人教版数学九年级下册《解直角三角形》课件
合集下载
人教版数学九年级下册《 解直角三角形》PPT课件
∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,
人教版九年级数学下册《解直角三角形》PPT课件
由cosB a ,得 c
a=c·cosB=287.4×0.7420=213.3
由sinB b ,得 c
b=c·sinB=287.4×0.6704=192.7
跟踪训练
1.(2010·江西中考)如图,从点C测得树的顶角为33º,
BC=20米,则树高AB=
米(用计算器计算,结果
精确到0.1米)
解析:由tanC AB,得 BC
(2)在Rt△ABC中,∠C=90°,c=8,b=4.
2、在ABCD中,AB∥CD,AB=4,CD=8,AD=6, ∠D=43°,求梯形的面积。(精确到0.01)
1、根据下列条件,解直角三角形。(精确到0.01) (1)在Rt△ABC中,∠C=90°,ɑ=30, ∠B=80 °;
∠A=10°, b=170.14, c=172.76 (2)在Rt△ABC中,∠C=90°,c=8,b=4.
1 2
AB CD
1 bc sin 2
A
D
当A=55,b 20cm, c 30cm时,有
S ABC
1 bc sin 2
A= 1 20 30sin 55 2
1 20 30 0.8192 245.8(cm2 ) 2
【反思】本题通过作垂线或高,把任意的三角形转化为两个直角三角形, 使问题变得简单易解。因此,大家可别忘了“遇斜化直”的数学思想方法!
正切函数:tanA
A的对边 A的邻边
如果知道了五个元素的两个元素(至少有一个边), 就可以求出其余三个元素.
在直角三角形中,除直角外,由已知元素求出未知元 素的过程,叫做解直角三角形.
例1
如图,在Rt△ABC中,∠C=90°,∠B=42°6′, c=287.4.解这个直角三角形.
a=c·cosB=287.4×0.7420=213.3
由sinB b ,得 c
b=c·sinB=287.4×0.6704=192.7
跟踪训练
1.(2010·江西中考)如图,从点C测得树的顶角为33º,
BC=20米,则树高AB=
米(用计算器计算,结果
精确到0.1米)
解析:由tanC AB,得 BC
(2)在Rt△ABC中,∠C=90°,c=8,b=4.
2、在ABCD中,AB∥CD,AB=4,CD=8,AD=6, ∠D=43°,求梯形的面积。(精确到0.01)
1、根据下列条件,解直角三角形。(精确到0.01) (1)在Rt△ABC中,∠C=90°,ɑ=30, ∠B=80 °;
∠A=10°, b=170.14, c=172.76 (2)在Rt△ABC中,∠C=90°,c=8,b=4.
1 2
AB CD
1 bc sin 2
A
D
当A=55,b 20cm, c 30cm时,有
S ABC
1 bc sin 2
A= 1 20 30sin 55 2
1 20 30 0.8192 245.8(cm2 ) 2
【反思】本题通过作垂线或高,把任意的三角形转化为两个直角三角形, 使问题变得简单易解。因此,大家可别忘了“遇斜化直”的数学思想方法!
正切函数:tanA
A的对边 A的邻边
如果知道了五个元素的两个元素(至少有一个边), 就可以求出其余三个元素.
在直角三角形中,除直角外,由已知元素求出未知元 素的过程,叫做解直角三角形.
例1
如图,在Rt△ABC中,∠C=90°,∠B=42°6′, c=287.4.解这个直角三角形.
《解直角三角形》-完整版PPT课件
整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
解直角三角形课件人教新课标九年级下(共9张PPT)
答:开挖点E离点D 332.
O·
解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.
分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.
如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那么开
球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果
12031203 精确到0.
Rt△ABC中,a =30°,AD=120,
解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.
B C B D C D 43 0 12 30
第1页,共9页。
解直角三角形: 直角三角形中, 由已知元素求未知元素的过程
归纳小结
B
解直角
三角形
∠A+ ∠ B=90°
a2+b2=c2
斜边c
∠A的对边a
┌ A ∠A的邻边b C
三角函数
关系式
计算器
sinAa,sinBb
c
c
cosAb,cosAa
c
c
tanAa,tanBb
b
a
由锐角求三角函数值
由三角函数值求锐角
第2页,共9页。
例3: 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地
球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时, 从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多 少?(地球半径约为6 400km,结果精确到0.1km)
Rt△ABC中,a =30°,AD=120,
O·
解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.
分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.
如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那么开
球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果
12031203 精确到0.
Rt△ABC中,a =30°,AD=120,
解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.
B C B D C D 43 0 12 30
第1页,共9页。
解直角三角形: 直角三角形中, 由已知元素求未知元素的过程
归纳小结
B
解直角
三角形
∠A+ ∠ B=90°
a2+b2=c2
斜边c
∠A的对边a
┌ A ∠A的邻边b C
三角函数
关系式
计算器
sinAa,sinBb
c
c
cosAb,cosAa
c
c
tanAa,tanBb
b
a
由锐角求三角函数值
由三角函数值求锐角
第2页,共9页。
例3: 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地
球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时, 从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多 少?(地球半径约为6 400km,结果精确到0.1km)
Rt△ABC中,a =30°,AD=120,
人教版九年级数学下册§28.2解直角三角形PPT
2019/3/10
5.解:在Rt△ADE中,DE=3 2 , ∠DAE=45°, DE ∴sin∠DAE= AD ,
∴AD=6. 又∵AD=AB, BC 在Rt△ABC中,sin∠BAC= AB ,
∴BC=AB· sin∠BAC=6· sin65°≈5.4. 答:点B到地面的垂直距离BC约为5.4米.
2019/3/10
4.(2006,盐城)如图,花丛中有一路灯杆 AB.在灯光下,小明在D• 点处的影长DE=3米, 沿BD方向行走到达G点,DG=5米,这时小明的 影长GH=5米.• 如果小明的身高为1.7米,求路灯 杆AB的高度(精确到0.1米).
2019/3/10
4.解:设AB=x米,BD=y米. 由△CDE∽△ABE得
设BC=x,则EC=BC=x. 在Rt△ACE中,AC= 3 x,
∵AB=AC-BC, 即20= 3 x-x. 解得x=10 3 +10.
∴BD=BC+CD=BC+EF =10 3+10+35≈45+10×1.732≈62.3(m). 所以小山BD的高为62.3m.
2019/3/10
题型4 应用举例
2019/3/10
3.解:如图设BC=x, 在Rt△ADF中,AD=180,∠DAF=30°, ∴DF=90,AF=90 3 . ∵∠BAC=∠ABC=45°, ∴AC=BC=x. ∴BE=BC-EC=x-90. 在Rt△BDE中,∠BDE=60°, 3 3 ∴DE= BE= ( 3 3 x-90). FC=AC-AF=x-90 3 . ∵DE=FC, 3 ∴ ( x-90)=x-90 .
径,弦AC、BD相交于E,则
A.tan∠AED C.sin∠AED
人教版数学九年级下册 28.2.1 解直角三角形 课件(共27张PPT)
学习目标
1.了解并掌握解直角三角形的概念. 2.理解直角三角形中的五个元素之间的联系. 3.学会解直角三角形.
课堂导入
如图是意大利的比萨斜塔,设塔顶中 心点为 B,塔身中心线与垂直中心线 的夹角为∠A,过点 B 向垂直中心线 引垂线,垂足为点 C .在 Rt△ABC 中, ∠C =90°,BC =5.2 m,AB =54.5 m.
解这个直角三角形.
A
2
C
6
B
2.如图,在 Rt△ABC 中,∠C=90°,∠B=35°,
b=20,解这个直角三角形 (结果保留小数点后一位). A
c
b
35°
20
B
a
C
3.在 Rt△ABC 中,∠C=90°,cosA = 13,BC = 5, 试 求AB 的长.
随堂练习
D ∠A≠30° ,AC =2
1.解直角三角形时,已知其中的两个元素中,至少 有一个是边. 2.在解直角三角形时,先画出一个直角三角形,标明 已知元素,然后确定锐角,再确定它的对边和邻边.
直角三角形中的边角关系
如图,在 Rt△ABC 中,∠C =90°,∠A,∠B,∠C
所对的边分别为 a,b,c,那么除直角∠C 外的五个
元素之间有如下关系:
B
1.三边之间的关系:a2 +b2 =c2 (勾股定理) =90°; c a
A bC
B ca A bC
新知探究 知识点2:解直角三角形的基本类型及解法
已知两边解直角三角形的方法
1.已知斜边和一直角边:通常先根据勾股定理求出 另一条直角边,然后利用已知直角边与斜边的比得 到一个锐角的正弦(或余弦)值,求出这个锐角,再 利用直角三角形中的两锐角互余求出另一个锐角. 2.已知两直角边:通常先根据勾股定理求出斜边, 然后利用两条直角边的比得到其中一个锐角的正切 值,求出该锐角,再利用直角三角形中的两锐角互 余求出另一个锐角.
人教版九年级数学下册第二十八章《28.2解直角三角形-应用举例》公开课 课件(共13张PPT)
A
设DF= x , AD=2x 则在Rt△ADF中,根据勾股定理
60°
AF = AD2 DF 2 = 2x2 x2 = 3x
B
DF
在Rt△ABF中,
30°
AF tan ABF =
tan 30 =
3x
BF
12 + x
解得x=6
AF = 6x = 6 3 10.4
10.4 > 8没有触礁危险
2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高 度DE与水平宽度CE的比),根据图中数据求:
解直角三角形—应用举例
例题
例3: 2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞 行器成功实现交会对接. ,“神舟”九号与“天宫”一号的组合体在离地球表 面343km的圆形轨道上运行.如图,当组合体运行到地球表面上P点的正上 方时,从中能直接看到地球表面最远的点在什么位置?最远点与P点的距离 是多少?(地球半径约为6 400km,π取3.142,结果取整数)
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/272021/7/272021/7/272021/7/27
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
人教版9年级数学下册 《 解直角三角形 》优质课件
解:在Rt△ABC中
B
a=5
C
c
( 30°
(2) A 30 , BC 5 BC 1 sin 30 AB 2 即AB 2 BC 2 5 10
b
A
(3) BC 5, AB 10 AC AB BC 10 5 5 3
C
A
45
60
B
D
例5. 如图,一艘海轮位 于灯塔P的北偏东65°方 向,距离灯塔80海里的A 处,它沿正南方向航行 一段时间后,到达位于 灯塔P的南偏东34°方向 上的B处,这时,海轮所 在的B处距离灯塔P有多 远? (精确到0.01海里)
65° P
A C
34°
B
【方位角】
指南或指北的方向线与目标方向线构成小 于900的角,叫做方位角. 如图:点A在O的北偏东30° 点B在点O的南偏西45°(西南方向)
人教版九年级下册28章第二节第一课时
(一)创设情境 导入新课
如图(1)是5级台阶示意图,如果要在台阶上铺地毯,则至少 要买地毯多少米?(取 3 1.732 ,精确到0.1m)
A
2m
30° B 图(1) C
请同学们总结上述计算方法中,都用到了哪些数学知识?
填一填
角α
三角函数
记一记
30° 45°
解:要使A、C、E在同一直线 上,则 ∠ABD是 △BDE 的一 个外角 ∴∠BED=∠ABD-∠D=90°
a
B
3. 3.从边与角关系出发: 边角间的关系: c o s A A 的 邻 边
tanA
A的对边 BC a 邻边 AC b
试一试
在Rt△ABC中,∠C=90°,a=5, ∠A=30°你能求出 这个直角三角形的其他边和角吗?
新人教版九年级数学下册 28.2.解直角三角形 课件 (20张PPT)
a ∵ s in A c c s i n A 4 0 0 . 6 4 3 2 5 . 7 ∴a b ∵ s in B c s i n 5 0 4 0 0 . 7 6 6 3 0 . 6 ∴b c
1.在下列直角三形中,不能求解的是 ( D) A.已知一直角边一锐角 B.已知一斜边一锐角 C.已知两边 D.已知两角 2.在Rt△ABC中∠C=90°,已知a边及∠A,则斜边应为( A ) a a A.a sin A C. acos A B. D. s in A cos A 3.有一个角是30°的直角三角形,斜边为1cm,则斜边上的高 为 (C ) 1 1 3 3 A . cm B . cm C. cm D. cm 4 2 4 2 4.等腰三角形底边与底边上的高的比是2:3,则底角的余弦值 为 (D)
b a b 2 0 2 8 . 6 ∴ a t a n B t a n 3 5
∵ ta n B
一直角边和一锐角,合理选
b ∵ s in B c
b 2 0 3 4 . 9 ∴ c s i n B s i n 3 5
类型四.已知直角三角形的斜边长和一锐角,解直角三角形.
c 40 ; 解这个直角 例. 如图,在Rt△ABC中,∠C=90°, ∠A=40°, 三角形.(结果保留小数点后一位). 分析: 本题已知的是斜边长和锐角,可以先利用互余关系求出另一个锐 角,求余下的两个未知元素的路径比较多,合理的选择一种“锐角 函数”进行解答即可. 还有其 略解:在Rt△ACB中, ∠C=90° 它方法求 B 9 0A 9 0 4 0 5 0 a,b边吗?
B C 3 3 ∵ sinA A B 23 2
∴ A60
B 9 0 6 0 3 0 ∴ 1 1 C A B 23 3 ∴A 2 2
1.在下列直角三形中,不能求解的是 ( D) A.已知一直角边一锐角 B.已知一斜边一锐角 C.已知两边 D.已知两角 2.在Rt△ABC中∠C=90°,已知a边及∠A,则斜边应为( A ) a a A.a sin A C. acos A B. D. s in A cos A 3.有一个角是30°的直角三角形,斜边为1cm,则斜边上的高 为 (C ) 1 1 3 3 A . cm B . cm C. cm D. cm 4 2 4 2 4.等腰三角形底边与底边上的高的比是2:3,则底角的余弦值 为 (D)
b a b 2 0 2 8 . 6 ∴ a t a n B t a n 3 5
∵ ta n B
一直角边和一锐角,合理选
b ∵ s in B c
b 2 0 3 4 . 9 ∴ c s i n B s i n 3 5
类型四.已知直角三角形的斜边长和一锐角,解直角三角形.
c 40 ; 解这个直角 例. 如图,在Rt△ABC中,∠C=90°, ∠A=40°, 三角形.(结果保留小数点后一位). 分析: 本题已知的是斜边长和锐角,可以先利用互余关系求出另一个锐 角,求余下的两个未知元素的路径比较多,合理的选择一种“锐角 函数”进行解答即可. 还有其 略解:在Rt△ACB中, ∠C=90° 它方法求 B 9 0A 9 0 4 0 5 0 a,b边吗?
B C 3 3 ∵ sinA A B 23 2
∴ A60
B 9 0 6 0 3 0 ∴ 1 1 C A B 23 3 ∴A 2 2
人教版九年级数学下册解直角三角形ppt课件
AD 4 2 2
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=
人教版九年级数学下册解直角三角形课件
A, B, C 的对边,已知B 45, c 4 2 ,
解这个直角三角形(. ∠A、a、b)
A
解:方法一 A 90 B 90 45 45
b
sin A a ,a c sin A 4 2 2 4
c ba4
2
C
方法二 A 90 B 90 45 45
c aB
a b a2 b2 c2 ,2a2 32 a b 4
3
新知探究
已知锐角求锐角,互余关系要记好;
例2 如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形 (结果保留小数点后一位).
已知一锐角和一边解直角三角形
变式2 在Rt△ABC中,∠C = 90°, 分别是
已知一锐角和一边解直角三角形
已知一个锐角和一边解直角三角形
已知一锐角和一边解直角三角在形 直角三角形中,除直角外,共有五个元素,
问:倾斜角∠A是多少?
所以∠A≈5.48° 如图,在Rt△ABC中,共有六个元素(三条边,三个角), 其中∠C=90°.
问:倾斜角∠A是多少?
的对边,已知
,
AC = (参考数据:sin37°,cos37°,
CB A
新知探究
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
ห้องสมุดไป่ตู้
的已对知边 一,锐已角知和一边解=直角5三4角.形5,m.问:倾斜角∠A是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
C
在直角三角形的六个元素中,除直角外, (,其中至少有一个是边), 如果知道两个元素
三角形有六个元素,分 别是三条边和三个角.
就可以求出其余三个元素.
在直角三角形中,由已知元素求未知元素的过程, 叫
解直角三角形
解直角三角形的依据
(1)三边之间的关系: (2)锐角之间的关系: (3)边角之间的关系: a sinA= c b cosA= c tanA= a b sinB= b a2+b2=c2(勾股定理); ; ∠ A+ ∠ B= 90º c
B
c
a
a cosB= c
b tanB= a
A
b
C
例1 :在△ABC中,∠C=90°, AC
2
,
BC 6 ,解这个直角三角形 .
A
c? B
?
2 a
C
?
6
b
例2 在Rt△ABC中,∠C=90°, ∠B=35°, b=20 , 解这个直角三角形 (精确到0.1).
A
c B
?
? 20
b C
35°
解直角三角形
C
A
B
高54.5m的斜塔偏 离垂直中心线的距 离为5.2m,求塔 身偏离中心线的角 度。
C
B
AB=54.5m BC=5.2m
α
A
要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子 与地面所成的角α一般要满足50°≤ α ≤75°.现有一个长 6m的梯子.问: B
(1)使用这个梯子最高可以安全攀上 多高的平房?(精确到0.1m) 角α越大,攀上的高度就越高. 这个问题归结为:
在Rt△ABC中,已知AC=2.4m,斜边 AB=6, 求锐角α的度数?
A
C
要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子 与地面所成的角α一般要满足50°≤ α ≤75°.现有一个长 6m的梯子.问: B
(3)梯子底端最远可以距离墙面多远? (精确到0.1m) 角α越小,梯子底端距离墙面越远. 这个问题归结为:
A
B D
C
如图,在△ABC,∠C=90O,D是BC的 中点,∠ADC=60O,AC= 3 ,求: △ABD的周长
C D A B
梯形ABCD中,AD∥BC,∠B=45O, ∠C=120O,AB=8,求CD的长
A
D
B
C
例3: 如图,太阳光与地面成60度角,一棵倾斜的大树 AB与地面成30度角,这时测得大树在地面上的影长 为10m,请你求出大树的高.
情景分析
如何知道这棵大树在折断之前有多高? A A A
B
C
B
C
B
C
方案一:直接测量 被折断的两部分树 干AC和AB的长度, 再把它们加起来. 大树高度=AB+AC
方案二:测量地面 距离BC和被折断 的树干AC或AB的 长度,再用勾股定 理解答.
方案三:先用测角 仪测量∠B的度数, 再测量地面距离BC 的长度,用锐角三 角函数知识解答.
AB的长
太阳光线
A
30°
60°
B
C
D
地面
a
?
1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形 (1) (2) a=30 ,b=20 ∠B=72°,c=14
台风是一种空气旋涡,是破坏力很强的自然灾害。 2006年5月18日2时15分,台风“珍珠”在广东汕头澄 海和饶平之间登陆,一棵百年大树被吹断折倒在地上, 你知道这棵大树在折断之前有多高吗?
在Rt△ABC中,已知∠A= 50°,斜边 AB=6,求AC的长
A
C
在Rt△ABC中, B
(1)根据∠A= 75°,斜边AB=6, 你能求出这个三角形的其他元素吗? (2)根据AC=2.4m,斜边AB=6, 你能求出这个三角形的其他元素吗? (3)根据∠A=60°,∠B=30°,
你能求出这个三角形的其ຫໍສະໝຸດ 元素吗?例4: 如图,在△ABC中,∠B=45°, ∠C=30°,AB= 4 2 ,求AC和BC。
尝试一下: 你还有其它方法吗?请同学们试着用 这两种方法做做看。 (小组合作)
例4: 如图,在△ABC中,∠B=45°, ∠C=30°,AB= 4 2 ,求AC和BC。
在△ABC中,∠B=600,AD⊥BC, AD= 3 ,AC= 19 ,则AB= , BC= ;
在Rt△ABC中,已知∠A= 75°,斜边 AB=6,求BC的长
A
C
要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子 与地面所成的角α一般要满足50°≤ α ≤75°.现有一个长 6m的梯子.问: B
(2)当梯子底端距离墙面2.4m时,梯子 与地面所成的角α等于多少(精确到 1°)?这时人能否安全使用这个梯子? 这个问题归结为: