(完整版)高中数学诱导公式大全(最新整理)

合集下载

数学诱导公式

数学诱导公式
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
cos(a-b)=cosa*cosb+sina*sinb ②
∴ ① + ② 得:
cos(a+b)+cos(a-b)=2cosa*cosb
∴ cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,若 ① - ② 得:
sina*sinb=-(cos(a+b)-cos(a-b))/2
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)
二倍角的正弦、余弦和正切公式(升幂缩角公式):
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
(以上k∈Z)
同角三角函数的基本关系式:
倒数关系:
tanα *cotα=1 sinα *cscα=1 cosα *secα=1
商的关系:
sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα

(完整版)高中数学诱导公式大全

(完整版)高中数学诱导公式大全

高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sin α(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cos αtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cos αcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k ∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。

高中数学诱导公式大合集,据说史上最全!

高中数学诱导公式大合集,据说史上最全!

高中数学诱导公式大合集,据说史上最全!常用的诱导公式有以下几组公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

高中数学-必修二6.1诱导公式-知识点

高中数学-必修二6.1诱导公式-知识点

高中数学-必修二6.1诱导公式-知识点1、熟记以下六组诱导公式:记忆口诀:奇变偶不变,符号看象限。

①这里的奇/偶指的是π/2的倍数的奇偶。

②默认把α当成锐角,则2kπ+α和π/2-α是第一象限,-α是第四象限,π+α是第三象限,π-α和π/2+α是第二象限。

③三角比的符号判断口诀:一全正,二正弦,三两切,四余弦。

2、题型:利用诱导公式求值[例:计算sin690°×sin150°+cos930°·cos(﹣870°) +tan120°·tan1050°]。

步骤:①负化正,②大化小,③小化锐,④锐求值。

3、题型:三角恒等式的证明。

常用方法:①从复杂的一边开始,化繁为简,证得它等于另一边。

②左右归一法,即证明左右两边都等于同一个式子。

变形中,常用的方法是:切化弦,割化弦,通分,提取公因式,约分,构造恒等式等。

4、在△ABC中,因为内角和为180°,所以有sinA=sin(B+C),cosA=﹣cos(B+C),tanA=﹣tan(B+C)。

5、三角方程的求解公式:①sinx=siny的解集为{x/x=2kπ+y或2kπ+π-y,k∈Z};②cosx=cosy的解集为{x/x=2kπ+y,或2kπ-y,k∈Z};③tanx=tany的解集为{x/x=k π+y,k∈Z};④cotx=coty的解集为{x/x=kπ+y,k∈Z}。

6、题型:①已知三角比的值,求角(例:已知sinx=1/2,求x)。

方法:把值还原成某个角的同名三角比。

②三角方程中,两个三角比不同名(例:已知sin5x=cos3x,求x)。

方法:先用诱导公式转化为同名三角比。

[sin5x=sin(π/2-3x)].小初高个性化辅导,助你提升学习力! 1。

【数学】高中数学诱导公式全集

【数学】高中数学诱导公式全集

常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

高中诱导公式

高中诱导公式

高中诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

高中数学诱导公式大全

高中数学诱导公式大全

高中数学诱导公式大全数学中有众多的诱导公式,本文为大家整理了高中数学中的常见诱导公式,方便大家在复习学习时使用。

1. 平方差公式(a + b)(a - b) = a² - b²这个公式通常用于把一个含有两个数的算式转化为两个平方数之差的形式。

例如:19 × 21 = (20 - 1)(20 + 1) = 400 - 1 = 399。

2. 同底数幂相除的规律a^m ÷ a^n = a^(m-n)这个公式通常用于简化同底数幂的除法计算,只需要将指数相减即可。

例如:4³ ÷ 4² = 4^(3-2) = 4。

3. 牛顿莱布尼兹公式f(b) - f(a) = ∫a^b f'(x) dx这个公式是微积分中的重要定理,用于计算曲线下的面积或弧长。

它将原函数的值与导数之间建立了联系,方便进行积分计算。

4. 余弦定理c² = a² + b² - 2ab cosC这个公式通常用于求解三角形的边长或角度,可以根据三边长度或两边一夹角的余弦值来计算第三边长度或夹角大小。

5. 正弦定理a/sinA = b/sinB = c/sinC这个公式通常用于求解三角形的边长或角度,可以根据三角形的一个角和这个角的对边的长度,以及任意两个角或者边长之比来计算其他角或者边长的值。

6. 勾股定理a² + b² = c²这个公式通常用于求直角三角形中三条边中未知边的长度或判定一个三角形是否为直角三角形。

7. 毕达哥拉斯定理若a、b、c都是正整数,且a² + b² = c²,则称该三组数为毕达哥拉斯数。

8. 相反数的性质a + (-a) = 0一个数加上它的相反数等于零,即a和-a互为相反数。

9. 分配律a(b + c) = ab + ac这个公式通常用于计算多项式的乘法。

高中诱导公式大全

高中诱导公式大全

高中数学诱导公式大全概述诱导公式是数学三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数。

诱导公式★诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-ta nαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

高中数学诱导公式全集

高中数学诱导公式全集

高中数学诱导公式全集公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

高中数学诱导公式大全

高中数学诱导公式大全

【解答】解:(Ⅰ)
sin(2
− ) cos(3
+ ) cos(3 2
+)
=
(−sin )(− cos )sin
=1;
sin(− + )sin(3 − ) cos(− − ) (−sin )sin (− cos )
(Ⅱ) tan 315 + tan 570 = tan(360 − 45) + tan(3180 + 30) = − tan 45 + tan 30 = 3 .
sin(− + ) tan(3 − )
−sin (− tan )
sin
(4 分) )
(2) f ( ) = 1 ,可得 sin cos 8
=1, 8
(sin + cos )2 = 1 + 1 = 5 ,且 3 ,
44
2
sin 0 , cos 0 ,
所以 sin + cos 0 ,
5
2
5
【解答】解:因为 sin = 3 , 5
则 cos(

3
)
=
cos(3
−)
=

cos(
− ) = −sin
=−3.
2
2
2
5
故答案为: − 3 . 5
变式 1.已知 sin( + ) = 1 ,则 sin(5 − ) 的值为 1 .
63
6
3
【解答】解:因为 sin( + ) = 1 , 63
= sin + cos sin cos
=5 −2
=−
5 2.Biblioteka 5变式 1.已知 f ( ) = sin2 ( − ) cos(2 − ) tan(− + ) sin(− + ) tan(3 − )

高中数学诱导公式大全

高中数学诱导公式大全

高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

数学诱导公式

数学诱导公式

数学诱导公式常用的诱导公式有以下六组:公式一终边相同的角的同一三角函数的值相等。

设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)角度制下的角的表示:sin (α+k·360°)=sinα(k∈Z).cos(α+k·360°)=cosα(k∈Z).tan (α+k·360°)=tanα(k∈Z).cot(α+k·360°)=cotα (k∈Z).sec(α+k·360°)=secα (k∈Z).csc(α+k·360°)=cscα (k∈Z).公式二π+α的三角函数值与α的三角函数值之间的关系。

设α为任意角,弧度制下的角的表示:sin(π+α)=-sinα.cos(π+α)=-cosα.tan(π+α)=tanα.cot(π+α)=cotα.sec(π+α)=-secα.csc(π+α)=-cscα.角度制下的角的表示:sin(180°+α)=-sinα.cos(180°+α)=-cosα.tan(180°+α)=tanα.cot(180°+α)=cotα.sec(180°+α)=-secα.csc(180°+α)=-cscα. [1]公式三任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα.cos(-α)=cosα.tan(-α)=-tanα.cot(-α)=-cotα.sec(-α)=secα.csc (-α)=-cscα.公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(π-α)=sinα.cos(π-α)=-c osα.tan(π-α)=-tanα.cot(π-α)=-cotα.sec(π-α)=-secα.csc(π-α)=cscα.角度制下的角的表示:sin(180°-α)=sinα.cos(180°-α)=-cosα.tan(180°-α)=-tanα.cot(180°-α)=-cotα.sec(180°-α)=-secα.csc(180°-α)=cscα. [1]公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(2π-α)=-si nα.cos(2π-α)=cosα.tan(2π-α)=-tanα.cot(2π-α)=-cotα.csc(2π-α)=-cscα.角度制下的角的表示:sin(360°-α)=-sinα.cos(360°-α)=cosα.tan(360°-α)=-tanα.cot(360°-α)=-cotα.sec(360°-α)=secα.csc(360°-α)=-cscα. [1]公式六π/2±α 及3π/2±α与α的三角函数值之间的关系:⒈π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2+α)=cosα.cos(π/2+α)=-sinα.tan(π/2+α)=-cotα.cot(π/2+α)=-tanα.sec(π/2+α)=-cscα.csc(π/2+α)=secα. [2]角度制下的角的表示:sin(90°+α)=cosα.cos(90°+α)=-sinα.cot(90°+α)=-tanα.sec(90°+α)=-cscα.csc(90°+α)=secα. [2]⒉π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2-α)=cosα.cos(π/2-α)=sinα.tan(π/2-α)=cotα.cot(π/2-α)=tanα.sec(π/2-α)=cscα.csc(π/2-α)=secα.角度制下的角的表示:sin (90°-α)=cosα.cos (90°-α)=sinα.tan (90°-α)=cotα.cot (90°-α)=tanα.sec (90°-α)=cscα.csc (90°-α)=secα.⒊ 3π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2+α)=-cosα.tan(3π/2+α)=-cotα.cot(3π/2+α)=-tanα.sec(3π/2+α)=cscα.csc(3π/2+α)=-secα. [2]角度制下的角的表示:sin(270°+α)=-cosα.cos(270°+α)=sinα.tan(270°+α)=-cotα.cot(270°+α)=-tanα.sec(270°+α)=cscα.csc(270°+α)=-secα. [2]⒋ 3π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα.tan(3π/2-α)=cotα.cot(3π/2-α)=tanα.sec(3π/2-α)=-cscα.csc(3π/2-α)=-secα.角度制下的角的表示:sin(270°-α)=-cosα.tan(270°-α)=cotα. cot(270°-α)=tanα. sec(270°-α)=-cscα. csc(270°-α)=-secα.。

【数学】高中数学诱导公式全集

【数学】高中数学诱导公式全集

高中数学诱导公式全集常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。

08-08高中数学诱导公式全集

08-08高中数学诱导公式全集

一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档