间量的繁琐推算,简捷巧妙地解决问题.整体法的适用情况:①当只涉及研究系统而不涉及系统内某些物体的力和运动时,可整体分析对象.②当只涉及研究运动的全过程而不涉及某段运动时,可整体分析过程.③当运用适用于系统的物理规律(如动量守恒定律、机械能守恒定律)解题时,可整体分析对象和整体分析运动全过程的初末态.④当可采用多种方法解题时,可整体优化解题方法.⑤整体法不仅适用于系统内各物体保持相对静止或匀速直线运动,而且也适用于各物体间有相对加速度的情况.运用整体法解题的基本步骤:①明确研究的系统和运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.下面来归类分析应用整体法的几种情况:1、整体研究物体系当求解时不涉及系统中某个物体的力和运动,而只需取几个物体组成的系统作为研究对象,就可寻求所求量与已知量之间的关系,则取系统为研究对象,加以整体分析研究.当运用适用于物体系的物理原理、定律时,应取系统为研究对象.例如:运用机械能守恒定律时应取运动物体与地球组成的系统为研究对象.运用动量守恒定律时,应取相互作用的物体组成的系统为研究对象.[例6]如图7(a)所示用两根等长的绝缘细线各悬挂质量分别为m A和m B的小球,悬点为O,两小球带同种电荷,当小球由于静电力作用张开一角度时,A球悬线与竖直线夹角为α,B球悬线与竖直线夹角为β,如果α=30°,β=60°,求两小球m A和m B之比.[解析]若将两根悬线和小球A、B作为一个整体,则球和绳之间的相互作用力、静电力均为内力,对解题带来方便.取两根悬线和小球A、B组成的系统作为研究对象,受力分析如图7(b),系统受到重力m A g 和m B g,受到悬点O的拉力T A和T B.以悬点O为固定转动轴,系统在G A和G B的力矩作用下处于平衡状态,有M A=M B得m A gL A=m B gL B其中L A=Lsinα,L B=Lsinβ[说明]本题若用隔离法求解,显然要麻烦.[例7]如图8所示,质量为M的小车中有一个竖直放置的被压缩的弹簧,其上部放有一个质量为m的小球.小车以速率v向右做匀速运动,中途突然将弹簧释放,小球被弹簧弹出,此后小车的速率为多大?[解析]小球在弹出之前,球和车是一个整体.小球弹出的过程中,在水平方向上,小球与小车没有发生相互作用,因此,小球离开小车后在水平方向上应与小车仍保持着同样的速度.在小球脱离小车的瞬间仍应视小球和小车为同一系统.取小球和小车组成的系统为研究对象,在水平方向上系统所受合外力为零,所以在水平方向上系统的动量守恒,有(M+m)v = Mv'+ mv'解得v'= v.[说明]①本题应用的动量守恒定律,必取小球和小车组成的系统为研究对象.②如果将小球脱离小车后认为只需分析小车的情况(将小球和小车隔离),则错解为(M+m)v = Mv'2、整体研究运动全过程当所求的物理量只涉及运动的全过程而不必分析某一阶段的运动情况时,可通过整体研究运动的全过程解决问题.例如:运用动能定理和动量定理时,只需分析运动的初态和末态,而不必追究运动过程的细节,这对于处理变力问题及难以分析运动过程和寻找规律的问题,显示出极大的优越性.[例8]总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发现时,机车已行驶了t秒,于是关闭气门,除去牵引力,设运动阻力与重力成正比,机车牵引力恒定,试证明列车两部分都停止时,机车比末节车厢多行驶了时间[解析]整体分析运动全过程会发现,如果在脱钩时即撤去机车牵引力,则车厢和机车的加速度均为a =μg.又脱钩时速度相同,由v = at知,车厢和机车照例会经相同时间停下.但由于脱钩后,牵引力F=μMg在时间t内给机车冲量的缘故,使机车[此时受到摩擦力为μ(M-m)g]多行驶了△t时间,牵引力F的冲量μMg t用于抵消摩擦力的冲量μ(M-m)g·△t.取脱钩后机车的运动过程分析,脱钩后,机车受到的牵引力的冲量kMgt用于克服机车所受摩擦力的冲量k(M-m)g·△t,故有kMgt = k(M-m)g·△t[说明]本题应用整体法研究了运动的全过程.如果用隔离法可求解为:取末节车厢为研究对象,受到阻力kmg,设脱钩时速度为v,脱钩后运动时间为t1,由动量定理得-kmg·t1=0-mv ①取机车为研究对象,脱钩前作匀速运动,牵引力F等于阻力kMg;脱钩后在t时间内受到的牵引力kMg;在除去牵引力后受到的阻力k(M - m)g,运动的时间为t2.由动量定理得kMgt-k(M-m)g t2 = 0-(M -m)v ②由①和②式得机车比末节车厢多行驶的时间为可见,如果能深刻理解整个系统运动过程的实质,用整体法解极为简捷.3、整体变换物理图景对于一些多次连续变化的对称问题(如物体在两竖直挡板间的多次碰撞,光线被多次反射等),运用几何作图的方法将物理现象或物理过程对称展开,把一系列不连续的变化转化为单一连续变化的整体过程,让待求量与已知量间的关系变得简单明了.[例9]一条截面为圆柱形的光导纤维,长1000m,它的玻璃芯线的折射率为1.50,外层材料的折射率为1.00,光在空气中的速度为3.00×108m / s.光从它的一端射入,经全反射从另一端射出所需的最长时间是多少?[解析]如图9(a),设光从光导纤维中心A处射入至B点(BC为法线)发生全反射,光从B 射至D点,再发生全反射,如此周而复始,光从光导纤维一端全反射至另一端.将光线的路径对称展开则变为如图9(b)所示,光从A点入射,B'点射出,AC'为光导纤维全长,光的实际路径为AB'.设光在玻璃芯线和外层材料的折射率分别为n1和n2,发生全反射时的临界角为Φ,由全反射特点有n1sinΦ = n2sin90°①设v为光在玻璃芯线中的速率,c为真空中的光速,由折射率与光速的关系有n1 = c / v ②光线的路径对称展开如图9(b)所示,设光导纤维长度为AC'= L,时间为由①、②、③式解得[说明]从形式上看,整体变换是将物理过程或情景对称展开,以寻求简单的物理模型来替换复杂的物理过程.从本质上看,整体变换是运用联想和推理的思维方式,以创设新的物理图景来揭示物理现象的本质,从而达到迅速解题的目的.4、整体的优化选择整体的优化选择包括优化选择所研究的系统、所研究的运动过程、所研究的物理图景及所运用的解题方法等.优化选择时,可能涉及上述的一个方面或几个方面.[例10]如图10所示,A、B是位于水平面上的质量相等的小滑块,离墙壁距离分别为2L和L,与水平面间的动摩擦因数均为μ,今给A以某一向左的初速度使A向左滑动,假定A、B之间及B 与墙壁之间的碰撞时间很短,且均无能量损失,若要使A始终不向右滑动,A的初速度最大不超过多大?[解析]A以v0向左作匀减速运动,与B碰后速度交换,A静止,B以v0向左作匀减速运动,与墙碰后向右作匀减速运动,若B运动到A处速度刚好减为零,则v0就是使A始终不向右滑动的最大速度.用整体法考虑,研究对象取A、B组成的系统,研究过程取从A开始运动到B刚好停止的全过程.由动能定理得[说明]①本题整体综合分析了研究对象和运动的全过程.②动能定理(以及动量定理)一般适用于一个物体,但也适用于一个物体系.利用动能定理整体法解题时,要注意系统内力做功之和必须为零,否则系统外力做功之和不等于系统的动能增量.[例11]质量为M的金属块和质量为m的木块通过细线连在一起,从静止开始以加速度a在水中下沉.经过时间t,细线断了,金属块和木块分开.再经过时间t',木块停止下沉.问此时金属块的速度多大?[解析]本题所研究的对象有金属块和木块.所研究的物理过程是:细线断前系统在重力(m+M)g和浮力(F1+F2)的作用下,以加速度a匀加速下沉,经过时间t,下沉h,速度达v.细线断后,m 在重力mg和浮力F2作用下,作加速度为a2的匀减速运动,至停止下沉时,v t2=0,又下沉h2.M在重力Mg和浮力F1作用下,作加速度为a1的匀加速运动,经t'时速度为v t1,即题中要求解的物理量.在细线断的前后,对金属块和木块组成的系统而言,所受外力均为重力(m+M)g和浮力(F1+F2),且有F =(m+M)a,如此,不妨取系统为研究对象,对物理过程整体研究.取金属块和木块组成的系统为研究对象,对系统从细线断前的瞬间至木块停止下沉的整个过程分析,应用动量定理,有Ft'=(Mv t1+0)-(m+M)v ①其中F =(m+M)a ②v = at ③由①、②、③式联立解得[说明]本题整体分析了研究对象(金属块和木块组成的系统).整体分析了运动全过程(细线断前和断后).整体优化了解题方法(本题可运用牛顿运动定律解,也可用动能定理解,但用动量定理解最为简捷.)三、隔离法和整体法的运用隔离法和整体法既相互对立又相互统一.两种方法相互联系,相互补充,相互渗透,在具体解题过程中,常常需交互运用,发挥各自特点,从而优化解题思路和方法,使解题简捷迅速明了.下面来归类分析优化运用隔离法和整体法的几种情况:1、优化选择隔离法和整体法[例12]如图11所示,小框架的质量为M,中间支柱上套有一质量为m的滑环,今使滑环以初速v0竖直抛出,致使整个框架恰好对地面没有作用力,滑环上升的加速度多大?[解析]解法一:采用隔离法求解:取小框架为研究对象,依题意知地面对框架的支持力N=0,环对框架的摩擦力f = Mg ①取环为研究对象,有mg+f = ma ②解法二:采用整体法求解:取小框架和环组成的整体为研究对象,摩擦力f为内力,在合外力(M+m)g的作用下,小框架的加速度为零,环的加速度为a,所以有(M+m)g = ma[说明]有些物理问题往往既可用隔离法解,也可用整体法解,两者是等效的.用隔离法解时,力和运动状态的对应关系较为明确;但用整体法解往往较为简捷巧妙.2、优化选择研究对象[例13]如图12所示,劲度系数为k的轻质弹簧一端与墙固定,另一端与倾角为α的斜面体小车连接,小车置于光滑的水平面上,在小车上叠放一个物体,已知小车质量为M,物体质量为m,小车位于O点时,整体系统处于平衡状态.现将小车从O点拉到B点,令OB=b,无初速释放后,小车即在水平面B、C间来回运动,而物体和小车始终没有相对运动.求:①小车运动到B点时的加速度大小和物体所受到的摩擦力大小.②b的大小必须满足什么条件,才能使得小车和物体一起运动的过程中,在某一位置时,物体和小车之间的摩擦力为零.[解析]所求的加速度a和摩擦力f是小车在B点时的瞬时值.当物体和小车之间的摩擦力为零时,小车的加速度变为a',小车距O的距离变为b'.①取M、m、弹簧组成的系统为研究对象kb =(M+m)a取m为研究对象,在沿斜面方向有f-mgsinα= macosα②设满足条件时OB=b',取m为研究对象有mgsinα= ma'cosαkb'=(M+m)a[说明]在求解加速度时整体分析系统,在分析求解m受到的摩擦力时隔离分析物体m,两者交互运用,相得益彰.3、优化选择研究过程[例14]一个木块从如图13(a)所示的左边斜面上A点自静止起滑下,又在水平面上滑行,接着滑上右边的斜面,抵达B点静止,设动摩擦因数处处相同,转角处撞击不计,测得A、B两点连线与水平面夹角为θ,则木块与接触面间的动摩擦因数为____.[解析]如果隔离运动过程分析,需考察木块从左边斜面滑下、水平面上滑行、滑上右边斜面三个过程,显然较繁.但如果整体分析木块从A至B的运动全过程,如图13(b)所示,从A到B相当于物块从A点自由下落h到B的同一水平面,并以此时的速率滑动s到B点停止,即重力做的功等于克服摩擦力做的功.对运动全过程整体分析,初、末态速率为零,用动能定理解极为方便.对木块运动的全过程分析,应用动能定理有mgh -fs = 0其中f =μmg[说明]如果按常规思路隔离分析三个运动过程,两斜面长度和倾角未知,还需对每个过程受力分析,列方程未知数又多,求解较繁.4、优化隔离法和整体法的交互运用[例15]在图14所示电路中,当滑线变阻器的滑动触片P向b端移动时,电压表、电流表读数变化情况是[]A.电压表读数增大、电流表读数减小B.电压表和电流表读数都增大C.电压表和电流表读数都减小D.电压表读数减小、电流表读数增大[解析]P的移动,影响R3(局部),从而影响总电阻R、干路电流I、路端电压U(整体),导致各部分电路(局部)上的特性发生变化.对于R3,当P向b端移动时,接入电路的R3变大,使R2和R3的并联电阻R23变大.从而影响整个电路,外电阻R变大.干路电流强度变小.路端电压(U=-Ir)变大.所以电压表读数增大.对于R1段电路,其两端电压(U1=IR1)变小.对于R2和R3,并联电路两端的电压(U23 = U - U1)变大.对于电流表和R3所在的一段电路,通过的电流强度(I3=I-I2)变小,所以电流表的读数减小.综上分析,正确选项为A.[说明]本题交互运用了隔离法和整体法:对R3、U1、U23、I2、I3的分析,必须将有关的部分电路从整体电路上隔离出来.对R、I、U的分析,必须对整个电路加以考虑.5.优化隔离法和整体法的综合作用[例16]如图15所示,小车质量M=4kg,车内壁ABC为一半径R=2.5m的半圆,车左侧紧靠墙壁.质量m=1kg的小滑块,从距车壁A点正上方高度为R的D点,由静止沿车内壁滑下.不计一切摩擦,取g=10m/s2.求滑块经过车右端点C时相对于地面的速度大小是多少?[解析]小滑块由D运动至B为下落过程,由B运动至C为上升过程,在车半圆内壁中运动时,m受变力作用,故拟考虑从功和能、动量的角度求解,并由此确定相应的研究对象.小滑块从D运动至B的过程中,只有重力做功,故机械能守恒,为此取小滑块和地球组成的系统为研究对象小滑块从B运动至C的过程中,与车发生相互作用,使车向右运动.由于在水平方向上无外力作用,故系统的动量守恒,为此取小滑块和小车组成的系统为研究对象,且设小滑块运动至C点时的系统的水平速度为V cx,则有mv B =(m+M)v cx小滑块滑至C处后,将有沿切向方向(即竖直方向)飞出的效果,设小滑块竖直方向的速度为v cy,为求v cy,可取小滑块从D至C的全过程来研究,因只有重力做功,故机械能守恒,为此取小滑块和地球组成的系统为研究对象,有小滑块在C处相对于地面的速度为水平方向速度v cx和竖直方向速度v cy的合速度,即m/s=5.8m/s[说明]本题综合优化运用了隔离法和整体法.从研究的对象看,由于机械能守恒,故用整体法取小滑块和地球组成的系统为研究对象;由于动量守恒,故用整体法取小滑块和小车组成的系统为研究对象.从研究的运动过程看,为避免处理变力问题,故用隔离法取D→B的过程求解v B;为求解v cx,用隔离法取B→C的过程.为求解v cy,用整体法取D→C的全过程.最后用整体法思想,从全局考虑,将v cx和v cy合成小滑块在C处对地的速度v c.。

牛顿第二定律整体法、隔离法专题分析

牛顿第二定律整体法、隔离法专题分析

A.F1<F2 B.F1=F2 C.F1>F2 D.无法比较大小 A
有相互作用力的系统
整体法与隔离法
练习:如图所示,物体A放在物体B上,物体B放在光滑 的水平面上,已知mA=6kg,mB=2kg,A、B间动摩擦因数 =0.2.A物上系一细线,细线能承受的最大拉力是20N, 水平向右拉细线,假设A、B之间最大静摩擦力等于滑动 摩擦力.在细线不被拉断的情况下,下述中正确的是 (g=10m/s2) (CD)
A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等 于4N D.无论拉力F多大,A相对B始终静 止
有相互作用力的系统
整体法与隔离法
【解析】要判断A、B是否有相对滑动,可假设 F=F0时,A、B间的摩擦力达到最大值,求出此 时拉力的数值F0,若F>F0,则A、B有相对滑 动;若F<F0,则A、B无相对滑动. A、B间的最大静摩擦力为 f0=mAg=0.2×6×10=12N. 当A、B间的静摩擦力f=f0时,由牛顿第二定律 得: 对B: mAg=mBa, a=mAg/mB=0.2×6×10/2=6m/s2;
有相互作用力的系统
整体法与隔离法
• 因三物体加速度相同,本题可用整 体法。 • 解: 研究整体 F=(m1+m2+m3)a 为求a再研究m1: m1的受力图如右。 T= m1 a 为求T研究m2 T= m2g
故a= m2 g/ m1 F=(m1+m2+m3)a F =(m1+m2+m3) m2 g/ m1
m AmB g T g m A mB 1 / m A 1 / mB
对于C、D选项: (mA +mB)为恒量, 只有当mA=mB 时, mA· mB才最大, C、D错。

隔离法和整体法

隔离法和整体法

隔离法和整体法隔离法和整体法是两种常用的解决问题的思维方法。

隔离法是通过分解问题,将其拆分为多个独立的部分来解决;整体法则是将问题作为一个整体来考虑和解决。

本文将分别介绍隔离法和整体法的概念、应用场景以及优缺点。

一、隔离法隔离法是指将一个复杂的问题分解为多个相对独立的部分,然后分别解决每个部分的方法。

通过将问题进行隔离,我们可以更加集中精力解决每个独立的部分,从而提高解决问题的效率。

在实际应用中,我们可以将隔离法运用于各种领域。

例如,在软件开发中,一个复杂的功能可以被拆分为多个子功能,每个子功能独立开发和测试,最后再进行整合。

在项目管理中,可以将整个项目分解为多个阶段或任务,每个阶段或任务分配给不同的团队或个人负责。

这样可以有效地提高工作的并行性和协作效率。

隔离法的优点是可以使问题更加清晰明确,减少了复杂度,易于解决。

同时,通过将问题分解为多个部分,可以提高工作的并行性和解决问题的效率。

然而,隔离法也存在一些缺点。

例如,分解问题可能导致信息的丢失或不完整,从而影响解决问题的准确性。

此外,对于某些问题,隔离法可能会导致解决方案的整体性差,不够综合。

二、整体法整体法是指将一个问题作为一个整体来考虑和解决。

在运用整体法解决问题时,我们需要从整体的角度思考问题的本质、关联和影响,综合各个方面的因素,找出最优解决方案。

整体法在很多领域都有广泛的应用。

例如,在企业管理中,整体法强调整个企业的战略规划、组织结构、人力资源等各个方面的协同作用,以实现企业目标的最大化。

在市场营销中,整体法要求将产品设计、定价、推广和渠道管理等因素考虑在内,以达到市场竞争的优势。

在生态保护中,整体法强调人与自然的平衡和协调,以实现生态环境的可持续发展。

整体法的优点是可以从全局的角度思考问题,考虑各个方面的因素,并找出最优解决方案。

与隔离法相比,整体法更加综合和细致。

然而,整体法也存在一些挑战和局限。

例如,整体法需要对问题有全面的了解和把握,需要考虑的因素较多,可能需要投入更多的时间和资源。

精品专题整体法与隔离法

精品专题整体法与隔离法

三、系统的动力学方程
系统所受的合外力等于系统内各物体的质量与加 速度乘积的矢量和。即:
ΣF = m1a1 + m2a2 + m3a3 + …… 其分量表达式为
ΣFx=m1a1x+ m2a2x+ m3a3x+…… ΣFy=m1a1y+ m2a2y+ m3a3y+……
013.南昌二中08届第二次阶段性考试4
整体法求得 N=(M+m)g
隔离体法求得 f=mgtanθ
B
A
θ
整体法与隔离法
2
16.如图所示,质量为M的木板悬挂在滑轮组下,上端由 一根悬绳C固定在横梁下.质量为m的人手拉住绳端,使 整个装置保持在空间处于静止状态.求 (1)悬绳C所受拉力多大? (2)人对木板的压力(滑轮的质量不计).
(1)整体法求得拉力,F=(m+M)g (2)对人:N-mg-F1=0
F
m Mθ
2. 先隔离后整体
例 2 如图所示, A、 A
B、C三物体的质量分
别为m1、m2、m3 , 带 F
C B
有滑轮的 C 放在光滑
的水平面上, 细绳质量及一切摩擦均不计, 为使
三物体无相对运动, 试求水平推力F的大小?
解: 设系统运动的加速度为a , 绳的弹力为T,
先隔离分析.
对B, 由平衡条件得: T=m2g .
整体法与隔离法
练习4、如图所示,放置在水平地面上的斜面M上 有一质量为m的物体,若m在水平力F的作用下向上 匀速运动,M仍保持静止,已知M倾角为θ。求: 1、m受到的弹力和摩擦力。 2、地面对M的支持力和摩擦力。
F
【例1】 如图所示,质量为M的楔形物块静置在水平

专题:整体法与隔离法

专题:整体法与隔离法

日照实验高中2017级高一物理导学案 班级: 姓名:
专题一:整体法与隔离法
点)
律求出加速度.【问题情境1】M 面加速运动,求A 、B
【变式练习1作用下做加速运动,求
【问题情境2擦系数为μ平力F 作用于M ,M 、
【变式练习2】如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时,B 受到摩擦力( ) A .等于零
B .方向平行于斜面向上
C .大小为μ1mg cos θ
D .大小为μ2mg cos θ
【问题情境3】如图所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。

当滑块至少以加速度a =___________向左运动时,小球对滑块的压力等于零。

当滑块以a =2g 的加速度向左运动时,线的拉力大小F =_____________。

【变式练习3】如图所示,在水平面上有一个质量为M 的楔形木块A ,其斜面倾角为α,一质量为m 的木块B 放在A 的斜面上.现对A 施以水平推力F ,恰使B 与A 不发生相对滑动.忽略一切摩擦,则B 对A 的压力大小为________________。

【编写】张念民。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

m
T
Mg
例3. 一质量为M、倾角为θ的楔形木块,静止在水平桌面上, 与桌面的动摩擦因素为μ,一物块质量为m,置于楔形木块的斜
ห้องสมุดไป่ตู้
面上,物块与斜面的接触是光滑的,为了保持物块相对斜面静
止,可用一水平力F推楔形木块,如图示,此水平力的大小等

(m+M)g(μ。+ tgθ)
解:对于物块,受力如图示:
N1 m
• 解: 研究整体 F=(m1+m2+m3)a
为求a再研究m1: m1的受力图如右。
T= m1 a 为求T研究m2 T= m2g
故a= m2 g/ m1 F=(m1+m2+m3)a F =(m1+m2+m3) m2 g/ m1
第10页/共21页
例6.如图所示,一根轻质弹簧上端固定,下端挂一 质量为m0的平盘,盘中有一质量为m的物体。当盘 静止时弹簧的长度比自然长度伸长了L,今向下拉 盘使弹簧再伸长ΔL后停止,然后放手松开。设弹 簧总处在弹性限度内,则刚松手时盘对物体的支持 力等于多少?
第13页/共21页
想一想
本题用整体法还是隔离法?
F
先研究谁?
画人的受力图如右。 F=m1g
m1g
再画杆的受力。F'+m2g=m2a 就得正确答案为 a=15m/s2
第14页/共21页
a m2g F'
习题二
• 质量为M的人抓住长为L的 轻绳,让绳子系住质量为m 的小球在竖直平面内作圆周 运动,当球通过最高点时它 的速率为V,问此时地面对 人的支持多 大?**
第11页/共21页
思路点拨
盘静止时KL=(M+m)g 放手时先研究整体K(L+ Δ L) -(M+m)g= (M+m)a 再研究盘中物体m N-mg=ma

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。

整体法与隔离法

整体法与隔离法

整体法与隔离法
选择研究对象是解决物理问题的首要环节。

在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。

合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。

隔离法与整体法都是物理解题的基本方法。

隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。

整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。

隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。

这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。

对于连结体问题,通常用隔离法,但有时也可采用整体法。

如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。

对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N
A.mg sin cos a F M α mg sin cos B. m M a=gsinα C. mg tan M F=mgacosα D. mg tan =mgsinαcosα mM
(M题的基本方法。 1.涉及外力用整体法 2.涉及内力用隔离法
第三类 :
动力学中系统不平衡 且加速度不一致
系统的牛顿第二定律 系统所受的合外力等于系统内各物体的质量与加 速度乘积的矢量和。即:
F合 m1a1 m2 a2 m3 a3 mn an
其分量表达式为 Fx合 = m1a1x+ m2a2x+ m3a3x+…… Fy合 = m1a1y+ m2a2y+ m3a3y+……
D.F的大小可为0
解: 球与木块一起运动,加速度方向不可能向左。 若一起向右加速运动,对小球分析受力得
N 1 sin ma N1 cos mg N 2 mg N2 N 1 0 a g tan α
对整体分析受力得
F ( M m )g ( M m )a
联立解得 a=(M+m)g/m
方法二、 整体法
整体: (M+m)g = ma+0
Mg mg (M+m)g F’
解得 : a=(M+m)g/m
质量为M的小车放在光滑的水平地面上,右面靠墙, 小车的上表面是一个光滑的斜面,斜面的倾角为α ,
设当地重力加速度为g。那么,当有一个质量为m的
物体在这个斜面上自由下滑时,小车对右侧墙壁的压 力大小是 ( ) A
如图,质量为M的楔形物块静置在水平地面上,其
斜面的倾角为θ.斜面上有一质量为m的小物块,小物
块与斜面之间存在摩擦. 用恒力F沿斜面向上拉小物 块,使之匀速上滑.在小物块运动的过程中,楔形 物块始终保持静止.地面对楔形物块的支持力为 ( D )
A.(M+m)g
B.(M+m)g-F
F m M θ
C.(M+m)g+Fsinθ
F 2mg
f
N = (M+m)g
F mg
Q B
对Q有: Tsinα=mg
第二类 :
动力学中系统不平衡但加速度一致 ——连结体类问题
关键词:一起运动,相对静止
连接体:
A
1、依靠绳子或弹簧的弹力相联系
B
F
A
a
B
2、依靠相互的挤压的弹力(压力)相联系
F
m1 m2
m1 F
m2
F
1 2 3
A F
4 5
3、依靠摩擦相联系(叠加体)
D.(M+m)g-Fsinθ
【解析】
本题可用整体法的牛顿第二定律解题,
N + Fsin θ= Mg + mg f= F cos θ
F m M θ
如图所示, 一块带有斜面和平台的木块, 质量为M,斜 面与水平方向倾角为α,木块置于水平面上,与水平面间 的摩擦系数是μ(μ>tanα).将一个质量为m的光滑球放 在平台上,并与斜面相靠,当球与木块一起在图示平面内 沿水平方向相对于地面运动 m (速度不为零)时, 在木块上施加的水平 α 力F的大小和方向可能是 ( ) M A.F的方向向右,大小可为
( m M )g F ( m M )g( tan )
B.F的方向向右,大小可为 ( m M )g F ( m M )g tan Mg C.F的方向向左,大小可为
( m M )g F ( m M )g( tan )
基本思路:1.明确各物体加速度 2.整体所受外力
3.列以上方程
质量为M的框架放在水平地面上,一轻质弹簧上端固
定在框架上,下端拴一个质量为m的小球,当小球上
下振动时,框架始终没有跳起,框架对地面压力为零
的瞬间,小球的加速度大小为( 方法一、 隔离法 ) F
框架 :F= Mg 小球 : F+mg=ma
B
F
F =
f
A
2.隔离法求得 f =F= mgtanθ
θ
mg
有一个直角支架 AOB,AO水平放置,表面粗糙,OB竖 直向下,表面光滑,AO上套有小环P,OB上套有小环 Q, 两环质量均为m,两环间由一根质量可忽略、不可伸展 的细绳相连,并在某一位置平衡,如图。现将P环向左 移一小段距离,两环再次达到平衡,那么将移动后的平 衡状态和原来的平衡状态比较,AO杆对P环的支持力N 和细绳上的拉力T的变化情况是( ) A.N不变,T变大 B.N不变,T变小 P C.N变大,T变大 D.N变大,T变小 O A T N 对整体有
m1 m2
F
B
基本方法: 1.用外力表示加速度 整体法 2.用内力表示加速度 隔离法

典型例题

例3.相同材料的物块m和M用轻绳连接,在M上施
加恒力 F,使两物块作匀加速直线运动,求在下列
各种情况下绳中张力。
(1)地面光滑
(2)地面粗糙(两 物块与地面间摩 擦因素为u)
(3)竖直加速上升
(4)斜面光滑 加速上升
若一起向左减速运动,对整体分析受力得
α M mg
m
( m M )g F ( m M )g( tan )
( M m )g F ( M m )a
( m M )g F ( m M )g( tan )
故正确选项为A、C
F
M
m
★桌面光滑,求绳的拉力?
M
m
如图所示,A、B两物块叠放后从倾角为30°的光滑 斜面上一起滑下,若物块A质量为0.4 kg,A、B间接 触面呈水平,求下滑时物块B对物块A的支持力和摩 N 擦力. 对整体:a=gsin300 对A:mg-N=masin300 f=macos300 a f mg

的分类解析
第一类: 整体法与隔离法在静力学中的应用 ——平衡类问题
关键词:匀速、静止
基本方法: 1.求外力 整体法 2.求内力 隔离法
例1. 质量为 M 的三棱柱倾角为θ 。A和B都处于静止状态, 求地面对三棱柱支持力和摩擦力各为多少?
NA
N 1.整体法求得 N = (M+m)g F
f
(M+m)g
相关文档
最新文档