Comparison between open phase fault of arc suppression coil and single phase to earth fault in

合集下载

施耐德断路器和熔断器的比较

施耐德断路器和熔断器的比较

Data Bulletin0600DB06012/2007 Cedar Rapids, IA, USAA Comparison of Circuit Breakers and Fuses forLow-Voltage ApplicationsTony Parsons, PhD, P.E.,Square D / Schneider Electric Power Systems EngineeringI. Introduction Recent claims by fuse manufacturers regarding the arc-flash and simplified-coordination benefits of fuses do not tell the entire story regarding whichtype of device is “best” for a given power system. In reality, not only doesthe wide range of available circuit breaker types allow them to besuccessfully used on nearly any kind of power system, they can be appliedso as to provide selective coordination, arc-flash protection, advancedmonitoring and control features, all in a renewable device. This paper givesa feature-by-feature comparison of the merits of circuit breakers vs. fuses,discussing the relative merits of fuses and circuit breakers in each section.While both circuit breakers and fuses are available for application insystems that operate at higher voltage levels, the focus of this guide is onlow-voltage systems operating at 600 V or below.II. Basic Definitions and Requirements Article 240 of the National Electrical Code® (NEC) [1] provides the basic requirements for overcurrent (i.e., overload, short-circuit, and/or ground fault) protection in a power system. Special requirements for overcurrent protection of certain types of equipment are also contained in other articles—for example, details on protection requirements for motors and motor circuits are given in Article 430, while transformer protection requirements are given in Article 450.The NEC defines the two basic types of Overcurrent Protective Devices (OCPDs):fuse—An overcurrent protective device with a circuit-opening fusible part that is heated and severed by the passage of overcurrent through it.circuit breaker—A device designed to open and close a circuit bynonautomatic means and to open the circuit automatically on apredetermined overcurrent without damage to itself when properlyapplied within its rating.The NEC also requires that circuits be provided with a disconnecting means, defined as “a device, or group of devices, or other means by which the conductors of a circuit can be disconnected from their source of supply.” Since fuses are designed to open only when subjected to an overcurrent, they generally are applied in conjunction with a separate disconnecting means (NEC 240.40 requires this in many situations), typically some form of a disconnect switch. Since circuit breakers are designed to open and close under manual operation as well as in response to an overcurrent, a separate disconnecting means is not required.Both fuses and circuit breakers are available in a variety of sizes, ratings, and with differing features and characteristics that allow the designer of an electrical system to choose a device that is appropriate for the system under consideration.Data Bulletin2/2007Low-voltage fuses are available in sizes from fractions of an amp tothousands of amps, at voltage ratings up to 600 V, and with short-circuitinterrupting ratings of 200 kA or more. Fuses are inherently single-poledevices (i.e., an individual fuse can only operate to open one phase of amulti-phase circuit), but two or three individual fuses can be applied togetherin a disconnect to protect a multi-phase system. Low-voltage fuses aretested and rated according to the UL 248 series of standards. Several typescan be classified as current-limiting, which per the NEC definition meansthat they “...reduce the current flowing in the faulted circuit to a magnitudesubstantially less than that obtainable in the same circuit if the device werereplaced with a solid conductor having comparable impedance.” In otherwords, the current-limiting fuses open very quickly (within 1/2 cycle) in thepresence of a high-level fault, allowing them to provide excellent protectionfor distribution system components or load equipment. Fuses can beapplied in equipment such as panelboards, switchboards, motor controlcenters (MCCs), disconnect switches/safety switches, equipment controlpanels, etc.Circuit breakers are also available with a wide range of ratings—10 A tothousands of amps, also with short-circuit interrupting ratings to 200 kA—and are available as 1, 2, 3, or 4-pole devices. The three basic types of LVcircuit breakers are the molded-case circuit breaker (MCCB), low-voltagepower circuit breaker (LVPCB), and insulated-case circuit breaker (ICCB).MCCBs are rated per UL 489, have all internal parts completely enclosed ina molded case of insulating material that is not designed to be opened(which means that the circuit breaker is not field maintainable), and can beapplied in panelboards, switchboards, MCCs, equipment control panels,and as stand-alone disconnects inside a separate enclosure. LVPCBs,which are rated per ANSI standards and are applied in low-voltage drawoutswitchgear, are larger, more rugged devices that may be designed to befully field maintainable. ICCBs can be thought of as a “cross” betweenMCCBs and LVPCBs—they are tested per UL 489 but may share somecharacteristics with LVPCBs, including two-step stored energy mechanismavailability in drawout construction and partial field maintainability [2].Both types of OCPDs can meet the basic requirements of the NEC, but arecircuit breakers or fuses best suited for a particular application?Unfortunately, there is no simple answer to this question—several otherfactors must be taken into account, such as the level of protection providedby the OCPD, selective coordination requirements, reliability, renewability,and flexibility. The remainder of this guide will provide a discussion of eachof these topics.III. System Protection As discussed above, both circuit breakers and fuses meet the basic NECrequirements for overcurrent protection of electric power distributionsystems and equipment. Any type of OCPD must be sized and installedcorrectly after taking all derating factors and other considerations intoaccount. Particularly for overloads and phase faults, both circuit breakersand fuses provide excellent protection and either is suitable for mostapplications. A bit more consideration is warranted for some other aspectsof system protection, as discussed in the remainder of this section.A. Ground-Fault Protection Conventional wisdom states that the most common type of fault in a powersystem (by far) is a single-phase-to-ground fault. On solidly-grounded powersystems, the available ground-fault current level can be significant. In somesituations, ground fault current levels that are even higher than themaximum three-phase fault current level are theoretically possible.However, many ground faults produce only relatively low levels of faultcurrent due to impedance in the fault path (due to arcing or to some other2/2007Data Bulletinsource of impedance from phase to ground). While such faults can causesignificant equipment and facility damage if not cleared from the systemquickly, phase overcurrent protective devices may not respond quickly tothe lower fault levels—if they detect the fault at all. For example, an 800 Aground fault might simply appear as an unbalanced load to a 4000 A fuse orcircuit breaker not equipped with ground-fault protection. Because of this,NEC 230.95 requires supplementary ground-fault protection on servicedisconnects rated 1000 A or more on solidly-grounded, wye systemsoperating at more than 150 V to ground but not more than 600 V phase-to-phase (e.g., 277/480 V systems). The NEC also defines special ground-faultprotection requirements for health care facilities and emergency systems.See the appropriate NEC articles for more details.Circuit breakers can be equipped with integral ground-fault protectionthrough addition of either electronic trip units that act as protective relayingto detect the ground fault and initiate a trip, or through addition of add-onground-fault protection modules. Ground-fault trip units typically use thecurrent sensors internal to the circuit breaker to detect the ground faultcondition, though an external neutral sensor is normally required to monitorcurrent flowing on the neutral conductor in a 4-wire system. If desired,external relaying and current transformers (CTs) can also be used forground-fault detection provided that the circuit breaker is equipped with ashunt trip accessory that can be actuated by the external relay.By themselves, fuses cannot provide ground-fault protection except forrelatively high-level ground faults. When ground-fault protection is requiredin a fusible system, the disconnecting means (usually a switch, sometimes acontactor) must be capable of tripping automatically, and external relayingand a zero-sequence CT or set of residually-connected phase CTs must beinstalled to detect the ground faults and send the trip signal to thedisconnecting means.While either system can function well if installed properly, extra care mustbe taken with a fusible system (or circuit breaker-based system withexternal ground relaying) to ensure that all external sensors are orientedcorrectly and that all sensor and relay wiring is installed correctly.Performance testing of the ground-fault system, as required in NEC230.95(C) when the system is installed, should allow for identification of anyinstallation issues.B. Device Interrupting Ratings NEC 110.9 states that “equipment intended to interrupt current at faultlevels shall have an interrupting rating sufficient for the nominal circuitvoltage and the current that is available at the line terminals of theequipment.” Protective devices that are inadequately rated for either thesystem voltage or available fault current levels present a safety hazard, asthere is no guarantee that they will be able to interrupt faults withoutdamage either to themselves or to other equipment in the system. Thiscould result in extended downtime and present a significant fire hazard.Several types of low-voltage fuses (class R, class J, etc.) carry interruptingratings of 200 kA or more at up to 600 V. This is typically high enough tointerrupt even the most severe fault in the “stiffest” system. In addition, sincefuses are single-pole devices, their single-pole interrupting capability equalsthe full rating of the fuse. Note that the withstand rating of the equipment(e.g., panelboards, switchboards) in which fuses are applied may notalways be equal to the ratings of the fuses themselves—equipmentmanufacturers should be consulted, particularly when system fault currentsexceed 100 kA. Note also that some LV fuses have interrupting ratings aslow as 10 kA, so care should always be taken to ensure that fuses selectedare appropriate for the installation.Data Bulletin2/2007Circuit breakers of all types are also available with interrupting ratings up to200 kA. In the not-too-distant past, fused circuit breakers were required toachieve the 200 kA interrupting ratings, but modern circuit breakers canachieve this rating without fuses. Circuit breakers with lower ratings are alsoavailable, typically at a lower cost. Circuit breakers have single-poleinterrupting ratings that are adequate for installation on the majority of powersystems, though special consideration may be required in some cases. See[3] for additional information.C. Motor Protection Overcurrent Protective Devices (OCPDs) in motor circuits have a relativelydifficult job to perform. They must not trip on motor inrush current, but shouldbe sensitive enough to provide both overload protection and short-circuitprotection to the motor and its associated branch circuit. In many cases, thefuse/circuit breaker (or motor circuit protector—MCP which is essentially amolded-case circuit breaker with no overload element), is oversized toaccommodate motor inrush current and a separate overload relay is addedthat will open the motor contactor during overload conditions. These twodevices then combine to provide overload and short-circuit protection for themotor circuit.Motors can also be damaged by conditions other than short-circuits andoverloads. On three-phase systems, one of the most problematic abnormalconditions is system voltage unbalance, which can cause an increase inphase currents and create high negative-sequence currents that flow in themotor windings. Both of these cause increased heating in the motorwindings, which can cause insulation degradation or breakdown that canultimately result in failure of the motor. Unbalance from system sources suchas unbalanced load in a facility or voltage unbalance on the utility system ispotentially problematic whether circuit breakers or fuses are used as motorOCPDs. However, the use of fuses has the potential to produce a severeunbalance condition commonly referred to as single-phasing.Single-phasing occurs when one phase in a three-phase motor circuit opensbut the other two phases remain in service. If the single-phasing occursupstream of the motor but at the same voltage level, then zero current flowson the phase with the open fuse and elevated current levels flow in one orboth of the remaining phases, depending on whether the motor is wye ordelta-connected. Single-phasing on the primary side of a transformer feedingthe motor can produce elevated currents in all three phases, with two beingslightly elevated and the third current roughly double that of the other two.To help guard against motor damage or failure due to single-phasing:•Use a circuit breaker-based protection system. If properly maintained, allthree phases of a circuit breaker will open in response to a fault or overload,so single-phasing in the facility will be far less likely to occur. However, notethat if the utility supply is protected by fuses, this possibility still exists.•Apply phase-failure or current unbalance relaying, either at the facility main(in smaller installations) or at high-value loads (e.g., larger motors that aremore expensive to replace, critical loads where the downtime associatedwith a motor failure cannot be tolerated, etc.)•Size motor circuit fuses closer to the full-load current rating of the motor.One fuse manufacturer recommends sizing dual-element, time-delay fusesat 100–125% of the motor's actual load level (not the nameplate rating) toprovide better levels of protection against damage resulting from single-phasing [4]. Note that this does not eliminate the possibility of single-phasingoccurring, and could increase the possibility of nuisance fuse operation onsustained overloads. In applications where loading on a particular motorvaries widely, or in new facilities where actual current draw of a motor maynot be known, sizing the fuses properly could be a challenge. Application ofexternal relaying at high-value loads may still be warranted.2/2007Data Bulletin D. Component Protection One of the great advantages of a current-limiting overcurrent protectivedevice is that it can literally limit the peak magnitude of fault current thatflows through it by opening within the first half-cycle after fault initiation,before the fault current has a chance to reach its peak value. This helpsprovide a degree of protection for downstream equipment that couldotherwise be damaged by the magnetic or thermal effects produced by thehigh-level faults. Several types of low-voltage fuses are current-limiting toone degree or another. Highly current-limiting fuses for special applications,such as semiconductor fuses that are designed to protect power electronicequipment, are also available. Same is true of breakers, only that fuses areoften more current-limiting.Current-limiting molded-case circuit breakers are also available in a rangeof sizes and with interrupting ratings of 200 kA. As with current-limitingfuses, these circuit breakers are tested to determine the peak-let-throughcurrent (i p) and let-through energy (i2t). While these circuit breakers are notas current-limiting as the faster-acting current-limiting fuses (e.g., class J orclass RK-1), they do provide a degree of protection beyond that of a non-current-limiting circuit breaker or fuse, and may be appropriate for manyapplications.Proper protection, whether of conductors, motors, or other equipment,depends on OCPDs being applied appropriately. This includes ensuring thatdevices are sized properly and that they are installed on systems wherenone of the equipment ratings are violated.To help prevent misapplication of fuses, NEC 240.60(B) requires thatfuseholders are designed to make it difficult to insert fuses intended forapplication on higher amperage or lower voltage circuits. Additionally,fuseholders intended for current-limiting fuses should reject insertion of anon-current-limiting fuse.Switchboards and panelboards where circuit breakers are applied do nottypically have rejection features that prevent installation of a circuit breakerthat is of a compatible frame type but that has a lower interrupting rating.Realistically, any device can be improperly applied—and improper use ofprotective devices is an application issue, not an equipment issue. In the“real world”, inadequately-rated circuit breakers can be installed, fuses of agiven cartridge size but of a higher ampere rating can be installed into arejection fuseholder, fuses can be replaced with “slugs” (produced by themanufacturer or of the “homemade” variety), or fuseholders or circuitbreakers can be jumpered out altogether by a “creative” electrician with arelatively short length of wire. Proper selection, installation, andmaintenance of all OCPDs are all key requirements in providing goodsystem protection.Data Bulletin2/2007 E. Arc-Flash Protection With the increased interest in arc-flash hazards in recent years, the ability ofOCPDs to provide protection against arcing faults has received muchinterest. The potential severity of an arc-flash event at a given location in apower system depends primarily on the available fault current, the distanceof the worker away from the source of the arc, and the time that it takes theupstream OCPD to clear the arcing fault from the system. In many cases,little can be done about the first two factors—the available fault currentlevels depend on utility system contribution, transformer impedance values,etc.; while the working distance is limited by the fact that a worker workingon a piece of equipment must, in most cases, be physically close to theequipment.Proper selection and application of OCPDs can have a great deal of impacton the fault clearing time. Clearing the fault more quickly can provide a greatdeal of protection for workers, as the available incident energy is directlyproportional to the duration of the arcing fault—i.e., the incident energy canbe cut in half if the fault can be cleared twice as quickly. Equationsappearing in IEEE Standard 1584-2002 [5] provide the present “state-of-the-art” methods for determining the arc-flash hazard levels in a system andfor evaluating the impact of potential arc-flash mitigation options.For low-voltage systems, which OCPDs provide the best protection againstarc flash?•Circuit breakers, with adjustable trip units that can be set to strike abalance between providing selective coordination and arc-flashprotection?•Current-limiting fuses, which can clear high-level faults very quickly andminimize damage to both equipment and personnel?Unfortunately, there is no simple answer to this question, despite claimsmade by manufacturers of both types of OCPDs. In some cases, both circuitbreakers and fuses provide excellent protection. There are situations whencircuit breakers can perform better than fuses, and there are situationswhere fuses can perform better than circuit breakers. And there aresituations where neither circuit breakers nor fuses provide much arc-flashprotection at all, requiring either use of other means of protection(alternative system designs, installing systems that allow for remoteoperation of equipment, etc.) or a total prohibition of work on or nearenergized parts.When evaluating OCPDs in terms of the arc-flash protection that they mayprovide, three general principles are important to consider:•Evaluate specific devices when possible•Evaluate devices at the actual system fault current levels•Evaluate adjustable-trip circuit breakers at their chosen settings Evaluate Specific Devices The IEEE 1584 standard contains three basic calculation models that canbe used to determine arc-flash hazard levels—an empirically-derived,general model; simplified equations based on testing of current-limiting(class RK-1 and class L) low-voltage fuses; and simplified equations basedon calculations performed on “typical” low-voltage circuit breakers. Thegeneral equations require information on available fault current levels in thesystem as well as knowledge of the trip characteristics of OCPDs in thecircuit, but can provide accurate results for any type of OCPD and for a widerange of system conditions. The simplified circuit breaker and fuseequations require little to no knowledge of actual device trip characteristics,but differences in the way these equations were developed mean that theyshould not be used to conduct a direct “apples-to-apples” comparison ofspecific protective devices.2/2007Data BulletinAs discussed above, the simplified fuse equations are based on field testingof specific types of fuses, the simplified circuit breaker equations are basedon classes of circuit breakers and on the assumption that the relevant tripsettings are maximized, and not on specific devices or actual trip settings.The circuit breaker equations are meant to allow calculation of the “worst-case” arc-flash levels allowed by any example of a circuit breaker within agiven class—e.g., 100–400 A MCCBs. If the IEEE 1584 empirical equationsare used to calculate arc-flash levels downstream of such a circuit breaker,the values should never be higher than (and in many cases will be wellbelow) those shown by the simplified circuit breaker equations. This isparticularly true when using the equations to analyze larger LVPCBs—thesimplified IEEE 1584 equations assume that the circuit breaker'sinstantaneous and/or short-time pickup and delay settings are set to themaximum levels, which can result in the calculation of very conservativearc-flash levels if the circuit breakers are actually set differently. Forexample, Figure1 shows the incident energy levels vs. bolted fault currentvalues for 2000 A circuit breakers in a 480 V, solidly-grounded system.Figure1:Incident Energy vs. Bolted Fault Current for 2000 A CircuitBreaker’s Simplified Equations vs. Actual DataThe “LVPCB w/ST” and “LVPCB w/INST” curves are based on the IEEE1584 simplified equations for low-voltage power circuit breakers with short-time and instantaneous pickup, respectively. The “NW-L” and “NW-LF”curves show arc-flash values based on actual devices (2000 A Masterpact®NW-L and NW-LF circuit breakers set to trip instantaneously for an arcingfault, respectively).As shown in the plot, the simplified equations (particularly for the “LVPCBw/ST” curve) are well above the results calculated based on the actualdevice characteristics. When possible, a comparison of the level of arc-flashprotection a given device can provide, should be based on actual devicecharacteristics, not generic equations.Data Bulletin2/2007 What is the system fault current range?Current-limiting fuses can provide excellent protection and reduce theavailable incident energy downstream to minimal levels . . . as long as theyare operating within their current-limiting range. For lower fault currentlevels, the arc-flash levels can elevate.Thermal-magnetic MCCBs can provide excellent protection as long as theytrip instantaneously, but arc-flash levels can escalate for low-level faults thatrequire operation of the thermal element to clear the arc. For higher levels offault current, RK-1 and L fuses tend to allow a lower level of incident energythan a similarly-sized circuit breaker, but both devices provide an excellentlevel of protection—allowing for the use of Category 0 PPE in many cases.For example, see Figure2, which shows incident energy levels vs. boltedfault current for a 400 A Square D® LH circuit breaker, a 400 A Square D LCcircuit breaker, and a 400 A class RK-1 low-voltage fuse. The circuitbreakers are assumed to trip instantaneously.Figure2:Incident Energy vs. Bolted Fault Current for 400 A CircuitBreakers and 400 A Class RK-1 Fuses.As shown in Figure2, the relative performance of the circuit breakers isbetter for low-level faults, while the incident energy allowed by the fuses islower for higher fault current levels. However, the incident energy levels foreach device over the entire range of fault currents considered is less than2.0 cal/cm2 —the maximum level allowed for Category 0 PPE [6], indicatingthat both circuit breakers and fuses provide excellent protection.For larger devices, the relative performance of circuit breakers and fusesfollows these same guidelines, though the impact can be quite a bit larger.See Figure3, which shows the incident energy levels allowed by 1600 AClass L current-limiting fuses, as well as two varieties of 1600 AMasterpact® NW circuit breakers. Again, the circuit breakers are assumed totrip instantaneously for an arcing fault so circuit breaker settings must beconsidered, (see “Consider Circuit Breaker Settings” below), but this doesshow that 1600 A circuit breakers can perform significantly better than fusesfor systems with relatively low available fault current levels.2/2007Data BulletinFigure3:Incident Energy Comparison for 1600 A Protective DevicesConsider Circuit Breaker Settings For circuit breakers with adjustable trip settings, proper selection of settinglevels is important for both arc-flash protection and for system coordination.The best protection will be provided when the circuit breakers can be set totrip instantaneously. Little to no protection may be provided by a circuitbreaker when the settings are blindly set to maximum, as is sometimesdone after a “nuisance trip” of the device. Arc-flash studies can beperformed to determine optimum settings for circuit breakers and otherdevices in a system, but even then, it may not be possible to reduce circuitbreaker settings below a certain level to provide additional arc-flashprotection if system coordination is to be maintained.However, an adjustable circuit breaker still gives the flexibility to provide arc-flash protection in such situations, if only on a temporary basis. Forexample, the instantaneous pickup level of a circuit breaker feeding an MCCcan be turned down to the minimum setting when workers are present at theMCC, then turned back up when work is complete. This could allow thecircuit breaker to trip instantaneously and provide the best possible level ofprotection at the MCC when workers are present and exposed to thehazard, while the normal setting allows for proper coordination duringnormal operation. While this can provide an obvious benefit, it also has itsdrawbacks, including:•Requirement for analysis to determine to what level the circuit breakersettings should be reduced to provide additional protection, as well as whatlevel of protection is actually provided.•Uncertainty over how to provide arc-flash warning labels for such alocation—should labels show the available incident energy and requiredPPE with the “normal” circuit breaker settings, the reduced settings, orboth?•Temporary loss of selectivity can become semi-permanent if the circuitbreaker settings are not restored to normal when work is complete.While a full discussion of issues surrounding arc-flash hazards and theirmitigation is beyond the scope of this paper, many other references areavailable which discuss the subject in more depth, including [7] and [8].。

继电保护中英文对照表

继电保护中英文对照表

129 Close by local protection 保护合闸
式接地远距继电器
130 Close-up fault 近距离故障
173 Current consumption 电流消耗
131 Closing coil 合闸线圈
174 Current differential criterion 电流差动判据
22 Adaptive relay protection 自适应继电保护
68 Black-start 黑启动
23 Adaptive relaying 自适应继电保护
69 Blinker 继电器吊牌
24 Adaptive segregated directional
70 Bloching protection 闭锁式保护
62 Back-up protection 后备保护
17 Acceleration Trend Relay(ATR) 加速趋势继电器
63 Back-up ssystem 后备继电保护
18 Accurate Working Current 精确工作电流
64 Biased differential relaying 极化差动继电保护系统
19 Accurate Working voltage 精确工作电压
65 Bi-directional relay 双向继电器
20 Activate the breaker trip coil 起动断路器跳闸
66 Bi-stable 双稳态
21 Adaptive features 自适应特性
67 Black-out area 停电区
113 Capacitor 电容器
160 Coordination time interval 保护配合时间阶段

四级英语常用形容词和介词固定搭配分析

四级英语常用形容词和介词固定搭配分析

四级英语常用形容词和介词固定搭配:absent from不在,缺席abundant in富于alien to与...相反angry with sb at/about sth生气,愤怒anxious about/for忧虑,担心appropriate for/to适当,合适applicable to适用于apt at聪明,善于apt to易于ashamed of羞愧,害臊approximate to近拟,接近aware of意识到avaliable to sb for sth可用,可供bare of几乎没有,缺乏bound for开往... capable of能够careful of/about/with;小心,注意certain of /about确信,肯定about/in doing characteristic of特有,独特clear of没有,不接触clever at善于close to接近,亲近comparable to/with可比较conscious of察觉到,意识到consequent on随之而来considerate towards体谅,体贴contemporary with与...同时代content with满足于contrary to违反counter to与...相反crazy about热衷,着迷critical of挑剔,批评curious about好奇,想知道distinct from种类(风格)不同doubtful of /about怀疑east of在...东面equal to相等,胜任equivalent to等于,相当于essential to/for必不可少expert at/in/on善于faithful to忠实于familiar to sb为...所熟悉familiar with sth熟悉,通晓fatal to致命的favourable to支持,赞成favourable for有帮助的fearful of惧怕fit for适于foreign to非...所原有fond of喜欢free of /from未受...;免费free with康慨,大方guilty of有...罪的hungry for渴望ignorant of不知道impatient at sth.不耐烦impatient of无法容忍with sb independent of不受...支配impatient for急切,渴望indifferent to无兴趣,不关心indignant with sb.愤慨inferior to级别低于,不如ab/about sth innocent of无...罪,无辜intent on专心于invisible to不可见的jealous of嫉妒keep on爱好,很喜欢liable for对...有责任liable to易于loyal to忠于mad at/with sb.生气,愤怒mad with因...发狂next to下一个,其次necessary to /for必要的opposite to在对面open to不限制,开放的particular about挑剔,讲究arallel to与...平等,类似peculiar to独特的,独有的atient with有耐心prior to在...之前二、四级英语常用名词固定搭配:1、absence from 缺席,离开2、have access to 可以接近;可以利用3、make the acquaintance of sb. 结识某人4、have a nodding acquaintance with 与...有点头之交5、take action 采取行动6、admission to 准许7、take advantage of 利用,趁...之机8、make an agreement with 与...达成协议9、make/offer an apology to sb. 向某人道歉10、make an appeal to sb. 向某人发出呼吁11、application for 申请12、make an appointment with sb. 与某人约会13、approach to 通往...的方法;接近14、come to sb.’s assistance 帮助某人15、make an attempt to do sth. 试图做某事16、pay attention to 注意17、have an arthority over 对...有(行使)权利18、keep one’s balance 保持(身体)平衡19、set up a barrier between 在...中间设置障碍20、belief in 相信21、do/try one’s best 努力,尽力22、make the best of 充分利用23、catch one’s breath 喘气24、take care of 爱护,照料25、give a challenge 挑战26、rise to the challenge 接受挑战,迎战27、take a chance 冒险;投机28、take charge of 管理,接管29、lay a claim 要求;主张,自以为30、set up a claim to sth. 提出对某事物的要求31、combination with 与...结合32、seek comfort in 在...中寻找安慰33、take comfort in 在...中得到安慰34、get command of 控制35、take command of 开始担任...的指挥36、communication with 与...通讯;与...交流37、keep company with 和...结交;和...亲热38、keep sb. company 陪伴某人,陪某人同走39、make a comparison between 把...进行比较40、competition with/against sb. 与某人竞争41、keep competition between 在...之间进行竞争42、complaint about/of 对...抱怨43、make a complaint against 控告44、come to a conclusion 得出结论45、have confidence in sb. 信任某人46、leave sth. out of consideration 对某事不加考虑47、take into consideration 考虑到48、be in contact with 与...接触49、be out of contact with 与...失去联系50、have contact with 和...接触51、lose contact with 与...失去联系52、present a striking contrast between 使两者形成鲜明的对照53、have control over/of 对...控制54、lose control of 失去对...控制55、have/hold a conversation with 与...谈话56、commit a crime 犯罪57、arouse sb.’s curiosity about sth. 激起某人对某事物的好奇心58、lay a curse upon sb. 诅咒某人59、do damage to 损害...60、come to a decision 决定下来61、arrive at a decision 决定下来62、make a decision 作决定63、take a delight in 以...为乐64、take delivery of 提取65、take one’s departure 动身,出发66、give a description of 描写67、drive sb. to despair 使某人陷入绝望68、have the determination to do 决心干...69、make a difference between 区别对待70、make a difference to 使...产生变化71、have difficulty in doing sth. 做某事有困难72、draw a clear distinction between 分清73、come into effect 生效,实施74、put into effect 实行,使生效,使起作用75、take effect 生效,起作用76、put emphasis on/upon 着重于,把重点放在77、make one’s entrance 进入78、make an error 犯错误79、give evidence of 有...迹象80、set a good example to sb. 为某人树立榜样81、make no exceptions 不容许有例外82、catch sb.’s eye 引人注目83、keep an eye on 留意,照看84、have faith in 对...信任85、lose faith in 失去对...信任86、keep faith 忠于信仰87、farewell to 对...永别了;不会再...88、make one’s farewell 道别,告辞89、come into fashion 开始风行90、follow the fashion 赶时髦91、make fashion 作作样子92、set the fashion 创立新式样93、find fault (with) 抱怨,找岔子94、catch fire 着火95、set fire to 使燃烧,点燃96、come into a fortune 继承一笔财产97、make a fortune 发财98、try one’s fortune 碰运气99、make friends (with) 交朋友100、make fun of 取笑,嘲笑101、give/take a glance at 对...粗略地看一下102、catch/get a glimpse of 瞥见103、come to a halt 停止104、do sb. harm 损害某人105、keep one’s head 保持镇定106、lose one’s head 仓皇失措,慌乱107、learn by heart 背诵,记住108、lose heart 失去勇气,丧失信心109、get hold of 抓住,得到110、hunger for/after 渴望111、attach importance 重视112、have an influence on/upon 对...有影响113、make inquiries of sb. about sth. 向某人询问某事114、hold an inquiry into sth. 对某事进行调查115、play a joke on sb. 开某人的玩笑116、come to sb.’s knowledge 被某人知道117、throw light on/upon 阐明某事,使人了解某事118、fall in love with 爱上119、make mention of 提及...120、have mercy on/upon 对...表示怜悯121、bring/call to mind 想起122、have sth. in mind 记得,想到123、keep/bear in mind 记住124、make up one’s mind 下决心,决意125、keep one’s mind on 专注于126、make the most of 充分利用127、come to sb.’s notice 引起某人的注意128、take notice of 注意到129、make/take an objection to 对...表示反对130、obstacle to 成为...的障碍131、bring/put into operation 手术;操作,运转,运算132、come/go into operation 实行,生效133、place an order for sth. with 向...定购某物134、keep pace with 与...并驾齐驱,共同前进135、take pains 努力,尽力,下苦功136、play a part (in) (在...中)扮演角色,参与137、take part in 参加138、take place 发生,进行,举行139、take the place of 取代,代替140、come to a point 变尖锐;到紧要关头141、keep to the point 扣住主题142、make a point 立论,证明论点143、hold the position of(as) 担任...职务144、come into possession of sth. 占有某物145、take possession of 占有,占领146、make a practice of 经常进行147、put in/into practice 实施,实行148、have a preference for 偏爱...149、have a prejudice against sb. 对某人有偏见150、make preparations for 为...做准备151、take pride in 以...自豪,对...感到得意152、enjoy privileges 享受特权153、grant sb. the privilege of doing 赋予某人做...的权利154、make a promise 许下诺言155、keep a promise 遵守诺言156、carry out a promise 履行诺言157、break a promise 不遵守诺言158、recovery from 从...中恢复159、make a reduction 减小,缩小160、make reference to 提到161、have no reference to 与...无关162、give one’s regards to sb. 向某人致意163、make/offer resistance to 对...抵抗,抵御164、take the resolution 决心干某事165、have resort to sb. 求助于某人166、make a response 对...做出响应167、take the responsibility for 负起对某事的责任168、get/take a rise out of sb. 惹得某人恼怒169、give rise to 引起,使发生170、run/take a risk 冒险171、play a role in 在...中扮演角色(起作用) 172、express one’s satisfaction at/with 对...表示满意173、make satisfaction for 赔偿,补偿174、throw a scare into sb. 吓坏某人175、come to on e’s senses 苏醒过来;恢复理性176、make sense 讲得通,言之有理177、throw/cast/put into the shade 使逊色,使相形见绌178、cast a shadow over 蒙上阴影179、catch at shadows 捕风捉影180、put sb. to shame 羞辱某人181、do one’s share for sth. 为...贡献一份力量182、go shares 合伙经营;分享,分担183、take/bear one’s share of 承担一份184、catch sight of 看见,发现185、lose sight of 看不见,在视野之外186、take the firm stand 站稳立场187、take a stand for/against sth. 表示赞成/反对某事188、follow/tread in sb.’s steps 踏着某人的足迹;效仿189、take stock 清查存货,盘存190、take stock in 购买(公司);相信191、take stock of 估量,观察192、lay/place/put stress on/upon 把重点放在...上193、substitute for sth. 替代物194、exptrdd sympathy for/with sb. 对某人表示慰问195、have a talk with sb. 与某人交谈196、make talk 闲谈197、get/go into a temper 发脾气198、lose one’s temper 发脾气199、have/run a temperature 发烧200、take one’s temperature 量体温201、fall into temptation 受诱惑202、resist temptation 抵制诱惑203、give/yield way to temptation 受诱惑204、have a terror of sth. 对某事感到恐怖205、thanks to 由于,多亏206、no thanks to 并非由于207、do a threat to 对...形成威胁208、tske one’s time 不着急,不慌忙209、keep in touch with sb. 与某人保持联系210、keep track of 记录;保持与...联系211、lose track of 失去...的线索212、set a trap 设陷阱213、play a trick on sb. 捉弄某人214、get into trouble 陷入困境,招致不幸215、make trouble 闹事,捣乱216、have trouble with 同...闹纠纷217、make use of 使用,利用218、put to use 使用219、give way to 让路,让步220、lead the way 带路,引路221、make way 让路,腾出地方/位置222、keep one’s word 守信用一、四级英语常用动词固定搭配1、break down 损坏;瓦解;(组织、计划等彻底毁坏)2、break into 闯入;强行进入3、break off 中止;中断4、break out 逃出;突然发生,爆发5、bring about 导致;引起6、bring forward 提出;提议7、bring to 使恢复知觉8、bring up 教育,培养,使成长9、call at 访问,拜访10、call for 邀请;要求,需要11、call off 放弃,取消12、call on/upon 访问,拜访;号召,呼吁13、carry on 继续下去,坚持下去;从事,经营14、carry out 贯彻(理论等),执行(计划等);实现(目标等)15、come across (偶然)发现;(偶然)碰见;偶遇16、come on 开始;进展;上演;来吧,快点17、come out 出版;结果是(to be);出现,长出18、come through 经历,脱险19、come to 总计,达到;苏醒,复原20、come up 发生;走近,上来21、cut across 抄近路,走捷径22、cut down(on) 削减,降低23、cut off 阻断;切断,使隔绝24、drop by/in 顺便来访(无意的)25、fall back on 求助于,转而依靠26、fall behind 落后27、fall in with 碰见;符合,与......一致28、get across 解释清楚,使人了解29、get along/with 有进展;生活得,过得30、get at 够得着,触及;意思是,理解31、get away 离开,走开,逃脱32、get by 混过;通过,经过33、get down to 开始,着手(此处to为介词)34、get in 进入;收回,收获35、get out of 逃避;改掉36、get rid of 除去,摆脱37、get through 接通电话;度过(时间等);结束,完成38、get together 集合,聚集39、give away 泄露,分送40、give back 送还;恢复41、give in 交上;投降,屈服42、give up 停止,放弃43、give way to 给...让路,对...让步(含屈服的意思)44、go after 追求,求爱45、go around/round 足够分配;流传46、go by (时间等)过去;遵守,遵循47、go in for 从事,追求,致力于,沉迷于48、go into 研究,调查,进入49、go over 复习,重温;(重复)检查,审查50、go through 经历,经受(困难等)51、hand in 交上,递交52、hand out 散发,(平均)分发,发给53、hold back 阻止,抑制54、hold on 继续,不挂断,握住不放55、keep on 保持,继续不断56、keep up with 向...看齐,跟上57、lay aside 把...搁置在一边;储蓄58、lay off 休息;(临时)解雇59、lay out 布置,安排;设计,制定60、let alone 不干涉;更不用说61、let down 放下,降低;使失望62、live on (动物)以...为食;(人)靠...生活63、look after 照顾,照料;注意,关心64、look back 回头看;回顾,记忆65、look down on/upon 看不起,轻视66、look forward to 盼望,期待67、look into 调查,观察68、look out 留神,注意69、look through 仔细查看;浏览,温习70、make out 辨认出;理解71、make up 组成,构成;捏造,编造;化妆,补充72、pay back 偿还,回报73、pay off 还清(债);取得成功74、pick out 选出;拣出75、pick up 拾起;(车)中途搭(人)76、pull in (车)停下,进站;(船)到岸77、pull off 脱(帽、衣等)78、pull on 穿(帽、衣等)79、put across/over 解释清楚,说明80、put aside 储存,保留81、put down 记下,放下;镇压,评定82、put forward 提出83、put off 推迟84、put on 上演;(体重)增加;穿上,戴上85、put out 熄灭;关(灯);生产;伸出;出版;公布,发布86、put up 建造,搭起;张贴;提(价);提供食宿87、run down 追捕;贬低;(逐渐)减少;(逐渐)变弱;撞倒,撞沉88、run out(of) 用完,耗尽89、run through 游览;贯穿,普遍存在于90、see off 给...送行91、see to 注意,负责,照料;修理92、set about 开始,着手93、set down 记下,记入,放下,卸下94、set off 动身,出发;引起,使发生95、set up 创立,建立,树立;资助96、show off 卖弄,炫耀97、stand by 支持;袖手旁观;做好准备98、stand for 代表,意味着;支持;是...的缩写99、take after (在外貌、性格等方面)与(父、母)相像100、take...for 把...认为是,把...看成为101、take off 起飞;脱下;匆匆离开102、take over 接收,接管;借用,承袭103、take to 对...产生好感;开始喜欢;开始从事104、take up 开始从事;占去,占据105、turn down 拒绝;关小,调低106、turn out 结果是,(最后)证明是,制造,生产,关掉107、turn over 仔细考虑108、turn to 变成;求助于,借助于109、turn up 开大,调大;出现,来到110、wait for 等候111、wait on 服侍,侍候112、watch out(for) 密切注意,提防113、wear out 穿破;磨损;(使)耗尽114、wonder at 对...感到惊讶115、work at 从事于,致力于116、work out 算出;想出,制定出,解决117、worry about (使)担心,(使)发愁118、write down 写下, 把...描写成119、write off 注销,勾销,取消120、yield to 屈服,服从1.alter v. 改变,改动,变更2. burst vi. n. 突然发生,爆裂3. dispose vi. 除掉;处置;解决;处理(of)4. blast n. 爆炸;气流vi. 炸,炸掉5. consume v. 消耗,耗尽6. split v. 劈开;割裂;分裂a.裂开的7. spit v. 吐(唾液等);唾弃8. spill v. 溢出,溅出,倒出9. slip v. 滑动,滑落;忽略10. slide v. 滑动,滑落n. 滑动;滑面;幻灯片11. bacteria n. 细菌12. breed n. 种,品种v. 繁殖,产仔13. budget n. 预算v. 编预算,作安排14. candidate n. 候选人15. campus n. 校园16. liberal a. 慷慨的;丰富的;自由的17. transform v. 转变,变革;变换18. transmit v. 传播,播送;传递19. transplant v. 移植20. transport vat. 运输,运送n. 运输,运输工具21. shift v. 转移;转动;转变22. vary v. 变化,改变;使多样化23. vanish vi. 消灭,不见24. swallow v. 吞下,咽下n. 燕子25. suspicion n. 怀疑,疑心26. suspicious a. 怀疑的,可疑的27. mild a. 温暖的,暖和的;温柔的,味淡的28. tender a. 温柔的;脆弱的29. nuisance n. 损害,妨害,讨厌(的人或事物)30. insignificant a. 无意义的,无足轻重的;无价值的31. accelerate vt. 加速,促进32. absolute a. 绝对的,无条件的;完全的33. boundary n. 分界线,边界34. brake n. 刹车,制动器v. 刹住(车)35. catalog n. 目录(册)v. 编目36. vague a. 模糊的,不明确的37. vain n. 徒劳,白费38. extinct a. 绝灭的,熄灭的39. extraordinary a. 不平常的,特别的,非凡的40. extreme a. 极度的,极端的n. 极端,过分41. agent n. 代理人,代理商;动因,原因42. alcohol n. 含酒精的饮料,酒精43. appeal n. /vi. 呼吁,恳求44. appreciate vt. 重视,赏识,欣赏45. approve v. 赞成,同意,批准46. stimulate vt. 刺激,激励47. acquire vt. 取得,获得;学到48.accomplish vt .完成,到达;实行49. network n. 网状物;广播网,电视网;网络50. tide n. 潮汐;潮流51. tidy a. 整洁的,整齐的52. trace vt. 追踪,找到n. 痕迹,踪迹53. torture n./vt. 拷打,折磨54. wander vi. 漫游,闲逛55. wax n. 蜡56. weave v. 织,编57. preserve v. 保护,保存,保持,维持61. abuse v. 滥用,虐待;谩骂62. academic a. 学术的;高等院校的;研究院的63. academy n. (高等)专科院校;学会64. battery n. 电池(组)65. barrier n. 障碍;棚栏66. cargo n. (船、飞机等装载的)货物67. career n. 生涯,职业68. vessel n. 船舶;容器,器皿;血管69. vertical a. 垂直的70. oblige v. 迫使,责成;使感激71. obscure a. 阴暗,模糊72. extent n. 程度,范围,大小,限度73. exterior n. 外部,外表a. 外部的,外表的74. external a. 外部的,外表的,外面的75. petrol n. 汽油76. petroleum n. 石油77. delay vt./n. 推迟,延误,耽搁78. decay vi. 腐烂,腐朽79. decent a. 像样的,体面的80. route n. 路;路线;航线81. ruin v. 毁坏,破坏n. 毁灭,[pl.]废墟82. sake n. 缘故,理由83. satellite n. 卫星84. scale n. 大小,规模;等级;刻度85. temple n. 庙宇86. tedious a. 乏味道,单调的,87. tend vi.易于,趋向88. tendency n.趋向,趋势89. ultimate a. 极端的,最大的,最终的n. 极端90. undergo v. 经历,遭受91. abundant a. 丰富的,充裕的,大量的92. adopt v. 收养;采用;采纳93. adapt vi. 适应,适合;改编,改写vt. 使适应94. bachelor n. 学士,学士学位;单身汉95. casual a. 偶然的,碰巧的;临时的;非正式的96. trap n. 陷阱,圈套v. 设陷阱捕捉97. vacant a. 空的,未占用的98. vacuum n. 真空,真空吸尘器99. oral a. 口头的,口述的,口的100. optics n. (单、复数同形)光学101. organ n. 器官,风琴102. excess n. 过分,过量,过剩103. expel v. 驱逐,开除,赶出104. expend v. 消费105. expenditure n. 支出,消费;经费106. expense n. 开销,费用107. expensive a. 花钱多的;价格高贵的108. expand v. 扩大,扩张;展开,膨胀109. expansion n. 扩大,扩充;发展,膨胀110. private a. 私人的,个人的111. individual a. 个别的,单独的n. 个人,个体112. personal a. 个人的,私人的;亲自的114. personnel n. [总称] 人员,员工;人事部门115. the Pacific Ocean 太平洋116. the Atlantic Ocean 大西洋117. the Arctic Ocean 北冰洋118. the Antarctic Ocean 南冰洋119. grant vt. 授予,同意,准予119. grand a. 宏伟大,壮丽的,重大的120. invade v. 侵入,侵略,侵袭121. acid n. 酸,酸性物质a. 酸的;尖刻的122. acknowledge v. 承认;致谢123. balcony n. 阳台124. calculate vt. 计算,核算125. calendar n. 日历,月历126. optimistic a. 乐观127. optional a. 可以任选的,非强制的128. outstanding a. 杰出的,突出的,显著的129. export n. 出口(物)v. 出口,输出130. import n. 进口(物)v. 进口,输入131. impose vt. 把...加强(on);采用,利用132. religion n. 宗教,宗教信仰133. religious a. 宗教的134. victim n. 牺牲品,受害者135. video n. 电视,视频a. 电视的,录像的136. videotape n. 录像磁带v. 把...录在录像带上137. offend v. 冒犯,触犯138. bother v. 打搅,麻烦139. interfere v. 干涉,干扰,妨碍140. internal a. 内部的,国内的141. beforehand ad. 预先,事先142. racial a. 人种的种族的143. radiation n. 放射物,辐射144. radical a.根本的;激进的145. range n. 幅度,范围v. (在某范围内)变动146. wonder n. 惊奇,奇迹v. 想知道,对...感到疑惑147. isolate vt. 使隔离,使孤立148. issue n. 问题,争论点;发行,(报刊)一期149. hollow a. 空的,中空的,空虚道150. hook n. 钩vt. 钩住151. adequate a. 适当地;足够152. adhere vi. 粘附,附着;遵守,坚持153. ban vt. 取缔,禁止154. capture vt. 俘虏,捕获155. valid a. 有效的,有根据的;正当的156. valley n. 山谷,峡谷157. consistent a. 坚固定;一致的,始终如一的158. continuous a. 继续的,连续(不断)的159. continual a. 不断地,频繁的160. explode v. 爆炸;爆发;激增161. exploit v. 剥削;利用,开采162. explore v. 勘探163. explosion n. 爆炸;爆发;激增164. explosive a. 爆炸的;极易引起争论的165. remote a. 遥远的,偏僻的166. removal n. 除去,消除167. render vt. 使得,致使167. render 解释比较长,可要仔细体会啊!168. precaution n. 预防,防备,警惕169. idle a. 懒散的,无所事事的170. identify vt. 认出,鉴定171. identify n. 身份;个性,特性172. poverty n. 贫穷173. resistant a. (to) 抵抗的,抗...的,耐...的174. resolve vt. 解决;决定,决意175. barrel n. 桶176. bargain n. 便宜货vi. 讨价还价177. coarse a. 粗的,粗糙的,粗劣的178. coach n. 教练;长途公共汽车179. code n. 准则,法规,密码180. coil n. 线圈v. 卷,盘绕181. adult n. 成年人182. advertise v. 为...做广告183. advertisement n. 广告184. agency n. 代理商,经销商185. focus v. (使)聚集n. 焦点,中心,聚焦186. forbid vt. 不许,禁止187. debate n. /v. 辩论,争论188. debt n. 欠债189. decade n. 十年190. enclose vt. 围住;把...装入信封191. encounter vt. /n. 遭遇,遭到192. globe n. 地球,世界;地球仪193. global a. 全球的;总的194. scan vt. 细看;扫描;浏览195. scandal n. 丑事,丑闻196. significance n. 意义;重要性197. subsequent a. 随后的,后来的198. virtue n. 美德,优点199. virtual a. 实际上的,事实上的200. orient vt. 使适应,(to, toward)使朝向n. 东方201. portion n. 一部分202. target n. 目标,靶子vt. 瞄准203. portable a. 手提式的204. decline v. 拒绝,谢绝;下降205. illusion n. 错觉206. likelihood n. 可能,可能性207. stripe n. 条纹208. emphasize vt. 强调,着重209. emotion n. 情感,感情210. emotional a. 感情的,情绪(上)的211. awful a. 极坏的,威严的,可怕的212. awkward a. 笨拙的,棘手的213. clue n. 线索,提示214. collision n. 碰撞,冲突215. device n. 装置,设备216. devise vt. 发明,策划,想出217. inevitable a. 不可避免的218. naval a. 海军的219. navigation n. 航行220. necessity n. 必需品;必要性221. previous a. 先,前,以前的222. provision n. [pl.] 给养,口粮;准备,设备,装置223. pursue vt. 追逐;追求;从事,进行224. stale a. 不新鲜的,陈腐的225. substitute n. 代用品vt. 代替226. deserve vt. 应受,应得,值得227. discrimination n. 歧视;辨别力228. professional a. 职业的,专门的229. secure a. 安全的,可靠的230. security n. 安全,保障231. scratch v. /n. 抓,搔,扒232. talent n. 才能,天资;人才233. insurance n. 保险,保险费234. insure vt. 给...保险,保证,确保235. nevertheless ad. 仍然,然而,不过236. neutral a. 中立的,中性的237. spot n. 地点;斑点vt. 认出,发现;玷污238. spray v. 喷,(使)溅散239. medium a. 中等的,适中的n. 媒介物,新闻媒介240. media n. 新闻传媒241. auxiliary a. 辅助的,备用的242. automatic a. 自动的243. compete vi. 竞争,比赛244. competent a. 有能力的,能胜任的245. competition n. 竞争,比赛246. distribute vt. 分发247. disturb vt. 打搅,妨碍248. infer v. 推论,推断249. integrate v. (into, with) (使)成为一体,(使)合并250. moist a. 潮湿251. moisture n. 潮湿252. promote vt. 促进;提升253. region n. 地区;范围;幅度254. register v./n.登记,注册255. stable a. 稳定的256. sophisticated a. 老于世故的,老练的;很复杂的257. splendid a. 极好的,壮丽的,辉煌的258. cancel vt. 取消,废除259. variable a. 易变的,可变的260. prospect n. 前景,前途;景象261. prosperity n.兴旺,繁荣262. aspect n. 方面;朝向;面貌263. cope vi. (with)(成功地)应付,处理264. core n. 果心,核心265. maintain vt. 维持,保持;坚持,主张266. mainland n. 大陆267. discipline n. 纪律;惩罚;学科268. domestic a. 本国的,国内的;家用的;家庭的269. constant a. 不变的,恒定的n. 常数270. cliff n. 悬崖,峭壁271. authority n. 权威;当局272. audio a. 听觉273. attitude n. 态度274. community n. 社区,社会275. commit vt. 犯(错误,罪行等),干(坏事等)276. comment n. /vt. 评论277. distinguish vt. 区分,辨别278. distress n. 痛苦,悲伤vt. 使痛苦279. facility n. [pl.] 设备,设施;便利,方便280. faculty n. 能力,技能;系,学科,学院;全体教员281. mixture n. 混合,混合物282. mood n. 心情,情绪;语气283. moral a. 道德上的,有道德的284. prominent a. 突出的285. substance n. 物质;实质286. substantial a. 可观的;牢固的;实质的287. prompt vt. 促使a. 敏捷的,及时的288. vivid a. 生动的289. vocabulary n. 词汇(量);词汇表290. venture n. 风险投资,风险项目v. 冒险;取于291. version n. 版本,译本;说法292. waist n. 腰,腰部293. weld v. /n. 焊接294. yawn vi. 打哈欠295. yield vi. (to)屈服于;让出,放弃n. 产量296. zone n. 地区,区域297. strategy n. 战略,策略298. strategic a. 战略(上)的,关键的299. tense a. 紧张的v. 拉紧n. 时态300. tension n. 紧张(状态),张力301. avenue n. 林荫道,大街302. available a. 现成可用的;可得到的303. comparable a. (with, to) 可比较的,类似的304. comparative a. 比较的,相对的305. dash vi. 猛冲,飞奔306. data n. 数据,资料307. dive vi. 跳水,潜水308. diverse a. 不同的,多种多样的309. entitle vt. 给...权利,给...资格310. regulate vt. 管理,调节311. release vt. /n. 释放,排放;解释解脱312. exaggerate v. 夸大,夸张313. evil a. 邪恶的,坏的314. shrink vi. 起皱,收缩;退缩315. subtract v. 减(去)316. suburb n. 市郊317. subway n. 地铁318. survey n. /vt. 调查,勘测319. wealthy a. 富裕的320. adjust v. 调整,调节321. attach vt. 系,贴;使附属322. profit n. 利润,益处;v. 有益于,有利于323. profitable a. 有利可图的324. slope n. 斜坡,斜面325. reinforce vt. 增强,加强326. reject vt. 拒绝327. fatal a. 致命的;重大的328. fate n. 命运329. humble a. 谦逊的;谦虚的330. illegal a. 不合法的,非法的331. award vt. 授予,判给n. 奖品,奖金332. aware a. 意识到333. column n. 柱,圆柱;栏,专栏334. comedy n. 喜剧335. dumb a. 哑的;沉默的336. dump vt. 倾卸,倾倒337. deaf a. 聋的;不愿听的338. decorate vt. 装饰,装璜339. principal a. 最重要的n. 负责人,校长340. principle n. 原则,原理341. prior a. 优先的,在前的342. priority n. 优先,重点343. prohibit vt. 禁止,不准344. remarkable a. 值得注意的,异常的,非凡的345. remedy n. /vt. 补救,医治,治疗346. repetition n. 重复,反复347. vain a. 徒劳的,无效的348. undertake vt. 承担,着手做;同意,答应349. unique a. 唯一的,独特的350. obstacle n. 障碍(物),防碍jxjjxyx351. odd a. 奇特的,古怪的;奇数的352. omit vt. 省略353. opponent n. 敌手,对手354. opportunity n. 机会,时机355. orchestra n. 管弦乐队356. semester n. 学期;半年357. semiconductor n. 半导体358. seminar n. 研讨会359. terminal a. 末端的,极限的n. 终点360. territory n. 领土361. approximate a. 大概的,大约v. 近似362. arbitrary a. 随意的,未断的363. architect n. 建筑师364. architecture n. 建筑学365. biology n. 生物学366. geography n. 地理(学)367. geology n. 地质学368. geometry n. 几何(学)369. arithmetic n. 算术370. algebra n. 代数371. entertainment n. 娱乐;招待,款待372. enthusiasm n. 热情,热心373. entry n. 进入,入口处;参赛的人(或物)374. environment n. 环境375. episode n. 插曲,片段376. equation n. 方程(式)377. restrain vt. 阻止,抑制378. restraint n. 抑制,限制379. resume v. (中断后)重新开始380. severe a. 严重的381. sexual a. 性的382. simplicity n. 简单;朴素383. simplify vt. 简化384. sorrow n. 悲哀,悲痛385. stuff n. 原料,材料vt. 填进,塞满386. temporary a. 暂时的,临时的387. temptation n. 诱惑,引诱388. terror n. 恐怖389. thrust v. 挤,推,插390. treaty n. 条约,协定391. arise vi. 产生,出现,发生;起身392. arouse vt. 引起,激起;唤醒393. burden n. 重担,负荷394. bureau n. 局,办事处395. marvelous a. 奇迹般的,惊人的396. massive a. 大的,大量的,大块的397. mature a. 成熟的398. maximum a. 最高的,最大的399. minimum a. 最低的,最小的400. nonsense n. 胡说,冒失的行动401. nuclear a. 核子的,核能的402. nucleus n. 核403. retail n. /v. /ad. 零售404. retain vt. 保留,保持405. restrict vt. 限制,约束406. sponsor n. 发起者,主办者vt. 发起,主办,资助407. spur n. /vt. 刺激,激励408. triumph n. 胜利,成功409. tuition n. 学费410. twist vt. 使缠绕;转动;扭歪411. undergraduate n. 大学肄业生412. universal a. 普遍的,通用的;宇宙的413. universe n. 宇宙414. via prep. 经由,经过,通过415. vibrate v. 振动,摇摆416. virus n. 病毒417. voluntary a. 自愿的418. volunteer n. 志愿者v. 自愿(做)419. vote v. 选举n. 选票420. wagon n. 四轮马车,铁路货车421. appoint vt. 任命,委派422. approach v. 靠近,接近n. 途径,方式423. appropriate a. 适当的424. bunch n. 群,伙;束,串425. bundle n. 捆,包,束vt. 收集,归拢426. ceremony n. 典礼,仪式427. chaos n. 混乱,紊乱428. discount n. (价格)折扣429. display n. /vt. 陈列,展览430. equivalent a. 相等的a. 相等物431. erect a. 竖直的v. 建造,竖立432. fax n. /vt. 传真433. fertile a. 肥沃的;多产的434. fertilizer n. 肥料435. grateful a. 感激的436. gratitude n. 感激437. horror n. 恐怖438. horrible a. 可怕的439. Internet n. 国际互联网,因特网440. interpret v. 翻译,解释441. interpretation n. 解释,说明442. jungle n. 丛林,密林443. knot n. 结vt. 把...打成结444. leak v. 漏,渗出445. lean vi. 倾斜,倚,靠446. leap vi. 跳跃447. modify vt. 修改448. nylon n. 尼龙449. onion n. 洋葱450. powder n. 粉末451. applicable a. 可应用的,适当的452. applicant n. 申请人453. breadth n. 宽度454. conservation n. 保存,保护455. conservative a. 保守的456. parallel n. 平行线;可相比拟的事物457. passion n. 激情,热情458. passive a. 被动的,消极的459. pat v. /n. 轻拍,轻打460. peak n. 山峰,顶点461. phenomenon n. 现象462. reluctant a. 不情愿的,勉强的463. rely vi. (on ,upon)依赖,指望464. relevant a. 有关的,切题的465. reliable a. 可靠的466. relief n. 轻松,宽慰;减轻467. reputation n. 名气,声誉468. rescue vt. /n. 营救469. triangle n. 三角(形)470. sequence n. 连续;顺序471. shallow a. 浅的472. shiver vi/n. 发抖473. shrug v. /n. 耸肩474. signature n. 签名475. sincere a. 诚挚的,真诚的476. utility n. 功用,效用477. utilize vt. 利用478. utter vt. 说出a. 完全的,彻底的479. variation n. 变化,变动480. vehicle n. 交通工具,车辆481. applause n. 鼓掌,掌声482. appliance n. 器具,器械483. consent n. 准许,同意vi (to) 准许,同意484. conquer vt. 征服485. defect n. 缺点,缺陷486. delicate a. 易碎的;娇弱的;精美的487. evolve v.演变488. evolution n. 演变,进化489. frown v. /n. 皱眉490. frustrate vt. 使沮丧491. guarantee vt. /n. 保证492. guilty a. 内疚的;有罪的493. jealous a. 妒忌的494. jeans n. 牛仔裤495. liquor n. 酒,烈性酒496. liter/litre n. 升497. modest a. 谦虚道498. molecule n. 分子499. orbit n. 轨道v. (绕...)作轨道运行500. participate v. (in) 参与,参加501. particle n. 微粒502. particularly ad. 特别,尤其503. respond vi. 回答,答复;反应504. response n. 回答,答复;反应505. sensible a. 明智的506. sensitive a. 敏感到,灵敏的507. tremble vi. 颤抖508. tremendous a. 巨大的;精彩的509. trend n. 趋向,倾向510. trial n. 审讯;试验511. apparent a. 显然的,明白的512. appetite n. 胃口;欲望513. deposit n. 存款,定金v.存放,储蓄514. deputy n. 副职,代表515. derive vt. 取得,得到;(from)起源于516. descend v. 下来,下降517. missile n. 导弹518. mission n. 使命;代表团519. mist n.薄雾520. noticeable a. 显而易见到521. notify vt. 通知,告知522. notion n. 概念;意图,想法523. resemble vt. 像,类似于524. reveal vt. 揭露525. revenue n. 收入,岁入;税收526. shelter n. 掩蔽处;住所527. shield n. 防护物,盾vt. 保护,防护528. vital a. 重要的;致命的,生命的529. vitally ad. 极度,非常;致命地530. urban a. 城市的531. urge vt. 鼓励,激励532. urgent a. 急迫的,紧急得533. usage n. 使用,用法534. violence n. 强力,暴力535. violent a. 强暴的536. violet a. 紫色的537. weed n. 杂草,野草538. welfare n. 福利539. whatsoever ad. (用于否定句)任何540. whereas conj. 然而,但是,尽管541. essential a. 必不可少的;本质的542. estimate n. /vt. 估计,估量543. evaluate vt. 评估,评价544. exceed vt. 超过,越出545. exceedingly ad. 非常,极其546. exclaim v. 呼喊,大声说547. exclude vt. 把...排斥在外,不包括548. exclusive a. 读有的,排他的549. excursion n. 远足550. flash vi. 闪光,闪耀551. flee vi. 逃走552. flexible a. 易弯曲的553. flock n. 羊群,(鸟兽等)一群;一伙人554. hardware n. 五金器具555. harmony n. 和谐,融洽556. haste n. 急速,急忙557. hatred n. 憎恶,憎恨558. incident n. 事件,事变559. index n. 索引,标志560. infant n. 婴儿561. infect v. 传染562. inferior a. 劣等的,次的,下级的563. infinite a. 无限的564. ingredient n. 组成部分565. inhabitant n. 居民566. jail n. 监狱567. jam n. 果酱;拥挤,堵塞568. jewel n. 宝石569. joint a.连接的;共同的570. junior a. 年少的;资历较浅的571. laser n. 激光572. launch vt. 发动,发起573. luxury n. 奢侈;奢侈品574. magnet n. 磁铁,磁体575. male a. 男性的,雄的576. female a. 女性的,雌的577. manual a. 用手的,手工做的n. 手册578. manufacture vt. /n. 制造,加工579. marine a. 海的;海产的580. mutual a. 相互的581. naked a. 裸露的582. negative a. 否定的,消极的。

电力系统中英文翻译

电力系统中英文翻译

LINE PROTECTION WITH DISTANCE RELAYSDistance relaying should be considered when overcurrent relaying is too slow or is not selective. Distance relays are generally used for phase-fault primary and back-up protection on subtransmission lines, and on transmission lines where high-speed automatic reclosing is not necessary to maintain stability and where the short time delay for end-zone faults can be tolerated. Overcurrent relays have been used generally for ground-fault primary and back-up protection, but there is a growing trend toward distance relays for ground faults also.Single-step distance relays are used for phase-fault back-up protection at the terminals of generators. Also, single-step distance relays might be used with advantage for back-up protection at power-transformer tanks, but at the present such protection is generally provided by inverse-time overcurrent relays.Distance relays are preferred to overcurrent relays because they are not nearly so much affected by changes in short-circuit-current magnitude as overcurrent relays are, and , hence , are much less affected by changes in generating capacity and in system configuration. This is because, distance relays achieve selectivity on the basis of impedance rather than current.THE CHOICE BETWEEN IMPEDANCE, REACTANCE, OR MHOBecause ground resistance can be so variable, a ground distance relay must be practically unaffected by large variations in fault resistance. Consequently, reactance relays are generally preferred for ground relaying.For phase-fault relaying, each type has certain advantages and disadvantages. For very short line sections, the reactance type is preferred for the reason that more of theline can be protected at high speed. This is because the reactance relay is practically unaffected by arc resistance which may be large compared with the line impedance, as described elsewhere in this chapter. On the other hand, reactance-type distance relays at certain locations in a system are the most likely to operate undesirably on severe synchronizing-power surges unless additional relay equipment is provided to prevent such operation.The mho type is best suited for phase-fault relaying for longer lines, and particularly where severe synchronizing-power surges may occur. It is the least likely to require additional equipment to prevent tripping on synchronizing-power surges. When mho relaying is adjusted to protect any given line section, its operating characteristic encloses the least space on the R-X diagram, which means that it will be least affected by abnormal system conditions other than line faults; in other words, it is the most selective of all distance relays. Because the mho relay is affected by arc resistance more than any other type, it is applied to longer lines. The fact that it combines both the directional and the distance-measuring functions in one unit with one contact makes it very reliable.The impedance relay is better suited for phase-fault relaying for lines of moderate length than for either very short or very long lines. Arcs affect an impedance relay more than a reactance relay but less than a mho relay. Synchronizing-power surges affect an impedance relay less than a reactance relay but more than a mho relay. If an impedance-relay characteristic is offset, so as to make it a modified• relay, it can be made to resemble either a reactance relay or a mho relay but it will always require a separate directional unit.There is no sharp dividing line between areas of application where one or another type of distance relay is best suited. Actually, there is much overlapping of these areas. Also, changes that are made in systems, such as the addition of terminals to a line, can change the type of relay best suited to a particular location. Consequently, to realizethe fullest capabilities of distance relaying, one should use the type best suited for each application. In some cases much better selectivity can be obtained between relays of the same type, but, if relays are used that are best suited to each line, different types on adjacent lines have no appreciable adverse effect on selectivity. THE ADJUSTMENT OF DISTANCE RELAYSPhase distance relays are adjusted on the basis of the positive-phase-sequence impedance between the relay location and the fault location beyond which operation of a given relay unit should stop. Ground distance relays are adjusted in the same way, although some types may respond to the zero-phase-sequence impedance. This impedance, or the corresponding distance, is called the "reach" of the relay or unit. For purposes of rough approximation, it is customary to assume an average positive-phase-sequence-reactance value of about 0.8 ohm per mile for open transmission-line construction, and to neglect resistance. Accurate data are available in textbooks devoted to power-system analysis.To convert primary impedance to a secondary value for use in adjusting a phase or ground distance relay, the following formula is used:where the CT ratio is the ratio of the high-voltage phase current to the relay phase current, and the VT ratio is the ratio of the high-voltage phase-to-phase voltage to the relay phase-to-phase voltage–all under balanced three-phase conditions. Thus, for a 50-mile, 138-kv line with 600/5 wye-connected CT’s, the secondary positive-phase-sequence reactance is aboutIt is the practice to adjust the first, or high-speed, zone of distance relays to reach to80% to 90% of the length of a two-ended line or to 80% to 90% of the distance to the nearest terminal of a multiterminal line. There is no time-delay adjustment for this unit.The principal purpose of the second-zone unit of a distance relay is to provide protection for the rest of the line beyond the reach of the first-zone unit. It should be adjusted so that it will be able to operate even for arcing faults at the end of the line. To do this, the unit must reach beyond the end of the line. Even if arcing faults did not have to be considered, one would have to take into account an underreaching tendency because of the effect of intermediate current sources, and of errors in: (1) the data on which adjustments are based, (2) the current and voltage transformers, and (3) the relays. It is customary to try to have the second-zone unit reach to at least 20% of an adjoining line section; the farther this can be extended into the adjoining line section, the more leeway is allowed in the reach of the third-zone unit of the next line-section back that must be selective with this second-zone unit.The maximum value of the second-zone reach also has a limit. Under conditions of maximum overreach, the second-zone reach should be short enough to be selective with the second-zone units of distance relays on the shortest adjoining line sections, as illustrated in Fig. 1. Transient overreach need not be considered with relays having a high ratio of reset to pickup because the transient that causes overreach will have expired before the second-zone tripping time. However, if the ratio of reset to pickup is low, the second-zone unit must be set either (1) with a reach short enough so that its overreach will not extend beyond the reach of the first-zone unit of the adjoining linesection under the same conditions, or (2) with a time delay long enough to be selective with the second-zone time of the adjoining section, as shown in Fig. 2. In this connection, any underreaching tendencies of the relays on the adjoining line sections must be taken into account. When an adjoining line is so short that it is impossible to get the required selectivity on the basis of react, it becomes necessary to increase the time delay, as illustrated in Fig. 2. Otherwise, the time delay of the second-zone unit should be long enough to provide selectivity with the slowest of (1) bus-differential relays of the bus at the other end of the line(2)transformer-differential relays of transformers on the bus at the other end of the line,or (3) line relays of adjoining line sections. The interrupting time of the circuit breakers of these various elements will also affect the second-zone time. This second-zone time is normally about 0.2 second to 0.5 second.The third-zone unit provides back-up protection for faults in adjoining line sections.So far as possible, its reach should extend beyond the end of the longest adjoining line section under the conditions that cause the maximum amount of underreach, namely, arcs and intermediate current sources. Figure 3 shows a normal back-up characteristic. The third-zone time delay is usually about 0.4 second to 1.0 second. To reach beyond the end of a long adjoining line and still be selective with the relays of a short line, it may be necessary to get this selectivity with additional time delay, as in Fig. 4.THE EFFECT OF ARCS ON DISTANCE-RELAY OPERATIONThe critical arc location is just short of the point on a line at which a distance relay's operation changes from high-speed to intermediate time or from intermediate time to back-up time. We are concerned with the possibility that an arc within the high-speed zone will make the relay operate in intermediate time, that an arc within the intermediate zone will make the relay operate in back-up time, or that an arc within the back-up zone will prevent relay operation completely. In other words, the effect of an arc may be to cause a distance relay to underreach.For an arc just short of the end of the first- or high-speed zone, it is the initial characteristic of the arc that concerns us. A distance relay's first-zone unit is so fast that, if the impedance is such that the unit can operate immediately when the arc is struck, it will do so before the arc can stretch appreciably and thereby increase itsresistance. Therefore, we can calculate the arc characteristic for a length equal to the distance between conductors for phase-to-phase faults, or across an insulator string for phase-to-ground faults. On the other hand, for arcs in the intermediate-time or back-up zones, the effect of wind stretching the arc should be considered, and then the operating time for which the relay is adjusted has an important bearing on the outcome.Tending to offset the longer time an arc has to stretch in the wind when it is in the intermediate or back-up zones is the fact that, the farther an arcing fault is from a relay, the less will its effect be on the relay's operation. In other words, the more line impedance there is between the relay and the fault, the less change there will be in the total impedance when the arc resistance is added. On the other hand, the farther away an arc is, the higher its apparent resistance will be because the current contribution from the relay end of the line will be smaller, as considered later.A small reduction in the high-speed-zone reach because of an arc is objectionable, but it can be tolerated if necessary. One can always use a reactance-type or modified-impendance type distance relay to minimize such reduction. The intermediate-zone reach must not be reduced by an arc to the point at which relays of the next line back will not be selective; of course, they too will be affected by the arc, but not so much. Reactance-type or modified-impendance-type distance relays are useful here also for assuring the minimum reduction in second-zone reach. Figure 5 shows how an impedance or mho characteristic can be offset to minimize its susceptibility to an arc. One can also help the situation by making the second-zone reach as long as possible so that a certain amount of reach reduction by an arc is permissible. Conventional relays do not use the reactance unit for the back-up zone; instead, they use either an impedance unit, a modified-impendance unit, or a mho unit. If failure of the back-up unit to operate because of an arc extended by the wind is a problem, the modified-impendance unit can be used or the mho–or "starting"–unitcharacteristic can also be shifted to make its operation less affected by arc resistance. The low-reset characteristic of some types of distance relay is advantageous in preventing reset as the wind stretches out an arc.Although an arc itself is practically all resistance, it may have a capacitive-reactance or an inductive-reactance component when viewed from the end of a line where the relays are. The impedance of an arc (ZA) has the appearance:where I1 = the complex expression for the current flowing into the arc from the end of the line where the relays under consideration are.I2= the complex expression for the current flowing into the arc from the other end of the line.R A = the arc resistance with current (I1 + I2) flowing into it.Of more practical significance is the fact that, as shown by the equation, the arc resistance will appear to be higher than it actually is, and it may be very much higher. After the other end of the line trips, the arc resistance will be higher because the arccurrent will be lower. However, its appearance to the relays will no longer be magnified, because I2 will be zero. Whether its resistance will appear to the relays to be higher or lower than before will depend on the relative and actual magnitudes of the currents before and after the distant breaker opens.输电线路的距离保护在过电流保护灵敏度低或选择性差时,应当考虑采用距离保护。

一种级联H_桥多电平逆变器故障诊断方法

一种级联H_桥多电平逆变器故障诊断方法

第27卷㊀第9期2023年9月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.9Sep.2023㊀㊀㊀㊀㊀㊀一种级联H 桥多电平逆变器故障诊断方法于晶荣,㊀张刚,㊀邱均成,㊀王益硕,㊀孙健文(中南大学自动化学院,湖南长沙410083)摘㊀要:为了诊断级联H 桥多电平逆变器的开关管开路故障,提出一种基于载波层叠调制(LSP-WM )技术的故障诊断方法,直接对H 桥输出电压㊁负载电流和驱动信号的输出特性曲线进行分析㊂当部分驱动信号断开后,相应的电流和电压出现部分缺失和波动,从而推出故障情况下三者之间的对应关系㊂依据调制波和负载电流的方向,将系统运行分为4种工作模式,并在特定模式下诊断故障㊂对故障情况下负载电流过零处的特性曲线进行分析,用以识别H 桥中对角开关故障㊂与现有方法相比,该方法扩展基于LSPWM 下的故障范围为双管故障,诊断逻辑易于理解且不需要添加额外的硬件电路㊂通过仿真证明了所提故障诊断方法的正确性和有效性㊂关键词:级联H 桥;多电平逆变器;故障诊断;开路故障;载波层叠调制DOI :10.15938/j.emc.2023.09.013中图分类号:TM464文献标志码:A文章编号:1007-449X(2023)09-0119-07㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-12-07基金项目:湖南省自然科学基金(2022JJ30742);长沙市自然科学基金(kq2202103)作者简介:于晶荣(1981 ),女,博士,副教授,研究方向为电能质量分析与控制技术;张㊀刚(1995 ),男,硕士研究生,研究方向为多电平逆变器故障诊断和容错策略等;邱均成(1997 ),男,硕士研究生,研究方向为电能质量治理和逆变器故障穿越等;王益硕(1998 ),女,硕士研究生,研究方向为新能源电能质量控制策略;孙健文(1997 ),男,硕士研究生,研究方向为电网阻抗的系统辨识㊂通信作者:张㊀刚Fault diagnosis method for cascaded H-bridge multilevel inverterYU Jingrong,㊀ZHANG Gang,㊀QIU Juncheng,㊀WANG Yishuo,㊀SUN Jianwen(College of Automation,Central South University,Changsha 410083,China)Abstract :A fault diagnosis method based on level-shifted pulse width modulation (LSPWM)technique was proposed to diagnose the switch open circuit fault of cascaded H-bridge multilevel inverter.The out-put characteristic curves of H-bridge output voltage,load current and driving signal were analyzed direct-ly.When part of the driving signal is disconnected,the corresponding current and voltage have partial loss and fluctuation so as to deduce the corresponding relationship among the three in the case of failure.According to the direction of modulation wave and load current,the system was divided into four working modes,and faults were diagnosed in the specific mode.The characteristic curve of load current crossing zero was analyzed in order to identify the fault of diagonal switch in pared with the existing methods,the fault range of the proposed method is extended to double tube fault based on LSPWM,and by the diagnostic logic it is easy to understand without additional hardware circuits.Simulation resultsshow correctness and effectiveness the proposed fault diagnosis method.Keywords :cascaded H-bridge;multilevel inverter;fault diagnosis;open-circuit fault;level-shifted pulse width modulation0㊀引㊀言级联H桥多电平逆变器(cascaded H-bridge multilevel inverter,CHBMLI)因其具有易于模块化㊁高压大容量和谐波失真低等优点,已广泛应用于电气化铁路与城市轨道交通的牵引系统㊁电动汽车㊁光伏并网发电系统㊁高压直流输电㊁交流电机驱动和无功补偿等场合[1-4]㊂由于CHBMLI采用了大量的半导体开关来获得高质量的输出功率,因此它面临的主要困境是开关失效的概率升高[5]㊂根据相关统计和调查,开关故障大约占整个逆变器系统故障的近三分之一[6]㊂开关管的故障通常可以分为开路故障(open-circuit fault,OCF)和短路故障(short-circuit fault,SCF)㊂SCF造成的影响非常迅速,通常由硬件方案解决[7]㊂在OCF情况下,由于固有的开关冗余,CHBMLI可以继续运行,但其输出质量降低㊂然而,这可能使其他健康开关的电压应力增加,并可能导致整个系统损坏㊂所以,OCF诊断速度与准确性对于系统持续可靠运行十分关键[8-9],也直接关系到容错控制策略的选择㊂近些年,OCF故障诊断方法被广泛研究[10-18]㊂现有多电平逆变器的OCF故障诊断方法包括基于模型㊁基于智能算法和基于信号三类方法㊂文献[10]中每个CHB支路都用一个电流传感器和一个电压传感器监测支路的电流和输出电压,将测量的电压与预期的电压进行比较,并根据偏差的大小和电流流向确定开路故障的位置㊂文献[11]基于计算的平均桥臂极电压与误差自适应阈值,将平均桥臂极电压偏差作为故障检测与识别的诊断变量,实现电压源逆变器单㊁多管开路故障诊断㊂文献[12]采用一个电压传感器测量CHB的网侧电压,通过对CHB网侧电压估计值与实测值的比较来定位故障㊂基于此类方法的开关故障诊断,由于开关器件多且非线性的影响导致建模较为困难㊂为了避免建模带来的困难,相关学者采用基于智能算法的故障诊断方法㊂文献[13]通过特征分析选取正常模式和8种故障模式下的7个电压谐波参数作为故障特征向量,构造一个三层神经网络,其中7个特征向量为神经网络的输入层,从而可以在一个调制周期内准确地识别故障位置㊂文献[14]利用d-q变换将三相电压信号转换为两相来减少故障信息的维数,建立一个4层的神经网络进行故障诊断㊂文献[15]提出一种基于小波包变换和支持向量机的故障诊断方法,提取小波包能量作为故障特征向量,并把该故障特征向量作为支持向量机的输入量㊂该类方法虽然能够避免诊断精度对系统模型的依赖性,但是计算量大且不能用于实时的在线诊断㊂为了实现实时的在线诊断,相关学者采用基于信号的故障诊断方法㊂文献[16]介绍了一种CHB 三电平逆变器故障诊断方法,该方法利用输出电压和负载电流对应的波形特征进行故障诊断,解决了H桥中对角开关因故障特征相似难以识别的问题㊂文献[17]中的故障诊断不仅考虑单管故障,也考虑了单个二极管故障以及开关管和对应二极管同时故障的情况㊂文献[18]中将电平数增加至五电平,提出了一种精确识别8个开关管的单管故障诊断方法㊂这类方法与前两类方法相比,实现简单且容易理解,并且不需要额外的硬件电路,具有较高的实用性㊂由此可见,对于CHBMI的故障诊断,基于信号的方法有更大的发展潜力㊂然而当双管同时发生故障,对系统的影响更为严重,但是以上方案均考虑单管OCF,对于双管OCF的诊断仍有很大的局限㊂目前对双管故障的研究主要集中于三相桥式逆变器,虽然文献[18]中的方法可以应用于三相级联逆变器中双管故障诊断,但2个开关管需要在不同相中分布,而在同一相中每个H桥均有一个开关管发生故障的双管故障情况下,该方法便得不到较好的诊断效果㊂为了克服以上方案的不足,本文通过分析双管故障下输出电压电流以及驱动信号的特征,提出一种可以精确识别同相不同H桥双管故障的诊断方法㊂1㊀CHB五电平逆变器的工作原理图1为单相CHB五电平逆变器的整体拓扑结构,其采用电压源型逆变单元(H桥)串联组成以实现高压大功率输出,谐波分量少㊁波形畸变小㊂它包括:2个H桥(H桥1和H桥2)㊁8个带有反并联二极管(D1~D8)的IGBT开关(S1~S8)㊁滤波电容C㊁直流电源U dc㊁LC滤波器和感性负载㊂G1~G8是相应的驱动信号㊂交流输出端顺序连接,即各单元输出电压叠加,进而形成一个总的多电平输出电压㊂实际系统中级联模块的数量N是由设备的工作电021电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀压㊁直流侧电压和制造成本等决定㊂图1㊀电路拓扑结构Fig.1㊀Circuit topology2个H 桥的输出电压分别为v o1和v o2,输出电压为v o ,从图中可以得出输出电压为v o =v o1+v o2㊂(1)控制方法采用电压电流双闭环控制,2个H 桥输出电压和负载电流作为采样变量㊂CHBMLI 常用的调制方法包括载波层叠调制(level-shifted pulse width modulation,LSPWM)和载波移相调制(phase-shifted pulse width modulation,PSPWM),与PSPWM 相比,LSPWM 在高电平与低电平场合都适用,而且具有开关损耗易优化和谐波特性好等优势㊂LSP-WM 包括同向层叠(phase disposition,PD)㊁正负反向层叠(phase opposition disposition,POD)和交替反向层叠(alternate phase opposition disposition,APOD)㊂相比于其他两种方法,PD 的谐波性能最好,因此采用PD-LSPWM 作为调制技术,PD-LSPWM 信号的产生如图2所示,其中v m (t )为正弦调制波信号,c 1(t )~c 4(t )为4个幅值不同的高频三角载波信号㊂基于PD-LSPWM 的输出电压v o 和各个开关S x (x =1~8)之间的关系如表1所示,1和0分别表示开通和关断状态(对驱动信号也适用)㊂图2㊀PD-LSPWM 信号Fig.2㊀Signal of PD-LSPWM表1㊀v o 和S x 的关系Table 1㊀Relationship between v o and S xv oS 1S 2S 3S 4S 5S 6S 7S 82U dc 10011001U dc 10010101001010101-U dc01100101-2U dc11112㊀CHB 五电平逆变器的故障特征分析㊀㊀为了便于分析故障信号的特点,选取CHB 五电平逆变器作为分析和仿真的对象,主要考虑位于同相不同H 桥中双开关同时发生故障的情况㊂单相五电平逆变器共有8个开关,因此上述故障情况总共有16种,如表2所示㊂表2㊀故障情况Table 2㊀Fault condition现定义如下变量:S x oc 表示开关S x (x =1~8)发生故障,故障下2个H 桥输出电压和负载电流分别表示为v o1oc ㊁v o2oc 和i loc ㊂根据调制波和负载电流的方向,带有感性负载的CHBMLI 在正常情况下可以分为4种工作模式,如表3所示,对于其他负载,上述工作模式不再适用㊂特定的开关故障只在一定的工作模式下表现出故障特征,而且H 桥中对角开关在相同的工作模式下表现出故障特征,即S 1㊁S 4㊁S 5㊁S 8和S 2㊁S 3㊁S 6㊁S 7分别在模式1和模式2中表现出故障特征,从而减少检测计算量㊂由于故障情况较多,以S 2oc 和S 8oc 的分析为例㊂在S 2oc 和S 8oc 下,每个H 桥及负载电流输出波形如图3所示㊂对于H 桥1:当G 4=1,G 1=G 2=G 3=0121第9期于晶荣等:一种级联H 桥多电平逆变器故障诊断方法时,0<v o1oc <U dc ,i loc ʈ0;当G 3=1,G 1=G 2=G 4=0时,v o1oc ʈ0,i loc <0,H 桥1中电流流通方向为D 1到S 3㊂对于H 桥2:当G 5=1,G 6=G 7=G 8=0时,v o2oc ʈ0,i loc >0,H 桥2中电流流通方向为D 7到S 5;当G 6=1,G 5=G 7=G 8=0时,v o2oc ʈ-U dc ,i loc >0,H 桥2中电流流通方向为D 6到D 7㊂表3㊀工作模式Table 3㊀Working mode工作模式v m i l 模式1++模式2--模式3+-模式4-+图3㊀S 2oc 和S 8oc 下的输出波形Fig.3㊀Output waveform under S 2oc 和S 8oc其他开关的故障情况分析类似,故障特征表如表4所示,其中i 1loc 和i 2loc 分别表示在诊断H 桥1和H 桥2中的故障开关时所采集的不同时刻的负载电流㊂表4㊀故障特征表Table 4㊀List of fault characteristic故障v o1oc i 1loc v o2oc i 2locG 1G 2G 3G 4G 5G 6G 7G 8S 1oc 和S 5oc 010101/00101/001S 1oc 和S 6oc 011/01/001/0010001S 1oc 和S 7oc10111/00111S 1oc 和S 8oc 1/01/01/01/00011/01/000S 2oc 和S 5oc 1/0101001/01/001/001S 2oc 和S 6oc 1/0101001/01/00001S 2oc 和S 7oc 1/01/001001/01/0011S 2oc 和S 8oc 1/01/01/01001/01/01/01/000S 3oc 和S 5oc 1/01010101/001/001S 3oc 和S 6oc 1/01010101/00001S 3oc 和S 7oc 1/01010101/0011S 3oc 和S 8oc 011/010101/01/01/000S 4oc 和S 5oc 1/01011/01/00001/001S 4oc 和S 6oc 1/011/01/01/01/0000001S 4oc 和S 7oc 1/01011/01/00011S 4oc 和S 8oc 1/01/01/01/0101/01/003㊀基于信号特征的故障诊断方法根据以上分析及故障表提出如图4所示的故障诊断方法,该故障诊断方法以H 桥电压㊁负载电流以及相应驱动信号为诊断变量,主要通过对双管故障下H 桥中对角开关进行诊断达到不同H 桥下任意双管故障的诊断㊂图5中变量定义如下:v e1和v e2分别代表2个H 桥实际电压和参考电压之间的差值,正常情况下通常在一个范围内波动,v e1在δvo1l 至δvo1h 范围内变化,v e2在δvo2l 至δvo2h 范围内变化;为了提高可靠性,引入w 1和w 2两个变量,分别表示2个H 桥对应的误差变化百分比,取为2.5%和3%;T s 为图3(b)中过渡时段的起始时间,与开关频率和滤波器参数等有关;f 1㊁f 2和f 3为相应电压电流的参考阈值㊂图4㊀诊断过程Fig.4㊀Diagnostic process221电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图5㊀相关变量的定义Fig.5㊀Definition of related variables诊断方法具体过程:假定同相不同H桥下的2个开关同时发生故障,分别检测2个H桥电压,通过实际电压与正常参考电压的比较判定2个H桥是否同时发生故障,当发生故障后在相应的工作模式下采集所需故障信号,进而通过诊断逻辑确定H 桥中故障开关的具体位置㊂变量A㊁B和F分别用来诊断开关S1与S4㊁S2与S3以及S6与S7下的故障㊂对于S5和S8的识别还需进行信号采集时刻的判断,因此在图5中单独标出㊂除了采集驱动信号,对于开关S1和S4只需要采集H桥1的输出电压,而其余对角开关的判定均需采集相应H桥电压和负载电流㊂4㊀仿真验证4.1㊀仿真分析基于MATLAB/Simulink仿真平台对故障诊断方法进行验证,仿真参数如表5所示㊂给定故障规定如下:对于2个故障开关均在正半周的开关以及正负半周各有一个开关发生故障在正半周期给定故障,对于2个故障开关均在负半周的开关发生故障,在负半周期给定故障㊂以S1oc和S6oc为例进行验证,仿真结果如图6所示㊂表5㊀仿真参数Table5㊀Simulation parameters㊀㊀㊀参数数值直流电压U dc/V40基频f o(=1/T o)/Hz50载波频率f c/kHz3滤波器电感L f9.5mH,0.35Ω滤波器电容C f10mF,0.03Ω直流侧电容C/mF20调制指数M0.9负载阻抗Z L/Ω8电压环比例调节增益K vp0.1电压环积分调节增益K vi 4.5电流环比例调节增益K ip0.01电流环积分调节增益K ii0.01图6㊀S1oc和S6oc下的仿真结果Fig.6㊀Simulation result under S1oc and S6oc在t1时刻对开关S1和S6给定故障,在t2时刻检测到开关S1故障,在t3时刻检测到开关S6故障,在t3时刻S1和S6双管故障均得到有效诊断㊂全部开关故障的诊断时间如表6所示,由表6可以看出,当2个故障开关都在同一个半周内,诊断时间均在321第9期于晶荣等:一种级联H桥多电平逆变器故障诊断方法0.12ms以内,而对于在正负半周内都有分布的故障开关,诊断时间相对要长,主要是因为发生故障后2个开关的故障特征并不会在同一个半周内表现出来㊂整体而言,仿真达到预期效果㊂表6㊀全部故障的诊断时间Table6㊀Diagnosis time of all faults4.2㊀对比分析对于基于LSPWM技术的CHBMI,与文献[16-18]相比,所提方法考虑了2个位于同相不同H桥的开关管同时发生故障的情况,当发生故障的2个开关管位于同一个半周时的诊断时间和文献[18]基本一致,对于双管故障能够进行准确诊断㊂主要不足是对于2个不在同一个半周内的开关管(即S1和S6㊁S1和S7㊁S2和S5㊁S2和S8㊁S3和S5㊁S3和S8㊁S4和S6㊁S4和S7)发生故障后诊断时间相对较长,而且开关管对应的所有二极管均正常工作㊂与现有方法[19]相比,减少了计算量且可以实现在线诊断㊂5㊀结㊀论针对CHBMI中同相不同H桥双管同时发生故障的问题,本文分析了双管故障下各故障信号的特征,提出了一种双管故障诊断方法㊂该方法能够利用以H桥电压㊁负载电流和驱动信号为采样变量的信号处理方法实现有效诊断,与现有方法相比,该方法扩展了双管故障下的拓扑为级联逆变器,提高了级联逆变器双管故障下的电平数目㊂此外,提高双管故障检测时间㊁拓展到更高电平等级和应用到其他调制技术将是未来的研究重点㊂参考文献:[1]㊀张琦,李江江,孙向东,等.单相级联七电平逆变器拓扑结构及其控制方法[J].电工技术学报,2019,34(18):3843.ZHANG Qi,LI Jiangjiang,SUN Xiangdong,et al.Topology structure and control method of single-phase cascaded seven-level inverter[J].Transactions of China Electrotechnical Society, 2019,34(18):3843.[2]㊀MHIESAN H,WEI Y Q,SIWAKOTI Y P,et al.A fault-toleranthybrid cascaded H-bridge multilevel inverter[J].IEEE Transac-tions on Power Electronics,2020,35(12):12702. [3]㊀YU Jingrong,ZHANG Gang,PENG Mingkai,et al.Power-matc-hing based SOC balancing method for cascaded H-bridge multilevel inverter[J].CPSS Transactions on Power Electronics and Applica-tions,2020,5(4):352.[4]㊀陈石,张兴敢.基于小波包能量熵和随机森林的级联H桥多电平逆变器故障诊断[J].南京大学学报,2020,56(2):284.CHEN Shi,ZHANG Xinggan.Fault diagnosis of cascaded H-bridge multilevel inverter based on wavelet packet energy entropy421电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀and random forest[J].Journal of Nanjing University,2020,56(2):284.[5]㊀彭丽维,张彼德,孔令瑜,等.级联H桥七电平逆变器的边际谱与DELM故障诊断[J].电力电子技术,2020,54(1):92.PENG Liwei,ZHANG Bide,KONG Lingyu,et al.Marginal spec-trum and DELM fault diagnosis of cascaded H-bridge seven-level inverter[J].Power Electronics,2020,54(1):92. [6]㊀CHOI U M,BLAABJERG F,LEE K B.Study and handlingmethods of power IGBT module failures in power electronic con-verter systems[J].IEEE Transactions on Power Electronics, 2015,30(5):2517.[7]㊀WANG Zhiqiang,SHI Xiaojie,TOLBERT L M,et al.A d i/d tfeedback-based active gate driver for smart switching and fast over-current protection of IGBT modules[J].IEEE Transactions on Power Electronics,2014,29(7):3720.[8]㊀ANAND A,VINAYAK A,RAJ N,et al.A generalized switchfault diagnosis for cascaded H-bridge multilevel inverters using mean voltage prediction[J].IEEE Transactions on Industry Appli-cations,2020,56(2):1563.[9]㊀周晨阳,沈艳霞.基于小波分析的二重三相电压型逆变器开路故障诊[J].电机与控制学报,2020,24(9):65.ZHOU Chenyang,SHEN Yanxia.Open circuit fault diagnosis of dual three-phase voltage inverter based on wavelet analysis[J].E-lectric Machines and Control,2020,24(9):65. [10]㊀LAMB J,MIRAFZAL B.Open-circuit IGBT fault detection andlocation isolation for cascaded multilevel converters[J].IEEETransactions on Industrial Electronics,2017,64(6):4846.[11]㊀LI Zhan,MA Hao,BAI Zhihong,et al.Fast transistor open-cir-cuit faults diagnosis in grid-tied three-phase VSIs based on aver-age bridge arm pole-to-pole voltages and error-adaptive thresholds[J].IEEE Transactions on Power Electronics,2018,33(9):8040.[12]㊀GORLA N B Y,KOLLURI S,CHAI M,et al.Fault detectionand localization scheme for cascaded H-bridge stage of a three-stage solid-state transformer[J].IEEE Transactions on Power E-lectronics,2021,36(8):8713.[13]㊀HAN Pengcheng,HE Xiaoqiong,REN Haijun,et al.Fault diag-nosis and system reconfiguration strategy of a single-phase three-level neutral-point-clamped cascaded inverter[J].IEEE Trans-actions on Industry Applications,2019,55(4):3863. [14]㊀王丽华,方旭东,韩素敏,等.基于BP神经网络的三电平逆变器开路故障诊断研究[J].机床与液压,2020,48(9):187.WANG Lihua,FANG Xudong,HAN Sumin,et al.Research onopen circuit fault diagnosis of three-level inverter based on BPneural network[J].Machine Tool&Hydraulics,2020,48(9):187.[15]㊀时维国,吴宁.基于小波包变换和SVM的三电平逆变器故障诊断[J].电机与控制应用,2021,48(2):91.SHI Weiguo,WU Ning.Fault diagnosis of three-level inverterbased on wavelet packet transform and SVM[J].Electric Ma-chines and Control Application,2021,48(2):91. [16]㊀KUMAR M.Open circuit fault detection and switch identificationfor LS-PWM H-bridge inverter[J].IEEE Transactions on Cir-cuits and Systems II:Express Briefs,2021,68(4):1363.[17]㊀KUMAR M.Time-domain characterization and detection of open-circuit faults for the H-bridge power cell[J].IEEE Transactionson Power Electronics,2022,37(2):2152.[18]㊀ZHANG Gang,YU Jingrong.Open-circuit fault diagnosis for cas-caded H-bridge multilevel inverter based on LS-PWM technique[J].CPSS Transactions on Power Electronics and Applications,2021,6(3):201.[19]㊀杨俊杰.基于多特征融合CNN的级联H桥七电平逆变器故障诊断[D].成都:西华大学,2021.(编辑:刘琳琳)521第9期于晶荣等:一种级联H桥多电平逆变器故障诊断方法。

铁磁谐振在调度端的典型特征(修改20140814-1)

铁磁谐振在调度端的典型特征(修改20140814-1)

铁磁谐振在调度端的典型特征石文江李春平王睿李润蔡健(国网大连供电公司116011)摘要:小电流接地系统的铁磁谐振事故在调度端的典型特征有:3U0越限报警信号的“动作/复归”多次成对出现、母线电压呈现“1相电压略升高,2相降低接近0或1.2倍线电压(遥测满码溢出)”的特点、故障母线上的所有保护装置告警信号的“动作/复归”多次成对出现、高并低分运行方式下低压故障母线的谐振穿越导致另一低压母线伴随出现电压异常、消弧线圈频繁动作信号,这些特征综合起来可明显区别于单相接地、单相断线等事故,通过标准化的鉴别流程,铁磁谐振事故的识别时间应不超过10分钟。

关键词: 铁磁谐振综合判据小电流接地系统3U0越限调控中心0引言虽然铁磁谐振在国内外已有很多研究成果,在电网运行中也采取了许多消谐措施,但小电流接地系统的铁磁谐振事故却依然一而再地发生,多数的情况是调控员误将铁磁谐振当成接地或断线故障进行排查而延长了处理时间,最终导致一次设备损坏事故的发生。

H.A Peterson[1]通过大量实验绘制了谐振区域图,尤其是给出了系统每相对地容抗X C0与励磁感抗X m的谐振比值区间为0.01< X C0/X m<2.8,由于当前电缆线路和GIS 设备的增多,系统对地容抗增大,并且GIS 设备操作时所产生的快速瞬态过电压(VFTO)易造成电磁式电压互感器饱和,都使铁磁谐振发生的几率增加;齐郑[2]进行了基于零序电压和三相电压综合对比的铁磁谐振辨识技术;张业[2]对铁磁谐振进行了仿真研究,讨论了铁磁谐振跳跃及混沌共振现象;陈宏[3]和张向东[4]列表对比了铁磁谐振与其它类型故障的电压幅值差别;文献[5-10]也分别研究了铁磁谐振过电压情况并给出了若干防治铁磁谐振的措施,但这些文献均没有涉及基于调度自动化主站系统的铁磁谐振事故的鉴别方法。

目前在国网“大运行”体系下,大量无人值班变电站在调控中心进行集中监盘,调控员对各类事故的正确快速地鉴别无疑具有重要意义。

交通流

交通流

Network impacts of a road capacity reduction:Empirical analysisand model predictionsDavid Watling a ,⇑,David Milne a ,Stephen Clark baInstitute for Transport Studies,University of Leeds,Woodhouse Lane,Leeds LS29JT,UK b Leeds City Council,Leonardo Building,2Rossington Street,Leeds LS28HD,UKa r t i c l e i n f o Article history:Received 24May 2010Received in revised form 15July 2011Accepted 7September 2011Keywords:Traffic assignment Network models Equilibrium Route choice Day-to-day variabilitya b s t r a c tIn spite of their widespread use in policy design and evaluation,relatively little evidencehas been reported on how well traffic equilibrium models predict real network impacts.Here we present what we believe to be the first paper that together analyses the explicitimpacts on observed route choice of an actual network intervention and compares thiswith the before-and-after predictions of a network equilibrium model.The analysis isbased on the findings of an empirical study of the travel time and route choice impactsof a road capacity reduction.Time-stamped,partial licence plates were recorded across aseries of locations,over a period of days both with and without the capacity reduction,and the data were ‘matched’between locations using special-purpose statistical methods.Hypothesis tests were used to identify statistically significant changes in travel times androute choice,between the periods of days with and without the capacity reduction.A trafficnetwork equilibrium model was then independently applied to the same scenarios,and itspredictions compared with the empirical findings.From a comparison of route choice pat-terns,a particularly influential spatial effect was revealed of the parameter specifying therelative values of distance and travel time assumed in the generalised cost equations.When this parameter was ‘fitted’to the data without the capacity reduction,the networkmodel broadly predicted the route choice impacts of the capacity reduction,but with othervalues it was seen to perform poorly.The paper concludes by discussing the wider practicaland research implications of the study’s findings.Ó2011Elsevier Ltd.All rights reserved.1.IntroductionIt is well known that altering the localised characteristics of a road network,such as a planned change in road capacity,will tend to have both direct and indirect effects.The direct effects are imparted on the road itself,in terms of how it can deal with a given demand flow entering the link,with an impact on travel times to traverse the link at a given demand flow level.The indirect effects arise due to drivers changing their travel decisions,such as choice of route,in response to the altered travel times.There are many practical circumstances in which it is desirable to forecast these direct and indirect impacts in the context of a systematic change in road capacity.For example,in the case of proposed road widening or junction improvements,there is typically a need to justify econom-ically the required investment in terms of the benefits that will likely accrue.There are also several examples in which it is relevant to examine the impacts of road capacity reduction .For example,if one proposes to reallocate road space between alternative modes,such as increased bus and cycle lane provision or a pedestrianisation scheme,then typically a range of alternative designs exist which may differ in their ability to accommodate efficiently the new traffic and routing patterns.0965-8564/$-see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.tra.2011.09.010⇑Corresponding author.Tel.:+441133436612;fax:+441133435334.E-mail address:d.p.watling@ (D.Watling).168 D.Watling et al./Transportation Research Part A46(2012)167–189Through mathematical modelling,the alternative designs may be tested in a simulated environment and the most efficient selected for implementation.Even after a particular design is selected,mathematical models may be used to adjust signal timings to optimise the use of the transport system.Road capacity may also be affected periodically by maintenance to essential services(e.g.water,electricity)or to the road itself,and often this can lead to restricted access over a period of days and weeks.In such cases,planning authorities may use modelling to devise suitable diversionary advice for drivers,and to plan any temporary changes to traffic signals or priorities.Berdica(2002)and Taylor et al.(2006)suggest more of a pro-ac-tive approach,proposing that models should be used to test networks for potential vulnerability,before any reduction mate-rialises,identifying links which if reduced in capacity over an extended period1would have a substantial impact on system performance.There are therefore practical requirements for a suitable network model of travel time and route choice impacts of capac-ity changes.The dominant method that has emerged for this purpose over the last decades is clearly the network equilibrium approach,as proposed by Beckmann et al.(1956)and developed in several directions since.The basis of using this approach is the proposition of what are believed to be‘rational’models of behaviour and other system components(e.g.link perfor-mance functions),with site-specific data used to tailor such models to particular case studies.Cross-sectional forecasts of network performance at specific road capacity states may then be made,such that at the time of any‘snapshot’forecast, drivers’route choices are in some kind of individually-optimum state.In this state,drivers cannot improve their route selec-tion by a unilateral change of route,at the snapshot travel time levels.The accepted practice is to‘validate’such models on a case-by-case basis,by ensuring that the model—when supplied with a particular set of parameters,input network data and input origin–destination demand data—reproduces current mea-sured mean link trafficflows and mean journey times,on a sample of links,to some degree of accuracy(see for example,the practical guidelines in TMIP(1997)and Highways Agency(2002)).This kind of aggregate level,cross-sectional validation to existing conditions persists across a range of network modelling paradigms,ranging from static and dynamic equilibrium (Florian and Nguyen,1976;Leonard and Tough,1979;Stephenson and Teply,1984;Matzoros et al.,1987;Janson et al., 1986;Janson,1991)to micro-simulation approaches(Laird et al.,1999;Ben-Akiva et al.,2000;Keenan,2005).While such an approach is plausible,it leaves many questions unanswered,and we would particularly highlight two: 1.The process of calibration and validation of a network equilibrium model may typically occur in a cycle.That is to say,having initially calibrated a model using the base data sources,if the subsequent validation reveals substantial discrep-ancies in some part of the network,it is then natural to adjust the model parameters(including perhaps even the OD matrix elements)until the model outputs better reflect the validation data.2In this process,then,we allow the adjustment of potentially a large number of network parameters and input data in order to replicate the validation data,yet these data themselves are highly aggregate,existing only at the link level.To be clear here,we are talking about a level of coarseness even greater than that in aggregate choice models,since we cannot even infer from link-level data the aggregate shares on alternative routes or OD movements.The question that arises is then:how many different combinations of parameters and input data values might lead to a similar link-level validation,and even if we knew the answer to this question,how might we choose between these alternative combinations?In practice,this issue is typically neglected,meaning that the‘valida-tion’is a rather weak test of the model.2.Since the data are cross-sectional in time(i.e.the aim is to reproduce current base conditions in equilibrium),then in spiteof the large efforts required in data collection,no empirical evidence is routinely collected regarding the model’s main purpose,namely its ability to predict changes in behaviour and network performance under changes to the network/ demand.This issue is exacerbated by the aggregation concerns in point1:the‘ambiguity’in choosing appropriate param-eter values to satisfy the aggregate,link-level,base validation strengthens the need to independently verify that,with the selected parameter values,the model responds reliably to changes.Although such problems–offitting equilibrium models to cross-sectional data–have long been recognised by practitioners and academics(see,e.g.,Goodwin,1998), the approach described above remains the state-of-practice.Having identified these two problems,how might we go about addressing them?One approach to thefirst problem would be to return to the underlying formulation of the network model,and instead require a model definition that permits analysis by statistical inference techniques(see for example,Nakayama et al.,2009).In this way,we may potentially exploit more information in the variability of the link-level data,with well-defined notions(such as maximum likelihood)allowing a systematic basis for selection between alternative parameter value combinations.However,this approach is still using rather limited data and it is natural not just to question the model but also the data that we use to calibrate and validate it.Yet this is not altogether straightforward to resolve.As Mahmassani and Jou(2000) remarked:‘A major difficulty...is obtaining observations of actual trip-maker behaviour,at the desired level of richness, simultaneously with measurements of prevailing conditions’.For this reason,several authors have turned to simulated gaming environments and/or stated preference techniques to elicit information on drivers’route choice behaviour(e.g. 1Clearly,more sporadic and less predictable reductions in capacity may also occur,such as in the case of breakdowns and accidents,and environmental factors such as severe weather,floods or landslides(see for example,Iida,1999),but the responses to such cases are outside the scope of the present paper. 2Some authors have suggested more systematic,bi-level type optimization processes for thisfitting process(e.g.Xu et al.,2004),but this has no material effect on the essential points above.D.Watling et al./Transportation Research Part A46(2012)167–189169 Mahmassani and Herman,1990;Iida et al.,1992;Khattak et al.,1993;Vaughn et al.,1995;Wardman et al.,1997;Jou,2001; Chen et al.,2001).This provides potentially rich information for calibrating complex behavioural models,but has the obvious limitation that it is based on imagined rather than real route choice situations.Aside from its common focus on hypothetical decision situations,this latter body of work also signifies a subtle change of emphasis in the treatment of the overall network calibration problem.Rather than viewing the network equilibrium calibra-tion process as a whole,the focus is on particular components of the model;in the cases above,the focus is on that compo-nent concerned with how drivers make route decisions.If we are prepared to make such a component-wise analysis,then certainly there exists abundant empirical evidence in the literature,with a history across a number of decades of research into issues such as the factors affecting drivers’route choice(e.g.Wachs,1967;Huchingson et al.,1977;Abu-Eisheh and Mannering,1987;Duffell and Kalombaris,1988;Antonisse et al.,1989;Bekhor et al.,2002;Liu et al.,2004),the nature of travel time variability(e.g.Smeed and Jeffcoate,1971;Montgomery and May,1987;May et al.,1989;McLeod et al., 1993),and the factors affecting trafficflow variability(Bonsall et al.,1984;Huff and Hanson,1986;Ribeiro,1994;Rakha and Van Aerde,1995;Fox et al.,1998).While these works provide useful evidence for the network equilibrium calibration problem,they do not provide a frame-work in which we can judge the overall‘fit’of a particular network model in the light of uncertainty,ambient variation and systematic changes in network attributes,be they related to the OD demand,the route choice process,travel times or the network data.Moreover,such data does nothing to address the second point made above,namely the question of how to validate the model forecasts under systematic changes to its inputs.The studies of Mannering et al.(1994)and Emmerink et al.(1996)are distinctive in this context in that they address some of the empirical concerns expressed in the context of travel information impacts,but their work stops at the stage of the empirical analysis,without a link being made to net-work prediction models.The focus of the present paper therefore is both to present thefindings of an empirical study and to link this empirical evidence to network forecasting models.More recently,Zhu et al.(2010)analysed several sources of data for evidence of the traffic and behavioural impacts of the I-35W bridge collapse in Minneapolis.Most pertinent to the present paper is their location-specific analysis of linkflows at 24locations;by computing the root mean square difference inflows between successive weeks,and comparing the trend for 2006with that for2007(the latter with the bridge collapse),they observed an apparent transient impact of the bridge col-lapse.They also showed there was no statistically-significant evidence of a difference in the pattern offlows in the period September–November2007(a period starting6weeks after the bridge collapse),when compared with the corresponding period in2006.They suggested that this was indicative of the length of a‘re-equilibration process’in a conceptual sense, though did not explicitly compare their empiricalfindings with those of a network equilibrium model.The structure of the remainder of the paper is as follows.In Section2we describe the process of selecting the real-life problem to analyse,together with the details and rationale behind the survey design.Following this,Section3describes the statistical techniques used to extract information on travel times and routing patterns from the survey data.Statistical inference is then considered in Section4,with the aim of detecting statistically significant explanatory factors.In Section5 comparisons are made between the observed network data and those predicted by a network equilibrium model.Finally,in Section6the conclusions of the study are highlighted,and recommendations made for both practice and future research.2.Experimental designThe ultimate objective of the study was to compare actual data with the output of a traffic network equilibrium model, specifically in terms of how well the equilibrium model was able to correctly forecast the impact of a systematic change ap-plied to the network.While a wealth of surveillance data on linkflows and travel times is routinely collected by many local and national agencies,we did not believe that such data would be sufficiently informative for our purposes.The reason is that while such data can often be disaggregated down to small time step resolutions,the data remains aggregate in terms of what it informs about driver response,since it does not provide the opportunity to explicitly trace vehicles(even in aggre-gate form)across more than one location.This has the effect that observed differences in linkflows might be attributed to many potential causes:it is especially difficult to separate out,say,ambient daily variation in the trip demand matrix from systematic changes in route choice,since both may give rise to similar impacts on observed linkflow patterns across re-corded sites.While methods do exist for reconstructing OD and network route patterns from observed link data(e.g.Yang et al.,1994),these are typically based on the premise of a valid network equilibrium model:in this case then,the data would not be able to give independent information on the validity of the network equilibrium approach.For these reasons it was decided to design and implement a purpose-built survey.However,it would not be efficient to extensively monitor a network in order to wait for something to happen,and therefore we required advance notification of some planned intervention.For this reason we chose to study the impact of urban maintenance work affecting the roads,which UK local government authorities organise on an annual basis as part of their‘Local Transport Plan’.The city council of York,a historic city in the north of England,agreed to inform us of their plans and to assist in the subsequent data collection exercise.Based on the interventions planned by York CC,the list of candidate studies was narrowed by considering factors such as its propensity to induce significant re-routing and its impact on the peak periods.Effectively the motivation here was to identify interventions that were likely to have a large impact on delays,since route choice impacts would then likely be more significant and more easily distinguished from ambient variability.This was notably at odds with the objectives of York CC,170 D.Watling et al./Transportation Research Part A46(2012)167–189in that they wished to minimise disruption,and so where possible York CC planned interventions to take place at times of day and of the year where impacts were minimised;therefore our own requirement greatly reduced the candidate set of studies to monitor.A further consideration in study selection was its timing in the year for scheduling before/after surveys so to avoid confounding effects of known significant‘seasonal’demand changes,e.g.the impact of the change between school semesters and holidays.A further consideration was York’s role as a major tourist attraction,which is also known to have a seasonal trend.However,the impact on car traffic is relatively small due to the strong promotion of public trans-port and restrictions on car travel and parking in the historic centre.We felt that we further mitigated such impacts by sub-sequently choosing to survey in the morning peak,at a time before most tourist attractions are open.Aside from the question of which intervention to survey was the issue of what data to collect.Within the resources of the project,we considered several options.We rejected stated preference survey methods as,although they provide a link to personal/socio-economic drivers,we wanted to compare actual behaviour with a network model;if the stated preference data conflicted with the network model,it would not be clear which we should question most.For revealed preference data, options considered included(i)self-completion diaries(Mahmassani and Jou,2000),(ii)automatic tracking through GPS(Jan et al.,2000;Quiroga et al.,2000;Taylor et al.,2000),and(iii)licence plate surveys(Schaefer,1988).Regarding self-comple-tion surveys,from our own interview experiments with self-completion questionnaires it was evident that travellersfind it relatively difficult to recall and describe complex choice options such as a route through an urban network,giving the po-tential for significant errors to be introduced.The automatic tracking option was believed to be the most attractive in this respect,in its potential to accurately map a given individual’s journey,but the negative side would be the potential sample size,as we would need to purchase/hire and distribute the devices;even with a large budget,it is not straightforward to identify in advance the target users,nor to guarantee their cooperation.Licence plate surveys,it was believed,offered the potential for compromise between sample size and data resolution: while we could not track routes to the same resolution as GPS,by judicious location of surveyors we had the opportunity to track vehicles across more than one location,thus providing route-like information.With time-stamped licence plates, the matched data would also provide journey time information.The negative side of this approach is the well-known poten-tial for significant recording errors if large sample rates are required.Our aim was to avoid this by recording only partial licence plates,and employing statistical methods to remove the impact of‘spurious matches’,i.e.where two different vehi-cles with the same partial licence plate occur at different locations.Moreover,extensive simulation experiments(Watling,1994)had previously shown that these latter statistical methods were effective in recovering the underlying movements and travel times,even if only a relatively small part of the licence plate were recorded,in spite of giving a large potential for spurious matching.We believed that such an approach reduced the opportunity for recorder error to such a level to suggest that a100%sample rate of vehicles passing may be feasible.This was tested in a pilot study conducted by the project team,with dictaphones used to record a100%sample of time-stamped, partial licence plates.Independent,duplicate observers were employed at the same location to compare error rates;the same study was also conducted with full licence plates.The study indicated that100%surveys with dictaphones would be feasible in moderate trafficflow,but only if partial licence plate data were used in order to control observation errors; for higherflow rates or to obtain full number plate data,video surveys should be considered.Other important practical les-sons learned from the pilot included the need for clarity in terms of vehicle types to survey(e.g.whether to include motor-cycles and taxis),and of the phonetic alphabet used by surveyors to avoid transcription ambiguities.Based on the twin considerations above of planned interventions and survey approach,several candidate studies were identified.For a candidate study,detailed design issues involved identifying:likely affected movements and alternative routes(using local knowledge of York CC,together with an existing network model of the city),in order to determine the number and location of survey sites;feasible viewpoints,based on site visits;the timing of surveys,e.g.visibility issues in the dark,winter evening peak period;the peak duration from automatic trafficflow data;and specific survey days,in view of public/school holidays.Our budget led us to survey the majority of licence plate sites manually(partial plates by audio-tape or,in lowflows,pen and paper),with video surveys limited to a small number of high-flow sites.From this combination of techniques,100%sampling rate was feasible at each site.Surveys took place in the morning peak due both to visibility considerations and to minimise conflicts with tourist/special event traffic.From automatic traffic count data it was decided to survey the period7:45–9:15as the main morning peak period.This design process led to the identification of two studies:2.1.Lendal Bridge study(Fig.1)Lendal Bridge,a critical part of York’s inner ring road,was scheduled to be closed for maintenance from September2000 for a duration of several weeks.To avoid school holidays,the‘before’surveys were scheduled for June and early September.It was decided to focus on investigating a significant southwest-to-northeast movement of traffic,the river providing a natural barrier which suggested surveying the six river crossing points(C,J,H,K,L,M in Fig.1).In total,13locations were identified for survey,in an attempt to capture traffic on both sides of the river as well as a crossing.2.2.Fishergate study(Fig.2)The partial closure(capacity reduction)of the street known as Fishergate,again part of York’s inner ring road,was scheduled for July2001to allow repairs to a collapsed sewer.Survey locations were chosen in order to intercept clockwiseFig.1.Intervention and survey locations for Lendal Bridge study.around the inner ring road,this being the direction of the partial closure.A particular aim wasFulford Road(site E in Fig.2),the main radial affected,with F and K monitoring local diversion I,J to capture wider-area diversion.studies,the plan was to survey the selected locations in the morning peak over a period of approximately covering the three periods before,during and after the intervention,with the days selected so holidays or special events.Fig.2.Intervention and survey locations for Fishergate study.In the Lendal Bridge study,while the‘before’surveys proceeded as planned,the bridge’s actualfirst day of closure on Sep-tember11th2000also marked the beginning of the UK fuel protests(BBC,2000a;Lyons and Chaterjee,2002).Trafficflows were considerably affected by the scarcity of fuel,with congestion extremely low in thefirst week of closure,to the extent that any changes could not be attributed to the bridge closure;neither had our design anticipated how to survey the impacts of the fuel shortages.We thus re-arranged our surveys to monitor more closely the planned re-opening of the bridge.Unfor-tunately these surveys were hampered by a second unanticipated event,namely the wettest autumn in the UK for270years and the highest level offlooding in York since records began(BBC,2000b).Theflooding closed much of the centre of York to road traffic,including our study area,as the roads were impassable,and therefore we abandoned the planned‘after’surveys. As a result of these events,the useable data we had(not affected by the fuel protests orflooding)consisted offive‘before’days and one‘during’day.In the Fishergate study,fortunately no extreme events occurred,allowing six‘before’and seven‘during’days to be sur-veyed,together with one additional day in the‘during’period when the works were temporarily removed.However,the works over-ran into the long summer school holidays,when it is well-known that there is a substantial seasonal effect of much lowerflows and congestion levels.We did not believe it possible to meaningfully isolate the impact of the link fully re-opening while controlling for such an effect,and so our plans for‘after re-opening’surveys were abandoned.3.Estimation of vehicle movements and travel timesThe data resulting from the surveys described in Section2is in the form of(for each day and each study)a set of time-stamped,partial licence plates,observed at a number of locations across the network.Since the data include only partial plates,they cannot simply be matched across observation points to yield reliable estimates of vehicle movements,since there is ambiguity in whether the same partial plate observed at different locations was truly caused by the same vehicle. Indeed,since the observed system is‘open’—in the sense that not all points of entry,exit,generation and attraction are mon-itored—the question is not just which of several potential matches to accept,but also whether there is any match at all.That is to say,an apparent match between data at two observation points could be caused by two separate vehicles that passed no other observation point.Thefirst stage of analysis therefore applied a series of specially-designed statistical techniques to reconstruct the vehicle movements and point-to-point travel time distributions from the observed data,allowing for all such ambiguities in the data.Although the detailed derivations of each method are not given here,since they may be found in the references provided,it is necessary to understand some of the characteristics of each method in order to interpret the results subsequently provided.Furthermore,since some of the basic techniques required modification relative to the published descriptions,then in order to explain these adaptations it is necessary to understand some of the theoretical basis.3.1.Graphical method for estimating point-to-point travel time distributionsThe preliminary technique applied to each data set was the graphical method described in Watling and Maher(1988).This method is derived for analysing partial registration plate data for unidirectional movement between a pair of observation stations(referred to as an‘origin’and a‘destination’).Thus in the data study here,it must be independently applied to given pairs of observation stations,without regard for the interdependencies between observation station pairs.On the other hand, it makes no assumption that the system is‘closed’;there may be vehicles that pass the origin that do not pass the destina-tion,and vice versa.While limited in considering only two-point surveys,the attraction of the graphical technique is that it is a non-parametric method,with no assumptions made about the arrival time distributions at the observation points(they may be non-uniform in particular),and no assumptions made about the journey time probability density.It is therefore very suitable as afirst means of investigative analysis for such data.The method begins by forming all pairs of possible matches in the data,of which some will be genuine matches(the pair of observations were due to a single vehicle)and the remainder spurious matches.Thus, for example,if there are three origin observations and two destination observations of a particular partial registration num-ber,then six possible matches may be formed,of which clearly no more than two can be genuine(and possibly only one or zero are genuine).A scatter plot may then be drawn for each possible match of the observation time at the origin versus that at the destination.The characteristic pattern of such a plot is as that shown in Fig.4a,with a dense‘line’of points(which will primarily be the genuine matches)superimposed upon a scatter of points over the whole region(which will primarily be the spurious matches).If we were to assume uniform arrival rates at the observation stations,then the spurious matches would be uniformly distributed over this plot;however,we shall avoid making such a restrictive assumption.The method begins by making a coarse estimate of the total number of genuine matches across the whole of this plot.As part of this analysis we then assume knowledge of,for any randomly selected vehicle,the probabilities:h k¼Prðvehicle is of the k th type of partial registration plateÞðk¼1;2;...;mÞwhereX m k¼1h k¼1172 D.Watling et al./Transportation Research Part A46(2012)167–189。

永磁同步电机传感器故障诊断及容错控制

永磁同步电机传感器故障诊断及容错控制
障被检测的情况下ꎬ针对电流传感器ꎬ提出了一种 V / f 控制算法以实现故障情况下系统的平滑切
换ꎻ针对位置 / 速度传感器ꎬ提出一种反电动势直接计算法以实现故障情况下系统的平滑切换ꎬ实验
结果表明:所提出的算法能够在线检测故障并实现故障前后系统平滑切换与容错控制ꎮ
关键词:永磁同步电机ꎻ位置 / 速度传感器ꎻ电流传感器ꎻ故障诊断ꎻ容错控制ꎻ滑模观测器ꎻ反电动势
Keywords:permanent magnet synchronous motorꎻ position / speed sensorꎻ current sensorꎻfault diagnosisꎻ
fault ̄tolerant controlꎻsliding mode observerꎻcounter electromotive force direct calculationꎻsmoothly switch
通信作者:杭翠翠
电 机 与 控 制 学 报 第 24 卷
强鲁棒性、良好的动态及稳定性能均有较好的体现ꎬ
speed. Faults were detected by the residuals between the predicted and real signals. Aiming at current
sensor fault which was detectedꎬa V / f based control strategy was proposed to realize fault tolerantꎬand ai ̄
( 武汉大学 电气工程学院ꎬ武汉 430072)
摘 要:针对三相永磁同步电机驱动系统中的位置 / 速度传感器和电流传感器开路故障问题ꎬ提出
基于滑模观测器的故障检测与系统容错方法ꎮ 通过建立系统的滑模观测器模型ꎬ获得系统输出电

电力电子术语中英文对照

电力电子术语中英文对照

电⼒电⼦术语中英⽂对照电⼒电⼦技术术语Absorber Circuit 吸收电路AC/ACFrequency Converter 交交变频电路AC power control交流电⼒控制AC Power Controller交流调功电路AC Power Electronic Switch交流电⼒电⼦开关AC Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter降压变换器Commutation 换流Conduction Angle 导通⾓Constant Voltage Constant Frequency--CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路CUK Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式Displacement Factor 位移因数Distortion Power 畸变功率Double End Converter 双端电路Driving Circuit 驱动电路Electrical Isolation 电⽓隔离Fast Acting Fuse 快速熔断器Fast Recovery Diode 快恢复⼆极管Fast Recovery Epitaxial Diodes 快恢复外延⼆极管Fast Switching Thyristor 快速晶闸管Field Controlled Thyristor 场控晶闸管Flyback Converter 反激电流Forced Commutation 强迫换流Forward Converter 正激电路Frequency Converter 变频器Full Bridge Converter 全桥电路Full Bridge Rectifier 全桥整流电路Full Wave Rectifier 全波整流电路Fundamental Factor 基波因数Gate Turn-Off Thyristor--GTO 可关断晶闸管General Purpose Diode 普通⼆极管Giant Transistor--GTR 电⼒晶体管Half Bridge Converter 半桥电路Hard Switching 硬开关High Voltage IC ⾼压集成电路Hysteresis Comparison 带环⽐较⽅式Indirect Current Control 间接电流控制Indirect DC-DC Converter 直接电流变换电路Insulated-Gate Bipolar Transistor--IGBT 绝缘栅双极晶体管Intelligent Power Module--IPM 智能功率模块Integrated Gate-Commutated Thyristor--IGCT集成门极换流晶闸管Inversion 逆变Latching Effect 擎住效应Leakage Inductance 漏感Light Triggered Thyristo---LTT 光控晶闸管Line Commutation 电⽹换流Load Commutation 负载换流Loop Current 环流元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电⼚:power plant断路器:Breaker⼑闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power⽆功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss⽆功损耗:active loss功率因数:power-factor功率:power功⾓:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance 电阻:resistor电抗:reactance电导:conductance电纳:susceptance⽆功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转⼦电流):magnetizing current定⼦:stator功⾓:power-angle上限:upper limit下限:lower limit并列的:apposable⾼压: high voltage低压:low voltage中压:middle voltage电⼒系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer⾼压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功⾓稳定angle stability暂态稳定transient stability电⼚power plant能量输送power transfer交流AC装机容量installed capacity电⽹power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation 补偿度degree of compensation⾼抗high voltage shunt reactor⽆功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping⾼顶值high limited value强⾏励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机⽆穷⼤系统one machine - infinity bus system 机端电压控制AVR电抗reactance电阻resistance功⾓power angle有功(功率)active power⽆功(功率)reactive power功率因数power factor⽆功电流reactive current下降特性droop characteristics 斜率slope额定rating变⽐ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance 电感:inductance 电容: capacitance ⼀般术语电⼒电⼦变流器的型式(表1-2)电⼒电⼦开关和交流电⼒电⼦控制器电⼒电⼦设备的基本元件电⼒电⼦设备的电路和电路单元电⼒电⼦设备的运⾏电⼒电⼦设备的性能电⼒电⼦变流器的特性曲线稳定电源。

电力常用英语

电力常用英语

1、电力系统常用电力专业英语(1)元件设备三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor(2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage单位标准:电能:千瓦时 kW.h k,h小写W大写有功功率千瓦 kW k小写W大写无功功率千乏 kvar k,v,a,r均小写视在功率千伏安 kVA k小写V、A大写电压千伏 kV k小写V大写长度千米 km k,m均小写电流安培 A A大写电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines on the same tower 变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinity bus system机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance热工自动化常用英文缩写词ABC Automatic boiler control 锅炉自动控制AC Alternating current 交流(电)ACC Automatic combustion control 燃烧自动控制ACP Auxiliary control panel 辅助控制盘ACS Automatic control system 自动控制系统ACT actuator 执行机构A/D Analog /digital(conversion) 模/数(转换)ADP Annunciation display panel 报警显示板AEH Analog electro- 模拟式电液调节AFC Air flow control `送风控制AGC Automatic generation control 自动发电量控制AI Analog input 模拟量输入A/M Automatic/manul 自动/手动AO Analog output 模拟量输入APC Automatic plant control 电厂自动控制ASS Automatic synchronized system 自动同期系统ARP Auxiliary relay panel 辅助继电器盘ATC Automatic turbine startup or shutdown control system 汽轮机自启停系统BCS Burner control system 燃烧器控制系统BF Boiler follow 锅炉跟踪BFC Boiler fuel control 锅炉燃料控制BPS By-pass control system 旁路控制系统BTG Boiler turbinegenerator(panel) 锅炉、汽轮机、发电机(控制盘)CCR Central control room 单元(中央)控制室CHS Coal handing system 输煤控制系统CJC Cold junction compensator 冷端补偿器CPU Central processing unit 中央处理器CRT Cathode-ray tube 阴极射线管屏幕显示器D/A Digtal/analog(conversion) 数/模(转换)DAS Data acquisition system 计算机监视系统或数据采集系统DC Direct current 直流(电)DCE Data circuit-terminating equipment 数据电路终端设备DCS Distributed control system 分散控制系统DDC Direct digital control 直接数字控制DDP Distributed datd processing 分散数据处理DEH Digital electro-hydraulic control system 数字式电液控制系统DI Digital input 数字量输入DMP Damper 挡板、风门DO Digital output 数字量输出DSB Distributed switch-board 配电盘DTE Data terminal equipment 数据中端设备EEPROM Electrically-erasable programmable read only mrmory 电可擦写只读存储器E/P Electro/pneumatic(converter) 电/气(转换器)EPROM Electrically programmable read only memory 电可编程只读存储器ES Expert system 专家系统ETS Emergency trip system 紧急停机系统EWS Engineer wok station 工程师工作站FA Full arc 全周进汽FB Field bus 现场总线FCB Fast cut back (机组)快速甩负荷FDC Furnace draft control 炉膛压力控制FSS Furnace safety system 炉膛安全系统FSSS Furnace safeguard supervisory system 锅炉炉膛安全监控系统GV Governor valve 调节阀门HBP High-pressure by-pass valve 高压旁路I&C Instrumentation &control 仪表与控制INT Interlock 连锁I/O Input/output 输入/输出IDP Integrated data processing 集中数据处理KB Keyboard 键盘LBP Low-pressure by-pass valve 低压旁路LCD Liquid-crystal display 液晶显示器LED Light emitting diode 发光二极管LS Limit switch 限位开关LS Level switch 液位开关M/A Manual/automatic 手动/自动MAX Maximum 最大值MCC Motor control center 电动机控制中心MCR Maximum continuous rating 最大连续运行负荷MCS Modulating control system 模拟量控制系统MEH (BFTP)micro-electro-hydraulic control system (锅炉给水泵汽轮机)电液控制系MFT Master fuel trip 总燃料跳闸MHC Mechanicial hydraulic control 机械液压式控制MIN Minimum 最小值MIS Management information syrtem 管理信息系统MTBF Mean time between failures 平均无故障工作时间MTTF Mean time to failure 失效(故障)前平均工作时间MTTR Mean time to repair 平均故障修复时间NC Normally Closed 常闭NO Normally open 常开OCS On-off control system 开关量控制系统OEI Optic electric interface 光电接口OFT Oil fuel trip 燃油跳闸OPC Overspeed protection CONTROL 超速保护控制OS Operator station 操作员站PA Partial arc 部分进汽PC Programmable controller 可编程控制器PCS Pulverizer control system 磨煤机控制系统PI Purse input 脉冲量输入PID Proportional integral derivative 比例-积分-微分PLC Programmable logic controller 可编程序逻辑控制器PO Pulse output 脉冲量输出RAM Random access memory 随机存取存储器RB Run back (辅机故障)快速甩负荷ROM Read only memory 只读存储器RTC Reheat steam temperature control 再热气温控制SBC Soot blower control system 吹灰控制系统SCM Single chip microcomputer 单片机SCS Sequence control system 顺序控制系统SER Sequence events recorder 事件顺序记录仪SOE Sequence of events 事件顺序记录ST Smart transmitter 智能变送器STC Superheated steam temperature control 过热气温控制TAS Turbine automatic system 汽轮机自动控制系统TBP Tuibine by-pass system 汽轮机旁路系统TCS Turbine control system 汽轮机控制系统TF Turbine follow 汽轮机跟踪TSI Turbine supervisory instrument 汽轮机监视仪表UCC Unit coordinated control 机组协调控制ULD Unit load demand(command) 机组负荷指令UPS Uninterrupted power system 不间断电源WTS Water treatment contrd system 水处理控制系统。

基于模拟电流相关比对的谐振接地故障选线方法

基于模拟电流相关比对的谐振接地故障选线方法

基于模拟电流相关比对的谐振接地故障选线方法发布时间:2023-02-01T08:20:04.298Z 来源:《工程管理前沿》2022年第18期作者:周柯王成[导读] 故障准确选线对提高卷烟设备的连续生产和卷烟工业的自动化水平至关重要,周柯王成湖北中烟工业有限责任公司三峡卷烟厂摘要:故障准确选线对提高卷烟设备的连续生产和卷烟工业的自动化水平至关重要,为此,文中提出了一种基于模拟电流相关比对的故障选线方法。

该方法通过母线零序电压构造模拟电流,将所有馈线零序电流与模拟电流在特征频段内进行波形相关比对。

比对结果表明:特征频段内,健全馈线零序电流与模拟电流波形具有高度相似性,相关系数接近1;而故障馈线零序电流与模拟电流波形相关性较小,相关系数远小于1,两者差异显著,据此可准确选出故障线路。

该方法原理简单,受采样频率影响较小,能自动准确选出故障线路。

相比于传统全频段波形相关分析法,该方法可避免高频噪声干扰,进一步拉大故障线路与健全线路的故障特征差异,具有较高的选线准确率。

最后,仿真结果验证了所提方法的有效性。

关键词:谐振接地系统;故障选线;模拟电流;单相接地故障Fault line selection method for resonant grounding system based on analog current correlation comparisonABSTRACT:Accurate fault line selection is very important to improve the continuous production of cigarette equipment and the automation level of cigarette industry. So, a fault line selection method based on analog current correlation comparison is proposed. In this method, the analog current is constructed through the zero-sequence voltage of the bus, and the waveforms of all lines are compared with the analog current in the characteristic frequency band. The comparison results show that within the characteristic frequency band, the zero-sequence current of healthy lines are highly similar to the analog current waveform, and the correlation coefficients are close to 1. However, the zero-sequence current of the fault line has little correlation with the analog current waveform, and the correlation coefficient is far less than 1. The difference between the two situations is significant, so the fault line can be selected accurately. This method is simple in principle, less affected by sampling frequency and independent in line selection. Compared with the traditional full-frequency waveform correlation analysis method, this method can avoid the interference of high frequency noise and enlarge the fault characteristic difference between the fault line and the sound line and has higher accuracy of line selection. Finally, simulation results demonstrate the effectiveness of the proposed method.KEYWORDS:resonant grounding system; fault line selection; analog current; single-phase-to-ground1 引言我国卷烟厂大多采用配电网直接供电,而配电网中性点广泛采用消弧线圈接地方式,谐振接地系统发生单相接地故障时,流经消弧线圈的电感电流补偿故障点电容电流,导致故障线路稳态零序电流幅值减小、方向改变、故障特征减弱。

中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法

中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法

第25卷 第5期2021年5月 电 机 与 控 制 学 报Electric Machines and ControlVol 25No 5May2021中小型无刷励磁同步发电机组旋转整流桥二极管开路故障的在线检测方法武玉才1, 庞永林2, 侯旭辰1(1.华北电力大学电气与电子工程学院,河北保定071003;2.国网内蒙古东部电力有限公司电力科学研究院,呼和浩特010020)摘 要:针对中小型无刷励磁同步发电机组旋转整流桥二极管的单管开路故障问题,提出一种基于柔性线圈的诊断方法。

以一台改造184B型6.8kW三相无刷励磁同步发电机组旋转整流桥的一个二极管发生开路故障为例,结合励磁机电枢绕组的空间布局及其感应电动势特点分析了旋转整流桥二极管的导通规律,根据二极管开路故障前后电枢磁场的变化特征,获取了电枢磁场增量磁势特征并确立了故障判据,提出在励磁机定子铁轭上包绕柔性线圈,通过柔性线圈感应电压的25Hz转频分量检测和识别二极管开路故障。

二维有限元仿真和样机实验结果表明,利用柔性线圈感应电压的25Hz转频分量可以实现对旋转整流桥二极管开路故障的在线检测。

关键词:中小型无刷励磁同步发电机组;旋转整流桥;二极管;开路故障;柔性线圈;在线检测DOI:10.15938/j.emc.2021.05.006中图分类号:TM307文献标志码:A文章编号:1007-449X(2021)05-0042-10收稿日期:2020-01-08基金项目:河北省自然科学基金(E2020502064);中央高校基本科研业务费专项资金(2020MS094)作者简介:武玉才(1982—),男,博士,副教授,研究方向为电气设备状态监测与故障诊断;庞永林(1995—),男,硕士,研究方向为无刷励磁机状态监测与故障诊断;侯旭辰(1996—),男,硕士,研究方向为磁悬浮轴承设计及控制系统优化。

通信作者:庞永林On linedetectionmethodforrotatingrectifierbridgediodeopen circuitfaultofsmallandmedium sizedbrushlessexcitationsynchronousgeneratorsetWUYu cai1, PANGYong lin2, HOUXu chen1(1.SchoolofElectricalandElectronicEngineering,NorthChinaElectricPowerUniversity,Baoding071003,China;2.ElectricPowerResearchInstitute,StateGridEastInnerMongoliaElectricPowerCompanyLimited,Hohhot010020,China)Abstract:Aimingatanopencircuitdiodefaultintherotatingrectifierbridgeofsmallandmedium sizedbrushlessexcitationsynchronousgeneratorsets,adiagnosismethodbasedonflexiblecoilswasproposed.Anopencircuitdiodefaultintherotatingrectifierbridgeinamodified184Btype6.8kWthree phasebrushlessexcitationsynchronousgeneratorsetwaschosenasanexample,andtheconductionlawofthediodeintherotatingrectifierbridgewasanalyzedbasedonthespatiallayoutoftheexciterarmaturewind inganditsinducedelectromotiveforcecharacteristics.Accordingtothevariationcharacteristicsofthear maturemagneticfieldbeforeandaftertheopencircuitfault,theincrementalmagneticpotentialcharacter isticsofthearmaturemagneticfieldwereobtained,andthefaultcriterionwasestablished.Finally,itwasproposedtowrapaflexiblecoilonthestatoryokeoftheexciter,anddetectandidentifytheopencircuitdiodefaultthroughthe25Hzrotatingfrequencycomponentoftheinducedvoltageoftheflexiblecoil.Two dimensionalfiniteelementsimulationandexperimentresultsshowthatthe25Hzrotatingfrequencycomponentoftheinducedvoltageoftheflexiblecoilcanbeusedfortheon linedetectionofanopencir cuitdiodefaultinrotatingrectifierbridge.Keywords:smallandmedium sizedbrushlessexcitationsynchronousgeneratorset;rotatingbridge;di ode;open circuitfaults;flexiblecoil;on linedetection0 引 言近年来,无刷励磁技术发展迅速,中小型无刷励磁同步发电机组体积小、便携带、失磁故障少、抗无线电干扰能力强,在工业,船舶,国防中有大量应用。

继电保护中英文翻译

继电保护中英文翻译

Fundamentals of protection practiceThe purpose of an electrical power system is to generate and supply electrical energy to consumers. The system should be designed and managed to deliver this energy to the utilization points with both reliability and economy. As these two requirements are largely opposed, it is instructive to look at the reliability of a system and its cost and value to the consumer.One hand ,The diagram mast make sure the reliability in system design,. On the other hand, high reliability should not be pursued as an end in itself, regardless of cost, but should rather be balanced against economy,taking.Security of supply can be bettered by improving plant design, increasing the spare capacity margin and arranging alternative circuits to supply loads. Sub-division of the system into zones. each controlled by switchgear in association with protective gear. provides flexibility during normal operation and ensures a minimum of dislocation following a breakdown.The greatest threat to the security of a supply system is the short circuit,which imposes a sudden and sometimes violent change on system operation. The large current which then flows, accompanied by the localized release of a considerable quantity of energy, can cause fire at the fault location, and mechanical damage throughout the system, particularly to machine and transformer windings. Rapid isolation of the fault by the nearest switchgear will minimize the damage and disruption caused to the system.A power system represents a very large capital investment. To maximize the return on this outlay. the system must be loaded as much as possible. For this reason it is necessary not only to provide a supply of energy which is attractive to prospective users by operating the system ,but also to keep the system in full operation as far as possible continuously, so that it may give the best service to the consumer, and earn the most revenue for the supply authority. Absolute freedom from failure of the plant and system network cannot be guaran- teed. The risk of a fault occurring, however slight for each item, is multiplied by the number of such items which are closely associated in an extensive system, as any fault produces repercussions throughout the network. When the system is large, the chance of a fault occurring and the disturbance that a fault would bring are both so great that withoutequipment to remove faults the system will become, in practical terms, inoperable. The object of the system will be defeated if adequate provision for fault clearance is not made. Nor is the installation of switchgear alone sufficient; discriminative protective gear, designed according to the characteristics and requirements of the power system. must be provided to control the switchgear. A system is not properly designed and managed if it is not adequately protected.Protective gearThis is a collective term which covers all the equipment used for detecting,locating and initiating the removal of a fault from the power system. Relays are extensively used for major protective functions, but the term also covers direct-acting a.c.trips and fuses.In addition to relays the term includes all accessories such as current and voltage transformers, shunts, d.c.and a.c. wiring and any other devices relating to the protective relays.In general, the main switchgear, although fundamentally protective in its function, is excluded from the term protective gear, as are also common services, such as the station battery and any other equipment required to secure opera- tion of the circuit breaker. ReliablityThe performance of the protection applied to large power systems is frequently assessed numerically. For this purpose each system fault is classed as an incident and those which are cleared by the tripping of the correct circuit breakers and only those, are classed as 'correct'. The percentage of correct clearances can then be determined.This principle of assessment gives an accurate evaluation of the protection of the system as a whole, but it is severe in its judgement of relay performance, in that many relays are called into operation for each system fault, and all must behave correctly for a correct clearance to be recorded. On this basis, a performance of 94% is obtainable by standard techniques.Complete reliability is unlikely ever to be achieved by further improvements in construction. A very big step, however, can be taken by providing duplication of equipment or 'redundancy'. Two complete sets of equipment are provided, and arranged so that either by itself can carry out the required function. If the risk of an equipment failing is x/unit. the resultant risk, allowing for redundancy, is x2. Where x is small the resultant risk (x2) maybe negligible.It has long been the practice to apply duplicate protective systems to busbars, both being required to operate to complete a tripping operation, that is, a 'two-out-of-two' arrangement. In other cases, important circuits have been provided with duplicate main protection schemes, either being able to trip independently, that is, a 'one-out-of- two' arrangement. The former arrangement guards against unwanted operation, the latter against failure to operate.These two features can be obtained together by adopting a 'two-out-of-three' arrangement in which three basic systems are used and are interconnected so that the operation of any two will complete the tripping function. Such schemes have already been used to a limited extent and application of the principle will undoubtedly increase. Probability theory suggests that if a power network were protected throughout on this basis, a protection performance of 99.98% should be attainable. This performance figure requires that the separate protection systems be completely independent; any common factors, such as common current transformers or tripping batteries, will reduce the overall performance. SELECTIVITYProtection is arranged in zones, which should cover the power system completely, leaving no part unprotected. When a fault occurs the protection is required to select and trip only the neareat circuit breakers. This property of selective tripping is also called 'discrimination' and is achieved by two general methods:a Time graded systemsProtective systems in successive zones are arranged to operate in times which are graded through the sequence of equipments so that upon the occurrence of a fault, although a number of protective equipments respond, only those relevant to the faulty zone complete the tripping functiopn. The others make incomplete operations and then reset.b Unit systemsIt is possible to design protective systems which respond only to fault conditions lying within a clearly defined zone. This 'unit protection' or 'restricted protection' can be applied throughout a power system and, since it does not involve time grading, can be relatively fast in operation.Unit protection is usually achieved by means of a comparison of quantities at theboundaries of the zone. Certain protective systems derive their 'restricted' property from the configuration of the power system and may also be classed as unit protection. Whichever method is used, it must be kept in mind that selectivity is not merely a matter of relay design. It also depends on the correct co-ordination of current transformers and relays with a suitable choice of relay settings, taking into account the possible range of such variables as fault currents. maximum load current, system impedances and other related factors, where appropriate.STABILITYThis term, applied to protection as distinct from power networks, refers to the ability of the system to remain inert to all load conditions and faults external to the relevant zone. It is essentially a term which is applicable to unit systems; the term 'discrimination' is the equivalent expression applicable to non-unit systems.SPEEDThe function of automatic protection is to isolate faults from the power system in a very much shorter time than could be achieved manually, even with a great deal of personal supervision. The object is to safeguard continuity of supply by removing each disturbance before it leads to widespread loss of synchronism, which would necessitate the shutting down of plant.Loading the system produces phase displacements between the voltages at different points and therefore increases the probability that synchronism will be lost when the system is disturbed by a fault. The shorter the time a fault is allowed to remain in the system, the greater can be the loading of the system. Figure 1.5 shows typical relations between system loading and fault clearance times for various types of fault. It will be noted that phase faults have a more marked effect on the stability of the system than does a simple earth fault and therefore require faster clearance.SENSITIVITYSensitivity is a term frequently used when referring to the minimum operating current of a complete protective system. A protective system is said to be sensitive if the primary operating current is low.When the term is applied to an individual relay, it does not reter to a current or voltage setting but to the volt-ampere consumption at the minimum operating current.A given type of relay element can usually be wound for a wide range of setting currents; the coil will have an impedance which is inversely proportional to the square of the setting current value, so that the volt-ampere product at any setting is constant. This is the true measure of the input requirements of the relay, and so also of the sensitivity. Relay power factor has some significance in the matter of transient performance .For d.c. relays the VA input also represents power consumption, and the burden is therefore frequently quoted in watts.PRIMARY AND BACK-UP PROTECTIONThe reliability of a power system has been discussed in earlier sections. Many factors may cause protection failure and there is always some possibility of a circuit breaker failure. For this reason, it is usual to supplement primary protection with other systems to 'back-up' the operation of the main system and to minimize the possibility of failure to clear a fault from the system.Back-up protection may be obtained automatically as an inherent feature of the main protection scheme, or separately by means of additional equipment. Time graded schemes such as overcurrent or distance protection schemes are examples of those providing inherent back-up protection; the faulty section is normally isolated discriminatively by the time grading, but if the appropriate relay fails or the circuit breaker fails to trip, the next relay in the grading sequence will complete its operation and trip the associated circuit breaker, thereby interrupting the fault circuit one section further back. In this way complete back- up cover is obtained; one more section is isolated than is desirable but this is inevitable in the event of the failure of circuit breaker. Where the system interconnection is more complex, the above operation will be repeated so that all parallel infeeds are tripped. If the power system is protected mainly by unit schemes, automatic back-up protection is not obtained, and it is then normal to supplement the main protection with time graded overcurrent protection, which will provide local back-up cover if the main protective relays have failed, and will trip further back in the event of circuit breaker failure.Such back-up protection is inherently slower than the main protection and, depending on the power system con- figuration, may be less discriminative. For the most important circuits the performance may not be good enouugh, even as a back-up protection, or, in some cases, not even possible, owing to the effect of multiple infeeds. In these casesduplicate high speed protective systems may be installed. These provide excellent mutual back-up cover against failure of the protective equipment, but either no remote back-up protection against circuit breaker failure or, at best, time delayed cover.Breaker fail protection can be obtained by checkina that fault current ceases within a brief time interval from the operation of the main protection. If this does not occur, all other connections to the busbar section are interrupted, the condition being necessarily treated as a busdar fault. This provides the required back-up protection with the minimum of time delay, and confines the tripping operation to the one station, as compared with the alternative of tripping the remote ends of all the relevant circults.The extent and type of back-up protection which is applied will naturally be related to the failure risks and relative economic importance of the system. For distribution systems where fault clearance times are not critical, time delayed remote back-up protection is adequate but for EHV systems, where system stability is at risk unless a fault is cleared quickly, local back-up, as described above, should be chosen.Ideal back-up protection would be completely indepen_ dent of the main protection. Current transformers, voltage transformers, auxiliary tripping relays, trip coils and d.c. supplies would be duplicated. This ideal is rarely attained in practice. The following compromises are typical:a. Separate current transformers (cores and secondary windings only) are used for each protective system, as this involves little extra cost or accommodation compared with the use of common current transformers which would have to be larger because of the combined burden.b. Common voltage transformers are used because duplication would involve a considerable increase in cost, because of the voltage transformers themselves, and also because of the increased accommodation which would have to be provided. Since security of the VT output is vital, it is desirable that the supply to each protection should be separately fused and also continuously supervised by a relay which wil1 give an alarm on failure of the supply and, where appropriate, prevent an unwanted operation of the protection.c. Trip supplies to the two protections should be separately fused. Duplication of tripping batteries and of tripplng coils on circuit breakers is sometimes provided. Trip circuitsshould be continuously supervised.d. It is desirable that the main and back-up protections (or duplicate main protections) should operate on different princlples, so that unusual events that may cause failure of the one will be less likely to affect the other./viewforum.php?f=20继电保护原理发电并将电力供应给用户这就是电力系统的作用。

不同坐标系下六相PMSM_单相开路容错MPC_控制

不同坐标系下六相PMSM_单相开路容错MPC_控制

第45卷 第3期 包 装 工 程2024年2月PACKAGING ENGINEERING ·165·收稿日期:2023-10-23基金项目:国家自然科学基金(5200070339);电磁能技术全国重点实验室资助课题(6142217210301);湖北省教育厅科学技术研究计划重点项目(D2*******) 不同坐标系下六相PMSM 单相开路容错MPC 控制袁凯1,蒋云昊1,袁雷1*, 郭勇2,丁怡丹1(1.湖北工业大学 太阳能高效利用及储能运行控制湖北省重点实验室,武汉 430068;2. 91184部队舰船保障室,青岛 266071)摘要:目的 目前六相永磁同步电机单相开路故障的模型预测容错控制的研究已逐步成为热点,本文将对α-β和d-q 2种坐标系控制下的故障机理进行对比分析,并对比不同坐标系中下正常和故障容错运行模型的控制效果。

方法 基于矢量空间解耦坐标变换矩阵不变原理,对A 相开路进行故障模型的理论计算分析,分别在α-β和d-q 这2种不同坐标系中对其进行模型预测控制容错建模。

最后在MATLAB/Simulink 中对2种坐标系下的电机正常运行和故障容错运行中的工作性能采用相同电机参数进行实时仿真。

结果 仿真结果显示,正常运行时,2种坐标系下总谐波失真(THD )值分别为 2.09%和2.77%;故障运行时,d-q 坐标系下的THD 值比α-β坐标系小了13.15%;容错运行时2种坐标系下的THD 值分别为1.19%和1.79%。

结论 从仿真结果可以看出,d-q 坐标系控制下的电机在故障时具有更稳定的性能,而在正常和容错运行状态下,2种坐标系下的控制效果几乎等效。

关键词:六相永磁同步电机;模型预测电流;矢量空间解耦;开路故障分析;容错控制 中图分类号:TB486.3 文献标志码:A 文章编号:1001-3563(2024)03-0165-11 DOI :10.19554/ki.1001-3563.2024.03.019Single-phase Open Fault-tolerant MPC Control for Six-phase PMSM in DifferentCoordinate SystemsYUAN Kai 1, JIANG Yunhao 1, YUAN Lei 1*, GUO Yong 2, DING Yidan 1(1. Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy,Hubei University of Technology, Wuhan 430068, China; 2. 91184 Troop Ship Support Office, Qingdao 266071, China) ABSTRACT: At present, the model predictive fault-tolerant control of single-phase open fault of six-phase permanent magnet synchronous motor has gradually become a hot topic. The work aims to comparatively analyze the fault mechanism under α-β and d-q coordinate system control and compare the control effect of normal and fault-tolerant operating models in different coordinate systems. Based on the vector space decoupling coordinate transformation matrix invariant principle, the A-phase open fault model was theoretically calculated and analyzed, and the model predictive control fault-tolerant modeling was carried out in two different coordinate systems, α-β and d-q respectively. Finally, in MATLAB/Simulink, the same motor parameters were used for real-time simulation of the normal operation and fault-tolerant operation of the motor in the two coordinate systems. The simulation results showed that under normal operation, the THD was 2.09% and 2.77% respectively. In fault operation, the THD in α-β coordinate system was 13.15% smaller than that in d-qcoordinate system. In fault-tolerant operation, THD was 1.19% and 1.79% respectively in the two·166·包装工程2024年2月coordinate systems. It can be seen from the simulation results that the motor controlled by d-q coordinate system has more stable performance when fault occurs, and the control effect under normal and fault-tolerant operation conditions is almost equivalent.KEY WORDS: six-phase permanent magnet synchronous motor; model predictive current; vector space decouples; open fault analysis; fault-tolerant control永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)驱动系统多用于包装产业的自动化生产线中,尤其是食品加工链等一些具有复杂包装工艺的场景应用更为广泛[1-2]。

基于电压型故障特征量的发电机机端断路器非全相保护_李荷婷

基于电压型故障特征量的发电机机端断路器非全相保护_李荷婷
整个仿真的仿真 时 间 为 15s,发 电 机 启 动 并 网 的第1s时刻 GCB 发生 C 相断线故障,随后发电机 输出有功功率从0kW 动态升至2.5kW 左右,发电 机输出有功功率的波形如图3所示。
图3 仿真中 GCB 发生非全相故障后 发电机输出有功功率不断增加的变化波形 Fig.3 Increased active power waveform of generator after GCB open-phase fault occurs in simulations
抽水蓄能电厂的 GCB 操作十分频繁,且其焊接 口又较为脆弱,当 GCB 机械疲劳积累到一定程度后 就会发生一次断裂,而 GCB 操作机构的安装位置使 得日 常 巡 检 难 以 发 现 该 问 题。 当 GCB 发 生 非 全 相 故 障 时 ,发 电 机 运 行 在 非 全 相 状 态 ,此 时 定 子 绕 组 中 会 流 过 负 序 电 流 ,从 而 在 转 子 表 层 感 应 出 倍 频 电 流 。 该倍频电流在转子接触电阻较大的部位会形成局部 高温,进一步灼烧转子[1],甚至造成氢气冷却的汽 轮 发电机发生爆炸,严 重 威 胁 机 组 与 系 统 的 安 全 稳 定 运 行 。 [2-3]
·
·
UT0= -j XC2I0b
(4)
从式(1)和式(2)可 以 看 出,在 主 变 压 器 低 压 侧
容抗大于发电机机端综合阻 抗 的 情 况 下,GCBቤተ መጻሕፍቲ ባይዱ发 生
非全相故障时,主变 压 器 低 压 侧 基 波 零 序 电 压 的 有
效值会大于发电机 机 端 基 波 零 序 电 压 的 有 效 值;且
系统 侧 电 抗;ΔU1b,ΔU2b,ΔU0b分 别 为 GCB 发 生 非

水轮发电机英语词汇

水轮发电机英语词汇

Shutdown actuating protection停机联动保护Protection actuation for generator-transformer set 发变组保护联动引出压板Outlet connecting strip矩阵插点Matrix pin 失磁低阻抗field - loss low impedance 开相闭锁open - phase block 95% 定子接地保护95% protection against stator earth fault转子一点接地保护rotor - one point earth protection 220KV侧CT补偿变流器变比:0.43/1 Transformation ratio of CT compensated current transformer on 220KV side:0.43/1发电机侧CT补偿变流器变比:3.72/1 Transformation ratio of generator CT compensated current transformer :3.72/1 椭圆率ellipticity Connecting strip 压板YH=voltage transformer Steel gasket钢纸垫Disconnectors隔离刀闸earthing blades接地刀闸Hoist电动葫芦,卷扬schematic diagram 示意图dotted line block虚线框restrain excitation inrush current 抑制励磁涌流weight balance "hammer"重操作箱锤bevel wedge斜楔air admission hole进气口single-side gap单边间隙trial operation试运行Bulkhead防水壁one and half breakers一个半断流器(接线方式)percussive drilling冲击钻探Storage battery电瓶6.3KV busbar supplies service power of plant(6.3KV)母线供应厂用电Oil head受油器oil receiver油罐air receiver 储气罐Stop valve截止阀check valve止回阀non-return valve逆止阀gate valve闸阀Nameplate (data plate)铭牌rated value整定值generator longitudinal differential protection发电机纵差保护变比=电流变化比例系数current change proportion coefficient/ transformation radio 防水门bulkhead gate 架平台erect the necessary scaffold;scaffold脚手架国电东北公司人力资源部主任Section Chief of Human Resources of Northeast Branch of National Power Corporation 厂长directorput in service in grid并网发电=operate in grid=incorporate in power network zero-initial step-up voltage test零起升压试验SCR silicon controlled rectifier 可控硅visual annunciator(alarm)光字牌integrate theory with practice理论联系实际Impulse Closing Test for Main Transformer= closing switches at the high voltage side and supply power for main transformer. 合脉冲变试验breach破裂,裂口standby diesel generating unit, bottom gates MS6 (lifting& lowering), work out制定To adjust operation mode of system and equipment to achieve safe, stable and economic operation. To execute weekly program of changing-over operation modes of equipment, Vaseline 凡士林petroleum jelly (=petrolatum)凡士林油, 矿油,石油膏on load带负荷starting under load带负荷起动connect in parallel并联measure insulation摇绝缘wind tunnel/ channel风洞flexible circuit conductor软接手earth dam土坝penstock水渠surge tank浪涌槽tailrace 尾水irrigation canal灌溉渠step-up substation递升变电站switchyard开关站quadrate方形的reinforced concrete加固混凝土attached drawing附图water intake进水power generation(generate electricity)发电irrigation-discharging pipe灌溉排水管, at the intake of the penstock水渠入口, air hole气孔vertical-cylindrical type立柱式Pressure steel pipe压力钢管emergency gate快速门trash rack拦污栅Water sump and drainage equipment集水和排水设备on the left of the powerhouse. Operating oil tank操作油箱insulate oil system绝缘油系统sidewall边墙,侧壁overhead transmission line变送线sigle-busbar connection单母线接线The two units are directly connected with 6.3KV busbar, the voltage stepped up to 34.5KV through an transformer, and linked up with local power system through transformer lines.Hand-operated standby unit手动备用机组Dynamic water动态水prevent the aggravation of the accident防止事故恶化the state of overhauling大修状态hydraulic turbine-generator unit and auxiliary equipment水轮发电机组和附属设备synchronous generator同步发电机/ 配套发电机parameter参数runner diameter转轮直径efficiency效率guarantee保证range of steadyoperating稳定运行范围maximum guaranteed output最大保证出力in no-load以空载inlet pipe进水管distributor导水机构draft tube尾水管hydroenergy (potential energy and kinetic energy)水流的能量(位能和动能) transform into转换成mechanical energy机械能(pl) 用法说明Full directions inside内附详细说明书couples with同…联接can achieve to startup or stop unit, incorporate in power network, add or reduce load.能实现开机、并网、增减负荷和停机。

继电保护英文对照

继电保护英文对照

1 A lagging power-factor 滞后的功率因数2 A mutualky induced e.m.f 互感电动势3 a retarding torque 制动转矩4 Abnormal operating condition 不正常运行状态5 Abnormal overload 异常过载6 Abnormal overvoltage 事故过电压7 Abnormal state 非常态8 Above earth potential 对地电势9 Abrupt signal analysis 突变信号分析10 Absolute potential 绝对电势11 AC circuit breaker 交流断路器12 AC component 交流分量13 AC directional over current relay 交流方向过流继电器14 AC distribution system 交流配电系统15 AC reclosing relay 交流重合闸继电器16 Accelerating protection forswitching onto fault 重合于故障线路加速保护动作17 Acceleration Trend Relay(ATR) 加速趋势继电器18 Accurate Working Current 精确工作电流19 Accurate Working voltage 精确工作电压20 Activate the breaker trip coil 起动断路器跳闸21 Adaptive features 自适应特性22 Adaptive relay protection 自适应继电保护23 Adaptive relaying 自适应继电保护24 Adaptive segregated directionalcurrent differential protection 自适应分相方向纵差保护25 Admittance relays 导纳型继电保护装置26 AI(artificial intelligence) 人工智能27 Air brake switch 空气制动开关28 Air breaker 空气断路器29 Air-blast circuit breaker 空气灭弧断路器30 Air-blast switch 空气吹弧开关31 Air-space cable 空气绝缘电缆32 Alarm 报警33 Alarm relay 报警信号继电器34 Alarm signal;alerting signal 报警信号35 Alive 带电的36 All-relay interlocking 全部继电连锁37 All-relay selector 全继电式选择器38 Amplitude Comparison 绝对值比较39 Analogue 模拟40 Angle of maximum sensitivity 最大灵敏角41 Annunciator relay 信号继电器42 Approximation component 逼近分量43 Arc extinguishing coil 灭弧线圈44 Arc suppressing coil 消弧线圈45 Arc suppressing reactor 灭弧电抗器46 Arcing fault 电弧接地故障47 Armature 电枢48 Asymmetric load 不对称负载49 Asymmetric short circuit 不对称短路50 Asynchronous resistance 异步电阻51 Asynchronous tractance 异步电抗52 Attacted armature relay 衔铁(磁铁)吸合式继电器53 Automatic quasi-synchronization 自动准同步54 Automatic reclosure 自动重合闸55 auto-put-into device of reserve-source 备用电源自动投入装置56 auto-recosing with self-synchronism 自同步重合闸57 Auxiliary contacts 辅助触点58 Auxiliary relay/intermediate relay 辅助继电器/中间继电器59 B sampling function B样条函数60 Back-spin timer 反转时间继电器61 Back-up over-speed governor 附加超速保护装置62 Back-up protection 后备保护63 Back-up ssystem 后备继电保护64 Biased differential relaying 极化差动继电保护系统65 Bi-directional relay 双向继电器66 Bi-stable 双稳态67 Black-out area 停电区68 Black-start 黑启动69 Blinker 继电器吊牌70 Bloching protection 闭锁式保护71 Blocking relay 连锁继电器72 Blocking signal 闭锁信号73 Blow-out coil 灭弧线圈74 Branch coefficient 分支系数75 Breaker contact point 断路器触点76 Breaker pount wrench 开关把手77 Breaker trip coil 断路器跳闸线圈78 Brushless excitation 无刷励磁79 Buchholtz protecter 瓦斯保护80 Bundle factor 分裂系数81 Bundle-conductor spacer 分裂导线82 Bus bar 母线;导电条83 Bus bar current transformer 母线电流变压器84 Bus bar disconnecting swich 分段母线隔离开关85 Bus compartment 母线室;汇流条隔离室86 Bus coupler CB 母联断路器87 Bus duct 母线槽;母线管道88 Bus hub 总线插座89 Bus insulator 母线绝缘器90 Bus line 汇流线91 Bus protection(Bus-bar protection) 母线保护92 Bus protective relay 母线保护继电器93 Bus reactor 母线电抗器94 Bus request cycle 总线请求周期95 Bus rings 集电环96 Bus rod 汇流母线97 Bus section reactor 分段电抗器98 Bus structure 母线支架;总线结构99 Bus tie switch 母线联络开关100 Bus-bar chamber 母线箱101 Bus-bar fault 母线故障102 Bus-bar insulator 母线绝缘子103 bus-bar protection withfixed circuit xonnection 固定联结式母线保护104 Bus-bar sectionalizing switch 母线分段开关105 Bushing 套管106 bushing type xurrent transformer 套管式电流互感器107 Bypass 旁路108 Cable relay 电缆继电器109 Capacitance 电容110 Capacitance effect 电容效应111 Capacitance relay 电容继电器112 Capacitive current 电容电流113 Capacitor 电容器114 Capacitor of series compensation 串补电容115 Capacity charge 电容充电116 Capacity ground 电容接地117 Carrier channel 高频通道118 Carrier or pilot-wire receiver relay 载波或导引线接受继电器119 Carrier receiver 发讯机120 Carrier transmitter 收讯机121 Cascading outages 连锁故障122 Catch net (protecting net) 保护网123 Chatter 颤振124 Circuit breaker 断路器125 Circuit breaker failure protection 断路器失灵保护126 Circuit control relay 电路控制继电器127 Clip-on leads 夹式引线128 Clock 时钟129 Close by local protection 保护合闸130 Close-up fault 近距离故障131 Closing coil 合闸线圈132 Closing relay 合闸继电器133 Coil adjuster 线圈调节器134 Coil curl 线圈135 Coil current 线圈电流136 Coil end leakage reactance 线圈端漏电抗137 Coil factor 线圈系数138 coil inductance 线圈电感139 Combined bus and transformer protection 母线和变压器共用保护140 Commissioning 投运141 Common-mode voltage 共模电压142 Communication channel 通讯通道143 Communication interface 通讯接口144 Compensation theorem(compensation principle) 补偿原理145 Compensation voltage(compensating voltage) 补偿电压146 Compound relay 复合继电器147 Concentrated coil 集中绕组148 Concussion 震动149 Conductance relay 电导继电器150 Configuration control 组态控制151 Connection with 90degree 90度接线152 Constant 常量153 Contact 触点154 Contact bounce 触点颤动155 Contact multiplying relay 触点多路式继电器156 Continuous load 持续负载157 Continuous rating 连续运行的额定值158 Converter relay 换流器继电器159 Coordination of relay settings 保护的整定配合160 Coordination time interval 保护配合时间阶段161 Core 铁芯162 Counting relay 计数继电器163 Coupler 耦合器164 Critical clearing time 极限切除时间165 Cross-country faults “越野式”双相同时接地故障166 Crystal can relay 晶体密闭继电器167 CT line-break CT断线168 Current actuated leakage protector 电流起动型漏电保护器169 Current attenuation 电流衰减170 Current balance type currentdifferential relay 电流平衡式差动电流继电器;差动平衡式电流继电器171 Current changer 换流器172 Current compensational ground distance relay 电流补偿式接地远距继电器173 Current consumption 电流消耗174 Current differential criterion 电流差动判据175 Current transformer 电流互感器176 Current transformer phase angle 电流互感器相角177 Current transformer saturation 电流互感器的饱和问题178 Current traveling wave 电流行波179 Current-balance relay 电流平衡式继电器180 Current-limiting relay 限流继电器181 Cut-off of supply 停止供电182 Cut-off push 断路器按钮183 Cut-off relay 断路继电器184 Cut-out relay 短路继电器185 Damping circuit 阴尼电路186 Dash current 冲击电流187 Data medium 数据载体188 Data processing 数据处理189 Data transmission 数据传输190 Dead zone(Blind spot) 死区191 Definite time 定时限192 Definite time relay 定时限继电器193 Delay-action relay 缓动继电器194 Delta 三角形195 Differential mode interference 差模干扰196 Differential motion 差动197 Differential protection 差动保护198 Differential protection withpercentage restraining 具有比率制动的差动继电器199 Differential relay 差动继电器200 Differential relay with fast saturatedcurrent transformer带有速饱和变流器的差动继电器201 Differential relay with Restraint Characteristic 具有制动特性的差动继电器202 Digital protection 数字式保护203 Digital signal processor 数字信号处理器204 Direct axis 直轴205 Directional contact 方向触点206 Directional distance relay 方向距离继电器207 Directional over-current protection 方向过流保护208 Directional over-current relay 方向过流继电器209 Directional pilot relaying 方向纵联继电保护210 Directional protection 方向保护211 Direct-to-ground capacity 对地电容212 Discharge 放电213 Disconnecting switch 隔离开关214 Discontinuous relay 鉴别继电器215 Discriminating zone 判别区216 Dislocation 损失、故障引起的混乱217 Disruption 瓦解、系统解列218 Distance protection 距离保护219 Distance relay(impedance relay) 阻抗继电器220 Distributed capacitance of long line 长线分布电容221 Distribution feeder 配电馈线222 Diviation character 偏移特性223 Double bus bar protection 双母线保护224 Double-ended clip-on leads 双头夹式引线225 Dropout current 回动电流226 Dry-type transformer 干式变压器227 Dual bus 双总线228 Dynamic attributes 动态特性229 Dynamoelectric relay 电动式继电器230 Earth fault 接地故障231 Earth-leakage protection 对地漏电保护232 Economic dispatch system 经济调度系统233 Electric capacity 电容234 Electric interlock relay 连锁继电器235 Electric reset relay 电复位式继电器236 Electrical apparatus(equipments) 电器设备237 Electrical governing system 电力调速系统238 Electrical network(power network) 电网239 Electrically operated valve 电动阀门240 Electro polarized relay 极化继电器241 electrolyte 电解质242 Electromagnetic brake 电磁制动243 Electromagnetic torque 电磁转矩244 Electromagnetical relay 电磁式继电器245 Electromechanic relay 机电的246 Electromotive force 电动势247 Emergency service 事故运行248 Emergency standby 事故备用249 Energy direction relay 能量方向继电器250 Equivalent circuit 等值电路251 Escapement/interlock/blocking 闭锁252 Excitation-loss relay 失磁继电器253 Expert system 专家系统254 Extermal characteristics 外特性255 Extinction coil 消弧线圈256 Extinguishing voltage 灭弧电压257 Extra high voltage 超高压258 Extra-high-voltage transmission line 超高压传输259 Fail safe interlock 五防装置260 Fail-safe unit 五防261 Failure rate 故障率262 False tripping 误动263 Fast ersponse 快速响应264 Fast-operate slow-release relay 快动缓释继电器265 Fast-release relay 快释放继电器266 Fault clearing time 故障切除时间267 Fault component 故障分量268 Fault detecting relay 故障检测继电器269 Fault diagnosis 故障诊断270 Fault line 故障线271 Fault location 故障定位272 Fault phase selection 故障选相273 Fault phase selector 故障选线元件274 Fault recorder 故障录波器275 Fault type 故障类型276 Fault-component algorithms 故障分量算法277 Faulted phase identification 故障相识别元件278 Faults recorder 故障录波279 Feedback 反馈280 Feeder 馈电线281 Fiber optical communication 光纤通信282 Fiber-Optic Pilot 光纤纵联保护283 Field application relay 励磁继电器;激励继电器284 Field failure protection of generator 发电机的失磁保护285 Field test 实地试验286 Filter 滤波器287 Finger 触点的接点288 Fourier algorithm 傅立叶算法289 Free-standing 独立的;无需支撑物的290 Frequency component 频率分量291 Frequency response 频率响应292 Frequency sensing 频率测量293 Frequency window 频窗294 Full-wave phase comparison protection 全波相位比较保护295 Fuse box(Fusible cutout) 熔断器296 Gaseous shield 瓦斯保护装置297 Gas-Insulater switchgear GIS 气体绝缘组合电器298 Generator 发电机299 Generator cutout relay 发电机断路继电器300 Generator Negative Current Protection 发电机负序电流保护301 Generator out of step protection 发电机失步保护302 Generator protection 发电机保护303 Generator protection for negativesequence current 发电机负序电流保护304 Generator stator single phase earth fault 发电机定子绕组单相接地保护305 Generator stator winding short circuit faults 发电机定子绕组短路故障306 Generator-transformer set 发电机-变压器组307 Graded time settings 阶梯型时间配置308 Grading 等级309 Ground fault relay 接地故障继电器310 Ground-fault of ungrounded system 小电流接地系统311 Grounding apparatus 接地装置312 Half-cycle integral algorithm 半周积分算法313 Hard strap 硬压板314 Harmonic current 正弦电流315 Harmonic restraining 谐波制动316 Healthy phases 非故障相317 Heavy load 重负荷318 Hidden failures 隐形故障319 High impedance busbar differetial protection 高阻抗母线差动保护320 High resistance 高阻321 High sensitive relay 高灵敏度继电器322 High speed impedance relay 高速阻抗继电器323 High speed signal acquisition system 高速数字信号采集系统324 High tension electrical porcelain insulator 高压电瓷绝缘子325 High voltage line 高压线路326 High-frequency direction finder 高频测向器327 High-voltage relay 高压继电器328 Immune to electromagnetic interference 不受电磁干扰329 Impedance circle 阻抗圆330 Impedance compensator 阻抗补偿器331 Impedance converter 阻抗变换器332 Impedance mismatch 阻抗失配333 Impulsing relay 冲击继电器334 Inadvertent energization 过激磁335 Incorrect tripping 误动336 Inductance couping 电感耦合337 Induction coefficient 感应系数338 Induction cup relay 感应杯式继电器339 Induction disc relay 感应圆盘式继电器340 Induction type relay 感应式继电器341 Inductor 电感342 Infeed current 助增电流343 Inrush exciting current of transformer 励磁涌流344 Instantaneous protection 瞬时保护345 Instantaneous under voltageprotection with current supervision 电流闭锁电压速断保护346 Insulation supervision device 绝缘监视347 Insulator 绝缘子348 Insulator arcing horn 绝缘子角形避雷器349 Insulator arc-over 绝缘子闪络350 Insulator bracket 绝缘子托架351 Insulator cap 绝缘子帽352 Insulator chain 绝缘子串353 Inter turn faults 匝间短路354 Interlock 连锁355 Intermittent fault 间歇故障356 Intermittent fillet weld 间接角缝焊接357 Internal fault 内部故障358 Internal resistance 内阻359 Interrupting time 断路时间360 Intertripping underreach protection 远方跳闸欠范围保护361 Inverse phase sequence protection 逆相序保护362 Inverse power protection 逆功率保护363 Isolated neutral system 中性点绝缘系统364 Jumper connection 跳线365 Kalman filter algorithm 卡尔曼滤波算法366 Laplace and Fourier transforms 拉氏和傅里叶变换367 Leased line 租用线路368 LED 发光二极管369 Line trap 线路陷波器370 Load characteristic 负载特性371 Load flow calculations 潮流计算372 Load patterns 负荷形式373 Load schedule according to frequency change 按周波减载374 Load shedding 甩负荷375 Lockout relay 闭锁出口继电器376 Locus of measured impedance 测量阻抗轨迹377 Longitudinal differential protection 纵联差动保护378 Longitudinal differential relay 纵联差动继电器379 Loss of synchronism protection 失步保护380 Low impedance busbar protection 低阻抗母线保护381 Low-frequencycomponent,subharmonic 低频分量,低次谐波382 Low-frequency high-voltage protection 低频高压试验383 Low-voltage protection 低压保护384 Low-voltage rekease relay 低压释放继电器385 Low-voltage relay 低压继电器386 Magnetic flux 磁通387 Magnetic induction 磁感应强度388 Magnetization curve 磁化曲线389 Magnetizing 磁化390 Magnetizing inrush current 劢磁涌流391 Magnitude of current 电流幅值392 Main protection 主保护393 Manipulating organ 操作单元394 Manipulation 操作395 Man-machine interface 人机对话接口396 Margin 裕度397 Measured impedance 测量阻抗398 Measurement 测量399 Measurement signal 测量信号400 Measuring unit 测量元件401 Mechanism latch 机械锁402 Memory circuit 记忆回路403 Metallic fault 金属性故障404 Micro-processor based protective relay 微机继电保护405 Microwave link protection 微波保护406 Minimum load impedance 最小负荷阻抗407 Motor-field failure relay 电动机磁场故障继电器408 Moving coil relay 动圈式继电器409 Muktiole-reclosing breaker 多次重合闸断路器410 Multi-ended circuit protection 多端线路保护411 Multi-finger contactor 多触点接触器412 Multi-phase compensated impedance relay 多相补偿式阻抗继电器413 Multiple earth 多重接地414 Multi-zone rekay 分段限时继电器415 Mutual-induction 互感416 Mutual-induction of zero sequence 零序互感的影响417 Mutually coupled lines 有互感线路418 Negative direction 反方向419 Negative phase relay 负相位继电器420 Negative sequence impedance 负序阻抗421 Negative-phase sequence impendence 负相序继电器422 Network topology 网络拓朴423 Neutral auto-transformer 中性点接地自耦变压器424 Neutral displacement protection 中性点过电压保护425 Neutral-current transformer 零序电流互感器426 Neutral-point earthing 中性点接地427 No-load release 无跳闸428 Non-linear characteristics 非线性特性429 Non-sinusoidal signal 非正弦信号430 Normal inverse 反时限431 Normally closed contacts 常闭节点432 Normally open contacts 常开节点433 Object-oriented 面向对向434 Off-peak 非峰值的435 Off-position 断开位置436 Offset impedance relay 偏移特性阻抗继电器437 Ohm relay 电阻继电器438 Oil-immersed type reactor 油浸式电抗器439 Open-phase relay 断相继电器440 Operating characteristic 动作特性441 Operating eqution(criterion) 动作方程(判据)442 Operating load 运行负载443 Operating time 动作时间444 Operational(internal)over-voltage 操作(内部)过电压445 Optical link protection 光纤保护446 Option board 选择板447 Optoelectronic coupler 光电耦合器件448 Orthogonal 正交的449 Oscillation 振荡450 Oscillator coil 振荡线圈451 Oscillatory reactivity perturbation 振荡反应性扰动452 Oscillatory surge 振荡冲击453 Out flowing current 外汲电流454 Out going line 引出线455 Out of service 退出运行456 Out of step 失步457 Outlet 出口458 Output(executive) organ 出口(执行)元件459 Over current protection 过电流保护460 Over fluxing ptrtection 过励磁保护461 Over head line 架空线462 Over load 过负荷463 Over reach blocking scheme 超范围闭锁式464 Over voltage protection 过电压保护465 Over voltage relay 过压继电器531 466 Over-current relay withunder-voltage supervision 低电压起动的过电流保护467 Over-load relay 过载继电器468 Over-load trip 过载跳闸469 Parallel 并联470 Parallel port 并联出口471 Peak value (交变量的)最大值472 Percentage differential protection 比率差动保护473 Percentage differential relay 比率差动继电器474 Permanent fault 永久性故障475 Permissive under reaching transfertrip scheme 欠范围允许跳闸式476 Permissive underreach protection 允许式欠范围保护477 Phase comparison protection 相位比较保护478 Phase comparison relay 相位比较继电器479 Phase segregated protection 分相保护480 Phase to phase fault 相间故障481 Phase-angle of voltage transformer 电压互感器的相角差482 Phase-shifting algorithm 移相算法483 Pilot protection 高频保护;纵联保护484 Pilot protection using distance relay 距离纵联保护485 Platform 平台486 Pneumatic 气动的487 Pockels effect 波克尔斯效应488 Polar characteristics 极化特性489 Polarized voltage 极化电压490 Pole-pairs 极对数491 Porcelain insulator 瓷绝缘子492 Positive sequence impedance 正序阻抗493 Potential transformer 电压互感器494 Power direction relay 功率方向继电器495 Power factlr relay 功率因数继电器496 Power failure 电源故障497 Power line carrier 电力线载波498 Power line carrier channel 高频通道499 Power line carrier protection 电力线载波保护500 Power relay 功率继电器501 Power rheostat 电力变压器502 Power swing(out of step)blocking 振荡(失步)闭锁503 Power system analysis and computation 电力系统分析与计算504 Power system control 电力系统控制505 Power system oscillation 电力系统振荡506 Power system splitting and reclosing 解列重合闸507 Power system transients 电力系统暂态508 Power-angle 功角509 Power-angle curve 功角特性曲线510 Power-transfer relay 电源切换继电器511 Power-transformer relay 电力传输继电器512 Primary 一次侧的513 Primary protection 主保护514 Private line 专用线路515 Proportional Brake Longitudinal Differential Protection 比例制动式纵差保护516 Protection against overpressure 超压防护517 Protection against unsymmetrical load 不对称负载保护装置518 Protection criterion 保护判据519 Protection device 保护设备;防护设备520 Protection feature 保护特性521 Protection of generator-transformer set 发电机--变压器保护522 Protection reactor 保护电抗器523 Protection screen 保护屏524 Protection switch 保护开关525 Protective cap 保护帽526 Protective casing 保护外壳527 Protective cover(protective housing) 保护罩528 Protective device(protective gear) 保护装置529 Protective earthing 保护接地530 Protective earthing outer insulation 保护接地外绝缘531 Protective equipment 保护设备532 Protective gap 保护间隙533 Protective ground 保护性接地534 Protective link 保护线路535 Protective panel 保护屏柜536 Protective relaying equipment 继电保护装置537 Protective switch 保护开关538 Protective system 保护系统539 Protective transformer 保护变压器540 PT line-break PT断线541 Pulse 脉冲542 Pulse relay(surge relay) 冲击继电器543 Quadrature 正交544 Quadrature axis 交轴545 Quasi-steady state 准稳态546 Rated armature current 额定电枢电流547 Rated burden/Rated load 额定负载548 Rated primary voltage 一次额定电压549 Rated secondary voltage 二次额定电压550 Ratio restrain 比率制动551 Reach(setting)of protection 保护范围(定值)552 Reactance 电抗553 Reactance bond 电抗耦合554 Reactance of armature reaction 电枢反应电抗555 Reactive power cimpensation 无功补偿器556 Reactor grounded neutral system 中性点电抗接地系统557 Receiver machine 收信机558 Reclaim time 复归时间559 Recloser 重合闸560 Rectangular wave 矩形波561 Rectifier bridge 整流桥562 Recursive least square algorihm 最小二乘算法563 Redundancy of relaying system 保护配置的冗余度564 Relay acceleration after auto-reclosing 重合闸后加速保护565 Relay acceleration before auto-reclosing 重合闸前加速保护566 Relay act trip 继电器操作跳闸567 Relay based on incremental quantity 增量(突变量)继电器568 Relay based on transient component 暂态保护569 Relay location 保护安装处570 Relay must-operate value 继电器保证启动值571 Relay overrun 继电器超限运行572 Relay system configuration 保护配置573 Remote backup protection 远后备保护574 Remote controlled 遥控的575 Remote Terminal Unit 远程终端设备576 Remote-control apparatus 远程控制设备577 Reserve bus 备用母线578 Residual current 零序电流579 Residual current relay 零序电流继电器580 Residual magnetism 剩磁581 Resistance grounded neutral system 中性点接地方式582 Resultant torque 合成转矩583 Returning current of protection device 保护装置返回584 Reverse power flows 功率逆潮流585 Rotor 转子586 Rotor earth-fault protection 转子接地保护587 Rwliability 可靠性588 Sampling and holding 采样保持589 Sampling interruption service program 采样中断服务程序590 Satuation detection 饱和检测591 Saturation curve 饱和曲线592 SCADA 监控与数据采集593 Scalarproduct restraint differentrial relay 标积制动式差动继电器594 Scan 扫描595 Sealed transformer 密封式变压器596 Second harmonic escapement 二次谐波制动597 Secondary circuit 二次回路598 Section selectovity of protection 保护的区选择性599 Sectionalizer 分段断路器600 Security 安全性601 Segregated current differential protection 分相电流差动保护602 Selectivity 选择性603 Self excited 自励604 Self reset 自动复归605 Self-check 自检606 Self-energizing 自激的607 Self-induction 自感608 Self-polarize mho 自极化姆欧(导纳)继电器609 Self-polarizing 电流极化继电器610 Semiconductor diode 半导体二极管611 Semi-orthogonal wavelet 半正交小波612 Sensitive polarized 灵敏极化继电器613 Sensitivity 灵敏性614 Sequence of events recorder 事件顺序记录器615 Sequential tripping 顺序跳闸616 Serial port 串行接口617 Series 串联618 Series excited 串励619 Sesitive relay 灵敏继电器620 Setting calculation 整定计算621 Severe gas protection 重瓦斯保护622 Short circuit calculations 短路计算623 Short-term load forecasting 短期负荷预测624 Shunt 旁路;并联625 Shunt excited 并励626 Shunt running 潜动627 Shutter 挡板628 Sigle-phase transmission line 单相传输线629 Single-chip microcontroller 单片机630 Sinusoidal variations 正弦变量631 Slight gas protection 轻瓦斯保护632 Slow-to release relay 缓放继电器633 Soft strap 软压板634 Solenoid relay 螺管式继电器635 Spark gap 火花间隙636 Speed 速动性637 Splitphase transverse differential protection 裂相横差保护638 Spottily excited 他励639 Star 星形640 Start up(Pick up) 起动641 Starting current of protection device 保护装置启动电流642 State estimation 状态估计643 Static distance relay 静态距离继电器644 Static relay 静电继电器645 Stator earth-fault protection 定子接地保护646 Stator ground protection based onzero sequence current 零序电流构成的定子接地保护647 Step-type distance relay 分段距离继电器648 Strap 压板649 Subsystem 子系统650 Successive approximation typw A/D 逐次逼近型A/D651 Superimposed component protection 叠加分量保护652 Surge guard 冲击防护653 Surge impedance 波阻抗654 Surge voltage 冲击电压655 Sustained faults 持续性故障656 Sustained overload 持续657 Switch cabinet 开关柜658 Switch station 开关站659 Switching surge 开关冲击660 Symmetrical 对称的661 Symmetrical comoinents 对称分量662 Synchronization check 同期检查663 Synchronized sampling 采样同步664 Synchronizing by reference parameter vector 参数矢量同步法665 Synchronous condenser 同步调相机666 Synchronous reactance 同步电抗667 Synchronous speed 同步转速668 Tap 分接头669 Telemeter data 遥测数据670 Temperature limiting relay 过热继电器671 Temporary fault 瞬时性故障672 Terminal board 端子排673 Terminal voltage 端电压674 Test-block 试验端子675 Test-plug 试验插头676 The applied voltage 外施电压677 The no-load power factor 空载功率因数678 Thermal protection 过热保护679 Thermostat relay 恒温继电器680 Three phase one shot reclosure 三相一次重合闸681 Three terminal line protection 三端线路保护682 Through-fault 穿越故障683 Thyristor 晶体管684 Tie line 联络线685 Time interval 时间间隔686 Time over-current 时限过电流687 Time pulse relay 定时脉冲继电器688 Time-current characteristic 时间-电流特性689 Time-delay relay 时间继电器690 Time-invariant 不变时的691 Timer relay 延时继电器692 Timing relay(Timed relay) 定时继电器693 Topological information 拓朴信息694 Topology analysis 拓朴分析695 Torque-angle 转矩角696 Torsional vibration 扭转振动697 Tower 杆塔698 Transfer of auxiliary supply 后备电源切换699 Transformation matrix 变换矩阵700 Transformer protection schemes 变压器保护配置原则701 Transient analysis 暂态分析702 Transistor(type)relay 晶体管(型)继电器703 Transition impedance 过渡阻抗704 Transmission line malfunction 输电线路异常运行705 Transmitting relay 发送继电器706 Transverse differential protection 横差保护707 Transverse differential protectionfor Generator turn-to-turn faults 发电机横差保护708 Traveling wave 行波709 Traveling wave protection 行波保护710 Traveling wave relay 行波继电器711 Traveling wave signal 行波信号712 Trigger 触发器713 Trip by lical protection 保护跳闸714 Trip relay 跳闸继电器715 Trip switch 跳闸开关716 Tripping battery 跳闸用蓄电池717 Troidal 环形的;曲面;螺旋管形718 Turn to turn gault 匝间短路719 Two star connection scheme 两相星形接线方式720 Two-phase grounding fault 两相接地短路故障721 Two-phase short circuit fault 两相短路故障722 Two-position relay 二位置继电器723 Ultra-high voltage transmission 超高压输电724 Unavailability 不可用率;失效率725 Unbalance current 不平衡电流726 Unblocking signal 解除闭锁信号727 Under power protection 低功率保护728 Under power relay 低功率继电器729 Under-frequency protection 低频保护730 Under-groind cable 地埋电缆731 Under-impedance relay 低阻抗继电器732 Under-load relay 负载不足继电器733 Under-voltage protection 欠压保护734 Under-voltage relay 欠压继电器735 Under-voltage release736 Under-voltage trip 低电压跳闸737 Unit protection 单元式保护738 Vacuum circuit breaker 真空开关739 Vacuum-tube relay 电子管继电器740 Variable bridge principle protection 变电桥保护741 Vibration 振荡742 V oltage balance relay 电压平衡继电器743 V oltage differential relay 电压差动继电器744 V oltage dip 电压下降745 V oltage inception angle 电压初始角746 V oltage instability 电压不稳747 V oltage regulation 电压调节748 V oltage responsive relay 电压响应继电器749 V oltage selection relay 电压选择继电器750 V oltage sensor 电压传感器751 Voltage traveling wave 电压行波752 Voltage waveform destortion 电压波形畸变753 Voltage-controlled over-current relay 电压控制过电流继电器754 Volt-amphere characteristic 伏安特性755 Wave impedance 波阻抗756 Wave propagation velocity 波速757 Waveform 波形758 Waveform identification 波形识别法759 Wavelet transform 小波变换760 Weak power end protection 弱电源端保护761 Winding-to-winding insulation 绕组间的绝缘762 Window function 窗函数763 Zero drift 零点漂移764 Zero mode component of traveling wave 零模行波765 Zero-power-factor 零功率因数766 Zero-sequence current 零序电流767 Zero-sequence current compensation 零序电流补偿768 Zero-sequence current relay 零序电流继电器769 Zero-sequence current transducer 零序电流互感器770 Zero-sequence impedance 零序阻抗771 Zero-sequence protection 零序保护。

双三相永磁同步电机驱动系统简易容错控制方法研究

双三相永磁同步电机驱动系统简易容错控制方法研究

第27卷㊀第12期2023年12月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.12Dec.2023㊀㊀㊀㊀㊀㊀双三相永磁同步电机驱动系统简易容错控制方法研究石鹏川1,㊀王学庆1,㊀贺明智1,㊀毛耀2,3,㊀王政4(1.四川大学电气工程学院,四川成都610065;2.中国科学院光电技术研究所,四川成都610209;3.中国科学院光束控制重点实验室,四川成都610209;4.东南大学电气工程学院,江苏南京210096)摘㊀要:针对双三相电机驱动系统开路故障容错控制问题,依据双三相电机空间矢量解耦理论,提出一种简易的容错控制方法,即虚拟健全系统㊂研究了双三相永磁同步电机驱动系统单相缺相和开关管故障,给出了基于电流补偿的容错控制和最小铜耗容错控制的参考电流,其中以绕组总铜耗最小为优化目标得到的容错参考电流为全局最优铜耗解㊂采用重复控制器实现非常规容错控制参考电流的有效精确跟踪㊂提出的容错控制方法可确保系统容错切换过程中,整体控制框架㊁数学模型㊁调制策略均保持不变,仅需改变参考电流,降低了容错控制的复杂度㊂同时,提出的容错方法也可以扩展到其他相数多相电机的容错控制㊂关键词:双三相永磁同步电机;开路故障;容错控制;虚拟健全系统;最小铜耗;空间矢量解耦DOI :10.15938/j.emc.2023.12.012中图分类号:TM341文献标志码:A文章编号:1007-449X(2023)12-0117-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-02-21基金项目:国家自然科学基金(62303333);成都市重点研发项目(2022-YF05-00228-SN )作者简介:石鹏川(1997 ),男,硕士研究生,研究方向为多相电机控制;王学庆(1990 ),男,博士,副研究员,硕士生导师,研究方向为电机控制,电力电子变换器控制;贺明智(1979 ),男,博士,研究员,博士生导师,研究方向为电力电子变换器拓扑及其数字控制;毛㊀耀(1978 ),男,博士,研究员,博士生导师,研究方向为光电跟踪,稳定与自主控制;王㊀政(1979 ),男,博士,教授,博士生导师,研究方向为电机驱动及应用,新能源与分布式发电㊂通信作者:王学庆Simple fault-tolerant control of dual three-phasePMSM drivesSHI Pengchuan 1,㊀WANG Xueqing 1,㊀HE Mingzhi 1,㊀MAO Yao 2,3,㊀WANG Zheng 4(1.College of Electrical Engineering,Sichuan University,Chengdu 610065,China;2.Institute of Optics and Electronics,ChineseAcademy of Sciences,Chengdu 610209,China;3.Key Laboratory of Optical Engineering,Chinese Academy of Sciences,Chengdu 610209,China;4.School of Electrical Engineering,Southeast University,Nanjing 210096,China)Abstract :To solve the problem of open circuit fault-tolerant control of dual three-phase motor drive sys-tem,a simple fault-tolerant control method,virtual healthy system,was proposed based on the space vec-tor decoupling theory of dual three-phase motor.The single open-phase and open-switch fault of dual three-phase permanent magnet synchronous motor drive system were studied,and the reference current of fault-tolerant control based on current compensation and minimum copper losses fault-tolerant control were given,in which the fault-tolerant reference current obtained with the minimum total winding copper con-sumption as the optimization objective is the global optimal copper consumption solution.The repetitivecontroller was used to realize the effective and accurate tracking of the reference current of unconventional fault-tolerant control.The proposed fault-tolerant control method can ensure that the overall control frame-work,mathematical model and modulation strategy remain unchanged in the process of fault-tolerantswitching.Only the reference current needs to be changed,which reduces the complexity of fault-tolerantcontrol.At the same time,the proposed fault-tolerant method can also be extended to the fault-tolerant control of other multiphase motors.Keywords:dual three-phase PMSM;open-circuit faults;fault-tolerant control;virtually healthy system; minimum copper losses;space vector decoupling0㊀引㊀言近年来,多相电机驱动在工业界中得到越来越广泛的关注,尤其适合大功率高可靠性的应用场合,例如电梯㊁航空航天㊁电动汽车和舰船推进等应用领域[1-4]㊂和传统的三相电机比较,多相电机具有低转矩脉动㊁大功率㊁高可靠性和容错能力强等优点[5-7]㊂由于双三相电机通过两套三相绕组可以消除六次转矩脉动[8],在众多多相电机中优势明显㊂与三相电机相比,多相电机具有更多的冗余相数,因而具有更强的容错能力㊂通常可转换电力电子变换器的短路故障为开路故障,因而电机驱动中的开路故障研究甚为广泛[9]㊂传统意义上,为获得等效旋转磁动势,对于电机驱动的缺相故障需要更改调制方案㊁容错参考电流和整体的控制框架等㊂文献[10]把缺相故障的六相电机重构成五相电机,基于新的五相电机模型和新的空间矢量图实现电机的容错控制㊂文献[11]将五相电机缺相故障下新构建电压空间矢量用作模型预测控制的候选矢量并配合容错电流参考值来实现缺相故障容错控制㊂在多相电机驱动开关管的开路故障容错控制方面,该类故障通常直接看作缺相故障进行容错[12]㊂然而,该方案无法充分利用故障桥臂相的剩余健康开关管,因而没充分利用多相电机驱动系统的容错性能㊂传统的电机容错控制方法为电机的容错控制奠定了基础,提供了许多切实可行的解决方案,然而依然存在一些问题有待解决㊂例如,多相电机的传统容错控制策略通常需要改变电机模型㊁调制策略和控制框架,使容错控制复杂度增加,进一步增加容错控制的计算量,降低了直流侧直流电压的利用率,同时在电机容错过渡过程中易造成系统的不稳定㊂为了解决传统多相电机驱动系统容错控制方法存在的问题,本文针对多相电机驱动系统开路故障提出基于虚拟健全系统思路的简易容错控制方法,简化系统设计,降低容错控制复杂度㊂提出的容错控制方法同样适用于其他相数的多相电机驱动系统㊂1㊀双三相电机数学模型1.1㊀六相静止坐标系数学模型图1所示为两电平双三相永磁同步电机驱动系统结构图,两套三相绕组空间互差30ʎ,中性点相互隔离㊂图1㊀两电平双三相永磁同步电机驱动系统结构图Fig.1㊀Configuration of two-level inverter-fed dualthree-phase PMSM drive忽略磁饱和,漏电感和铁耗影响,并将电机绕组看作正弦均匀分布,以简化双三相永磁同步电机的数学模型㊂双三相永磁同步电机六相静止坐标系下的电压方程和磁链方程可表示如下:u s=R s i s+dψs d t;ψs=L s i s+ψf F(θe)㊂}(1)其中:u s为定子电压矢量;i s为定子电流矢量;ψs为定子磁通矢量;L s为定子电感矢量;ψf为永磁铁(转子)磁通峰值;θe为转子的电角度㊂位置函数为:㊀F(θe)=[cos(θe)cos(θe-2π3)cos(θe+2π3) cos(θe-π6)cos(θe-5π6)cos(θe-π2)]㊂(2) 1.2㊀矢量空间解耦矩阵双三相永磁同步电机是一个高阶非线性强耦合系统,上述特征使分析和控制变得较为复杂㊂通过运用空间矢量解耦(vector space decomposition, VSD)方法[13],双三相永磁同步电机的数学模型可811电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀解耦为3个两两正交的坐标系:α-β,x -y ,o 1-o 2㊂α-β平面下的分量参与电机的机电能量转换,因此α-β平面也称作转矩平面;x -y 平面下的分量不参与机电能量转换,但产生额外谐波损耗,因此x -y 平面称为谐波平面;o 1-o 2平面对应零序分量㊂双三相永磁同步电机空间矢量解耦矩阵如下:T VSD=162-1-13-3003-311-22-1-1-3300-3311-2222000000222éëêêêêêêêêêùûúúúúúúúúú㊂(3)1.3㊀同步旋转坐标系数学模型中性点隔离的双三相永磁同步电机中ABC 三相线性相关(i A +i C +i B =0),DEF 三相线性相关(i D +i E +i F =0),故驱动系统的电流控制维度是四维㊂从空间矢量解耦矩阵角度理解,中性点隔离的双三相永磁同步电机不存在零序分量,剩余α-β-x -y 四维控制变量㊂通过将双三相电机模型α-β坐标系转换到d -q 同步旋转坐标系,可进一步简化双三相电机数学模型㊂双三相电机同步旋转变换矩阵为T αβңdq=cos(θe )sin(θe )O 1ˑ4-sin(θe )cos(θe )O 1ˑ4O 4ˑ1O 4ˑ1I 4ˑ4éëêêêêùûúúúú㊂(4)联立式(1)~式(4),可以得到中性点隔离的双三相永磁同步电机旋转坐标系下解耦的电压方程和磁链方程:u d u q u x u y éëêêêêêùûúúúúú=R s i d i q i x i y éëêêêêêùûúúúúú+d d t ψd ψq ψx ψy éëêêêêêùûúúúúú+ω-ψq ψd 00éëêêêêêùûúúúúú;(5)ψd ψq ψx ψy éëêêêêêùûúúúúú=L d000L q 0000L ls0000L ls éëêêêêêùûúúúúúi d i q i x i y éëêêêêêùûúúúúú+ψf 000éëêêêêêùûúúúúú㊂(6)式中:L d 和L q 分别为d 轴和q 轴电感;L ls 为定子漏电感㊂双三相电机电磁转矩方程可表示为T e =3n p (ψf i q +(L d -L q )i d i q )㊂(7)2㊀简易容错控制2.1㊀虚拟健全系统传统双三相电机缺相故障容错控制方法通常将故障电机看作非常规的五相电机,如图2(a)所示㊂因此,该类方法通常需要构造新电机的数学模型㊁解耦控制和空间矢量图㊂本文提出的虚拟健全双三相电机,将缺相故障下的双三相电机看作一个虚拟健全的双三相电机,如图2(b)所示㊂新增的约束条件为故障相的参考电流为零㊂双三相电机采用虚拟健全容错思路,无须改变故障电机的数学模型㊁控制框架和调制策略,大幅简化了容错控制系统的设计,为双三相电机容错控制提供了一种新的思路㊂图2㊀双三相缺相故障Fig.2㊀Open-phase fault in dual three-phase PMSM双三相电机驱动系统中开关管开路故障同样可采用虚拟健全系统思路㊂如图3所示,不同状态下的逆变器电流流通路径示意图㊂图中,高电平代表S 1导通,低电平代表S 1关断,S 1和S 2开关状态互补㊂开关管S 1开路故障下,电流i >0时,高电平强制转换为低电平,S 2导通,电流i <0时,逆变器通过二极管D 1导通续流,不受S 1开路故障影响,如图3(a)所示㊂开关管S 2开路故障类似,电流i >0时,系统不受S 2开路故障影响㊂利用虚拟健全系统思路,对于A 相S 1开路故障,增加的电流约束条件:参考电流i ∗A <0㊂传统开关管开路故障容错方法(移除整个故障桥臂)相比,提出方法充份利用了故障桥臂剩余开关管,提高了器件的利用率㊂综上所述,虚拟健全系统的核心在于将故障下的双三相电机驱动系统看作虚拟健全的双三相电机驱动,仅增加电流约束,不更改系统模型㊂911第12期石鹏川等:双三相永磁同步电机驱动系统简易容错控制方法研究图3㊀开关管开路故障(正常)电流流通路径Fig.3㊀Current path under normal state and differentfault states2.2㊀基于电流补偿的容错参考电流优化方法双三相电机容错控制的基本目标为消除故障带来的转矩波动㊂本文通过电流补偿的方式建立等效旋转磁动势以实现容错运行下的平稳转矩输出㊂双三相电机ABC 三相电流和DEF 三相电流分别进行Clark 变换到α1-β1和α2-β2坐标系,可表示为i α1i β1i α2i β2éëêêêêêùûúúúúú=162-1-100003-30000003-3000011-2éëêêêêêùûúúúúúi Ai B i C i D i E i F éëêêêêêêêêêùûúúúúúúúúú㊂(8)基于式(3)㊁式(4)㊁式(8)可以得到正常运行下(i d =0,i x =0,i y =0)双三相电机q 轴电流和双坐标系下电流的关系:i α1=-0.5i q sin(θe );i β1=0.5i q cos(θe );i α2=-0.5i q sin(θe );i β2=0.5i q cos(θe )㊂üþýïïïïï(9)本文以A 相故障为例,分析基于电流补偿容错控制下的参考电流㊂首先,根据式(8),A 相缺相故障(i A =0)下,可以得到i ∗α1=0,为了补偿缺失的i ∗α1可得到双坐标系常考值关系式:i ∗α1=0;i ∗β1=0.5i ∗q cos(θe );i ∗α2=-i ∗q sin(θe );i∗β2=0.5i ∗q cos(θe )㊂üþýïïïïïï(10)根据式(10)可以画出不同相缺故障下双三相电机的双α-β坐标系参考电流轨迹,如图4所示㊂图中绿色轨迹代表正常运行下的参考电流㊂红色轨迹FT-A 代表A 相缺相故障容错参考电流轨迹㊂FT-B 至FT -F 分别代表其他相的缺相故障下的容错参考电流轨迹㊂从图4中可以看出,通过采用健全三相绕组对故障三相绕组的缺失电流进行补偿即可建立等效的旋转磁动势,实现缺相故障基于电流补偿容错控制㊂图4㊀双α-β坐系不同缺相故障基于电流补偿的容错参考电流轨迹Fig.4㊀Current compensation based fault-tolerant cur-rent reference trajectories of double α-βcoor-dinate at different open-phase fault结合式(3)和式(8)分别进行逆变换,可得双坐标系和解耦坐标系下的变换矩阵:i αi βi x i y éëêêêêêùûúúúúú=1010010110-100-101éëêêêêêùûúúúúúi α1i β1i α2i β2éëêêêêêùûúúúúú㊂(11)结合式(4)㊁式(10)㊁式(11)可得到x -y 平面的参考电流:i ∗x =i ∗q sin(θe );i∗y=0㊂}(12)对于变换器A 相桥臂S 1开关管开路故障,同样采用上述分析方法,可以得到容错下的x -y 平面的参考电流如下:i ∗x=0,sin(θe )>0;i ∗q sin(θe ),sin(θe )<0;{i ∗y=0㊂üþýïïïï(3)变换器A 相桥臂S 1开关管开路故障基于电流补偿容错控制下的双坐标系参考电流轨迹如图5所021电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀示㊂通过对比式(12)和式(13)可知,采用提出的开关管开路故障基于电流补偿容错控制方法可进一步降低电机铜耗,提升转矩输出能力㊂图5㊀双α-β坐标系A 相S 1开关管开路故障基于电流补偿容错参考电流轨迹Fig.5㊀Current compensation based fault-tolerant cur-rent reference trajectories of double α-βcoor-dinate under S 1open-switch fault in Phase-A2.3㊀基于最小铜耗的容错参考电流优化方法双三相电机容错控制的目标除了平稳转矩,还可以降低绕组铜耗㊂双三相电机绕组总铜耗为P Cu =ʏT 0ðn =F n =ARi 2nd tT㊂(14)因电机各相绕组均匀分布,故各相绕组电阻均为R ,T 为基波电流周期㊂同样以A 相缺相故障(i A =0)为例,来分析容错控制下的参考电流㊂为简化分析对参考值进行标幺化,以i q 为基值,故i q (pu)=1,由式(12),可得A 缺相故障i y =0,再联合式(3)的逆变换和式(14),可得到仅由i d 的表达的铜耗为P Cu =32R ʏ2π[f (i d )+3]d θe2π;f (i d )=(i d -2)i d sin(2θe )-cos(2θe )+3i 2d ㊂üþýïïïï(15)以式(15)中P Cu 最小为优化目标,通过优化i d电流波形,可得到双三相电机故障下绕组总铜耗最小的参考电流,具体优化分析如下㊂f (i d )满足式(16),即对每个θe ,存在i d 使f (i d )最小㊂∀θe ɪ(0,2π),∃i d ɪ(-1,1)⇒min f (i d )㊂(16)如果满足每个θe 的最小f (i d ),则P Cu 必然最小㊂把(0,2π)区间n -1等分,横坐标对应θk (k =1,2, ,n ),对每一个θk (常数),f (i d )仅仅是关于i d 表达式,i d 从-1开始到1结束,每次增加一个较小的偏移量δ,如果f (i d )变小更新i d k ㊂通过在区间(-1,1)遍历搜索,求出f (i d )最小值对应的i d k ㊂即可求出最小铜耗下全局最优的i d 离散曲线㊂再根据数据点(θk ,i d k ),进行曲线拟合,可得到近似的最小铜耗i d 表达式㊂A 相缺相故障最小铜耗下的容错参考电流如下:i ∗d =0.3431i ∗q sin(2θe )-0.05888i ∗q sin(4θe )+0.01023i ∗q sin(6θe );i ∗x =i ∗q sin(θe )-i ∗d cos(θe);i ∗y =0㊂üþýïïïïï(17)从图6可知,拟合的最小铜耗表达式的曲线几乎和离散的最小铜耗离散数据点重合㊂本研究以隐极式永磁同步电机为研究对象,故d 轴电感L d 和q 轴电感L q 相等㊂根据式(7)可知转矩T e =3n e ψf i q ,因此在隐极式电机中i d 不影响转矩的波动,转矩由i q 决定,而i d 的变化仅影响铜耗㊂通过优化电流i d 波形来实现定子绕组总铜耗最小,同时保持i q 为恒定值,便可实现双三相电机转矩平稳运行㊂对于A 相桥臂S 1开关管开路故障最小铜耗容错控制参考电流优化方法,可参照开关管开路故障基于电流补偿容错控制下的参考电流优化方法相同思路进行设计,此处不再赘述㊂图6㊀最小铜耗下的离散曲线和拟合曲线Fig.6㊀Discrete curve and fitting curve with minimum-copper-loss constraint2.4㊀非常规电流控制器容错运行下的非常规参考电流对电流控制提出了更高的要求㊂传统的PI 控制器,能有效跟踪直流信号,对非常规的容错电流无能为力㊂无差拍控制器能较好地跟踪非常规电流,但是依赖控制系统数121第12期石鹏川等:双三相永磁同步电机驱动系统简易容错控制方法研究学模型㊂滞环控制器具有较快的响应速度,但是控制精度较低,对采样时间有较高的要求㊂为了对周期性输入信号进行高精度的有效跟踪,日本学者In-oue 等人首次提出了重复控制[14]㊂除此之外,重复控制能有效地抑制干扰信号,且不依赖控制系统数学模型㊂因此重复控制非常适合双三相电机系统容错运行的周期性非常规电流跟踪㊂本文采用改进型重复控制如图7所示,其中:W (s )为低通滤波器;τd 为跟踪周期电流的周期;G c (s )为动态补偿器也称为稳态补偿器㊂图7㊀重复控制器Fig.7㊀Repetitive controller重复控制器的核心主要是内模模型的应用[15],内模模型的零极图如图8所示[16]㊂内模模型在虚轴上的零点j kωτd (k =0,ʃ1,ʃ2,ʃ3, )正好可以对消跟踪的周期信号的极点㊂因此对角频率为ωτd或ωτd 角频率的倍频周期信号都能进行有效的无静差跟踪㊂那么对于式(17)中的最小铜耗下的容错参考电流可实现有效跟踪㊂实际重复控制的作用效果和无穷多个比例谐振控制器(谐振频率j kωτd ;k =0,ʃ1,ʃ2,ʃ3, )并联的效果类似,但只需要一个控制器便可实现多个频率信号的有效跟踪㊂图8㊀内模模型零极图Fig.8㊀Zero-pole plot of the internal model2.5㊀统一容错控制架构基于上述分析,可以得到双三相统一容错控制框架,如图9所示㊂无论是常规的容错控制还是最小铜耗容错控制,无论是缺相故障还是开关管开路故障,都可以采用统一容错控制框架㊂双三相电机采用双SVM 调制,ABC 和DEF 采用相同的三相两电平SVM 调制,RC(repetitive control)为重复控制器,用于跟踪非常规参考电流i ∗x ㊁i ∗y 和i ∗d ,PI 控制器用于实现直流参考信号n ∗和i ∗q 的跟踪㊂双三相电机正常运行及容错运行均采用图9所示统一控制框架㊂正常运行切换到容错运行仅须将电流参考值i ∗x ㊁i ∗y 和i ∗d 从0更改为式(12)㊁式(13)或式(17),即可实现双三相电机容错控制的简易切换㊂图9㊀双三相PMSM 容错统一控制框架Fig.9㊀Universal fault-tolerant control framework of dual three-phase PMSM drive221电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀3㊀实验结果为了验证提出容错控制方法的有效性,分别对双三相永磁同步电机驱动系统缺相故障和开关管开路故障下的基于电流补偿容错控制和最小铜耗容错控制进行实验验证,实验测试平台如图10所示,其中实验参数如表1所示㊂图10㊀双三相PMSM 容错统一控制实验平台Fig.10㊀Experimental rig for universal fault-tolerantcontrol of dual three-phase PMSM drive表1㊀实验参数Table 1㊀Experimental parameters㊀㊀参数数值极对数n p5d 轴电感L d /mH 4.5q 轴电感L q /mH 4.5永磁磁通ψf /Wb0.038定子绕组电阻R s /Ω0.5参考转速n /(r /min)300负载转矩T L /(N㊃m)5开关频率f /kHz10图11为A 相缺相故障下基于电流补偿容错控制实验波形㊂图11(a)中,A 相缺相故障导致A 相电流为0,在电流闭环控制下其他相电流都有较高的正弦度㊂由DEF 相绕组电流补偿,DE 相的电流大于B 相电流,和前述的理论分析一致㊂图11(b)和图11(c)中,d -q -x -y 轴电流均能进行无静差的有效跟踪,尤其是x 轴的正弦信号,采用重复控制可实现无静差有效跟踪㊂从图11(d)中可以看出容错运行下的转矩输出平稳,转速波动小㊂验证了缺相故障下基于电流补偿容错控制方法实现平稳转矩有效性㊂图11㊀A 相缺相故障容错基于电流补偿容错控制实验波形Fig.11㊀Phase-A open-phase experiment waveform withcurrent compensation based fault-tolerant con-trol图12为A 相S 1开关管开路故障基于电流补偿容错控制实验波形㊂由图12(a)可知,相电流在两个模态之间交替切换㊂对比图11(a),可以发现DE321第12期石鹏川等:双三相永磁同步电机驱动系统简易容错控制方法研究的电流峰峰值显著降低,得益于充分利用故障桥臂剩余的健全开关管㊂开关管故障容错运行下半个基波周期处在缺相容错运行模式,半个基波周期处在正常运行模式㊂图12(b)和图12(c)中,重复控制依旧能够确保直流信号及x轴的非常规周期信号的有效闭环跟踪㊂图12(d)中,容错运行下转矩输出平稳,转速波动小㊂图12㊀A相S1故障基于电流补偿容错控制实验波形Fig.12㊀Phase-A S1open circuit experiment waveform with current compensation based fault-tolerant control图13为A相缺相故障最小铜耗容错控制实验波形㊂图13(a)可知,DE相电流幅值大于B相电流㊂图13(b)和图13(c)中,d-q-x-y轴电流均能有效跟踪其给定的最小铜耗参考电流㊂对d轴和x轴非常规电流信号闭环控制采用重复控制器,依旧实现高精度控制㊂从图13(d)中可以看出,采用提出的最小铜耗容错控制方法可确保容错运行下转矩和转速的平稳输出㊂图13㊀A相缺相故障最小铜耗容错控制实验波形Fig.13㊀Phase-A open-phase experiment waveform with minimum-copper-loss control421电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图14为A 相S 1开关管开路故障最小铜耗控制实验波形㊂图14(a)中,各相电流在最小铜耗缺相运行模式和正常运行模式之间交替切换㊂从图14(b)和图14(c)可以看出重复控制器能确保给定开关管开路故障最小铜耗容错控制下非常规参考电流的有效跟踪㊂最终得以实现转矩和转速的平稳输出,如图14(d)所示㊂图14㊀A 相S 1故障最小铜耗控制实验波形Fig.14㊀Phase-A S 1open-circuit experiment waveformwith minimum-copper-loss control4㊀结㊀论本文以双三相电机永磁同步电机驱动系统为研究对象,提出了一种开路故障简易容错控制方法,提出方法在开路故障前后无须改变系统的控制框架㊁调制策略㊁电机数学模型,仅更改电流参考值即可实现容错控制,降低了容错控制的复杂度㊂本文还提出了基于电流补偿参考电流优化和基于最小铜耗参考电流优化两种电流优化控制方法㊂在开关管开路故障下,通过充分利用故障桥臂健全开关管可进一步降低容错运行铜耗㊂论文实验结果充分验证了提出容错控制方法的有效性㊂参考文献:[1]㊀LEVI E,BARRERO F,DURAN M J.Multiphase machines anddrives-revisited[J].IEEE Transactions on Industrial Electronics,2016,63(1):429.[2]㊀张丽,朱孝勇,左月飞.电动汽车用转子永磁型无刷电机与控制系统容错技术综述[J ].中国电机工程学报,2019,39(6):1792.ZHANG Li,ZHU Xiaoyong,ZUO Yuefei.Overview of fault-toleranttechnologies of rotor permanent magnet brushless machine and its control system for electric vehicles[J].Proceedings of the CSEE,2019,39(6):1792.[3]㊀刘自程,郑泽东,彭凌,等.船舶电力推进中十五相感应电机同轴运行及容错控制策略[J].电工技术学报,2014,29(3):65.LIU Zicheng,ZHENG Zedong,PENG Ling,et al.Fixe joint double fifteen phase induction motor control and fault-tolerant control in ship propulsion system[J].Transactions of China Electrotechnical Society,2014,29(3):65.[4]㊀陶涛,赵文祥,程明,等.多相电机容错控制及其关键技术综述[J].中国电机工程学报,2019,39(2):316.TAO Tao,ZHAO Wenxiang,CHENG Ming,et al.Review on fault-tolerant control of multi-phase machines and their key technologies [J].Proceedings of the CSEE,2019,39(2):316.[5]㊀WANG Xueqing,WANG Zheng,GU M,et al.Diagnosis-free self-healing scheme for open-circuit faults in dual three-phase PMSM drives[J ].IEEE Transactions on Power Electronics,2020,35(11):12053.[6]㊀MENGONI M,ZARRI L,TANI A,et al.High torque density con-trol of multiphase induction motor drives operating over a widespeed range [J].IEEE Transactions on Industrial Electronics,2015,62(2):814.521第12期石鹏川等:双三相永磁同步电机驱动系统简易容错控制方法研究[7]㊀WANG Xueqing,WANG Zheng,XU Zhixian,et al.Diagnosis andtolerance of common electrical faults in T-type three-level inverters fed dual three-phase PMSM drives[J].IEEE Transactions on Power Electronics,2020,35(2):1753.[8]㊀NELSON RH,KRAUSE PC.Induction machine analysis for arbi-trary displacement between multiple winding sets[J].IEEE Trans-actions on Power Apparatus and Systems,1974,93(3):841. [9]㊀ZHANG Wenping,XU Dehong,ENJETI P N,et al.Survey onfault-tolerant techniques for power electronic converters[J].IEEE Transactions on Power Electronics,2014,29(12):6319. [10]㊀MUNIM W N W A,DURAN M J,CHE HS,et al.A unified anal-ysis of the fault tolerance capability in six-phase induction motordrives[J].IEEE Transactions on Power Electronics,2017,32(10):7824.[11]㊀HUANG Wentao,HUA Wei,CHEN Fuyang,et al.Model predic-tive current control of open-circuit fault-tolerant five-phase flux-switching permanent magnet motor drives[J].IEEE Journal of E-merging and Selected Topics in Power Electronics,2018,6(4):1840.[12]㊀WANG Wei,ZHANG Jinghao,CHENG Ming,et al.Fault-tolerantcontrol of dual three-phase permanent-magnet synchronous ma-chine drives under open-phase faults[J].IEEE Transactions onPower Electronics,2017,32(3):2052.[13]㊀ZHAO Yifan,LIPO T A.Space vector PWM control of dualthree-phase induction machine using vector space decomposition[J].IEEE Transactions on Industry Applications,1995,31(5):1100.[14]㊀INOUE T,NAKANO M,KUBO T,et al.High accuracy control ofa proton synchrotron magnet power supply[J].IFAC ProceedingsVolumes,1981,14(2):3137.[15]㊀FRANCIS,B.A,WONHAM W M F.The internal model princi-ple for linear multivariable regulators[J].Applied Mathematicsand Optimization,1975,2:170.[16]㊀S.HARA,Y.YAMAMOTO,T.OMATA AND M.NAKANO.Repetitive control system:a new type servo system for periodicexogenous signals[J].IEEE Transactions on Automatic Control,1988,33(7):659.(编辑:刘素菊)621电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀。

031张文平_T型三电平电力电子器件故障的容错运行策略

031张文平_T型三电平电力电子器件故障的容错运行策略

T 型三电平电力电子器件故障的容错运行策略张文平1,李海津1,徐德鸿1,Prasad Enjeti 21浙江大学电气学院,杭州 310027 2 Texas A&M University, College Station, TX, USAEmail :xdh@摘要﹕像银行、医院、国防等关键部门,一旦发生故障,将会造成不可估量的经济损失。

本文针对电力电子器件故障,研究了T 型三电平拓扑硬件冗余的方案来提高系统的可靠性。

以S a1和S a2的开路故障和短路故障为例,详细介绍了改进拓扑从正常运行到容错运行的切换原则。

通过分析和仿真验证,桥臂级冗余的硬件修改方案,具有容错运行能力,且故障后仍能输出满额的电压。

.关键词﹕三电平、容错运行、冗余设计、器件故障1 引言电力电子技术作为高密度、高效率功率变换的重要手段,在工业界应用范围越来越广泛,主要包括调速电机、电能质量调节,新能源并网发电,储能系统,混合动力等[1]-[4]。

如何最大化的提高变换效率一直是电力电子技术的首要目标之一。

近年来,多电平拓扑,尤其三电平拓扑的深入应用,逐渐被认为是提高系统效率最为有效的方法之一。

关于广泛采用的中点钳位型(NPC )结构,多篇文献提出相应的变形拓扑以进一步降低系统损耗[2]-[3]。

特别是在2~17kHz 场合,T 型三电平变形拓扑由于更低的导通损耗而具有明显的效率优势,逐渐取代NPC 结构而被广泛采用[2]。

但是多电平同时引入了相对较多的电力电子器件,对系统的可靠性提出了严峻的挑战。

由于大多数电力电子变换电路是没有容错运行能力,所以任何元件或者子系统的故障都有可能会造成整个系统的崩溃。

在涉及人身安全的场合,如混合动力机车,不可预知的系统故障会危及乘客的安全。

像银行、医院、国防等关键部门,一旦发生故障,将会造成不可估量的经济损失[4]。

于是,电力电子装置的可靠性研究近年来引起越来越多的关注。

为满足系统可靠性的需求,需要探索提高系统可靠性的方法,其中冗余设计是最为有效的一种方法。

电力电子专业词汇.

电力电子专业词汇.

电力电子专业英语词汇Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac V oltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper 降压斩波电路Buck Converter降压变换器Commutation 换流Conduction Angle 导通角Constant V oltage Constant Frequency --CVCF 恒压恒频Continuous Conduction--CCM (电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper 电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cycloconvertor 周波变流器DC-AC-DC Converter 直交直电路DC Chopping 直流斩波DC Chopping Circuit 直流斩波电路DC-DC Converter 直流-直流变换器Device Commutation 器件换流Direct Current Control 直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode 快恢复二极管fast revcovery epitaxial diodes 快恢复外延二极管fast switching thyristor 快速晶闸管field controlled thyristor 场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter 全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control 间接电流控制indirect DC-DC converter 直接电流变换电路insulated-gate bipolar transistor---IGBT 绝缘栅双极晶体管intelligent power module---IPM 智能功率模块integrated gate-commutated thyristor---IGCT 集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristo---LTT 光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流背板backplane带隙电压参考Band gap voltage reference工作台电源benchtop supply方块图Block Diagram波特图Bode Plot自举Bootstrap桶形电容bucket capcitor机架chassis恒流源constant current source铁芯饱和Core Sataration交叉频率crossover frequency纹波电流current ripple逐周期Cycle by Cycle周期跳步cycle skipping死区时间Dead Time核心温度DIE Temperature非使能,无效,禁用,关断Disable主极点dominant pole 主极点使能,有效,启用Enable额定值ESD Rating ESD评估板Evaluation Board超过下面的规格使用可能引起永久的设备损害或设备故障.建议不要工作在电特性表规定的参数范围以外. Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.下降沿Failling edge品质因数figure of merit浮充电压float charge voltage反驰式功率级flyback power stage前向压降orward voltage drop自由运行free-running续流二极管Freewheel diode满负载Full load栅极驱动gate drive栅极驱动级gate drive stage图gerber plot Gerber接地层ground plane电感单位(亨利) Henry人体模式Human Body Model滞回Hysteresis涌入电流inrush current反相Inverting抖动jittery结点Junction开尔文连接Kelvin connection引脚框架Lead Frame无铅Lead Free电平移动level-shift电源调整率Line regulation负载调整率load regulation批号Lot Number低压差Low Dropout密勒Miller节点node非反相Non-Inverting新颖的novel关断状态off state电源工作电压Operating supply voltage输出驱动级out drive stage异相Out of Phase产品型号Part NumberP沟道MOSFET P-channel MOSFET相位裕度Phase margin开关节点Phase Node便携式电子设备portable electronics掉电power down电源正常Power Good功率地Power Groud节电模式Power Save Mode上电Power up下拉pull down上拉pull up逐脉冲Pulse by Pulse推挽转换器push pull converter斜降ramp down斜升ramp up冗余二极管redundant diode电阻分压器resistive divider振铃ringing纹波电流ripple current上升沿rising edge检测电阻sense resistor序列电源Sequenced Power Supplys直通,同时导通shoot-through杂散电感stray inductances子电路sub-circuit基板substrate电信Telecom热性能信息Thermal Information散热片thermal slug阈值Threshold振荡电阻timing resistor线路,走线,引线Trace传递函数Transfer function 跳变点Trip Point 跳变点匝数比(初级匝数/次级匝数)turns ratio (Np / Ns)欠压锁定Under V oltage Lock Out (UVLO)电压参考V oltage Reference伏秒积voltage-second product零极点频率补偿zero-pole frequency compensation拍频beat frequency单击电路one shots缩放scaling等效串联电阻ESR地电位Ground平衡带隙trimmed bandgap压差dropout voltage大容量电容large bulk capacitance断路器circuit breaker电荷泵charge pump过冲overshoot元件设备三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功率:power功角:power-angle电压等级:voltage grade空载损耗o-load loss铁损:iron loss铜损:copper loss空载电流o-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗egative sequence impedance零序阻抗:zero sequence impedance电阻:resistor电抗:reactance电导:conductance电纳:susceptance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压ddle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine - infinity bus system 机端电压控制A VR电抗reactance电阻resistance功角power angle有功(功率) active power无功(功率) reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive-side裕度margin同步synchronization失去同步loss of synchronization阻尼damping摇摆swing保护断路器circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance电源专业词汇(二)coupling 耦合intermittent 周期的dislocation 错位propeller 螺旋桨switchgear 配电装置dispersion 差量flange 法兰盘dielectric 介电的binder 胶合剂alignment 定位elastomer 合成橡胶corollary 必然的结果rabbet 插槽vent 通风孔subtle 敏感的gearbox 变速箱plate 电镀crucial 决定性的flexible 柔性的technics 工艺ultimate 最终的resilience 弹性vendor 自动售货机partition 分类rigid 刚性的prototype 样机diagram 特性曲线interfere 干涉compatible 兼容的simulation 模拟clutch 离合器refinement 精加工fixture 夹具torque 扭矩responsive 敏感的tensile 拉伸cushion 减震器rib 肋strength 强度packing 包装metallized 金属化stress 应力mitigate 减轻trade off 折衷方案yield 屈伸line shaft 中间轴matrix 母体inherent 固有的spindle 主轴aperture 孔径conformance 适应性axle 心轴turbulence 扰动specification 规范semipermanent 半永久性的enclosure 机壳specialization 规范化bolt 螺栓oscillation 振幅calling 职业nut 螺母anneal 退火vitalize 激发screw 螺丝polymer 聚合体revelation 揭示fastner 紧固件bind 凝固dissemination 分发rivit 铆钉mount 支架booster 推进器hub 轴套distortion 变形contractual 契约的coaxial 同心的module 模块verdict 裁决crank 曲柄slide 滑块malfunction 故障inertia 惰性medium 介质allegedly 假定active 活性的dissipation 损耗controversy 辩论lubrication 润滑assembly 总装dictate 支配graphite 石墨encapsulate 封装incumbent 义不容辞的derivative 派生物adhesive 粘合剂validation 使生效contaminate 沾染turbine 涡轮procurement 收购asperity 粗糙bearing 支撑架mortality 失败率metalworking 金属加工isostatic 均衡的shed light on 阐明viscous 粘稠的osculate 接触adversely 有害的grinding 研磨i mperative 强制的consistency 连续性corrosin 侵蚀lattice 晶格fitness 适应性flush 冲洗fracture 断裂warrant 保证inhibitor 防腐剂diffusivity 扩散率turning 车工dispersant 分散剂vice versa 反之亦然ways 导轨deteriorate 降低tribological 摩擦的hybrid 混合物neutralize 平衡screen 屏蔽ID=inside diameterpulley 滑轮exclusion 隔绝OD=outside diameterhydraulic 液压的insulation 绝缘reciprocate 往复运动delicate 精密的elaborate 加工dress 精整dampen 阻尼incontrovertible 无可争议的by and large 大体上pivotal 中枢的luminous 发光的plastic 塑胶utilitarian 功利主义out of round 失园organic 有机的grass root 基层premature 过早的film 薄膜state-of-the -art 技术发展水平guard 防护罩polyester 聚酯blade 托板permeate 渗入epoxy 环氧的carrier 载体spillage 溢出polypropylene 聚丙烯chuck 卡盘erosion 浸蚀photoconductive 光敏的infeed 横向进给routine 程序miniaturization 小型化lapping 抛光postprocess 后置处理asynchronism 异步milling 洗削solder-bump 焊点synchronization 同步speciality 专业grid 栅格respond 响应stroke 行程impedance 阻抗feedback 反馈attachment 备件approximately 大约aberrance 畸变tapered 楔形的purported 据说steady 稳态的casting 铸件consumable 消费品dynamic 动态的index 换档inductance 电感transient 瞬态的stop 挡块capacitance 电容coordinate 坐标contour 轮廓resistance 电容curve 曲线machine center 加工中心audion 三极管diagram 特性曲线capitalize 投资diode 二极管history 关系曲线potentiometer 电位器transistor 晶体管gradient 斜率know-how 实践知识choker 扼流圈parabola 抛物线potted 封装的filter 滤波器root 根mechatronics 机电一体化transformer 变压器eigenvalue 特征值stem from 起源于fuse 保险丝function 函数rule-based 基于规则的annular core 磁环vector 向量consolidation 巩固radiator 散热器reciprocal 倒数energize 激发regulator 稳压器virtual value 有效值synchronous 同时发生bobbin 骨架square root 平方根socket 插孔tape 胶带cube 立方polarity 极性ceramic capacitor 瓷片电容integral 积分armature 电枢electrolytic C 电解电容differential 微分installment 分期付款self-tapping screw 自攻螺丝hisgram 直方图lobe 凸起footprint 封装ratio 比率plunge 钻入resin 松香grade down 成比例降低servo 伺服机构solderability 可焊性proportion 比例dedicated 专用的shock 机械冲击inverse ratio 反比interpolation 插补endurance 耐久性direct ratio 正比compensation 校正initial value 初始值plus 加upload 加载flashing 飞弧subtract 减overload 过载canned 千篇一律的multiply 乘lightload 轻载lot 抽签divide 除stagger 交错排列parallel 并联impedance 阻抗traverse 横向in series 串联damp 阻尼longitudinal 纵向的equivalent 等效的reactance 电抗latitudinal 横向的terminal 终端admittance 导纳restrain 约束creep 蠕动susceptance 电纳square 平方Hyperlink 超级连接spring 触发memo 备忘录wastage 损耗presentation 陈述principle 原理binder 打包planer 刨床source program 源程序Client-Server Model客户机server 服务器table 表query 查询form 表单report 报表macro 宏module 模块field 字段record 记录电源专业词汇(三)printed circuit 印制电路printed wiring 印制线路printed board 印制板printed circuit board 印制板电路printed wiring board 印制线路板printed component 印制元件printed contact 印制接点printed board assembly 印制板装配board 板rigid printed board 刚性印制板flexible printed circuit 挠性印制电路flexible printed wiring 挠性印制线路flush printed board 齐平印制板metal core printed board 金属芯印制板metal base printed board 金属基印制板mulit-wiring printed board 多重布线印制板molded circuit board 模塑电路板discrete wiring board 散线印制板micro wire board 微线印制板buile-up printed board 积层印制板surface laminar circuit 表面层合电路板B2it printed board 埋入凸块连印制板chip on board 载芯片板buried resistance board 埋电阻板mother board 母板daughter board 子板backplane 背板bare board 裸板copper-invar-copper board 键盘板夹心板dynamic flex board 动态挠性板static flex board 静态挠性板break-away planel 可断拼板cable 电缆flexible flat cable (FFC) 挠性扁平电缆membrane switch 薄膜开关hybrid circuit 混合电路thick film 厚膜thick film circuit 厚膜电路thin film 薄膜thin film hybrid circuit 薄膜混合电路interconnection 互连conductor trace line 导线flush conductor 齐平导线transmission line 传输线crossover 跨交edge-board contact 板边插头stiffener 增强板substrate 基底real estate 基板面conductor side 导线面component side 元件面solder side 焊接面printing 印制grid 网格pattern 图形conductive pattern 导电图形non-conductive pattern 非导电图形legend 字符mark 标志base material 基材laminate 层压板metal-clad bade material 覆金属箔基材copper-clad laminate (CCL) 覆铜箔层压板composite laminate 复合层压板thin laminate 薄层压板basis material 基体材料prepreg 预浸材料bonding sheet 粘结片preimpregnated bonding sheer 预浸粘结片epoxy glass substrate 环氧玻璃基板mass lamination panel 预制内层覆箔板core material 内层芯板bonding layer 粘结层film adhesive 粘结膜unsupported adhesive film 无支撑胶粘剂膜cover layer (cover lay) 覆盖层stiffener material 增强板材copper-clad surface 铜箔面foil removal surface 去铜箔面unclad laminate surface 层压板面base film surface 基膜面adhesive faec 胶粘剂面plate finish 原始光洁面matt finish 粗面length wise direction 纵向cross wise direction 模向cut to size panel 剪切板ultra thin laminate 超薄型层压板A-stage resin A阶树脂B-stage resin B阶树脂C-stage resin C阶树脂epoxy resin 环氧树脂phenolic resin 酚醛树脂polyester resin 聚酯树脂polyimide resin 聚酰亚胺树脂bismaleimide-triazine resin 双马来酰亚胺三嗪树脂acrylic resin 丙烯酸树脂melamine formaldehyde resin 三聚氰胺甲醛树脂polyfunctional epoxy resin 多官能环氧树脂brominated epoxy resin 溴化环氧树脂epoxy novolac 环氧酚醛fluroresin 氟树脂silicone resin 硅树脂silane 硅烷polymer 聚合物amorphous polymer 无定形聚合物crystalline polamer 结晶现象dimorphism 双晶现象copolymer 共聚物synthetic 合成树脂thermosetting resin 热固性树脂thermoplastic resin 热塑性树脂photosensitive resin 感光性树脂epoxy value 环氧值dicyandiamide 双氰胺binder 粘结剂adesive 胶粘剂curing agent 固化剂flame retardant 阻燃剂opaquer 遮光剂plasticizers 增塑剂unsatuiated polyester 不饱和聚酯polyester 聚酯薄膜polyimide film (PI) 聚酰亚胺薄膜polytetrafluoetylene (PTFE) 聚四氟乙烯reinforcing material 增强材料glass fiber 玻璃纤维E-glass fibre E玻璃纤维D-glass fibre D玻璃纤维S-glass fibre S玻璃纤维glass fabric 玻璃布non-woven fabric 非织布glass mats 玻璃纤维垫yarn 纱线filament 单丝strand 绞股weft yarn 纬纱warp yarn 经纱denier 但尼尔warp-wise 经向thread count 织物经纬密度weave structure 织物组织plain structure 平纹组织grey fabric 坏布woven scrim 稀松织物bow of weave 弓纬end missing 断经mis-picks 缺纬bias 纬斜crease 折痕waviness 云织fish eye 鱼眼feather length 毛圈长mark 厚薄段split 裂缝twist of yarn 捻度size content 浸润剂含量size residue 浸润剂残留量finish level 处理剂含量size 浸润剂couplint agent 偶联剂finished fabric 处理织物polyarmide fiber 聚酰胺纤维aromatic polyamide paper 聚芳酰胺纤维纸breaking length 断裂长height of capillary rise 吸水高度wet strength retention 湿强度保留率whitenness 白度ceramics 陶瓷conductive foil 导电箔copper foil 铜箔rolled copper foil 压延铜箔annealed copper foil 退火铜箔thin copper foil 薄铜箔adhesive coated foil 涂胶铜箔resin coated copper foil 涂胶脂铜箔composite metallic material 复合金属箔carrier foil 载体箔invar 殷瓦foil profile 箔(剖面)轮廓shiny side 光面matte side 粗糙面treated side 处理面stain proofing 防锈处理double treated foil 双面处理铜箔shematic diagram 原理图logic diagram 逻辑图printed wire layout 印制线路布设master drawing 布设总图computer aided drawing 计算机辅助制图computer controlled display 计算机控制显示placement 布局routing 布线layout 布图设计rerouting 重布simulation 模拟logic simulation 逻辑模拟circit simulation 电路模拟timing simulation 时序模拟modularization 模块化layout effeciency 布线完成率MDF databse 机器描述格式数据库design database 设计数据库design origin 设计原点optimization (design) 优化(设计) predominant axis 供设计优化坐标轴table origin 表格原点mirroring 镜像drive file 驱动文件intermediate file 中间文件manufacturing documentation 制造文件queue support database 队列支撑数据库component positioning 元件安置graphics dispaly 图形显示scaling factor 比例因子scan filling 扫描填充rectangle filling 矩形填充region filling 填充域physical design 实体设计logic design 逻辑设计logic circuit 逻辑电路hierarchical design 层次设计top-down design 自顶向下设计bottom-up design 自底向上设计net 线网digitzing 数字化design rule checking 设计规则检查router (CAD) 走(布)线器net list 网络表subnet 子线网objective function 目标函数post design processing (PDP) 设计后处理interactive drawing design 交互式制图设计cost metrix 费用矩阵engineering drawing 工程图block diagram 方块框图moze 迷宫component density 元件密度traveling salesman problem 回售货员问题degrees freedom 自由度out going degree 入度incoming degree 出度manhatton distance 曼哈顿距离euclidean distance 欧几里德距离network 网络array 阵列segment 段logic 逻辑logic design automation 逻辑设计自动化separated time 分线separated layer 分层definite sequence 定顺序conduction (track) 导线(通道)conductor width 导线(体)宽度conductor spacing 导线距离conductor layer 导线层conductor line/space 导线宽度/间距conductor layer No.1 第一导线层round pad 圆形盘square pad 方形盘diamond pad 菱形盘oblong pad 长方形焊盘bullet pad 子弹形盘teardrop pad 泪滴盘snowman pad 雪人盘V-shaped pad V形盘annular pad 环形盘non-circular pad 非圆形盘isolation pad 隔离盘monfunctional pad 非功能连接盘offset land 偏置连接盘back-bard land 腹(背)裸盘anchoring spaur 盘址land pattern 连接盘图形land grid array 连接盘网格阵列annular ring 孔环component hole 元件孔mounting hole 安装孔supported hole 支撑孔unsupported hole 非支撑孔via 导通孔plated through hole (PTH) 镀通孔access hole 余隙孔blind via (hole) 盲孔buried via hole 埋孔buried blind via 埋,盲孔any layer inner via hole 任意层内部导通孔all drilled hole 全部钻孔toaling hole 定位孔landless hole 无连接盘孔interstitial hole 中间孔landless via hole 无连接盘导通孔pilot hole 引导孔terminal clearomee hole 端接全隙孔dimensioned hole 准尺寸孔via-in-pad 在连接盘中导通孔hole location 孔位hole density 孔密度hole pattern 孔图drill drawing 钻孔图assembly drawing 装配图datum referan 参考基准printed circuit 印制电路printed wiring 印制线路printed board 印制板printed circuit board 印制板电路printed wiring board 印制线路板printed component 印制元件printed contact 印制接点printed board assembly 印制板装配board 板rigid printed board 刚性印制板flexible printed circuit 挠性印制电路flexible printed wiring 挠性印制线路flush printed board 齐平印制板metal core printed board 金属芯印制板metal base printed board 金属基印制板mulit-wiring printed board 多重布线印制板molded circuit board 模塑电路板discrete wiring board 散线印制板micro wire board 微线印制板buile-up printed board 积层印制板surface laminar circuit 表面层合电路板B2it printed board 埋入凸块连印制板chip on board 载芯片板buried resistance board 埋电阻板mother board 母板daughter board 子板backplane 背板bare board 裸板copper-invar-copper board 键盘板夹心板dynamic flex board 动态挠性板static flex board 静态挠性板break-away planel 可断拼板cable 电缆flexible flat cable (FFC) 挠性扁平电缆membrane switch 薄膜开关hybrid circuit 混合电路thick film 厚膜thick film circuit 厚膜电路thin film 薄膜thin film hybrid circuit 薄膜混合电路interconnection 互连conductor trace line 导线flush conductor 齐平导线transmission line 传输线crossover 跨交edge-board contact 板边插头stiffener 增强板substrate 基底real estate 基板面conductor side 导线面component side 元件面solder side 焊接面printing 印制grid 网格pattern 图形conductive pattern 导电图形non-conductive pattern 非导电图形legend 字符mark 标志base material 基材laminate 层压板metal-clad bade material 覆金属箔基材copper-clad laminate (CCL) 覆铜箔层压板composite laminate 复合层压板thin laminate 薄层压板basis material 基体材料prepreg 预浸材料bonding sheet 粘结片preimpregnated bonding sheer 预浸粘结片epoxy glass substrate 环氧玻璃基板mass lamination panel 预制内层覆箔板core material 内层芯板bonding layer 粘结层film adhesive 粘结膜unsupported adhesive film 无支撑胶粘剂膜cover layer (cover lay) 覆盖层stiffener material 增强板材copper-clad surface 铜箔面foil removal surface 去铜箔面unclad laminate surface 层压板面base film surface 基膜面adhesive faec 胶粘剂面plate finish 原始光洁面matt finish 粗面length wise direction 纵向cross wise direction 模向cut to size panel 剪切板ultra thin laminate 超薄型层压板A-stage resin A阶树脂B-stage resin B阶树脂C-stage resin C阶树脂epoxy resin 环氧树脂phenolic resin 酚醛树脂polyester resin 聚酯树脂polyimide resin 聚酰亚胺树脂bismaleimide-triazine resin 双马来酰亚胺三嗪树脂acrylic resin 丙烯酸树脂melamine formaldehyde resin 三聚氰胺甲醛树脂polyfunctional epoxy resin 多官能环氧树脂brominated epoxy resin 溴化环氧树脂epoxy novolac 环氧酚醛fluroresin 氟树脂silicone resin 硅树脂silane 硅烷polymer 聚合物amorphous polymer 无定形聚合物crystalline polamer 结晶现象dimorphism 双晶现象copolymer 共聚物synthetic 合成树脂thermosetting resin 热固性树脂thermoplastic resin 热塑性树脂photosensitive resin 感光性树脂epoxy value 环氧值dicyandiamide 双氰胺binder 粘结剂adesive 胶粘剂curing agent 固化剂flame retardant 阻燃剂opaquer 遮光剂plasticizers 增塑剂unsatuiated polyester 不饱和聚酯polyester 聚酯薄膜polyimide film (PI) 聚酰亚胺薄膜polytetrafluoetylene (PTFE) 聚四氟乙烯reinforcing material 增强材料glass fiber 玻璃纤维E-glass fibre E玻璃纤维D-glass fibre D玻璃纤维S-glass fibre S玻璃纤维glass fabric 玻璃布non-woven fabric 非织布glass mats 玻璃纤维垫yarn 纱线filament 单丝strand 绞股weft yarn 纬纱warp yarn 经纱denier 但尼尔warp-wise 经向thread count 织物经纬密度weave structure 织物组织plain structure 平纹组织grey fabric 坏布woven scrim 稀松织物bow of weave 弓纬end missing 断经mis-picks 缺纬bias 纬斜crease 折痕waviness 云织fish eye 鱼眼feather length 毛圈长mark 厚薄段split 裂缝twist of yarn 捻度size content 浸润剂含量size residue 浸润剂残留量finish level 处理剂含量size 浸润剂couplint agent 偶联剂finished fabric 处理织物polyarmide fiber 聚酰胺纤维aromatic polyamide paper 聚芳酰胺纤维纸breaking length 断裂长height of capillary rise 吸水高度wet strength retention 湿强度保留率whitenness 白度ceramics 陶瓷conductive foil 导电箔copper foil 铜箔rolled copper foil 压延铜箔annealed copper foil 退火铜箔thin copper foil 薄铜箔adhesive coated foil 涂胶铜箔resin coated copper foil 涂胶脂铜箔composite metallic material 复合金属箔carrier foil 载体箔invar 殷瓦foil profile 箔(剖面)轮廓shiny side 光面matte side 粗糙面treated side 处理面stain proofing 防锈处理double treated foil 双面处理铜箔shematic diagram 原理图logic diagram 逻辑图printed wire layout 印制线路布设master drawing 布设总图computer aided drawing 计算机辅助制图computer controlled display 计算机控制显示placement 布局routing 布线layout 布图设计rerouting 重布simulation 模拟logic simulation 逻辑模拟circit simulation 电路模拟timing simulation 时序模拟modularization 模块化layout effeciency 布线完成率MDF databse 机器描述格式数据库design database 设计数据库design origin 设计原点optimization (design) 优化(设计) predominant axis 供设计优化坐标轴table origin 表格原点mirroring 镜像drive file 驱动文件intermediate file 中间文件manufacturing documentation 制造文件queue support database 队列支撑数据库component positioning 元件安置graphics dispaly 图形显示scaling factor 比例因子scan filling 扫描填充rectangle filling 矩形填充region filling 填充域physical design 实体设计logic design 逻辑设计logic circuit 逻辑电路hierarchical design 层次设计top-down design 自顶向下设计bottom-up design 自底向上设计net 线网digitzing 数字化design rule checking 设计规则检查router (CAD) 走(布)线器net list 网络表subnet 子线网objective function 目标函数post design processing (PDP) 设计后处理interactive drawing design 交互式制图设计cost metrix 费用矩阵engineering drawing 工程图block diagram 方块框图moze 迷宫component density 元件密度traveling salesman problem 回售货员问题degrees freedom 自由度out going degree 入度incoming degree 出度manhatton distance 曼哈顿距离euclidean distance 欧几里德距离network 网络array 阵列segment 段logic 逻辑logic design automation 逻辑设计自动化separated time 分线separated layer 分层definite sequence 定顺序conduction (track) 导线(通道)conductor width 导线(体)宽度conductor spacing 导线距离conductor layer 导线层conductor line/space 导线宽度/间距conductor layer No.1 第一导线层round pad 圆形盘square pad 方形盘diamond pad 菱形盘oblong pad 长方形焊盘bullet pad 子弹形盘teardrop pad 泪滴盘snowman pad 雪人盘V-shaped pad V形盘annular pad 环形盘non-circular pad 非圆形盘isolation pad 隔离盘monfunctional pad 非功能连接盘offset land 偏置连接盘back-bard land 腹(背)裸盘anchoring spaur 盘址land pattern 连接盘图形land grid array 连接盘网格阵列annular ring 孔环component hole 元件孔mounting hole 安装孔supported hole 支撑孔unsupported hole 非支撑孔via 导通孔plated through hole (PTH) 镀通孔access hole 余隙孔blind via (hole) 盲孔buried via hole 埋孔buried blind via 埋,盲孔any layer inner via hole 任意层内部导通孔all drilled hole 全部钻孔toaling hole 定位孔landless hole 无连接盘孔interstitial hole 中间孔landless via hole 无连接盘导通孔pilot hole 引导孔terminal clearomee hole 端接全隙孔dimensioned hole 准尺寸孔via-in-pad 在连接盘中导通孔hole location 孔位hole density 孔密度hole pattern 孔图drill drawing 钻孔图assembly drawing 装配图datum referan 参考基准coupling 耦合intermittent 周期的dislocation 错位propeller 螺旋桨switchgear 配电装置dispersion 差量flange 法兰盘dielectric 介电的binder 胶合剂alignment 定位elastomer 合成橡胶corollary 必然的结果rabbet 插槽vent 通风孔subtle 敏感的gearbox 变速箱plate 电镀crucial 决定性的flexible 柔性的technics 工艺ultimate 最终的resilience 弹性vendor 自动售货机partition 分类rigid 刚性的prototype 样机diagram 特性曲线interfere 干涉compatible 兼容的simulation 模拟clutch 离合器refinement 精加工fixture 夹具torque 扭矩responsive 敏感的tensile 拉伸cushion 减震器rib 肋strength 强度packing 包装metallized 金属化stress 应力mitigate 减轻trade off 折衷方案yield 屈伸line shaft 中间轴matrix 母体inherent 固有的spindle 主轴aperture 孔径conformance 适应性axle 心轴turbulence 扰动specification 规范semipermanent 半永久性的enclosure 机壳specialization 规范化bolt 螺栓oscillation 振幅calling 职业nut 螺母anneal 退火vitalize 激发screw 螺丝polymer 聚合体revelation 揭示fastner 紧固件bind 凝固dissemination 分发rivit 铆钉mount 支架booster 推进器hub 轴套distortion 变形contractual 契约的coaxial 同心的module 模块verdict 裁决crank 曲柄slide 滑块malfunction 故障inertia 惰性medium 介质allegedly 假定active 活性的dissipation 损耗controversy 辩论lubrication 润滑assembly 总装dictate 支配graphite 石墨encapsulate 封装incumbent 义不容辞的derivative 派生物adhesive 粘合剂validation 使生效contaminate 沾染turbine 涡轮procurement 收购asperity 粗糙bearing 支撑架mortality 失败率metalworking 金属加工isostatic 均衡的shed light on 阐明viscous 粘稠的osculate 接触adversely 有害的grinding 研磨imperative 强制的consistency 连续性corrosin 侵蚀lattice 晶格fitness 适应性flush 冲洗fracture 断裂warrant 保证inhibitor 防腐剂diffusivity 扩散率turning 车工dispersant 分散剂vice versa 反之亦然ways 导轨deteriorate 降低tribological 摩擦的hybrid 混合物neutralize 平衡screen 屏蔽ID=inside diameterpulley 滑轮exclusion 隔绝OD=outside diameterhydraulic 液压的insulation 绝缘reciprocate 往复运动delicate 精密的elaborate 加工dress 精整dampen 阻尼incontrovertible 无可争议的by and large 大体上pivotal 中枢的luminous 发光的plastic 塑胶utilitarian 功利主义out of round 失园organic 有机的grass root 基层premature 过早的film 薄膜state-of-the -art 技术发展水平guard 防护罩polyester 聚酯blade 托板permeate 渗入epoxy 环氧的carrier 载体spillage 溢出polypropylene 聚丙烯chuck 卡盘erosion 浸蚀photoconductive 光敏的infeed 横向进给routine 程序miniaturization 小型化lapping 抛光postprocess 后置处理asynchronism 异步milling 洗削solder-bump 焊点synchronization 同步speciality 专业grid 栅格respond 响应stroke 行程impedance 阻抗feedback 反馈attachment 备件approximately 大约aberrance 畸变tapered 楔形的purported 据说steady 稳态的casting 铸件consumable 消费品dynamic 动态的index 换档inductance 电感transient 瞬态的stop 挡块capacitance 电容coordinate 坐标contour 轮廓resistance 电容curve 曲线machine center 加工中心audion 三极管diagram 特性曲线capitalize 投资diode 二极管history 关系曲线potentiometer 电位器transistor 晶体管gradient 斜率know-how 实践知识choker 扼流圈parabola 抛物线potted 封装的filter 滤波器root 根mechatronics 机电一体化transformer 变压器eigenvalue 特征值stem from 起源于fuse 保险丝function 函数rule-based 基于规则的annular core 磁环vector 向量consolidation 巩固radiator 散热器reciprocal 倒数energize 激发regulator 稳压器virtual value 有效值synchronous 同时发生bobbin 骨架square root 平方根socket 插孔tape 胶带cube 立方polarity 极性ceramic capacitor 瓷片电容integral 积分armature 电枢electrolytic C 电解电容differential 微分installment 分期付款self-tapping screw 自攻螺丝hisgram 直方图lobe 凸起footprint 封装ratio 比率plunge 钻入resin 松香grade down 成比例降低servo 伺服机构solderability 可焊性proportion 比例dedicated 专用的shock 机械冲击inverse ratio 反比interpolation 插补endurance 耐久性direct ratio 正比compensation 校正initial value 初始值plus 加upload 加载flashing 飞弧subtract 减overload 过载canned 千篇一律的multiply 乘lightload 轻载lot 抽签divide 除stagger 交错排列parallel 并联impedance 阻抗traverse 横向in series 串联damp 阻尼longitudinal 纵向的equivalent 等效的reactance 电抗latitudinal 横向的terminal 终端admittance 导纳restrain 约束creep 蠕动susceptance 电纳square 平方Hyperlink 超级连接spring 触发memo 备忘录wastage 损耗presentation 陈述principle 原理binder 打包planer 刨床source program 源程序Client-Server Model客户机server 服务器table 表query 查询form 表单report 报表macro 宏module 模块field 字段record 记录。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档