高考复习基础训练(六)
高考一轮复习基础训练《DNA是主要的遗传物质》
DNA是主要的遗传物质一、选择题1.关于染色体和DNA的关系,正确的是()A.DNA和染色体都是遗传物质B.染色体的组成成分之一是DNAC.一个染色体含有一条多核苷酸链D.DNA只存在于染色体上2.下列说法正确的是()A.一切生物的遗传物质都是DNAB.一切生物的遗传物质都是RNAC.一切生物的遗传物质是核酸D.一切生物的遗传物质是蛋白质3.噬菌体侵染细菌的实验能证明的是()A.DNA是主要的遗传物质B.蛋白质是遗传物质C.DNA是遗传物质D.DNA能产生可遗传的变异4.注射后能使小白鼠因患败血病而死亡的是()A.R型肺炎双球菌B.加热杀死后的R型肺炎双球菌C.加热杀死后的S型肺炎双球菌D.加热杀死后的S型肺炎双球菌与R型细菌混合5.T2噬菌体的结构组成为()A.蛋白质、脂类B.糖类、蛋白质C.蛋白质、DNAD.蛋白质、RNA6.用32P标记噬菌体的DNA,用35S标记细菌的蛋白质,用这种噬菌体去侵染大肠杆菌,则新生的噬菌体可含有()A.32PB.35SC.32P和35SD.二者皆无7.肺炎双球菌转化实验中,在培养有R型细菌的A、B、C、D四个试管,依次分别放人从S型活细菌中提取的DNA、DNA和DNA酶、蛋白质、多糖,经过培养,检查结果发现有R型细菌转化的是()A. B. C. D.8.噬菌体在繁殖的过程中所利用的原料是()A.自身的核苷酸和氨基酸B.自身的核苷酸和细菌的氨基酸C.细菌的核苷酸和氨基酸D.自身的氨基酸和细菌的核苷酸9.遗传物质的主要载体是()A.DNAB.染色体C.叶绿体D.线粒体10.所有病毒的遗传物质()A.都是DNAB.都是RNAC.是DNA或RNAD.是DNA和RNA11.车前草病毒是一种不含DNA的病毒,其遗传物质是()A.车前草的DNAB.车前草病毒的RNAC.车前草的RNAD.车前草病毒的蛋白质12.真核生物的遗传物质存在于()A.细胞核内B.细胞质中的细胞器内C.细胞质的基质内D.细胞核和细胞质内13.猴、噬菌体、烟草花叶病毒中参与构成核酸的碱基种类数依次是()A.4,4,5B.5,4,4C.4,5,4D.5,4,514.疯牛病病毒仅由一小团蛋白质构成,由其感染牛的脑细胞后,繁殖出的新个体仍含有与原来的一小团蛋白质,这个事实说明()A.一切生物的遗传物质是核酸B.DAN是主要的遗传物质C.RNA也可作为遗传物质D.蛋白质也可作为遗传物质15.现有两组实验数据:(1)测得豌豆中DNA有84%在染色体上,14%在叶绿体上,2%在线粒体上;(2)进一步测得豌豆染色体的组成是:DNA占36.5%,RNA 占9.6%,蛋白质占48.9%。
2023届高考生物一轮复习 第六单元 遗传的物质基础综合 单元检测题 基础训练A卷
2023届高考生物一轮复习第六单元遗传的物质基础综合单元检测题基础训练A卷一、单选题1.以下关于遗传变异的说法正确的是( )A.伴性遗传中亲本正交和反交的结果可能不同,不遵循孟德尔遗传规律B.一对表现正常的双亲生出白化病(常染色体隐性遗传病)孩子的概率是1/4C.遗传信息是指DNA中的碱基排列顺序D.细胞内任何一个DNA分子都可以发生基因突变,说明基因突变具有普遍性2.下列关于生物遗传物质及其传递规律探索历史的叙述,正确的是( )A.孟德尔通过豌豆的杂交实验,证明基因位于染色体上B.噬菌体侵染细菌的实验,需用含32P培养液培养噬菌体使其带上标记C.烟草花叶病毒的感染和重建实验,证明病毒的遗传物质都是RNAD.通过同位素示踪和密度梯度超速离心等技术,证明了DNA的半保留复制3.在其他条件具备的情况下,在试管中加入物质X和物质Z,可得到相应产物Y。
下列叙述正确的是( )A.若X是DNA,Y是RNA,则Z是逆转录酶B.若X是DNA,Y是mRNA,则Z是脱氧核苷酸C.若X是RNA,Y是DNA,则Z是限制性内切酶D.若X是mRNA,Y是在核糖体上合成的大分子,则Z是氨基酸4.以下与遗传物质相关的叙述,正确是( )A.豌豆细胞核的遗传物质是DNA,细胞质的遗传物质是RNAB.甲型H1N1病毒的遗传物质中含有C、H、O、N、S等元素C.T2噬菌体内,由碱基A、C、G参与组成的核苷酸共有6种D.双链DNA分子中碱基数等于磷酸基团数5.下列关于生物体内遗传信息的传递与表达的叙述,正确的是( )A.每种氨基酸都至少有两个以上的遗传密码B.遗传密码由DNA传递到RNA,再由RNA决定蛋白质C.一个DNA分子通过转录可形成许多个不同的RNA分子D.DNA聚合酶与DNA分子结合能使DNA分子的双螺旋解开6.若不考虑突变,细胞核中的遗传物质一定相同的是( )A.来自同一红眼雌果蝇卵细胞B.来自同一个玉米果穗的籽粒C.来自同一株花生上的不定芽D.来自同一株紫花豌豆的花粉7.下图为基因部分功能的示意图,下列相关叙述错误的是( )A.①过程表示基因表达中的转录过程B.②过程表示基因表达中的翻译过程C.基因指导合成的产物都是蛋白质D.基因可能发生碱基对的增添、缺失或替换8.DNA复制、转录和翻译后所形成的产物分别是( )A.RNA、RNA、蛋白质B.DNA、RNA、蛋白质C.RNA、DNA、蛋白质D.DNA、DNA、蛋白质9.下列关于遗传问题的说法正确的是( )A.孟德尔通过演绎推理证明了其假说的正确性B.玉米叶肉细胞的遗传物质中含有8种核苷酸C.一个具两对等位墓因果蝇精原细胞至少会产生两种基因型的精子D.人的胰岛素有51个肽键,指导它合成的基因至少有1534种不同的排列顺序10.下列关于“噬细体侵染细菌”实验内容的相关叙述,正确的是( )A.用含35S和32P的培养基分别培养噬菌体,可获得两种噬菌体实验材料B.用35S和32P标记的噬菌体侵染未被标记的大肠杆菌时,保温培养时间越长实验结果越可靠C.用含35S标记噬菌体侵染细菌时,若沉淀物中放射性过高,可能是搅拌不充分D.噬菌体侵染实验充分说明DNA是主要的遗传物质、蛋白质不能作为遗传物质11.下列说法正确的是( )①生物的性状是由基因控制的,性染色体上的基因都是控制性别的。
2020年高考数学复习题:抛物线的方程及性质
抛物线的方程及性质[基础训练]1.过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB |=10,则AB 的中点到y 轴的距离等于( )A .1B .2C .3D .4答案:D 解析:抛物线y 2=4x 的焦点为(1,0),准线为l :x =-1.设AB 的中点为E ,过A ,E ,B 分别作准线的垂线,垂足分别为C ,G ,D .EG 交y 轴于点H (如图所示).则由EG 为直角梯形ACDB 的中位线知, |EG |=|AC |+|BD |2=|AF |+|FB |2=|AB |2=5, |EH |=|EG |-1=4.则AB 的中点到y 轴的距离等于4.2.已知抛物线C: y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=32x 0,则x 0=( )A.14B.12 C .1D .2答案:B 解析:由题意知,抛物线的准线为x =-14,因为|AF |=32x 0,根据抛物线的定义可得 x 0+14=|AF |=32x 0,解得x 0=12.3.[2019吉林长春一模]过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |=( )A.13 B.23 C.34D.43答案:A 解析:记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C , 则有cos ∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |, 即cos 60°=|BF |-|AF ||AF |+|BF |=12,解得|AF ||BF |=13.4.[2019洛阳模拟]已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4答案:D 解析:F ⎝ ⎛⎭⎪⎫p 2,0,那么M ⎝ ⎛⎭⎪⎫4-p 2,4在抛物线上,即16=2p ⎝ ⎛⎭⎪⎫4-p 2,即p 2-8p +16=0,解得p =4.5.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322D .2 2答案:C 解析:焦点F (1,0),设A ,B 分别在第一、四象限,则点A 到准线l :x =-1的距离为3,得A 的横坐标为2,纵坐标为22,AB 的方程为y =22(x -1),与抛物线方程联立可得2x 2-5x +2=0,所以B 的横坐标为12,纵坐标为-2,S △AOB =12×1×(22+2)=322.6.[2019海南海口模拟]过点F (0,3),且和直线y +3=0相切的动圆圆心轨迹方程是( )A .y 2=12xB .y 2=-12xC .x 2=-12yD .x 2=12y答案:D 解析:由已知条件知,动圆圆心到点F 和到直线y +3=0的距离相等,所以动圆圆心轨迹是以点F (0,3)为焦点,直线y =-3为准线的抛物线,故其方程为x 2=12y ,故选D.7.[2019豫南九校联考]已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|P A |+|PQ |的最小值为( )A .7B .8C .9D .10答案:C 解析:如图,抛物线的焦点为F (0,1),准线方程为y =-1,根据抛物线的定义知,|PF |=|PM |=|PQ |+1.∴|P A |+|PQ |=|P A |+|PM |-1=|P A |+|PF |-1≥|AF |-1=82+(7-1)2-1=10-1=9,当且仅当点P 在线段AF 上时,等号成立, 则|P A |+|PQ |的最小值为9. 故选C.8.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74答案:C 解析:如图,过A ,B 及线段AB 的中点C 向抛物线的准线l 作垂线,垂足分别为A 1,B 1,C 1,CC 1交y 轴于C 0.由抛物线定义可知,|AA 1|+|BB 1|=|AF |+|BF |, ∴|CC 0|=|CC 1|-|C 1C 0| =12(|AA 1|+|BB 1|)-|C 1C 0| =32-14=54, 故选C.9.过抛物线y 2=2px (p >0)的焦点F 作直线l 交抛物线于A ,B 两点,交准线于点C ,若CB→=3BF →,则直线l 斜率为________. 答案:±22 解析:作BB 1垂直于准线,B 1为垂足,由抛物线定义可知,|BB 1|=|BF |, ∴|BC |=3|BB 1|.在Rt △B 1BC 中,tan ∠B 1BC =2 2. ∴tan α=22(α为倾斜角). 由对称性可知,斜率还可等于-2 2. ∴斜率为±2 2.10.[2017全国卷Ⅱ]已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.答案:6 解析:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴ PM ∥OF .由题意,知F (2,0),|FO |=|AO |=2. ∵ 点M 为FN 的中点,PM ∥OF , ∴ |MP |=12|FO |=1. 又|BP |=|AO |=2, ∴ |MB |=|MP |+|BP |=3.由抛物线的定义,知|MF |=|MB |=3, 故|FN |=2|MF |=6.11.[2017北京卷]已知抛物线C :y 2=2px 过点P (1,1).过点⎝⎛⎭⎪⎫0,12作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解:由抛物线C :y 2=2px 过点P (1,1),得p =12. 所以抛物线C 的方程为y 2=x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫14,0, 准线方程为x =-14.(2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0,则x 1+x 2=1-k k 2,x 1x 2=14k 2. 因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝ ⎛⎭⎪⎫x 1,y 2x 1x 2.因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2 =⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2 =(2k -2)×14k 2+1-k 2k 2x 2=0, 所以y 1+y 2x 1x 2=2x 1,故A 为线段BM 的中点.[强化训练]1.[2019清华大学学术能力诊断]已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的射影分别为M ,N 两点,则S △MFN =( )A.83p 2B.233p 2C.433p 2D.833p 2答案:B 解析:不妨设P 在第一象限,过Q 作QR ⊥PM ,垂足为R ,设准线与x 轴的交点为E ,∵直线PQ 的斜率为3,∴直线PQ 的倾斜角为60°.由抛物线焦点弦的性质可得|PQ |=|PF |+|QF |=p1-cos 60°+p 1+cos 60°=2p sin 260°=83p .在Rt △PRQ 中,sin ∠RPQ =|QR ||PQ |, ∴|QR |=|PQ |·sin ∠RPQ =83p ×32=433p , 由题意可知,|MN |=|QR |=433p , ∴S △MNF =12|MN |·|FE |=12×433p ×p =233p 2. 故选B.2.[2019湖北四地七校3月联考]已知抛物线y 2=2px (p >0),点C (-4,0).过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24.则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x答案:D 解析:因为AB ⊥x 轴,且AB 过点F , 所以AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍), 所以抛物线方程为y 2=8x , 所以直线AB 的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x , 故选D.3.[2019安徽芜湖模拟]已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于( )A .-4B .4C .p 2D .-p 2答案:A 解析:①焦点弦AB ⊥x 轴,则x 1=x 2=p 2,则x 1x 2=p 24; ②若焦点弦AB 不垂直于x 轴, 可设直线AB :y =k ⎝⎛⎭⎪⎫x -p 2, 联立y 2=2px ,得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.∵y 21=2px 1,y 22=2px 2,∴y 21y 22=4p 2x 1x 2=p 4. 又∵y 1y 2<0,∴y 1y 2=-p 2. 故y 1y 2x 1x 2=-4. 4.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A ⎝ ⎛⎭⎪⎫72,4,则|P A |+|PM |的最小值是( )A.72 B .4 C.92D .5答案:C 解析:设抛物线y 2=2x 的焦点为F ,则F ⎝ ⎛⎭⎪⎫12,0.又点A ⎝ ⎛⎭⎪⎫72,4在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12.又|P A |+d =|P A |+|PF |≥|AF |=5, 所以|P A |+|PM |≥92.5.设F 为抛物线y 2=6x 的焦点,A ,B ,C 为该抛物线上三点.若F A →+FB →+FC →=0,则|F A →|+|FB→|+|FC →|=( ) A .4 B .6 C .9D .12答案:C 解析:由题意,得抛物线的焦点为F ⎝ ⎛⎭⎪⎫32,0,准线方程为x =-32.设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),∵F A →+FB →+FC →=0,∴点F 是△ABC 的重心, ∴x 1+x 2+x 3=92. 由抛物线的定义,可得|F A |=x 1-⎝ ⎛⎭⎪⎫-32=x 1+32,|FB |=x 2-⎝ ⎛⎭⎪⎫-32=x 2+32, |FC |=x 3-⎝⎛⎭⎪⎫-32=x 3+32,∴|F A →|+|FB →|+|FC →|=x 1+32+x 2+32+x 3+32 =9.6.[2019石家庄模拟]已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y答案:D 解析:因为x 2a 2-y 2b 2=1的离心率为2,所以c a =2,即c 2a 2=a 2+b 2a 2=4,所以ba = 3.x 2=2py 的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,x 2a2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意得p21+(3)2=2,所以p =8.故C 2的方程为x 2=16y .7.[2019永州模拟]已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A.22 B .1-22 C .1+22D .2+ 2答案:D 解析:抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116, 准线为y =-116,设|MF |=a ,|NF |=b ,由∠MFN =135°, 可得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab , 由抛物线的定义,可得M 到准线的距离为|MF |,N 到准线的距离为|NF |, 由梯形的中位线定理,可得d =12(|MF |+|NF |)=12(a +b ),由|MN |2=λ·d 2,可得14λ=a 2+b 2+2ab (a +b )2=1-(2-2)ab (a +b )2≥1-(2-2)ab (2ab )2=1-2-24=2+24,可得λ≥2+2,当且仅当a =b 时,取得最小值2+ 2.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =________.答案:1+2 解析:|OD |=a2,|DE |=b ,|DC |=a ,|EF |=b ,故C ⎝⎛⎭⎪⎫a 2,-a ,F ⎝⎛⎭⎪⎫a 2+b ,b ,又抛物线y 2=2px (p >0)经过C ,F 两点, 从而有⎩⎪⎨⎪⎧(-a )2=2p ×a 2,b 2=2p ⎝ ⎛⎭⎪⎫a 2+b ,即⎩⎪⎨⎪⎧a =p ,b 2=ap +2bp , ∴b 2=a 2+2ab ,∴⎝ ⎛⎭⎪⎫b a 2-2·ba -1=0, 又b a >1,∴ba =1+ 2.9.[2019河南安阳一模]已知抛物线C 1:y =ax 2(a >0)的焦点F 也是椭圆C 2:y 24+x 2b 2=1(b >0)的一个焦点,点M ,P ⎝ ⎛⎭⎪⎫32,1分别为曲线C 1,C 2上的点,则|MP |+|MF |的最小值为________.答案:2 解析:将P ⎝ ⎛⎭⎪⎫32,1代入y 24+x2b 2=1,可得 14+94b 2=1,∴b =3,∴c =1,∴抛物线的焦点F 为(0,1), ∴抛物线C 1的方程为x 2=4y , 准线为直线y =-1.设点M 在准线上的射影为D , 根据抛物线的定义可知,|MF |=|MD |,∴要求|MP |+|MF |的最小值,即求|MP |+|MD |的最小值,易知当D ,M ,P 三点共线时,|MP |+|MD |最小,最小值为1-(-1)=2.10.[2019湖北武汉一模]设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过焦点的直线分别交抛物线于A ,B 两点,分别过点A ,B 作l 的垂线,垂足分别为点C ,D .若|AF |=2|BF |,且△CDF 的面积为2,则p 的值为________.答案:233 解析:设A (x 1,y 1),B (x 2,y 2). 因为直线AB 过焦点F ,所以y 1y 2=-p 2. 不妨设点A 在第一象限,因为|AF |=2|BF |,所以|y 1|=2|y 2|,所以-2y 22=-p 2.解得y 2=-22p ,所以y 1=-2y 2=2p . 所以S △CDF =12|y 1-y 2|×p =12×322p 2=2, 解得p =233.11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p2, 于是4+p2=5,∴p =2, ∴抛物线的方程为y 2=4x . (2)由(1)知,点A 的坐标是(4,4). 由题意,得B (0,4),M (0,2), 又∵F (1,0),∴k F A =43. ∵MN ⊥F A ,∴k MN =-34, ∴直线F A 的方程为y =43(x -1),① 直线MN 的方程为y =-34x +2,② 由①②联立,得x =85,y =45,∴N 的坐标为⎝ ⎛⎭⎪⎫85,45.。
高考一轮复习语文基础训练专项练习题及答案
高考一轮复习语文基础训练专项练习题及答案推荐文章2018年高考复习病句专题练习题及答案热度:高考语文选择专项练习题及答案热度:历年高考语病题专项练习题及答案汇编热度:语文课文陈情表阅读练习题及答案热度:高中文言文阅读训练练习题热度:语文基础知识是高考语文必考的重要内容,语文基础知识训练对于高考语文复习是很重要的,以下是店铺为大家收集整理的高考一轮复习语文基础知识训专项练习题,请考生认真学习。
高考语文基础知识训练一1、下列词语中加点的字,读音全都正确的一项是A、星宿(xiù) 馄饨(dùn) 贺岁片(piàn) 垂涎三尺(xián)B、粗犷(guǎng) 堤防(dī) 芝麻糊(hù) 瞠目结舌(chēng)C、属意(zhǔ) 歼灭(jiān) 数来宝(shǔ) 便宜从事(pián)D、烘焙(bèi) 唱和(hè) 挑大梁(t iāo) 风驰电掣(chè)1、B(A项“馄饨”读“hún tun”,C项“便”读“biàn”,D 项“挑”读“tiāo”)2、下列词语中,书写没有错误的一项是A、暮霭厮打脑血拴厝火积薪B、彪悍誉写蜡像馆大快朵颐C、宣泄愧怍调和油不稂不莠D、羸弱谙熟手动挡开源截流2、C(A项“脑血拴”应为“脑血栓”,B项“誉写” 应为“誊写”,D项“开源截流”应为“开源节流”)3.下列各句中,标点符号使用正确的一句是A.养殖业的发展要结合市场需求,更要结合国情。
国外的养殖方式:大规模、产业化自然是好处很多,但也不能照搬。
B.各国展示的最新科技成果,包括太阳能技术、资源循环技术、固体废弃物无害化、减量化、资源化处理技术等。
C.《孟子》里有各种圣人,表现各不相同。
但有一点相同,即“行一不义,杀一不辜而得天下,皆不为也”(《孟子·公孙丑上》)。
D.我不知道这一实验到底能不能得出最终的结论?但我一定要坚持下去,直到把问题搞个水落石出,尽管我面前困难重重。
2020年高考数学复习题:函数的单调性与最值
函数的单调性与最值[基础训练]1.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12 B .m <12 C .m >-12D .m <-12答案:B 解析:由2m -1<0⇒m <12. 2.已知函数y =1x -1,那么( )A .函数的单调递减区间为(-∞,1),(1,+∞)B .函数的单调递减区间为(-∞,1)∪(1,+∞)C .函数的单调递增区间为(-∞,1),(1,+∞)D .函数的单调递增区间为(-∞,1)∪(1,+∞)答案:A 解析:在每个区间内都单调递减,但不可用“并集”形式.3.已知函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x-1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 答案:D 解析:由题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13, 解得12≤x <23.4.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案:D 解析:由x 2-4>0,得x <-2或x >2.又y =log 12u为减函数,故f (x )的单调递增区间为(-∞,-2).5.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案:C 解析:充分性:x >0,当a <0时,则f (x )=|(ax -1)x |=-ax 2+x 为开口向上的二次函数,且对称轴为x =12a <0,故f (x )为增函数;当a =0时,f (x )=x 为增函数.必要性:当a ≠0时,f ⎝ ⎛⎭⎪⎫1a =0,f (0)=0,f (x )在(0,+∞)上为增函数,则1a <0,即a <0;f (x )=x 时,为增函数,此时a =0,故a ≤0.综上,a ≤0为f (x )在(0,+∞)上为增函数的充分必要条件. 6.[2019湖北华大新联盟考试]若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]答案:B 解析:易知函数f (x )=2|x -a |+3的增区间在为[a ,+∞),减区间为(-∞,a ].因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a >1. 故选B.7.[2019山东潍坊四县联考]已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,23 B .(0,+∞)C.⎝ ⎛⎭⎪⎫0,23 D .(-∞,0)∪⎝ ⎛⎭⎪⎫23,+∞答案:C 解析:∵f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),∴⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1, 解得0<a <23.故选C.8.[2016天津卷]已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫12,32解析:由题意知,函数f (x )在(0,+∞)上单调递减.因为f (2|a -1|)>f (-2),f (-2)=f (2),所以f (2|a -1|)>f (2),所以2|a -1|<212,解得12<a <32.9.函数y =x -x (x ≥0)的最大值为________.答案:14 解析:令t =x ,则t ≥0,y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max =14.10.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.答案:[0,1) 解析:易知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.画出g (x )的图象如图所示,其递减区间是[0,1).11.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.(1)证明:任取x 1,x 2∈(0,+∞),且x 2>x 1, 则x 2-x 1>0,x 1x 2>0.f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解:∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2. 易得a =25.[强化训练]1.[2019河南安阳一模]已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0;②对定义域内的任意x ,都有f (x )=f (-x ).则符合上述条件的函数是( )A .f (x )=x 2+|x |+1 B .f (x )=1x -x C .f (x )=ln|x +1| D .f (x )=cos x答案:A 解析:由题意,得f (x )是偶函数,在(0,+∞)上递增.对于A ,f (-x )=f (x ),是偶函数,且x >0时,f (x )=x 2+x +1,f ′(x )=2x +1>0,故f (x )在(0,+∞)上递增,符合题意;对于B ,函数f (x )是奇函数,不符合题意;对于C ,由x +1≠0,解得x ≠-1,定义域不关于原点对称,故函数f (x )不是偶函数,不符合题意;对于D ,函数f (x )在(0,+∞)上不单调递增,不符合题意.故选A.2.[2019河北石家庄一模]已知奇函数f (x )在x >0时单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为 ( )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1}答案:A 解析:∵奇函数f (x )在(0,+∞)上单调递增,且f (1)=0,∴函数f (x )在(-∞,0)上单调递增,且f (-1)=0,则-1<x <0或x >1时,f (x )>0;x <-1或0<x <1时,f (x )<0.∴不等式f (x -1)>0,即-1<x -1<0或x -1>1, 解得0<x <1或x >2.故选A.3.[2019山东济宁二模]已知y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案:C 解析:由题意易知f (x )在(0,+∞)上是减函数, 又∵|a |=ln π>1,b =(ln π)2>|a |,0<c =ln π2<|a |, ∴f (c )>f (|a |)>f (b ). 又由题意知f (a )=f (|a |), ∴f (c )>f (a )>f (b ). 故选C.4.[2019甘肃天水月考]定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)答案:A 解析:∵f (x )是偶函数,∴f (-2)=f (2). 又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f(x2)-f(x1)x2-x1<0,∴f(x)在[0,+∞)上是减函数.又∵1<2<3,∴f(1)>f(2)=f(-2)>f(3),故选A.5.[2019河南郑州一模]已知定义在R上的奇函数f(x)满足f(x +2e)=-f(x)(其中e=2,718 2…),且在区间[e,2e]上是减函数,令a=ln 22,b=ln 33,c=ln 55,则f(a),f(b),f(c)的大小关系(用不等号连接)为()A.f(b)>f(a)>f(c) B.f(b)>f(c)>f(a)C.f(a)>f(b)>f(c) D.f(a)>f(c)>f(b)答案:A解析:∵f(x)是R上的奇函数,满足f(x+2e)=-f(x),∴f(x+2e)=f(-x),∴函数f(x)的图象关于直线x=e对称,∵f(x)在区间[e,2e]上为减函数∴f(x)在区间[0,e]上为增函数,又易知0<c<a<b<e,∴f(c)<f(a)<f(b),故选A.6.[2019安徽蚌埠二模]已知单调函数f(x),对任意的x∈R 都有f[f(x)-2x]=6,则f(2)=( )A.2 B.4 C.6 D.8答案:C解析:设t=f(x)-2x,则f(t)=6,且f(x)=2x+t,令x=t,则f(t)=2t+t=6,∵f(x)是单调函数,f(2)=22+2=6,∴t=2,即f(x)=2x+2,则f(2)=4+2=6,故选C.7.[2019河北邯郸月考]已知函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是________.答案:(-∞,-2]∪[2,+∞) 解析:∵函数y =f (x )是R 上的偶函数,∴y =f (x )的图象关于y 轴对称. 又∵y =f (x )在(-∞,0]上是增函数,则y =f (x )在(0,+∞)上是减函数,f (a )≤f (2), ∴|a |≥2,∴a ≤-2或a ≥2. 8.[2019广东深圳模拟]已知函数f (x )=⎩⎪⎨⎪⎧a x,x <0,(a -3)x +4a ,x ≥0满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.答案:⎝ ⎛⎦⎥⎤0,14解析:由任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,知f (x )在R 上为减函数,则需⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥(a -3)·0+4a ,解得0<a ≤14.9.[2019甘肃兰州一模]已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,x ≤0,2ax -1,x >0(a是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数; ③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1;④对任意x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2. 其中正确命题的序号是________.答案:①③④ 解析:根据题意可得函数图象如图所示.①由图象易得在点x =0处函数f (x )有最小值-1,故正确; ②由图象易得函数f (x )在R 上不是单调函数,故错误; ③因为f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,且f (x )在(0,+∞)上单调递增,所以当x =12时,函数取得最小值,求得a 的取值范围是a >1,故正确;④因为函数在(-∞,0)上的图象是下凹的,所以任取两点连线应在图象的上方,即f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2,故正确. 故正确的命题为①③④.10.[2019河北石家庄模拟]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1.若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b >0成立.(1)判断f (x )在[-1,1]上的单调性,并证明; (2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1], 因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在[-1,1]上单调递增. (2)因为f (x )在[-1,1]上单调递增,所以⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1,解得-32≤x <-1.(3)因为f (1)=1,f (x )在[-1,1]上单调递增, 所以在区间[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0对a ∈[-1,1]恒成立.下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0. ①若m =0,则g (a )=0≥0, 对a ∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,所以m≤-2或m≥2.所以m的取值范围是{m|m=0或m≥2或m≤-2}.。
2025届高三高考化学一轮复习基础训练——化学综合计算
2025届高三高考化学一轮复习基础训练——化学综合计算一、单选题1.N A 为阿伏加德罗常数的值。
下列说法正确的是( )A .18 g H 218O 含有的中子数为10N AB .0.1 mol·L -1HCl 溶液中含有的H +数为0.1N AC .71 g Cl 2与56g Fe 完全反应转移的电子数为2N AD .3.9 g Na 2O 2中含有的共价键的数目为0.1N A2.用A N 表示阿伏加德罗常数的值,下列说法正确的是A .常温常压下,22g 38C H 中所含非极性键数目为2A NB .标准状况下,A N 个溴分子的体积为1LC .标准状况下,22.4L 3CH Cl 中含有的Cl -数为A ND .28g 24C H 与2N 的混合气体含A N 个分子3.NH 4NO 3受撞击时会发生爆炸:432224NH NO 3N 2NO 8H O =↑+↑+。
设A N 为阿伏加德罗常数的值,下列说法正确的是A .1431L1mol L NH NO -⋅溶液中含4NH +数目为A NB .1molN 2中含π键数目为A NC .标准状况下,22.4LH 2O 中含电子数为A 10ND .每生成0.2molNO 2,该反应中转移电子数为A 1.2N4.我国学者首次发现非水相氮还原过程中的多米诺效应。
如图所示,一旦完成反应①,反应②③将自发完成,设A N 为阿伏加德罗常数的值。
下列说法正确的是A .完成反应①时,转移的电子数为A NB .完成反应②时,每消耗2.24L 2N ,此时生成3Li N 的个数为0.2A NC .完成反应③时,每消耗0.3mol H +,此时生成N—H 键的总数为0.3A ND .等物质的量的Li +和H +的电荷数均为A N5.用A N 表示阿伏加德罗常数,下列叙述正确的是A .标准状况下,211.2LH O 含有的分子数为A 0.5NB .常温常压下,A N 个2CO 分子占有的体积为22.4LC .5.6g 铁与足量氯气充分反应,转移电子数为A 0.2ND .常温常压下,1.4g 氮气含有的氮原子数为A 0.1N6.设A N 为阿伏加德罗常数的值。
【精品含答案】高考一轮复习6.6不等式的综合应用基础训练题(理科)
2009届高考一轮复习6.6不等式的综合应用基础训练题(理科)注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间45分钟。
第Ⅰ卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合}0)1x (x |x {P ≥-=,)}1x ln(y |x {Q -==,则Q P 等于( )(A ) (B )}1x |x {>(C )}1x |x {≥(D )}0x 1x |x {<≥或 2.(2007·湖北高考)设P 和Q 是两个集合,定义集合}Q x ,P x |x {Q P ∉∈=-且,如果}1x log |x {P 2<=,}1|2x ||x {Q <-=,那么Q P -等于( )(A )}1x 0|x {<< (B )}1x 0|x {≤<(C )}2x 1|x {<≤ (D )}3x 2|x {<≤3. 已知命题:p 不等式|2x ||1x |++->m 的解集为R ;x log )x (f :q )m 23(-=为减函数,则p 成立是q 成立的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件4. 设函数)0a (a x x )x (f 2>++=满足0)m (f <,则)1m (f +的符号是( )(A )0)1m (f ≥+ (B )0)1m (f ≤+(C )0)1m (f >+ (D )0)1m (f <+5. 直线)0b ,0a (02by ax 2>>=+-始终平分圆01y 4x 2y x 22=+-++的周长,则b1a 1+的最小值是( ) (A )4 (B )2 (C )41 (D )21 6.(实践应用题)一个人喝m L 150啤酒后,血液中的酒精含量上升到mL /mg 48.0,在停止喝酒后,血液中的酒精含量每小时减小一半。
【每日一练】经典高考数学基础训练(6)(含参考答案)
【每日一练】经典高考数学基础训练(6)(含参考答案)一、选择题:1.已知全集U ={1,2,3,4,5},集合M ={1,2,3},N ={3,4,5},则M ∩(ðU N )=( )A.{1,2}B.{4,5}C.{3}D.{1,2,3,4,5}2. 复数z=i 2(1+i)的虚部为( ) A.1 B. i C. -1D. - i3.如图是一个几何体的三视图,则该几何体的体积为( ) A.π3B.π37C.π320D.π4.在等比数列}{n a 中,32-=a ,64-=a ,则8a 的值为( ) A .–24B .24C .±24D .–125.在四边形ABCD 中,“DC AB 2=”是“四边形ABCD 是梯形”的( )A .充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6. 方程062=-+x e x的解一定位于区间( ) A .(1,2)B .(2,3)C .(3,4)D .(5,6)7.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .41π-B .4π C .81π-D .与a 的取值有关8. 在三角形ABC 中,CBBC AB A sin sin ,7,5,120则===的值为( )A .58 B .85 C .35D .539.设⎩⎨⎧<+-≥--=0,620,12)(2x x x x x x f ,若2)(>t f ,则实数t 的取值范围是( )A .),4(1,(+∞⋃--∞) B.),3(2,(+∞⋃-∞)C .),1(4,(+∞⋃--∞) D.),3(0,(+∞⋃-∞)10.设α表示平面,b a ,表示直线,给定下列四个命题: ①αα⊥⇒⊥b b a a ,// ②αα⊥⇒⊥b a b a ,// ③αα//,b b a a ⇒⊥⊥ ④b a b a //,⇒⊥⊥αα其中正确命题的个数有( )A.1个B.2个C.3个D.4个二、填空题:11.已知,x y 满足约束条件50,0,3,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则y x z +=2的最小值为 .12. 右面是一个算法的程序框图,当输入的值x 为20时,则其输出的结果是 .13.若一个圆的圆心在抛物线24x y -=的焦点处,且此圆与直线0143=-+y x 相切,则圆的方程是 .14. 对任意实数x 、y ,定义运算x *y =ax +by +c xy ,其中a 、b 、c 为常实数,等号右边的运算是通常意义的加、乘运算.现已知2*1=3,2*3=4,且有一个非零实数m ,使得对任意实数x ,都有x *m =2x ,则m = . 三、解答题已知(sin ,cos )a x x =,)cos ,(cos x x b =,f (x )=b a ∙⑴ 求f (x )的最小正周期和单调增区间; ⑵ 如果三角形ABC 中,满足f (A )=12,求角A 的值.答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ACBABAADDB二、填空题 13. 25-14. 0 15. 161)161(22=++y x 16. 3 三、解答题:本题考查向量、二倍角和辅助角公式、三角函数性质和三角形的有关性质,要求学生能运用所写的知识解决实际问题.满分12分解:⑴f (x )= sin x cos x +x 2cos ………1分 =21x 2sin +x 2cos 2121+………2分 =22sin(2x+4π)+21………3分 最小正周期为π,…………………4分单调增区间[k π-83π,k π+8π](k ∈Z )……………………6分 ⑵由21)(=A f 得sin(2A+4π)=0, …………7分4π<2A+4π<49π,……………9分 ∴2A+4π=π或2π∴A =83π或87π…………………… 12分。
2020届高考英语3500词汇读练测基础训练06(含解析)(最新整理)
基础训练06一、选词填空(从晨读材料中选用恰当的词并用其正确的形式填空)1.When he __________,he found himself lying in the hospital and being looked after by an old woman。
【答案】awoke【句意】当他醒来时,他发现自己躺在医院里,由一个老太太的护理着。
2.He came to my class every week, but his __________ suggested that he was not really interested.【答案】attitude【句意】他每周都来上我的课,但他的态度表明他并不是真的感兴趣。
3。
It never occurred to me that I had to __________ an important meeting in Shanghai the next day。
【答案】attend【句意】我突然想起明天我不得不去上海参加一个重要的会议.4。
—Why have you moved here?—I only __________ to enjoy the farming life here。
【答案】attempt【句意】“你为什么搬到了这里?"“我只是尝试享受这里的田园生活。
”5。
As a great scientist,little joy can equal that of being __________ the Nobel Prize。
【答案】awarded【句意】作为一个伟大的科学家,任何喜悦都赶不上获得诺贝尔奖。
6。
There was an __________ moment when she didn’t k now whether to shake his hand or kiss his cheek.【答案】awkward【句意】她不知道该和他握手还是吻他的面颊时很尴尬。
2020年高考数学复习题:圆的方程
圆的方程[基础训练]1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9答案:C 解析:∵圆心(2,-1)到直线3x -4y +5=0的距离d =|6+4+5|5=3, ∴圆的半径为3,即圆的方程为(x -2)2+(y +1)2=9.2.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( )A.14<m <1B .m <14或m >1C .m <14D .m >1 答案:B 解析:由D 2+E 2-4F =16m 2+4-20m >0,解得m >1或m <14.3.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4答案:B 解析:根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB=90°,连接OP,易知|OP|=12|AB|=m,要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.4.[2019湖南师大附中月考]已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则实数m的取值范围是()A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]答案:A解析:∵x+y+m≥0,即m≥-x-y恒成立,∴只需求出-x-y的最大值即可.∵1=x2+(y-1)22≥⎝⎛⎭⎪⎫x+y-122,∴(x+y-1)2≤4,解得-2≤x+y-1≤2,即-1≤x+y≤3,∴-3≤-x-y≤1,∴-x-y的最大值是1,则m≥1,∴实数m的取值范围是[1,+∞).故选A.5.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6] C.[4,6) D.(4,6]答案:A解析:易求圆心(3,-5)到直线4x-3y=2的距离为5.令r=4,可知圆上只有一点到已知直线的距离为1;令r=6,可知圆上有三点到已知直线的距离为1,所以半径r在(4,6)之间取值符合题意.6.[2019河南豫西五校联考]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为()A.x2+(y-1)2=4 B.x2+(y-1)2=2C.x2+(y-1)2=8 D.x2+(y-1)2=16答案:B解析:解法一:由题意,可得圆心(0,1)到直线x-by+2b+1=0的距离d=|1+b|1+b2=(1+b)21+b2=1+2b1+b2≤1+2|b|1+b2≤2,当且仅当b=1时等号成立,所以半径最大的圆的半径r=2,此时圆的标准方程为x2+(y-1)2=2.故选B.解法二:直线x-by+2b+1=0过定点P(-1,2),如图,∴圆与直线x-by+2b+1=0相切于点P时,圆的半径最大,为2,此时圆的标准方程为x2+(y-1)2=2,故选B.7.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为________.答案:4解析:如图所示,圆心M(3,-1)与定直线x=-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.8.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN =45°,则x0的取值范围是________.答案:[-1,1]解析:解法一:当x0=0时,M(0,1),由圆的几何性质,得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A,B,如图1.若在圆上存在N,使得∠OMN=45°,应有∠OMB≥∠OMN=45°,∴∠AMB≥90°,∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.解法二:过O作OP⊥MN,P为垂足,如图2,OP =OM ·sin 45°≤1,∴OM ≤1sin 45°,∴OM 2≤2,∴x 20+1≤2,∴x 20≤1,∴-1≤x 0≤1.9.[2019银川模拟]已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形P ACB 面积的最小值是________. 答案:3 解析:圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径r =1,根据对称性可知,四边形P ACB 的面积为2S △APC =2×12|P A |r =|P A |=|PC |2-r 2,要使四边形P ACB 的面积最小,则只需|PC |最小,最小为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2. 所以四边形P ACB 面积的最小值为|PC |2min -r 2=4-1= 3.10.[2019河南安阳一模]在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.答案:[0,3] 解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ), 由题意得x 2+(y +3)2=2x 2+y 2,整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组 ⎩⎪⎨⎪⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3, 解得0≤a ≤3,综上可得,实数a 的取值范围是[0,3].11.[2019广东深圳3月联考]如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线方程;(2)若M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)在(2)的条件下,若动圆N 过点P 且与圆M 内切,求动圆N 的圆心的轨迹方程.解:(1)易知k AB =-2,AB ⊥BC ,∴k CB =22,∴BC 边所在直线方程为y =22x -2 2.(2)由(1)及题意得C (4,0),∴M (1,0),又∵AM =3,∴外接圆M 的方程为(x -1)2+y 2=9.(3)∵圆N 过点P (-1,0),∴PN 是动圆的半径,又∵动圆N 与圆M 内切,∴MN =3-PN ,即MN +PN =3,∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆.∵P (-1,0),M (1,0),∴a =32,c =1,b =a 2-c 2=54,∴所求轨迹方程为x 294+y 254=1,即4x 29+4y 25=1.[强化训练]1.[2019广东七校联考]圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( )A .2 3 B.203 C .4 D.163答案:D 解析:圆x 2+y 2+2x -6y +1=0的标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0).∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9 ≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163, 当且仅当3b a =3a b ,即a =b 时等号成立,故选D.2.[2019江西新余五校3月联考]已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0答案:D 解析:当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎪⎫k ≠12, 则圆心到直线PQ 的距离d =|1-2k |1+k 2, 由平面几何知识,得|PQ |=29-d 2,S △OPQ =12·|PQ |·d =12·29-d 2·d=(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92, 当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92. 因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92, 解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.故选D.3.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( )A .(-23,4)B .[-23,4]C .[-4,4]D .[-4,23]答案:B 解析:由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆,3x +y -m =0是直线(如图),直线的斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,设圆心O 到直线3x +y -m =0的距离为d ,所以⎩⎪⎨⎪⎧ m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧ m ≥-23,|-m |2≤2,解得m ∈[-23,4].4.过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为( )A .(-∞,-3)∪(1,+∞)B.⎝ ⎛⎭⎪⎫-∞,32 C .(-3,1)∪⎝ ⎛⎭⎪⎫32,+∞ D .(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 答案:D 解析:圆x 2+y 2-2ax +a 2+2a -3=0的圆心为(a,0),且a <32,并且(a ,a )在圆外,即有a 2>3-2a ,解得a <-3或a >1,所以a <-3或1<a <32.5.[2019福建厦门3月联考]若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案:B 解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23. 又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34, ∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.6.[2019重庆九校联盟联考]设m ,θ∈R ,则(22-m -cos θ)2+(22+m -sin θ)2的最小值为( )A .3B .4C .9D .16答案:C 解析:(22-m -cos θ)2+(22+m -sin θ)2的几何意义是单位圆上的点与直线x +y -42=0上的点间的距离的平方,故其最小值为(4-1)2=9.故选C.7.[2019广东广州模拟]已知圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,则|PM ||PN |的取值范围是( )A.⎣⎢⎡⎦⎥⎤67,8B.⎣⎢⎡⎦⎥⎤25,6 C.⎣⎢⎡⎦⎥⎤17,7 D.⎣⎢⎡⎦⎥⎤14,4 答案:C 解析:圆(x +3)2+y 2=64的圆心为M ,设A 为圆上任一点,点N 的坐标为(3,0),线段AN 的垂直平分线交MA 于点P ,∴P 是AN 的垂直平分线上一点,∴|P A |=|PN |.又∵|AM |=8,∴点P 满足|PM |+|PN |=|AM |=8>6,即点P 满足椭圆的定义,焦点是(3,0),(-3,0),长半轴长a =4,∴点P 的轨迹方程为x 216+y 27=1,|PM |+|PN |=8,|PM ||PN |=8-|PN ||PN |=8|PN |-1.∵1≤|PN |≤7,∴8|PN |∈⎣⎢⎡⎦⎥⎤87,8, ∴|PM ||PN |∈⎣⎢⎡⎦⎥⎤17,7, 故选C.8.圆x 2+y 2-4x +4y +6=0上的动点M 到坐标原点的距离的最大值、最小值分别是________,________.答案:322 解析:因为圆心是A (2,-2),半径是2,又AO =22,所以动点M 到坐标原点的距离的最大值、最小值分别是22+2=32,22-2= 2.9.[2019湖南师大附中模拟改编]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.则椭圆C 的标准方程和圆A 的方程分别为________,________.答案:x 24+y 2=1 (x -2)2+y 2=85 解析:如图,设T 为线段PQ的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ ,∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |.∴|AT ||OT |=12,即b a =12.由已知c =3,∴a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85. 10.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M 的坐标为(m ,n )(m ≠-2),求n -3m +2的最大值和最小值. 解:(1)由题意知,圆C 的标准方程为(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2.∵|QC |=[2-(-2)]2+(7-3)2=42>22,∴|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)易知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2)⎝⎛⎭⎪⎫k =n -3m +2, 即直线MQ 的方程为kx -y +2k +3=0.由题意知,当直线MQ 与圆C 相切时取得最值, 则|7-2k -2k -3|1+k2=22, 解得k =2-3或k =2+3,则k =n -3m +2的最大值和最小值分别为2+3,2- 3. 11.[2016江苏卷]如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤[(t+4)-6]2+(3-7)2≤5+5,解得2-221≤t≤2+221.因此,实数t的取值范围是[2-221,2+221 ].。
【步步高】高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文 新人教a版
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × ) (4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.101100答案 A解析 利用裂项相消法求和.设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为 ( )A.2n +n 2-1B.2n +1+n 2-1C.2n +1+n 2-2D.2n +n 2-2答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________.答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n.题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解. 解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)-(12+122+…+12n )]n 个=2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1. 故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1=nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{c n }对应项之积组成的数列{a n },即a n =b n ×c n 的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用范围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,① 故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n 1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n2n . 所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n , ①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1.思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1 得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2, b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·江西)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .S n =-12n 2+kn 及S n 最大值为8S n 是n 的二次函数 n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值) k =4,S n =-12n 2+4n利用a n 、S n 的关系 a n =92-n9-2a n 2n =n2n -1 根据数列的结构特征,确定求和方法:错位相减法 T n =1+22+322+…+n -12n -2+n 2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分] 当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2 ②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( )A.nn +1 B.4n n +1C.3n n +1D.5n n +1答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1),∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)]=4(1-1n +1)=4nn +1.2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A.20B.17C.19D.21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0, 即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号, 因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0, 所以S 19=19(a 1+a 19)2=19a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101) =-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A.31B.120C.130D.185答案 C解析 a 1+…+a k +…+a 10=240-(2+…+2k +…+20) =240-(2+20)×102=240-110=130.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9. 二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________.答案n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18,6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n )=(1+2+3+…+n )+(12+122+123+…+12n )=n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n .7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x =1.S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),②①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014,∴S =2 0142=1 007.8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解. ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =15×(10+234)2=1 830.三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n . 解 (1)由题意,知a n =(14)n (n ∈N *),又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *),所以c n =(3n -2)×(14)n (n ∈N *).所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n ,于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1.两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *).10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列. (1)求等比数列S 1,S 2,S 4的公比; (2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0), 所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d . 因为S 1,S 2,S 4成等比数列且设其公比为q , 所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2. 因为公差d ≠0.所以d =2a 1. 所以q =S 2S 1=4a 1a 1=4.(2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1. (3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1),所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32.要使T n <m20对所有n ∈N *都成立,则有m 20≥32,即m ≥30.因为m ∈N *,所以m 的最小值为30.B 组 专项能力提升 (时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A.2 008B.2 010C.1D.0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2), ∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008, -2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0. ∵2 014=6×335+4,∴S 2 014=S 4 =2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n C n 的三边长分别为a n 、b n 、c n ,△A n B n C n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列 答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13;故S 1=3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2=3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a12=1312a 1,c 3=56a 1+a 12=1112a 1,S 3=3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116 (2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1,∴a n =(-1)n a n -(-1)n -1a n -1+12n .当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128,a 2=122,a 4=124,a 6=126,a 8=128.∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *). (1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12.(1)解 当n ∈N *时,S n =2a n -2n , 则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1,当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0,∴{T n }为递增数列,∴T n ≥T 1=12.5.直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2.(1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n .解 (1)由题意,知圆C n 的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1)=n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1).当n 为奇数时,n +1为偶数, T n +1=(n +1)2-(n +1)2+23(2n +1-1)=n 2+n 2+23(2n +1-1).而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2).所以T n=⎩⎨⎧n 2-n 2+23(2n-1)(n 为偶数),n 2+n 2+13(2n-2)(n 为奇数).。
2020年高考数学复习题:二次函数与幂函数
二次函数与幂函数[基础训练]1.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()答案:D解析:因为a>0,所以f(x)=x a在(0,+∞)上为增函数,故A错.在B中,由f(x)的图象知a>1,由g(x)的图象知0<a<1,矛盾,故B错.在C中,由f(x)的图象知0<a<1,由g(x)的图象知a>1,矛盾,故C错.在D中,由f(x)的图象知0<a<1,由g(x)的图象知0<a<1,相符,故选D.2.[2019上海模拟]如图是函数y=x mn(m,n∈N*,m,n互质)的图象,则下列结论正确的是()A.m,n是奇数,且m<nB.m是偶数,n是奇数,且m>nC .m 是偶数,n 是奇数,且m <nD .m 是奇数,n 是偶数,且m >n答案:C 解析:由图象可知函数y =x m n 为偶函数,∴m 是偶数,又m ,n 互质,n ∈N *,∴n 是奇数.又∵图象在第一象限是上凸的,∴m n <1,即m <n .故选C.3.[2019广东佛山模拟]已知实数m ,n ∈{1,2,3,4},若m ≠n ,则函数f (x )=|m -n |x n m 为幂函数且为偶函数的概率为( )A.12B.14C.16D.23答案:B 解析:函数f (x )=|m -n |x n m 为幂函数且为偶函数,则|m -n |=1,且n 为偶数,∴(m ,n )的可能情况有(1,2),(3,2),(3,4).又实数m ,n ∈{1,2,3,4},∴(m ,n )的所有可能情况有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情况.∴函数f (x )=|m -n |x n m 为幂函数且为偶函数的概率为312=14.故选B.4.[2019湖南长沙统一模拟]已知函数f (x )=x 12,则( )A .∃x 0∈R ,使得f (x )<0B .∀x >0,f (x )>0C .∃x 1,x 2∈[0,+∞),使得f (x 1)-f (x 2)x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),使得f (x 1)>f (x 2) 答案:B 解析:由题意得f (x )=x ,函数的定义域为[0,+∞),函数的值域为[0,+∞),并且函数是单调递增函数.所以A 不成立,根据单调性可知C 也不成立.而D 中,当x 1=0时,不存在x 2∈[0,+∞),使得f (x 1)>f (x 2),所以D 不成立.故选B.5.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为 ( )A .-3B .-2C .-1D .1答案:B 解析:函数f (x )=x 2-2x +m =(x -1)2+m -1的图象如图所示.由图象知在[3,+∞)上,f (x )min =f (3)=32-2×3+m =1,得m =-2.6.[2019湖南株洲联考]函数y =ax 2+bx 与y =log|b a |x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )答案:D 解析:对于A ,B 两图,⎪⎪⎪⎪⎪⎪b a >1,而ax 2+bx =0的两根分别为0和-b a ,且两根之和为-b a ,由图知0<-b a <1,得-1<b a <0,矛盾;对于C ,D 两图,0<⎪⎪⎪⎪⎪⎪b a <1,在C 图中两根之和-b a <-1,即b a >1,矛盾,C 错.故选D.7.已知函数f (x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( )A .∀x ∈(0,1),都有f (x )>0B .∀x ∈(0,1),都有f (x )<0C .∃x 0∈(0,1),使f (x 0)=0D .∃x 0(0,1),使f (x 0)>0答案:B 解析:由a >b >c ,a +b +c =0可知a >0,c <0,抛物线开口向上,因为f (0)=c <0,f (1)=a +b +c =0,即1是方程ax 2+bx +c =0的一个根,所以∀x ∈(0,1),都有f (x )<0.故选B.8.[2019广东汕头一模]命题“ax 2-2ax +3>0恒成立”是假命题,则实数a 的取值范围是( )A .(-∞,0)∪[3,+∞)B .(-∞,0]∪[3,+∞)C .(-∞,0)∪(3,+∞)D .(0,3)答案:A 解析:若ax 2-2ax +3>0恒成立,则a =0或⎩⎪⎨⎪⎧ a >0,Δ=4a 2-12a <0,可得0≤a <3,故当命题“ax 2-2ax +3>0恒成立”是假命题时,a <0或a ≥3.9.[2019福建龙海期末]若幂函数y =(m 2-3m +3)·xm 2-m -2 的图象不经过坐标原点,则实数m =________.答案:1或2 解析:由题意得m 2-3m +3=1,解得m =1或m =2.当m =1时,y =x -2,图象不过原点, 当m =2时,y =x 0,图象不过原点,故m =1或2.10.[2019山西一模]已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________.答案:-1 解析:由题意得m 2-m =3+m ,即m 2-2m -3=0,∴m =3或m =-1.当m =3时,f (x )=x -1,[-3-m ,m 2-m ]为[-6,6], f (x )在x =0处无意义,故舍去.当m =-1时,f (x )=x 3,[-3-m ,m 2-m ]为[-2,2],满足题意,∴f (m )=f (-1)=(-1)3=-1.11.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.答案:(-∞,-6]∪[4,+∞) 解析:函数f (x )=x 2+2ax +3的图象的对称轴为直线x =-2a 2=-a ,要使f (x )在[-4,6]上为单调函数,只需-a ≤-4或-a ≥6,解得a ≥4或a ≤-6.12.[2019重庆二模]已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.解:(1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上为减函数.又∵f (x )的定义域和值域均是[1,a ],∴⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2.(2)对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,即f (x )max -f (x )min ≤4.若a ≥2,则a ∈[1,a +1],且(a +1)-a ≤a -1.∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2,∴f (x )max -f (x )min =6-2a -(5-a 2)≤4,解得-1≤a ≤3,又a ≥2,∴2≤a ≤3.若1<a <2,则a ∈[1,a +1],且a -1<(a +1)-a .∴x ∈[1,a +1]时,f (x )max =f (a +1)=6-a 2,f (x )min =f (a )=5-a 2,f (x )max -f (x )min =(6-a 2)-(5-a 2)=1,∴f (x )max -f (x )min ≤4成立.综上,a 的取值范围是(1,3].[强化训练]1.已知函数f (x )=x 2+1的定义域为[a ,b ](a <b ),值域为[1,5],则在平面直角坐标系内,点(a ,b )的运动轨迹与两坐标轴围成的图形的面积为( )A .8B .6C .4D .2 答案:C 解析:二次函数f (x )=x 2+1,开口向上,顶点为(0,1), 且当x =±2时,y =5.根据二次函数的图象特点,f (x )在[a ,b ]上的最大值一定是在端点处取得.∴要使f (x )在[a ,b ]上的值域为[1,5],则f (a )=5,f (b )≤5或f (b )=5,f (a )≤5,且0∈[a ,b ], ∴a =-2,0≤b ≤2或者b =2,-2≤a ≤0.∴点(a ,b )的运动轨迹与两坐标轴围成的图形是一个边长为2的正方形,面积为4.2.已知函数f (x )=ax 2-2x +2,若对一切x ∈⎣⎢⎡⎦⎥⎤12,2,f (x )>0都成立,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫12,+∞ C .[-4,+∞) D .(-4,+∞)答案:B 解析:由题意f (x )>0对一切x ∈⎣⎢⎡⎦⎥⎤12,2都成立, 分离参数得a >2x -2x 2对一切x ∈⎣⎢⎡⎦⎥⎤12,2都成立, 即只需满足a 大于函数y =2x -2x 2⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,2的最大值即可. ∵y =2x -2x 2=-2x 2+2x =-2⎝ ⎛⎭⎪⎫1x -122+12,x ∈⎣⎢⎡⎦⎥⎤12,2, ∴y =2x -2x 2的最大值为12.∴a >12.故选B.3.[2019山东烟台模拟]定义在R 上的奇函数f (x )在(0,+∞)上是增函数,则使得f (x )>f (x 2-2x +2)成立的x 的取值范围是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1)D .(2,+∞) 答案:A 解析:因为f (x )是R 上的奇函数且在(0,+∞)上是增函数.则函数f (x )在(-∞,0)上也是增函数,故函数在R 上为增函数,f (x )>f (x 2-2x +2)⇒x >x 2-2x +2⇒x 2-3x +2<0,解得1<x <2,即x 的取值范围是(1,2).故选A.4.[2019河北保定模拟]对于任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .{x |1<x <3}B .{x |x <1或x >3}C .{x |1<x <2}D .{x |x <1或x >2} 答案:B 解析:由题意知,关于a 的一次函数y =a (x -2)+x 2-4x +4的值大于0在a ∈[-1,1]上恒成立,只需⎩⎪⎨⎪⎧ (-1)×(x -2)+x 2-4x +4>0,1×(x -2)+x 2-4x +4>0,解得⎩⎪⎨⎪⎧ x >3或x <2,x >2或x <1,即x <1或x >3,故选B.5.[2019江西吉安模拟]不等式2x 2-axy +3y 2≥0对于任意x ∈[1,2]及y ∈[1,3]恒成立,则实数a 的取值范围是( )A .(-∞,22]B .(-∞,26]C .(-∞,5] D.⎝ ⎛⎦⎥⎤-∞,92 答案:B 解析:∵2x 2-axy +3y 2≥0,∴2x 2-axy +3y 2x 2≥0,即3⎝ ⎛⎭⎪⎫y x 2-a ⎝ ⎛⎭⎪⎫y x +2≥0, ∵x ∈[1,2],y ∈[1,3],∴12≤y x ≤3.设t =y x ,t ∈⎣⎢⎡⎦⎥⎤12,3,g (t )=3t 2-at +2, 则g (t )≥0在区间⎣⎢⎡⎦⎥⎤12,3恒成立, ∴g (t )min ≥0.函数g (t )的对称轴为t =a 6,当a 6≤12,即a ≤3时,g (t )在⎣⎢⎡⎦⎥⎤12,3上单调递增, ∴g (t )min =g ⎝ ⎛⎭⎪⎫12=34-a 2+2≥0, 解得a ≤112,∴a ≤3;当a 6≥3,即a ≥18时,g (t )在⎣⎢⎡⎦⎥⎤12,3上单调递减, ∴g (t )min =g (3)=27-3a +2≥0,解得a ≤293,∴a 不存在;当12<a 6<3,即3<a <18时,g (t )在⎣⎢⎡⎦⎥⎤12,3上先减后增, ∴g (t )min =g ⎝ ⎛⎭⎪⎫a 6=24-a 212≥0,解得-26≤a ≤26,∴3<a ≤2 6.综上所述,a ≤2 6.故选B.6.[2019湖北荆州模拟]二次函数f (x )满足f (x +2)=f (-x +2),又f (0)=3,f (2)=1,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是 ( )A .(0,+∞)B .[2,+∞)C .(0,2]D .[2,4] 答案:D 解析:∵二次函数f (x )满足f (2+x )=f (2-x ), ∴其图象的对称轴是x =2,又f (0)=3,∴f (4)=3,又f (2)<f (0),∴f (x )的图象开口向上,∵f (0)=3,f (2)=1,f (4)=3,f (x )在[0,m ]上的最大值为3,最小值为1,∴由二次函数的性质知2≤m ≤4.故选D.7.[2019河南南阳模拟]设函数f (x )=mx 2-mx -1,若对于x ∈[1,3],f (x )<-m +4恒成立,则实数m 的取值范围为( )A .(-∞,0]B.⎣⎢⎡⎭⎪⎫0,57 C .(-∞,0)∪⎝ ⎛⎭⎪⎫0,57 D.⎝ ⎛⎭⎪⎫-∞,57 答案:D 解析:由题意,f (x )<-m +4对于x ∈[1,3]恒成立,即m (x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式f (x )<-m +4等价于m <5x 2-x +1. ∵当x =3时,5x 2-x +1取最小值57, ∴若要不等式m <5x 2-x +1对于x ∈[1,3]恒成立, 则必须满足m <57,因此,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,57,故选D.8.[2019河北保定一模]已知函数f (x )既是二次函数又是幂函数,函数g (x )是R 上的奇函数,函数h (x )=g (x )f (x )+1+1,则h (2 018)+h (2 017)+h (2 016)+…+h (1)+h (0)+h (-1)+…+h (-2 016)+h (-2 017)+h (-2 018)=( )A .0B .2 018C .4 036D .4 037答案:D 解析:函数f (x )既是二次函数又是幂函数, ∴f (x )=x 2,∴f (x )+1为R 上的偶函数,又函数g (x )是R 上的奇函数,h (x )=g (x )f (x )+1+1, ∴h (x )+h (-x )=⎣⎢⎢⎡⎦⎥⎥⎤g (x )f (x )+1+1+⎣⎢⎢⎡⎦⎥⎥⎤g (-x )f (-x )+1+1=⎣⎢⎢⎡⎦⎥⎥⎤g (x )f (x )+1+-g (x )f (x )+1+2=2, ∴h (2 018)+h (2 017)+h (2 016)+…+h (1)+h (0)+h (-1)+…+h (-2 016)+h (-2 017)+h (-2 018)=[h (2 018)+h (-2 018)]+[h (2 017)+h (-2 017)]+…+[h (1)+h (-1)]+h (0)=2+2+…+2+1=2×2 018+1=4 037.故选D.9.[2019湖南祁阳二模]已知幂函数f (x )=(m -1)2xm 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x -k .(1)求m 的值;(2)当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要条件,求实数k 的取值范围.解:(1)依题意,得(m -1)2=1⇒m =0或m =2,当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,所以m =0.(2)由(1),得f (x )=x 2,当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4), 当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ),因为p 是q 成立的必要条件,则B ⊆A ,则⎩⎪⎨⎪⎧ 2-k ≥1,4-k ≤4,即⎩⎪⎨⎪⎧ k ≤1,k ≥0,得0≤k ≤1.10.设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值范围.解:(1)当b =a 24+1时,f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故对称轴为直线x =-a 2.当a <-2时,g (a )=f (1)=a 24+a +2.当-2≤a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1. 当a >2时,g (a )=f (-1)=a 24-a +2.综上,g (a )=⎩⎪⎨⎪⎧ a 24+a +2,a <-2,1,-2≤a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧ s +t =-a ,st =b ,由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2t t +2(-1≤t ≤1). 当0≤t ≤1时,-2t 2t +2≤st ≤t -2t 2t +2. 由于-23≤-2t 2t +2≤0和-13≤t -2t 2t +2≤9-45, 所以-23≤b ≤9-4 5.当-1≤t<0时,t-2t2t+2≤st≤-2t2t+2,由于-2≤-2t2t+2<0和-3≤t-2t2t+2<0,所以-3≤b<0.故b的取值范围是[-3,9-45].。
高考一轮复习之等比数列求和.doc
课时6:等比数列求和一:复习目标:1熟练掌握等比数列的求和公式及推导方法(错位相减法)2灵活运用求和公式解决相关问题,提高类比、化归能力。
二:等比数列的求和公式 若{}n a 为等比数列,公比为q ,前n 项和为n Sn S =qq a n --1)1(1q qa a n --=11时)1(≠q , 时)1(1==q na S n (1)n S =qq a n --1)1(1(q a -11与n 无关可称“不变量”)(2)若{}n a 为等比数列,且公比不等于±1,则n S ,n n n n S S S S 232,--成等比数列(3)在等比数列中,若项数为2n ,则偶S ︰q S =奇(4)若数列{}n a 的前n 项和为n S =)1,0(),1(±≠≠-q k q k n 则{}n a 为等比数列。
三:基础训练1:已知等比数列的公比是2,且前4项和是1,那么前8项和是 ( ) A :15 B :17 C :19 D :21 2:等比数列{}n a 中,,189,96,31===n n S a a 则n 的值为 ( ) A :4 B :5 C :6 D :73:等比数列{}n a 的前n 项和是n S ,则数列{}n S 中, ( ) A :任一项均不为零, B :至多有有限项为零C :必有一项为零D :或无一项为零,或无穷多项为零4:数列{}n a 的前n 项和是n S =1),2(3=-⋅k k n则是数列{}n a 为等比数列的 ( )A :充分非必要条件B :必要非充分条件C :充要条件D :既不充分也不必要条件5:已知数列前n 项的和n S =12-n,则此数列奇数项的前n 项和为 ( ) A :31)12(1-+n B :31)22(1-+n C :31)12(2-n D :31)22(2-n 6:一个等比数列{}n a 前n 项和是n S ,若n S =48,==n n S S 32,60则 ( ) A :183 B :108 C :75 D :63 7:在等比数列{}n a 中,n S 表示前n 项和,若,12,123423+=+=S a S a则公比q 等于 ( ) A :3 B :-3 C :-1 D :1四:例题选讲例1:已知{}n a 为等比数列,n S 表示前n 项和,,6560,80,02==>n n n S S a 若前n 项中的最大一项为54,求n 。
2020年高考数学复习题:直线与抛物线的位置关系
直线与抛物线的位置关系[基础训练]1.已知过抛物线x 2=4y 焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),若AF→=3FB →,则直线l 的方程为( ) A.3x -y -3=0 B .x -3y +3=0 C .x -3y -1=0D.3x -y +1=0答案:B 解析:解法一:由题知F (0,1),设直线l :y =kx +1,与抛物线x 2=4y 联立,得x 2-4kx -4=0.设A (x 1,y 1)(x 1>0),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1·x 2=-4,①又因为AF →=3FB →,所以x 1=-3x 2, 与①联立解得k =33,故直线l 的方程为y =33x +1,即x -3y +3=0. 解法二:由题意得,抛物线x 2=4y 焦点F (0,1), 而直线l 过点F ,排除A ,C ;画出直线与抛物线的图象,如图所示,AF→=3FB →,由图可得直线l 的斜率k <1,选项D 中,3x -y +1=0的斜率k =3>1,排除D.2.[2016全国卷Ⅱ]过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为( )A. 5B .2 2C .2 3D .3 3答案:C 解析:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1,由直线方程的点斜式可得直线MF 的方程为y =3(x -1).联立得方程组⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎪⎨⎪⎧x =3,y =2 3. ∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=(3+1)2+(23-23)2=4. ∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3. 故选C.3.[2018全国卷Ⅰ]设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN→=( ) A .5 B .6 C .7D .8答案:D 解析:由题意知直线MN 的方程为 y =23(x +2),联立直线与抛物线的方程,得⎩⎨⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M 为(1,2),N 为(4,4). 又∵ 抛物线焦点为F (1,0), ∴ FM→=(0,2),FN →=(3,4). ∴ FM →·FN →=0×3+2×4=8. 故选D.4.[2019湖南雅礼中学、河南实验中学3月联考]过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线的准线交于点M ,且FM→=3FP →,则|FP →|=( ) A.32 B.23 C.43D.34答案:C 解析:如图,不妨设Q 点在第一象限,过P 作PN 垂直于抛物线的准线,垂足为N .由抛物线定义可知,|PF |=|PN |. 又因为FM→=3FP →,所以PM →=2FP →, 所以|PM |=2|PF |=2|PN |,在Rt △PNM 中,cos ∠MPN =|PN ||PM |=12, 由抛物线焦点弦的性质可知|PF →|=p 1+cos ∠MPN=21+12=43. 故选C.5.[2019江西六校3月联考]已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 交于P ,Q 两点,且P ,Q 两点在准线上的射影分别为M ,N ,则S △MFN =( )A .8B .2 3C .4 3D .8 3答案:B 解析:不妨设点P 在x 轴上方, 由抛物线定义可知|PF |=|PM |,|QF |=|QN |,设直线PQ 的倾斜角为θ,则tan θ=3,∴θ=π3, 由抛物线焦点弦的性质可知, |PF |=p1-cos θ=31-cos π3=23,|QF |=p1+cos θ=31+cos π3=233,所以|MN |=|PQ |·sin θ=(|PF |+|QF |)sin π3=833×32=4, 所以S △MFN =12×|MN |×p =12×4×3=23, 故选B.6.[2019河北衡水联考]抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必经过抛物线的焦点.已知抛物线y 2=4x 的焦点为F ,一平行于x 轴的光线从点M (3,1)射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( )A.43 B .-43 C .±43D .-169答案:B 解析:把y =1,代入y 2=4x ,得x =14,∴A ⎝ ⎛⎭⎪⎫14,1. 由抛物线的光学性质可知,直线AB 经过焦点F (1,0), 所以直线AB 的斜率k =1-014-1=-43.故选B.7.已知顶点在原点,焦点在x 轴上的抛物线与直线y =2x +1交于P ,Q 两点,若|PQ |=15,则抛物线的方程为( )A .y 2=-4xB .y 2=12xC .y 2=-4x 或y 2=12xD .以上都不对答案:C 解析:由题意设抛物线的方程为y 2=2px ,联立方程得⎩⎪⎨⎪⎧y 2=2px ,y =2x +1,消去y ,得4x 2-(2p -4)x +1=0,则Δ=(2p -4)2-16=4p 2-16p >0,p <0或p >4.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=p -22,x 1x 2=14. |PQ |=1+22|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2 =5·⎝ ⎛⎭⎪⎫p -222-4×14=15,所以p 24-p =3,p 2-4p -12=0,解得p =-2或6,所以抛物线的方程为y 2=-4x 或y 2=12x .8.[2019南昌一中单元测试]已知抛物线y =-x 2,则该抛物线上的点到直线4x +3y -8=0的最小距离为________.答案:43 解析:解法一:设A (t ,-t 2)为抛物线上的点, 则点A 到直线4x +3y -8=0的距离 d =|4t -3t 2-8|5=|3t 2-4t +8|5 =15⎪⎪⎪⎪⎪⎪3⎝⎛⎭⎪⎫t -232+203=35⎝ ⎛⎭⎪⎫t -232+43. 所以当t =23时,d 取最小值为43.解法二:如图,设与直线4x +3y -8=0平行的抛物线的切线方程为4x +3y +m =0,由⎩⎪⎨⎪⎧y =-x 2,4x +3y +m =0消去y ,得3x 2-4x -m =0, ∴Δ=16+12m =0,解得m =-43.所以最小距离为⎪⎪⎪⎪⎪⎪-8+435=2035=43.9.已知直线l 1:3x -4y +7=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是________.答案:2 解析:抛物线y 2=4x 的焦点坐标为F (1,0), 准线方程是x =-1,根据抛物线定义,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和可以看成抛物线y 2=4x 上一动点P 到焦点和直线l 1的距离之和,其最小值为焦点F 到直线l 1:3x -4y +7=0的距离, d =|3×1+7|32+(-4)2=2. 10.[2019重庆模拟]设抛物线y 2=4x 的焦点为F ,过点F 作直线l 与抛物线分别交于两点A ,B ,若点M 满足OM →=12(OA →+OB →),过M 作y 轴的垂线与抛物线交于点P ,若|PF |=2,则M 点的横坐标为________.答案:3 解析:抛物线y 2=4x 的焦点F (1,0), 由题意知,直线AB 的斜率存在.设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),P (x ′,y 0), 直线AB 的方程为y =k (x -1),所以⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),所以ky 2-4y -4k =0,所以y 1+y 2=4k ,所以y 0=y 1+y 22=2k , 因为y 20=4x ′,所以x ′=1k 2,因为|PF |=2,所以x ′=1,k 2=1,所以x 0=x 1+x 22=y 1+y 2k +22=2k 2+1=3. 11.[2019衡水模拟]已知抛物线C :y 2=ax (a >0)上一点P ⎝ ⎛⎭⎪⎫t ,12到焦点F 的距离为2t .(1)求抛物线C 的方程;(2)抛物线上一点A 的纵坐标为1,过点Q (3,-1)的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1·k 2为定值.(1)解:由抛物线的定义可知,|PF |=t +a4=2t , 则a =4t ,由点P ⎝ ⎛⎭⎪⎫t ,12在抛物线上,则at =14. 所以a ×a 4=14,则a 2=1,由a >0,则a =1,故抛物线的方程为y 2=x . (2)证明:因为A 点在抛物线上,且y A =1. 所以x A =1,所以A (1,1),设过点Q (3,-1)的直线l 的方程x -3=m (y +1), 即x =my +m +3,代入y 2=x ,得y 2-my -m -3=0. 设M (x 1,y 1),N (x 2,y 2), 则y 1+y 2=m ,y 1y 2=-m -3, 所以k 1·k 2=y 1-1x 1-1·y 2-1x 2-1=y 1y 2-(y 1+y 2)+1m 2y 1y 2+m (m +2)(y 1+y 2)+(m +2)2=-m -3-m +1m 2(-m -3)+m (m +2)m +(m +2)2=-12,为定值.[强化训练]1.[2019衡水模拟]焦点为F 的抛物线C :y 2=8x 的准线与x 轴交于点A ,点M 在抛物线C 上,则当|MA ||MF |取得最大值时,直线MA 的方程为( )A .y =x +2或y =-x -2B .y =x +2C .y =2x +2或y =-2x +2D .y =-2x +2答案:A 解析:过M 作MP 与准线垂直,垂足为P ,则|MA ||MF |=|MA ||MP |=1cos ∠AMP =1cos ∠MAF, 则当|MA ||MF |取得最大值时,∠MAF 必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为y =k (x +2),与y 2=8x 联立, 消去x 得ky 2-8y +16k =0, 所以Δ=64-64k 2=0,得k =±1, 则直线方程为y =x +2或y =-x -2.2.[2019浙江杭州模拟]已知抛物线y 2=8x 的焦点为F ,直线y =k (x -2)与此抛物线相交于P ,Q 两点,则1|FP |+1|FQ |=( )A.12 B .1 C .2D .4答案:A 解析:设P (x 1,y 1),Q (x 2,y 2), 由题意可知,|FP |=x 1+2,|FQ |=x 2+2, 则1|FP |+1|FQ |=1x 1+2+1x 2+2=x 1+x 2+4x 1x 2+2(x 1+x 2)+4, 联立直线与抛物线方程消去y ,得 k 2x 2-(4k 2+8)x +4k 2=0,可得x 1x 2=4, 故1|FP |+1|FQ |=x 1+x 2+4x 1x 2+2(x 1+x 2)+4=x 1+x 2+42(x 1+x 2)+8=12,故选A. 3.[2019东北三校联考]设抛物线y 2=4x 的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A ,B ,且满足AF →·BF →=0,则直线AB 的斜率k =( )A. 2B.22 C. 3D.33答案:B 解析:依题意,设直线AB 的方程为y =k (x +1)(k ≠0),代入抛物线方程y 2=4x 并整理,得k 2x 2+(2k 2-4)x +k 2=0.因为直线与抛物线有两个不同的交点, 所以Δ=(2k 2-4)2-4k 4>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=4-2k 2k 2,x 1x 2=1.又因为AF →·BF→=0,所以(x 1-1)(x 2-1)+y 1y 2=0, (x 1-1)(x 2-1)+k 2(x 1+1)(x 2+1)=0, (1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=0, 把⎩⎨⎧x 1+x 2=4-2k 2k2,x 1x 2=1代入并整理,得k 2=12.又k >0,所以k =22,故选B.4.[2019福建六校3月联考]已知抛物线E :y 2=2px (p >0)的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN ⊥y 轴于点N .若四边形CMNF 的面积等于7,则抛物线E 的方程为( )A .y 2=xB .y 2=2xC .y 2=4xD .y 2=8x答案:C 解析:由题意,得F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 的方程为y =x -p2,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 联立y =x -p2和y 2=2px ,得 y 2-2py -p 2=0,则y 1+y 2=2p , 所以y 0=y 1+y 22=p ,故N (0,p ),又因为点M 在直线AB 上,所以x 0=3p2,即M ⎝ ⎛⎭⎪⎫3p 2,p .因为MC ⊥AB ,所以k AB ·k MC =-1,故k MC =-1, 从而直线MC 的方程为y =-x +52p ,令y =0,得x =52p ,故C ⎝ ⎛⎭⎪⎫5p 2,0,四边形CMNF 的面积可以看作直角梯形CMNO 与直角三角形NOF 的面积之差,即S 四边形CMNF =S 梯形CMNO -S △NOF =12⎝ ⎛⎭⎪⎫52p +32p ·p -12p ·p 2=74p 2=7, ∴p 2=4,又p >0,∴p =2,故抛物线E 的方程为y 2=4x , 故选C.5.[2019安徽六安一中3月月考]若曲线y =2x x -1的对称中心在抛物线C :y 2=2px (p >0)上,过抛物线C 的焦点F 的直线l 与C 交于A ,B 两点,则|AF |+2|BF |的最小值是( )A .2 2B .6C .3D .22+3答案:D 解析:由题意知y =2x x -1=2+2x -1,所以曲线y =2x x -1可由奇函数y =2x 的图象平移得到,易得其对称中心为(1,2),代入抛物线方程得4=2p ,得p =2, 所以抛物线C 的方程为y 2=4x , 设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,y 2=4x ,得y 2-4my -4=0, 设A ⎝ ⎛⎭⎪⎫y 214,y 1,B ⎝ ⎛⎭⎪⎫y 224,y 2,则y 1y 2=-4,由抛物线定义可知|AF |+2|BF |=y 214+1+2⎝ ⎛⎭⎪⎫y 224+1=y 214+y 222+3≥2(y 1y 2)28+3=22+3,当且仅当y 214=y 222,即y 21=2y 22时,等号成立,故选D.6.[2019四川成都一模]已知抛物线C: y 2=mx (m >0)的焦点为F ,点A (0,-3).若射线F A 与抛物线C 相交于点M .与其准线相交于点D ,且|FM |∶|MD |=1∶2,则点M 的纵坐标为( )A .-13B .-33 C .-23D .-233答案:D 解析:依题意知,点F 的坐标为⎝⎛⎭⎪⎫m 4,0,设M 在准线上的射影为K , 由抛物线的定义知|MF |=|MK |. ∵|FM |∶|MD |=1∶2,则|KD |∶|KM |=3∶1,k FD = 3.又k FD =0+3m 4-0=43m ,∴43m =3,∴m =4,∴直线FM 的方程为y =3(x -1). 与y 2=4x ,联立方程组,解得x =13或x =3(舍去),∴y 2=43, 解得y =-233或y =233(舍去),故M 的坐标为⎝ ⎛⎭⎪⎫13,-233,故选D. 7.[2019宁夏银川月考]已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足F A →+FB →+FC →=0,则1k AB +1k BC +1k CA =________.答案:0 解析:由题意知,F ⎝ ⎛⎭⎪⎫p 2,0, 设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3). 由F A →+FB→+FC →=0知, ⎝ ⎛⎭⎪⎫x 1-p 2,y 1+⎝ ⎛⎭⎪⎫x 2-p 2,y 2+⎝ ⎛⎭⎪⎫x 3-p 2,y 3=(0,0),故y 1+y 2+y 3=0.∵1k AB=x 2-x 1y 2-y 1=12p ×y 22-y 21y 2-y 1=y 1+y 22p ,同理可得1k BC =y 3+y 22p ,1k CA =y 1+y 32p ,∴1k AB +1k BC +1k CA=2(y 1+y 2+y 3)2p =0. 8.[2019河北邢台模拟]已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为________.答案:2 解析:由题意知,抛物线的准线l :y =-1, 如图,过A 作AA 1⊥l 于A 1,过B 作BB 1⊥l 于B 1.设弦AB 的中点为M ,过M 作MM 1⊥l 于M 1, 则|MM 1|=|AA 1|+|BB 1|2. |AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,则|AA 1|+|BB 1|≥6,即2|MM 1|≥6,所以|MM 1|≥3, 故M 到x 轴的最短距离为3-1=2.9.[2019广西南宁模拟]抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 2-y 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案:23 解析:抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,准线方程为y =-p2,准线方程与双曲线x 2-y 2=1联立可得x 2-⎝ ⎛⎭⎪⎫-p 22=1,解得x =±1+p 24,因为△ABF 为等边三角形,所以x 2+p 2=2|x |, 即p 2=3x 2,即p 2=3⎝⎛⎭⎪⎫1+p 24,解得p =2 3. 10.[2019河北衡水一中月考]已知抛物线y =14x 2与圆C :(x -1)2+(y -2)2=r 2(r >0)有公共点P ,若抛物线在P 点处的切线与圆C 也相切,则r =________.答案:2 解析:设点P ⎝ ⎛⎭⎪⎫x 0,14x 20.由y =14x 2,求导得y ′=12x ,∴抛物线在P 点处的切线的斜率k =12x 0.∵圆(x -1)2+(y -2)2=r 2(r >0)的圆心的坐标为C (1,2), ∴k PC =14x 20-2x 0-1.由题意,得k PC ·k =14x 20-2x 0-1·12x 0=-1,解得x 0=2.∴P (2,1),∴r =|PC |= 2.11.[2019江西重点中学盟校联考]已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线l 交抛物线C 于点A ,B ,当直线l 的倾斜角是45°时,弦AB 的垂直平分线交y 轴于点Q (0,5).(1)求p 的值;(2)以AB 为直径的圆交x 轴于点M ,N ,记劣弧MN 的长度为S ,当直线l 绕F 旋转时,求S|AB |的最大值.解:(1)由题意,得F ⎝⎛⎭⎪⎫0,p 2. 当l 的倾斜角为45°时,l 的方程为y =x +p2. 设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =x +p 2,x 2=2py ,得x 2-2px -p 2=0.∴x 1+x 2=2p ,y 1+y 2=x 1+x 2+p =3p , ∴弦AB 的中点为D ⎝⎛⎭⎪⎫p ,32p .∴弦AB 的垂直平分线的方程为y -32p =-(x -p ). 将x =0代入,得y =52p =5, 解得p =2.(2)由(1)可得F (0,1),抛物线C 的方程为x 2=4y , 设直线l 的方程为y =kx +1,代入x 2=4y ,得 x 2-4kx -4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. y 1+y 2=k (x 1+x 2)+2=4k 2+2, ∴|AB |=y 1+y 2+2=4k 2+4, ∴弦AB 的中点D (2k,2k 2+1). 令∠MDN =2α,S =2α·12|AB |=α·|AB |, ∴S|AB |=α.过点D 作DE ⊥MN ,垂足为E . ∵点D 到x 轴的距离|DE |=2k 2+1,∴cos α=|DE |12|AB |=2k 2+12k 2+2=1-12k 2+2.当k 2=0时,cos α取最小值12,α取得最大值π3, 故S |AB |的最大值为π3.12.[2019安徽皖南八校联考]过抛物线C :x 2=2py (p >0)的焦点F 作直线l 与抛物线C 交于A ,B 两点,当点A 的纵坐标为1时,|AF |=2.(l )求抛物线C 的方程;(2)若抛物线C 上存在点M (-2,y 0),使得MA ⊥MB ,求直线l 的方程.解:(1)抛物线C :x 2=2py (p >0)的准线方程为y =-p2,焦点为F ⎝ ⎛⎭⎪⎫0,p 2. ∵当点A 的纵坐标为1时,|AF |=2, ∴1+p2=2,解得p =2. ∴抛物线C 的方程为x 2=4y . (2)∵点M (-2,y 0)在抛物线C 上, ∴y 0=(-2)24=1. 又∵F (0,1),∴设直线l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4, MA →=(x 1+2,y 1-1),MB →=(x 2+2,y 2-1). ∵MA ⊥MB ,∴MA →·MB→=0,∴(x1+2)(x2+2)+(y1-1)(y2-1)=0,∴-4+8k+4-4k2=0,解得k=2或k=0. 当k=0时,l过点M(舍),∴k=2,∴直线l的方程为y=2x+1.。
(备考)高考英语复习专项训练主谓一致基础训练110题
主谓一致基础训练110题1.It’s necessary that every student _____ do exercises during the break.A. must doB. will doC. doD. does2. Many a man there _____ from Shanghai.A. comeB. comesC. have comeD. are coming3. Many scientists _____ studied animals and plants in the last two years.A. hasB. haveC. hadD. are4. A good many children _____ watching TV.A. likesB. is likingC. likeD. enjoys5. Tom with his parents ______ watching TV.A. areB. isC. areD. being6. Nothing but stamps and envelopes ______ for sale.A. areB. isC. are leftD. remain7. A library with thousands books _____ to the nation as a gift.A. is offeredB. has offeredC. are offeredD. have offered8. Nobody but Jane and Mary _____ the secret.A. knowB. knowsC. have knownD. is known9. All but one _____ here just now.A. isB. wasC. has beenD. were10. Peter, perhaps John _____ playing with the little dog.A. isB. areC. wereD. seems11. No one except Jack and Tom _____ the answer.A. knowB. knowsC. is knowingD. are known12. He as well as his parents _____ kind to me.A. isB. wasC. areD. were13. John as much as his brother _____ responsible for the loss.A. areB. wereC. wasD. have been14. Mary, along with her classmates ____ discussing the problem.A. wereB. have beenC. areD. is15. His furniture including a table and six chairs ____ being sold.A. isB. areC. wereD. have16. The teacher together with a number of students _____ in the classroom.A. areB. are talkingC. stayD. is17. The Arabian Nights ____ well known to English lovers.A. isB. wereC. areD. is being18. The Olympic Games _____ held in modern times every four years.A. areB. isC. wasD. has been19. On the wall _____ two large pictures.A. hangsB. hangC. hangedD. hanging20. The shoes ____ mine. This pair of shoes _____ my brother’s.A. are; isB. is; isC. are; areD. are; is21. The number of the teachers in our college ____ greatly increased this term.A number of teachers in this school ____ from the countryside.A. is; isB. is; areC. are; areD. are; is22. The public ____ puzzled at the news.A. isB. wasC. beD. were23. Fifteen miles _____ like a long walk to me.A. seemB. areC. wereD. seems24. Two hours _____ the limit of this examination.A. isB. areC. has beenD. be25. Ten dollars ____ enough.A. areB. beC. isD. were26. ____ of the money ______ used up.A. Three-five; areB. Three fifths; have beenC. Three-fifths; has beenD. Third-fifths; is27. The sheets for your bed ____ washing.A. needsB. are needingC. wantD. are wanting28. The poor ____ always unhappy.A. is notB. was notC. are notD. cannot29. The beautiful ____ higher than the good.A. isB. wasC. areD. were30. I, who ____ your friend, will try my best to help you.A. isB. wasC. areD. am31. I, not you ____ in the wrong. Not I but he ____ been invited.A. were; haveB. were; hasC. was; hasD. was; have32. It is you who ____ wrong.“You”____ a useful word.A. is; isB. is; areC. are; areD. are; is33. When and where to build the new factory ____ yet.A. is not decidedB. are not decidedC. had not decidedD.havenot decided34. How and why Jack came to China ____ not known.A. isB. areC. hasD. have35. Each soldier and sailor ____ a gun.A. are givenB. was givenC. were givenD. have been given36. Every boy and every girl _____ that each day and each hour bring _____ duty.A. know; theirB. knows; theirC. knows; itsD. know; its37. They each ____ been to Beijing.A. hasB. haveC. hadD. have no38. No teacher and no student ____ allowed to go in.A. areB. isC. beingD. be39. Tom is one of the boys who ____ the piano very well.A. playsB. playC. is playingD. was playing40. Davie is the only one of those people who ____ trouble making up their minds.A. hasB. haveC. areD. had41. There ____ a pair of glasses on the desk.A. isB. hasC. areD. have42. There ____ a lot of milk in the bottle.A. areB. isC. wereD. has43. There_____ some books, a pen and a ruler on the desk.A. areB. isC. haveD. has44. Zhang’s family ___ rather big with twelve people in all.A. isB. areC. beingD. was45. Her family ____ dancing and singing when the teacher entered.A. isB. areC. wasD. were46. Three-fourths of earth’s surface ____ covered with water.A. isB. areC. wasD. were47. Three-fifths of the homework ____ today.A. has finishedB. has been finishedC. have finishedD.havebeenfinished48. About 85 percent of the students ____ good, and part of them ____ interested inbiology.A. is; areB. are; areC. are; isD. is; is49. Gas as well as water ____.A. is matterB. are matterC. is mattersD. are matters50. A lot of people, including my teacher ____ what you just said at the meeting.A. don’t agree onB. don’t agree withC. doesn’t agree onD.doesn’t agree to51. More than one person ____ in the accident yesterday.A. were killedB. killedC. has killedD. was killed52. More friends than one ____ to his party.A. has been invitedB. have been invitedC. has invitedD.haveinvited53. Every means ___ tried, but he can’t find out the truth.A. have beenB. has beenC. areD. was54. Not only the teacher but also the students ___ English novels.A. is fond ofB. are fond forC. are fond ofD. is fond for55. Not only you but also he ____ to the meeting.A. have beenB. is goingC. are goingD. were going56. The writer and poet ___ to give us a lecture./A. are goingB. is goingC. areD. have57. The singer and the dancer ____ to the meeting.A. is comingB. comesC. has comeD. have come58. One hundred million dollars ____ a lot of money.A. areB. wereC. wasD. is59. Either you or your father ____ mistakes.A. isB. areC. haveD. has made60. Either you or I ________ going to do the work.A. amB. isC. areD. will be61. Apples of this kind _____.A. tastes goodB. tastes wellC. taste goodD. taste well62. The results of the examination ____ that you have all made great ____.A. show; progressB. show; progressC. show; progressesD.shows;progresses63. Here ____ some sweets, take some.A. isB. areC. wasD. were64. Basketball and football ______ his favorite sports.A. areB. isC. to beD. was65. What ____ the population of America?A. areB. isC. wereD. was66. A population of nine million ____ there.A. livesB. liveC. livedD. is living67. Seventy percent of the population of the city ____ workers.A. isB. areC. wereD. was68.Ourclass____betterthananyotherclassesatplayingbasketballinourschool.A. isB. areC. beD. were69. The government ____ to build new settlements in the north.A. wantB. wantedC. wantsD. wanting70. A traffic accident has just happened around the corner of the street. The police___ already there.A. areB. isC. wasD. be71. Do you know which team ____ won the Asian Cup Football Match?A. hasB. haveC. hadD. is having72. English, French, Japanese and so on ____ all social languages, but math ____ thelanguage of science.A. are; areB. is; areC. are; isD. is; are73. To learn a foreign language ____ not so difficult as you thought.A. isB. areC. wasD. were74. Reading aloud ____ very important in learning a foreign language.A. isB. areC. wasD. were75. There ____ just an old writing desk, a wooden bed and two chairs in his bedroom.A. isB. areC. wereD. was76. Neither of us _____ passed the exam, we both failed.A. hasB. haveC. hadD. is having77. The number of books on women published in China ____ growing.A. areB. isC. wasD. were78. A number of students in Class 5 ___ never used computers.A. hasB. hadC. haveD. is79. One-third of the population in this county ____ drinking of coffee.A. enjoyB. enjoysC. enjoyedD. are enjoying80. Physics ____ a difficult subject to learn, I think.A. isB. areC. wasD. were81. Neither he nor I ____ able to persuade her to change her mind.A. amB. isC. areD. were82. To start smoking ____ quite easy, but to give it up ____ courage.A. are; needB. is; needC. is; needsD. are; needs83. Nearly everyone ____ joined the group.None of us ____ got an envelope of the right size.A. has; haveB. have; hasC. is; haveD. has; has84. The army ____ going to remain in this town. The army ____ rescued the travelers.A. is; hasB. are; hasC. is; haveD. are; have85. Our family ____ not poor any more. My family all ____ the India language.A. is; speakB. are; speakC. is; speaksD. are; speaks86. I heard that the CAAC______ going to open an office in Ottawa.A. isB. areC. wasD. were87. A year and two ____ passed. Every hour and every minute ____ important.A. has; areB. has; isC. have; areD. have; were88. I think someone ____ forgotten to pay for the drinks.A. hasB. haveC. hadD. having89. I wonder if anybody ____ going to take me home when the party_____ over.A. is; areB. are; isC. is; isD. are; are90. Two and three ____ five.A. isB. areC. wasD. were91. One thousand pounds ____ a lot of money.A. isB. areC. wasD. were92. Here ____ a pen, a few envelopes and some paper for you.A. hasB. haveC. isD. are93. ____ you or he to blame?A. IsB. AreC. WasD. Were94. The news ____ bad.A. isB. areC. wasD. were95. Some people ____ to remain in the northern settlements.A. wantsB. wantC. is wantingD. are wanting96. One and a half years ____ passed since we last met.A. hasB. haveC. hadD. have been97. Tom rather than Jack ____ the author of this book.A. isB. areC. amD. be98. No one except John and Mary ___ late for school.A. isB. areC. amD. be99. A cart and horse ____ in the distance.A. are seenB. is seenC. are seeingD. is seeing100. Your or he ___ responsible for the mistakes.A. areB. isC. wereD. has101.Ideasofwhat____goodmanners____notalwaysthesameindifferentcountries.A. are; isB. is; areC. is; isD. are; are102. In the last few years, there ____ in computers.A. have been great changeB. has been great changeC. was great changeD. were great changes103. The United States _____ fifty states.A. haveB. hasC. isD. are like104. Nothing but the ruins of houses ____ after the fire.A. was leftB. were leftC. was lostD. were lost105. Bread and butter, besides milk, _____ enough for breakfast.A. areB. isC. seemD. looks like106. When and where this happened to ______ still unknown.A. the Smith isB. Smiths areC. Smith’s areD. the Smiths107. _____ sides of the road ____ lined with trees.A. Either; isB. Each; isC. Both; areD. All; are108. More than one car ____ in the accident last night.A. isB. wasC. areD. were109. Between our school and the Department Store _____ a 12-storeyed building.A. haveB. hasC. standD. stands110. The Chinese and Japanese singers _____ to sing the folk at the concert.A. are goingB. is goingC. will beD. is decided参考答案:1-5: CBBCB 6—10: BABDA 11—15: BACDA16—20: DAABA21—25:BDDAC26—30: CCCCD31—35: CDAAB36—40: BBBBA41—45: ABAAD46—50: ABBAB51—55:DBBCB56—60: BDDAA61—65: CABAB66—70: ABACA71---75:ACAAA76—80: ABCAA81—85: ACCCA86—90: CBACA91---95: ACBAB96—100:AAABB101—105: DABAB 106—110: DCBDA11/ 11。
2024届高考病句专题复习:巧抓标志,修改病句+
表意不明,分不清楚是“河北和河南并列”还是“河北”和“河 南部分地区”并列,产生了歧义
规律:出现了“A和B”的句式时,注意停顿不同, “和”字的词 性就不同,语义也就不同。如A和B/时,和是连词;A/和B时,和 是介词
学一反三:除了“和”字,既作连词又可作介词的还有“与”、“跟”、 “同”“以及”“及其”等。
不合逻辑,反问句再加双重否定,变成了三重否定,即等于一重否定,从 而把意思表达反了。
规律:多重否定中遵循“奇否偶肯”
例.请具体分析下列病句的病因,并思考其辨析方法。
1. 只有从根本上解决了为哪些人的问题,就能更好地为人民服务。
“只有……就”搭配不当,应为必要条件,用“只有……才”。
2. 他虽然是个农民,平时喜爱学习,识不少字,编秧歌也在行。
对点提升:快速辨析并修改下列语病。
1. 学校能否形成良好的、有促进功能的校园文化,学习者能否真正适 应并融入它,这对教学活动的有效开展起着重要作用。
一面与两面搭配不当。“能否” 表示事物的两个方面,所以对应的结论也 应该是两个方面,而“有效开展”仅指积极的方面,前后不对称导致搭配 不当,可以改为“这对教学活动能否有效开展起着重要作用”。
3. 在北京参加全国人代会的代表们说了:在扶贫助教期间,农民们向我 们吐露了心声,农民们的话对我们基层干部很有感触。
不合逻辑,主客颠倒,只能是“人”对“物”,不能是“物”对“人”, 应改为“我们基层干部对农民们的话很有感触”。
4. 近代欧洲民族国家在诞生之后,欧洲哲学家包括黑格尔曾经认为,民 族国家是历史的终结,也就是说,民族国家是人类社会各种制度的最 后阶段。
加强了对民警的教育。
“防止”加否定词“不”,否定失当。
超实用高考英语复习:专题06 通知+报道+投稿+演讲稿应写作(真题透视+最新模拟同类题)【易错点】
专题06 通知+报道+投稿+演讲稿真题透视+最新模拟同类题演练应用文写作距离高考还有一段时间,不少有经验的老师都会提醒考生,愈是临近高考,能否咬紧牙关、学会自我调节,态度是否主动积极,安排是否科学合理,能不能保持良好的心态、以饱满的情绪迎接挑战,其效果往往大不一样。
以下是本人从事10多年教学经验总结出的以下学习资料,希望可以帮助大家提高答题的正确率,希望对你有所帮助,有志者事竟成!养成良好的答题习惯,是决定高考英语成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
总之,在最后的复习阶段,学生们不要加大练习量。
在这个时候,学生要尽快找到适合自己的答题方式,最重要的是以平常心去面对考试。
英语最后的复习要树立信心,考试的时候遇到难题要想“别人也难”,遇到容易的则要想“细心审题”。
越到最后,考生越要回归基础,单词最好再梳理一遍,这样有利于提高阅读理解的效率。
另附高考复习方法和考前30天冲刺复习方法。
专题组合记忆1.(2021年全国高考真题)你校将举办英语演讲比赛。
请你以Be smart online learners为题写一篇发言稿参赛,内容包括:1. 分析优势与不足;2. 提出学习建议。
注意:1. 词数100左右;2. 题目和首句已为你写好。
Be smart online learners____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ 【答案】Be smart online learnersNetwork learning has increasingly become an important means for people to acquire knowledge and solve problems. But being smart online learners has its advantages and disadvantages.First of all, as smart online learners, we can make full use of the most extensive educational resources to broaden the horizon. Besides, we can take the initiative in our study by ourselves without time and space limit.Of course, the se disadvantages are as follows. Faced with all kinds of information on the internet, we can’t tell the difference between the true and the false, which may be harmful to our study and life. On the other hand, online learning itself has some imperfections, making it difficult for us not to be affected.In conclusion, we should have a good understanding of its advantages and disadvantages and find a proper way to make our study more efficient.【导语】本篇书面表达属于应用文,要求考生以Be smart online learners为题写一篇发言稿,参加学校举办的英语演讲比赛。
2020年高考数学复习题:离散型随机变量的期望、方差、正态分布
离散型随机变量的期望、方差、正态分布[基础训练]1.已知随机变量X 服从正态分布N (3,σ2),且P (X <5)=0.8,则P (1<X <3)= ( )A .0.6B .0.4C .0.3D .0.2答案:C 解析:由正态曲线的对称性可知,P (X <3)=P (X >3)=0.5, 故P (X >1)=P (X <5)=0.8, 所以P (X ≤1)=1-P (X >1)=0.2,P (1<X <3)=P (X <3)-P (X ≤1)=0.5-0.2=0.3.2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的个数,则E (X )=( )A.35B.815C.1415 D .1答案:A 解析:离散型随机变量X 服从N =10,M =3,n =2的超几何分布,E (X )=nM N =2×310=35.3.某班有14名学生数学成绩优秀,如果从该班随机找出5名学生,其中数学成绩优秀的学生数X ~B ⎝ ⎛⎭⎪⎫5,14,则E (2X +1)=( )A.54 B.52 C .3D.72答案:D 解析:因为X ~B ⎝⎛⎭⎪⎫5,14,所以E (X )=54, 所以E (2X +1)=2E (X )+1=2×54+1=72.4.[2019山东淄博一模]设每天从甲地去乙地的旅客人数为随机变量X ,且X ~N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4)A .0.977 2B .0.682 6C .0.997 4D .0.954 4答案:A 解析:P (X ≤900)=P (X ≤700)+P (700<X ≤900)=12×(1-0.954 4)+0.954 4=0.977 2.5.已知离散型随机变量X 的分布列为则E (X )A.23 B.43 C .2 D.83答案:C 解析:由13+2-3q3+q 2=1,得 3q 2-3q =0,解得q =33或q =0(舍去),故X 的分布列为E (X )=1×13+2×13+3×3=2.6.[2019新乡模拟]某人从家乘车到单位,途中有3个交通岗亭,假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的数学期望为 ( )A .0.4B .1.2C .0.43D .0.6答案:B 解析:因为途中遇到红灯的次数X 服从二项分布,即X ~B (3,0.4),所以E (X )=3×0.4=1.2.7.[2019安徽合肥第一次教学质量检测]已知5件产品中有2件次品,现逐一检测,直至能确定所有次品,记检测的次数为ξ,则E (ξ)=( )A .3 B.72 C.185D .4答案:B 解析:由题意知,ξ的所有可能取值为2,3,4, 若将5件产品看作两类相同的元素(3个相同的白球,2个相同的黑球),则P (ξ=2)=C 22C 25=110,P (ξ=3)=C 33+C 12C 25=310,P (ξ=4)=C 13C 12C 25=35,∴E (ξ)=2×110+3×310+4×35=72. 故选B.8.[2019山东济南期末]在某项测量中,测量结果ξ服从正态分布N (0,σ2),若ξ在(-∞,-1)内取值的概率为0.1,则ξ在(0,1)内取值的概率为 ( )A .0.8B .0.4C .0.2D .0.1答案:B 解析:∵ξ服从正态分布N (0,σ2),∴曲线的对称轴是直线x =0. ∵P (ξ<-1)=0.1,∴P (ξ>1)=0.1,∴ξ在(0,1)内取值的概率为0.5-0.1=0.4,故选B.9.[2019江西高安中学等3月联考]在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 6,P (μ-2σ<X <μ+2σ)=0.954 4.A .1 193B .1 359C .2 718D .3 413答案:B 解析:对于正态分布N (-1,1)可知,μ=-1,σ=1, 正态曲线关于直线x =-1对称, 故题图中阴影部分的面积为 12×[P (-3<X <1)-P (-2<X <0)]=12×[P (μ-2σ<X <μ+2σ)-P (μ-σ<X <μ+σ)] =12×(0.954 4-0.682 6) =0.135 9,所以点落入题图中阴影部分的概率 P =0.135 91=0.135 9,投入10 000个点,落入阴影部分的个数约为10 000×0.135 9=1 359.故选B.10.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为23,则此人得分的均值与方差分别为________.答案:20,2003 解析:记此人三次射击击中目标X 次,得分为Y分,则X ~B ⎝ ⎛⎭⎪⎫3,23,Y =10X ,∴E (Y )=10E (X )=10×3×23=20, D (Y )=100D (X )=100×3×23×13=2003.11.[2019中山模拟]已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.答案:13 解析:由于X ~B (n ,p ),且E (X )=30,D (X )=20,所以⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13.[强化训练]1.某射击运动员在一次射击比赛中所得环数X 的分布列如下:已知X A .1.38 B .1.41 C .1.42D .1.56答案:B 解析:由题意知,x +0.1+0.3+y =1, 又E (X )=3x +4×0.1+5×0.3+6y =4.3, 两式联立解得x =0.4,y =0.2.所以D (X )=(3-4.3)2×0.4+(4-4.3)2×0.1+(5- 4.3)2×0.3+(6-4.3)2×0.2 =0.676+0.009+0.147+0.578 =1.41.2.[2019福州模拟]甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数X 的期望E (X )为( )A.24181B.26681C.27481D.670243答案:B 解析:依题意知,X 的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分, 此时,该轮比赛结果对下轮比赛是否停止没有影响. 从而有P (X =2)=59, P (X =4)=49×59=2081,P (X =6)=⎝ ⎛⎭⎪⎫492=1681,故E (X )=2×59+4×2081+6×1681=26681.3.[2019安徽合肥一模]已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ) =0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5)A .4 093件B .4 772件C .6 827件D .8 186件答案:D 解析:由题意可得,该正态分布的对称轴为x =100,且σ=2,则质量在[96,104]内的产品的概率为P (μ-2σ<X <μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P (μ-σ<X <μ+σ)=0.682 7.结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+0.954 5-0.682 72=0.818 6. 据此估计质量在[98,104]内的产品的数量为 10 000×0.818 6=8 186(件).4.[2019河北石家庄一模]设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷20 000个点,则落入阴影部分的点的个数的估计值为( )附:随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ<μ+σ)=0.682 6,P (μ-2σ<ξ<μ+2σ)=0.954 4.A .12 076B .13 174C .14 056D .7 539答案:B 解析:由题意,得 P (X ≤-1)=P (X ≥3)=0.022 8.∴P (-1<X <3)=1-0.022 8×2=0.954 4. ∵P (μ-2σ<ξ<μ+2σ)=0.954 4, ∴1-2σ=-1,故σ=1,∴P (0<X <1)=12P (0<X <2)=0.341 3,故估计落入阴影部分的点的个数为20 000×(1-0.341 3)=13 174.故选B.5.[2019吉林长春质检]据统计,某城市的火车站春运期间日接送旅客人数X (单位:万)服从正态分布X ~N (6,0.82),则日接送人数在6万到6.8万之间的概率为(P (|X -μ|<σ)=0.682 6,P (|X -μ|<2σ)=0.954 4,P (|X -μ|<3σ)=0.997 4)( )A .0.682 6B .0.954 4C .0.997 4D .0.341 3答案:D 解析:因为μ=6,σ=0.8, 所以P (6<X <6.8)=P (5.2<X <6.8)2=0.682 62 =0.341 3. 故选D.6.[2019河南洛阳联考]已知随机变量X ~B (2,p ),Y ~N (2,σ2),若P (X ≥1)=0.64,P (0<Y <2)=p ,则P (Y >4)=________.答案:0.1 解析:因为随机变量X ~B (2,p ),Y ~N (2,σ2),P (X ≥1)=0.64,所以P (X ≥1)=P (X =1)+P (X =2)=C 12p (1-p )+C 22p 2=0.64,解得p =0.4或p =1.6(舍去), 所以P (0<Y <2)=p =0.4, P (Y >4)=12×(1-0.4×2)=0.1.7.[2019湖北鄂南高中期末]设随机变量X 的概率分布列为则P (|X -3|=1)=答案:512 解析:由13+m +14+16=1, 解得m =14,P (|X -3|=3)=P (X =2)+P (X =4)=14+16=512.8.为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或由标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励总额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:(1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,故X 的分布列为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元. 所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×6+60×3+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
2020年高考数学复习题:基本不等式及其应用
2020年高考数学复习题:基本不等式及其应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN基本不等式及其应用[基础训练]1.下列结论中正确的个数是( ) ①若a >0,则a 2+1a 的最小值是2a ;②函数f (x )=sin 2x 3+cos 2x 的最大值是2;③函数f (x )=x +1x 的值域是[2,+∞);④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b .A .0B .1C .2D .3答案:B 解析:①错误:设f (a )=a 2+1a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值;②错误:f (x )=sin 2x3+cos 2x ≤sin 2x +3+cos 2x 2=2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1x ≥2x ·1x =2,当且仅当x =1x ,即x =1时等号成立;当x <0时,-x >0,x +1x =-⎝ ⎛⎭⎪⎫-x +1-x≤-2(-x )·1-x=-2,当且仅当-x =-1x ,即x =-1时等号成立. ∴f (x )=x +1x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab ,其中等号成立的条件是a +b =0,即a =-b .2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则2a -1+1b 的最小值为( )A .4B .5C .6D .8答案:D 解析:因为a >1,b >0,且a +2b =2, 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =⎝ ⎛⎭⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b=8, 当且仅当4b a -1=a -1b 时等号成立,所以2a -1+1b的最小值是8,故选D.3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立),∴2x +y≤12,∴2x +y≤14,得x +y ≤-2.故选D.4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22 B .2 2 C. 2 D .2答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.5.用一段长为L 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积为( )A.L 28B.L 24 C.L 22D .L 2答案:A 解析:设菜园平行于墙的一边长为x ,其邻边长为y ,则x +2y =L ,面积S =xy ,因为x +2y ≥22xy , 所以xy ≤(x +2y )28=L 28,当且仅当x =2y =L 2,即x =L 2,y =L 4时,S max =L 28, 故选A.6.[2019云南玉溪一中月考]已知f (x )=x 2-2x +1x,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( ) A.12 B.43 C .-1 D .0答案:D 解析:f (x )=x 2-2x +1x =x +1x -2≥2-2=0, 当且仅当x =1x ,即x =1时等号成立.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.7.[2019天津和平区期末]已知a >0,则(a -1)(4a -1)a 的最小值为________.答案:-1 解析:(a -1)(4a -1)a =4a 2-a -4a +1a =4a -5+1a .∵a >0,∴4a -5+1a ≥24a ·1a -5=-1,当且仅当4a =1a ,即a =12时等号成立, ∴(a -1)(4a -1)a的最小值为-1. 8.[2019江苏苏北四市联考]若实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值为________. 答案:8 解析:∵实数x ,y 满足xy +3x =3⎝⎛⎭⎪⎫0<x <12,∴x =3y +3∈⎝⎛⎭⎪⎫0,12,解得y >3,则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4⎝ ⎛⎭⎪⎫x =37时等号成立. 9.[2019天津第一中学月考]对任意的θ∈⎝ ⎛⎭⎪⎫0,π2,不等式1sin 2θ+4cos 2θ≥|2x -1|恒成立,则实数x 的取值范围是________.答案:[-4,5] 解析:∵当θ∈⎝ ⎛⎭⎪⎫0,π2时,1sin 2θ+4cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+4cos 2θ(sin 2θ+cos 2θ)=5+cos 2θsin 2θ+4sin 2θcos 2θ ≥5+2cos 2θsin 2θ·4sin 2θcos 2θ=9,当且仅当sin θ=33,cos θ=63时等号成立, 又1sin 2θ+4cos 2θ≥|2x -1|恒成立,∴|2x -1|≤9,∴-4≤x ≤5,即x ∈[-4,5].10.[2019安徽黄山一模]已知函数f (x )=k -|x -4|,x ∈R ,且f (x +4)≥0的解集为[-1,1].(1)求k 的值;(2)若a ,b ,c 是正实数,且1ka +12kb +13kc =1,求证:19a +29b +39c ≥1.(1)解:因为f (x )=k -|x -4|, 所以f (x +4)≥0等价于|x |≤k .由|x |≤k 有解得k ≥0,且其解集为{x |-k ≤x ≤k }. 又f (x +4)≥0的解集为[-1,1],故k =1. (2)证明:由(1)知1a +12b +13c =1, 又a ,b ,c 是正实数,由均值不等式得 a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫a 2b +2b a +⎝ ⎛⎭⎪⎫a 3c +3c a +⎝ ⎛⎭⎪⎫2b 3c +3c 2b≥3+2+2+2=9.当且仅当a =2b =3c 时等号成立, 所以19a +29b +39c ≥1.[强化训练]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322答案:B 解析:解法一:因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本(均值)不等式可知, (3-a )(a +6)≤(3-a )+(a +6)2=92, 当且仅当a =-32时等号成立.解法二:(3-a )(a +6)=-⎝ ⎛⎭⎪⎫a +322+814≤92, 当且仅当a =-32时等号成立.2.[2018内蒙古包头二模]已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256答案:A 解析:解法一(常数代换法): 设数列{a n }的公比为q (q >0),由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5, 可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0,所以q =2.因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24, 所以m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当n m =4mn 时,等号成立, 所以1m +4n 的最小值为32,故选A. 解法二(拼凑法):由解法一可得m +n =6,所以n =6-m , 又m ,n ≥1,所以1≤m ≤5.故1m +4n =1m +46-m =6-m +4m m (6-m )=3(m +2)m (6-m )=3m (6-m )m +2=-3[(m +2)-2][(m +2)-8]m +2=-3(m +2)+16m +2-10. 由基本不等式,得(m +2)+16m +2-10 ≥2(m +2)×16m +2-10=-2⎝ ⎛⎭⎪⎫当且仅当m +2=16m +2,即m =2时等号成立,易知(m +2)+16m +2-10<0,所以1m +4n ≥-3-2=32.故选A.3.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案:B 解析:因为b >a >0,故a +b2>ab . 又f (x )=ln x (x >0)为增函数,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .4.[2019西安模拟]设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8 D .9答案:D 解析:因为AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线,则有AB →∥AC →, 所以(a -1)×2-1×(-b -1)=0, 所以2a +b =1,又a >0,b >0, 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab ≥5+22b a ×2ab =9,当且仅当⎩⎨⎧2b a=2a b ,2a +b =1,即a =b =13时等号成立.5.[2018河南信阳二模]如图,将一半径为2的半圆形纸板裁剪成等腰梯形ABCD 的形状,下底AB 是半圆的直径,上底CD 的端点在圆周上,则所得梯形面积的最大值为( )A .3 3B .3 2C .5 3D .5 2 答案:A 解析:如图,设半圆圆心为O ,连接OD ,过C ,D 分别作DE ⊥AB ,CF ⊥AB , 垂足分别为E ,F .设∠AOD =θ,θ∈⎝⎛⎭⎪⎫0,π2,OE =2cos θ,DE =2sin θ.可得CD =2OE =4cos θ,∴梯形ABCD 的面积为S =12(4+4cos θ)·2sin θ=4sin θ(1+cos θ),S ′=4(cos θ+cos 2θ-sin 2θ)=4(2cos 2θ+cos θ-1) =4(2cos θ-1)(cos θ+1).∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴当θ∈⎝ ⎛⎭⎪⎫0,π3时,S ′>0;当θ∈⎝⎛⎭⎪⎫π3,π2时,S ′<0.∴当θ=π3,S 取得最大值,S =3 3.6.[2019广东广州质检]设a =x 2-xy +y 2,b =p xy ,c =x +y ,若对任意的正实数x ,y ,都存在以a ,b ,c 为三边长的三角形,则实数p 的取值范围是( )A .(1,3)B .(1,2]C.⎝ ⎛⎭⎪⎫12,72 D.⎝ ⎛⎭⎪⎫12,3 答案:A 解析:对任意的正实数x ,y ,a =x 2-xy +y 2≥2xy -xy =xy ,当且仅当x =y 时等号成立, b =p xy ,c =x +y ≥2xy , 当且仅当x =y 时等号成立.又三角形的任意两边之和大于第三边, 所以xy +2xy >p xy ,p xy +xy >2xy , p xy +2xy >xy ,解得1<p <3, 故实数p 的取值范围是(1,3).7.[2019广东揭阳期末]当0<x <π2时,函数f (x )=1+cos 2x +8sin 2xsin 2x的最小值为( )A .2B .2 3C .4D .4 3答案:C 解析:∵0<x <π2,∴tan x >0,∴f (x )=1+cos 2x +8sin 2x sin 2x=2cos 2x +8sin 2x 2sin x cos x =1+4tan 2x tan x =1tan x +4tan x≥21tan x ·4tan x =4, 当且仅当tan x =12时等号成立,∴函数f (x )=1+cos 2x +8sin 2x sin 2x的最小值为4, 故选C.8.[2019四川成都月考]实数x ,y 满足2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1,则xy 的最小值为( ) A .2 B .1 C.12 D.14答案:D 解析:因为2cos 2(x +y -1)∈[0,2],(x +1)2+(y -1)2-2xy x -y +1=x 2+y 2+1-2xy +2x -2y +1x -y +1=(x -y +1)2+1x -y +1=x -y +1+1x -y +1∈(-∞,-2]∪[2,+∞), 又2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1, 所以2cos 2(x +y -1)=2,所以x -y +1=1,x +y -1=k π(k ∈Z ),所以x =y =k π+12(k ∈Z ),所以xy =⎝ ⎛⎭⎪⎫k π+122≥14, 当且仅当k =0时等号成立,故选D.9.[2019江苏如皋质量调研]已知x ,y ,z 均为正数,2x +1y =2,x +2y +2z =xyz ,则xyz 的最小值为________.答案:16 解析:∵2x +1y =2y +x xy =2,∴2y +x =2xy ,∴x +2y +2z =2xy +2z =xyz .∵x ,y ,z 均为正数,z =2xy xy -2>0,xy -2>0, ∴xyz =2(xy )2xy -2=2(xy -2)+8xy -2+8 ≥22(xy -2)×8xy -2+8=16, 当且仅当2(xy -2)=8xy -2,即xy =4时等号成立, ∴xyz 的最小值为16.10.[2017江苏卷]某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30 解析:一年的总运费为6×600x =3 600x (万元).一年的总存储费用为4x 万元.总运费与总存储费用的和为⎝ ⎛⎭⎪⎫3 600x +4x 万元. 因为3 600x +4x ≥2 3 600x ·4x =240, 当且仅当3 600x =4x ,即x =30时等号成立,所以当x =30时,一年的总运费与总存储费用之和最小.11.若正实数x ,y 满足不等式(x +y )(1+xy )=5xy ,则x +y 的最大值是________.答案:4 解析:∵x ,y >0,∴由xy ≤(x +y )24可得x +y xy ≥4x +y, 又∵(x +y )(1+xy )=5xy ,∴5=x +y xy +(x +y )≥4x +y+x +y , 整理得(x +y )2-5(x +y )+4≤0, 解得1≤x +y ≤4.当且仅当x =y =12时,x +y 取得最小值1;当且仅当x =y =2时,x +y 取得最大值4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习基础训练(六)
(运动的描述)
一、选择题(每题5分,共60分)
1.两辆汽车并排在平直的公路上,甲车内一个人看见窗外的树木向东移动.乙车内一个人发现甲车没有运动,如以大地为参照物,上述事实说明()
A.甲车向西运动乙车不动B.乙车向西运动甲车不动
C.甲车向西运动,乙车向东运动D.甲乙两车以相同速度同时向西运动
2.下面的几个速度中表示平均速度的是
()
A.子弹射出枪口的速度是800 m/s,以790 m/s的速度击中目标
B.汽车从甲站行驶到乙站的速度是40 km/h
C.汽车通过站牌时的速度是72 km/h
D.小球第3 s末的速度是6 m/s.
3.关于位移和路程,下列说法中正确的是()
A.物体位移大小不同,路程一定不同B.物体通过的路程不相等,但位移可能相同
C.物体通过了一段路程,其位移不可能为零D.以上说法都不对
4.关于速度的说法正确的是()
A.速度与位移成正比
B.平均速率等于平均速度的大小
C.匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度
D.瞬时速度就是运动物体在一段较短时间内的平均速度
5.一质点在x轴上运动,它在连续第n秒末所对应的坐标记录在如下表格中,
则下列说法正确的是( )
A .第4s 内的位移大小最大
B .第2s 内的路程最大
C .前3s 内的路程为2m
D .第5s 内的位移大小最小 6.一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,则在此过程中( ) A .速度逐渐减小,当加速度减小到零时,速度达到最小值 B .速度逐渐增大,当加速度减小到零时,速度达到最大值 C .位移逐渐增大,当加速度减小到零时,位移不再增大 D .位移逐渐减小,当加速度减小到零时,位移达到最小值
7.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是( ) A .2/)(21v v - B .2/)(21v v + C .)/()(2121v v v v +- D .)/(22121v v v v +
8.如图所示为甲、乙两物体运动x —t 图象,下列关于甲、乙两物体运动的说法,正确的是( )
A .甲、乙两个物体同时出发
B .甲、乙两个物体在同一位置出发
C .甲的速度比乙的速度小
D .t 2时刻两个物体速度相同
9.如图是A 、B 两物体运动的速度图象,则下列说法正确的是( )
A .物体A 的运动是以10m/s 的速度匀速运动
B .物体B 的运动是先以5m /s 的速度与A 同方向
C .物体B 在最初3s 内位移是10m
D.物体B在最初3s内路程是10m
10.有一质点从t=0开始由原点出发,其运动的速度—时间图象如图所示,则()
A.1
=
t s时,质点离原点的距离最大
B.2
t s时,质点离原点的距离最大
=
C.2
t s时,质点回到原点
=
D.4
=
t s时,质点回到原点
11.质点做匀加速直线运动,加速度大小为2
2,在质点做匀加速运动的过
m/s
程中,下列说法正确的是()
A.质点的末速度一定比初速度大2m/s
B.质点在第3s末速度比第2s末速度大2m/s
C.质点在任何一秒的末速度都比初速度大2m/s
D.质点在任何一秒的末速度都比前一秒的初速度大2m/s
12.下列说法中正确的是()
A.物体的加速度不为零,速度可能为零
B.物体的速度大小保持不变时,可能加速度不为零
C.速度变化越快,加速度一定越大
D.加速度越小,速度一定越小
二、实验题:(10分)
13.要用打点计时器测速度的实验中,打点计时器打出一纸条,共选出A、B、C、D四个计数点,相邻两计数点间还有四个点未画出,所用交流电频率为50赫兹,纸带上各点对应尺上的刻度如图所示,则V B= m/s ,
a= m/s2.
(结果保留两位有效数字)
三、计算题
14.(16分)让小球从斜面的顶端滚下,如图所示是用闪光照相机拍摄的小球在斜面
上运动的一段,已知闪光频率为10Hz ,且O 点为0.4s 时小球的位置,试根据此图估算:
(1)小球从O 点到B 点的平均速度; (2)小球在A 点和B 点的瞬时速度; (3)小球运动的加速度。
15.(14分)一质点沿直线ox 方向作加速运动,它离开o 点的距离x 随时间变化的关系为x =5+2t 3(m),它的速度随时间变化的关系为v =6t 2(m/s),求该质点在t =0到t =2s 间的平均速度大小和t =2s 到t =3s 间的平均速度的大小。
16.(20分)如图所示为一物体沿直线运动x-t 图象,根据图象求:
(1)第2s 内的位移,第4s 内的位移,前5s 的总路程和位移
(2)各段的速度
(3)画出与x -t 图象对应的v-t 图象
考答案)
13 相邻两计数点的时间间隔T =0.1s B 点的瞬时速度等于在AC 段的平均速度
T
AC t AC v B 2=
==0.15m/s …………………4分 C 点的瞬时速度等于在BD 段的平均速度
T BD t BD v C 2=
==0.17m/s …………………2分 纸带运动的加速度=-=
T
v v a B
C 0.2 0m/s 2 …………………4分 14.小球从O 点到A 点,从A 点到B 点,从B 点到C 点的时间都是T =0.1s
…………………3分
(1)从O 点到B 点,平均速度T
OB
t OB v 2=
==0.8 m/s ;…………………3分 (2)小球在A 点的瞬时速度等于在OB 段的平均速度,T
OB
t OB v A 2=
==0.8 m/s ;
…………………3分
小球在B 点的瞬时速度等于在AC 段的平均速度T
AC
t AC v B 2=
==1 m/s …………………3分 (3)由速度的定义式得小球运动的加速度=-=
T
v v a A
B 2 m/s 2 ……………4分
15.当t =0时,对应x 0=5m , …………………2分 当t =2s 时,对应x 2=21m , …………………2分
则:t =0到t =2s 间的平均速度大小为1
021t x x v -==8m/s …………………4分
当t =3s 时,对应x 3=59m , …………………2分 则:t =2s 到t =3s 间的平均速度大小为2
232t x x v -==38m/s (4)
分
16.(1)在第2s 内,由x 1=20m 运动到x 2=30m ,
位移△x 1=x 2- x 1=10(m ) …………………2分
在第4s 内,由x 1/=30m 运动到x 2/=15m ,
位移△x 2=x 2/- x 1/=-15(m ) …………………2分 在前5s 内,先由x 1//=10m 到x 2//=30m ,再返回到x 3//=0, 总路程l =20+30=50(m ) …………………2分 前5s 内的位移△x 3= x 3//- x 1//=-10(m ) …………………2分
(2)0~2s 内的平均速度)/(10210
30//1s m t
x v =-=
∆∆=…………………2分
2~3s 内物体静止,速度02=v …………………2分
3~5s 内的平均速度)/(15230
0////3s m t
x v -=-=∆∆=…………………2分 (3)v-t 图象如图所示。
…………………6分
其中:
直尺 …………………2分 刻度 虚线 …………………2分 物理量 单位…………………2分。