安徽省马鞍山市七年级期末测试及答案[整理]
马鞍山市七年级上册数学期末试卷及答案-百度文库
马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)32.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃6.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3807.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或738.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x+=B .1005006x 2x += C .10040062x x+= D .1004006x 2x+= 9.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣210.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y11.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3y B .-10x +3y C .10x -9y D .10x +9y 12.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,213.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x = 14.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________20.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.21.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 22.如果一个数的平方根等于这个数本身,那么这个数是_____.23.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.24.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.25.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 26.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.27.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.28.钟表显示10点30分时,时针与分针的夹角为________. 29.用度、分、秒表示24.29°=_____. 30.若523m xy +与2n x y 的和仍为单项式,则n m =__________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?34.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.35.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
马鞍山市七年级上册数学期末试卷及答案-百度文库
马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5927.计算(3)(5)-++的结果是()A.-8 B.8 C.2 D.-28.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查9.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.010.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y11.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <12.3的倒数是()A.3B.3-C.13D.13-13.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥14.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点确定一条直线B.两点之间,线段最短C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离15.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.把5,5,35按从小到大的顺序排列为______.19. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm. 20.计算:()222a -=____;()2323x x ⋅-=_____.21.因式分解:32x xy -= ▲ .22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.24.若α与β互为补角,且α=50°,则β的度数是_____.25.数字9 600 000用科学记数法表示为 .26.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.32.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.33.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)35.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
安徽省马鞍山市七年级期末测试及答案[整理]
马鞍山市2003~2004学年度第二学期期末考试初一数学试题考生注意:本卷共4页,26小题,满分100分,考试时间120分钟.题号 一 二 三总分 21 22 23 24 25 26 得分一.填空题(本大题共10小题,每小题3分,满分30分。
请将答案直接填在题后的横线上) 1.小明买2副羽毛球拍,付出50元,找回1.2元,则每副球拍的单价为 元。
2. 一组数据2,4,5,6,4,6,8,10,它的众数是 。
3.当x = 时,等式3x -5=5+x 成立。
4.等腰三角形的一个内角为40°,则这个三角形顶角的大小为 。
5.已知方程y x 2851=-,用含y 的代数式表示x ,那么x = 。
6.如图,已知∠1=32°,,∠3=115°,那么∠2= 。
7.一个多边形的每一个外角都是30°,那么这个多边形的边数为 。
8.当x = 2 时,代数式2x +3与3-5x 的值互为相反数。
9.在等式y=kx+b 中,当x=2时,y=-2,当x =6时,y=-4,那么|k -b |= 。
10.掷二枚骰子,得到的点数和为4的成功率(机会)记为a ,得的点数和为5的的成功率(机会)记为b ,则a 与b 的大小关系是 。
二.选择题(本大题共10小题,每小题3分,满分30分。
每小题所给的四个选择支中只有一个是正确的,请将正确答案的代号填在题后的括号内) 11.下列方程中,是一元一次方程的是 ( ) (A )211=-x(B )012=-x(C )32=-y x(D )213=-x 12.等边三角形的对称轴有 ( ) (A )4条 (B )3条 (C )2条 (D )1条13.某商场将一种商品A 按标价的9折出售,仍可获利润10%,若商品A 标价为33元,那么商品进货价为 ( ) (A )31元 (B )30.2元 (C )29.7元 (D )27元 14.若二元一次方程组⎩⎨⎧=-=+2332y x y x 的解同时也是方程12-=-my x 的解,那么m 的值为 ( )(A )-2 (B )-1 (C )3 (D )415.某班有x 人,分y 组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人。
安徽省马鞍山市七年级下学期数学期末考试卷
安徽省马鞍山市七年级下学期数学期末考试卷姓名:________ 班级:________ 成绩:________一、填空题(本大题共6小題,共18分) (共6题;共18分)1. (3分) (2019九上·南关期末) 已知抛德物线y= +1有下性质:该抛物线上任意一点到定点F(0,2)的距离与到轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y= +1上一个动点,则△PMF 周长的最小值是________.2. (3分)(2017·丹东模拟) 关于x,y的方程组的解是,则|m+n|的值是________.3. (3分)若点P(a,4-a)是第一象限的点,则a的取值范围是________.4. (3分) (2018八下·句容月考) 如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P在AD边上以每秒1 cm 的速度从点A向点D运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,当运动时间=________时线段PQ∥AB.5. (3分) (2019七上·北京期中) 如果代数式的值为6,那么代数式的值是________.6. (3分) (2019八下·福田期末) 两个实数,,规定,则不等式的解集为________.二、选择题(本大题共8小题,共32分) (共8题;共32分)7. (4分) (2019七下·长丰期中) 在下列说法中,① 的算术平方根是4;②3是9的平方根;③在实数范围内,一个数如果不是有理数,则一定是无理数;④两个无理数之和还是无理数.其中正确个数是()A . 4个B . 3个C . 2个D . 1个8. (4分) (2019七下·锡山月考) 观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()A .B .C .D .9. (4分)(2019·玉林模拟) 在平面直角坐标系中,点(﹣8,2)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (4分)在tan45°,sin60°,3.14,π,0.101001,中,无理数的个数是()A . 2个B . 3个C . 4个D . 5个11. (4分)为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问中,下列说法:①这6000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200,其中说法正确的有()A . 4个B . 3个C . 2个D . 1个12. (4分)如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD 的是()A . ∠3=∠4B . ∠B=∠DCEC . ∠1=∠2D . ∠D+∠DAB=180°13. (4分) (2019七上·萧山期末) A,B两地相距720km,甲车从A地出发前往B地,行驶120km后,乙车从B地驶往A地,3h后两车相遇,若乙车速度是甲车速度的倍,设甲车的速度为则可列方程()A .B .C .D .14. (4分) (2019九上·莲池期中) 若关于x的一元二次方程的解是,(a,b,m均为常数,a≠0),则方程的解是()A .B .C .D .三、解答题(70分) (共9题;共70分)15. (6分)求下列各式中的x.(1)4x2=121;(2)(x+2)3=125.16. (6分)(2019·通州模拟)(1)计算×cos45°﹣()﹣1+20180;(2)解方程组17. (6分)解不等式组:18. (8分) (2019八下·碑林期末) 已知:如图,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E,F,求证:四边形CEDF是正方形.19. (10.0分) (2018八上·灌云月考) 如图,在Rt△ABC中,∠B=90°,∠ACB=30°,其直角边分别与坐标轴垂直,已知顶点的坐标为A(,0),C(0,1).(1)如果A关于BC对称的点是D,则点D的坐标为________;(2)过点B作直线m∥AC,交CD连线于E,求△BCE的面积.20. (10.0分)(2019·宝鸡模拟) 2019年3月30日,四川省凉山州木里县境内发生森林火灾,30名左右的扑火英雄牺牲,让人感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完整的统计图表:组别成绩x/分组中值A50≤x<6055B60≤x<7065C70≤x<8075D80≤x<9085E90≤x<10095请根据图表提供的信息,解答下列各题:(1)补全频数分布直方图和扇形统计图;(2)分数段80≤x<90对应扇形的圆心角的度数是________°,所抽取的学生竞赛成绩的中位数落在________区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.21. (6分)(2018·新乡模拟) 某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
安徽省马鞍山市七年级下学期语文期末考试试卷
安徽省马鞍山市七年级下学期语文期末考试试卷姓名:________ 班级:________ 成绩:________一、默写 (共2题;共14分)1. (10分)(2017·重庆) 默写填空(1) ________,思而不学则殆。
(《论语·为政》)(2)海日生残夜,________。
(王湾《次北固山下》)(3) ________,芳草萋萋鹦鹉洲。
(崔颢《黄鹤楼》)(4)东风不与周郎便,________。
(杜牧《赤壁》)(5) ________,似曾相识燕归来。
(晏殊《浣溪沙》)(6)俗子胸襟谁识我?________。
(秋瑾《满江红》)(7)山居茅屋,大漠边关,多少思念在流淌。
一场夜雨,飘在李商隐的窗前,唤起他与亲友重逢的希冀:“________,________”(《夜雨寄北》);一杯烈酒,斟于范仲淹的案前,引发他思家与报国的矛盾:“________,________”(《渔家傲》)。
2. (4分)唐代的大小李杜指的是________,________;________,________。
二、综合性学习 (共2题;共21分)3. (6分) (2019九下·江北模拟) 读下面文字,完成题目。
立志当然要高远,所以要找一座高山去敬仰pān登;立志又往往失于虚空,所以还要找一座幽谷去承载容纳。
谦虚虔诚无疑是一味“清热祛火”的良药。
说到底,它是一种“自知之明”,意识到人性的尊严而自尊,意识到自我的miǎo小而自谦,自尊与自谦的合一。
于是法天行①,自强不息,这就是易经所说的“谦尊而光,卑不可逾”。
(朱光潜《温和的修养》)(1)划线字“载”在文中的正确读音是()A . zǎiB . zài(2)根据语境给①处选择最恰当的汉字()A . 建B . 鉴C . 渐D . 健(3)根据拼音写出相应的汉字。
pān miǎo________登________小4. (15分)专题与语文综合实践活动。
马鞍山市初中数学七年级下期末经典练习(含答案)(1)
一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°2.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.3.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°5.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=106.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.27.已知{x=1y=2是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-28.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cm B.2cm;C.小于2cm D.不大于2cm9.如图,下列能判断AB∥CD的条件有()①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .410.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3211.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)13.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,414.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-15.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题16.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.17.如果a 的平方根是3±,则a =_________18.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____ 19.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 20.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 21.若3的整数部分是a ,小数部分是b ,则3a b -=______.22.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____.23.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;24.如图,在数轴上点A 表示的实数是_____________.25.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是________________________三、解答题26.解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.27.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.28.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.29.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD,(已知)∴∠2=()∵∠1=∠2,(已知)∴∠1=()∴∥,()∴∠AGD+=180°,(两直线平行,同旁内角互补)∵,(已知)∴∠AGD=(等式性质)30.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒(已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.A6.A7.B8.D9.C10.A11.B12.A13.C14.D15.D二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C(32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大17.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义18.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知19.【解析】将代入方程得a-2=3解得a=5故答案为520.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为321.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为122.±4【解析】【分析】根据非负数的性质列出方程求出ab的值代入所求代数式计算即可【详解】根据题意得a-1=0且b-5=0解得:a=1b=5则(a-b)2=16则平方根是:±4故答案是:±4【点睛】本题23.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°24.【解析】【分析】如图在直角三角形中的斜边长为因为斜边长即为半径长且OA为半径所以OA=即A表示的实数是【详解】由题意得OA=∵点A在原点的左边∴点A表示的实数是-故答案为-【点睛】本题考查了勾股定理25.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】∠︒∴∠︒∴∠∠︒ .故选A.1=1303=502=23=1002.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.3.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.7.B解析:B【解析】【分析】把{x=1y=2代入x-ay=3,解一元一次方程求出a值即可.【详解】∵{x=1y=2是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.8.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.9.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.10.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度,故选B.12.A解析:A【解析】【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.13.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.14.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.15.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题16.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A 平移到点C 时∵C (32)A 的坐标为(20)点B 的坐标为(01)∴点A 的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A 平移到点C 时,∵C (3,2),A 的坐标为(2,0),点B 的坐标为(0,1), ∴点A 的横坐标增大了1,纵坐标增大了2,平移后的B 坐标为(1,3),②如图2,当B 平移到点C 时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.17.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±,a,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.18.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,∴m≥2,故答案为m≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.19.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.20.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.21.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.22.±4【解析】【分析】根据非负数的性质列出方程求出ab的值代入所求代数式计算即可【详解】根据题意得a-1=0且b-5=0解得:a=1b=5则(a-b)2=16则平方根是:±4故答案是:±4【点睛】本题解析:±4.【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】根据题意得a-1=0,且b-5=0,解得:a=1,b=5,则(a-b )2=16,则平方根是:±4. 故答案是:±4. 【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.62【解析】【分析】【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°解析:62【解析】【分析】【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°. 24.【解析】【分析】如图在直角三角形中的斜边长为因为斜边长即为半径长且OA 为半径所以OA=即A 表示的实数是【详解】由题意得OA=∵点A 在原点的左边∴点A 表示的实数是-故答案为-【点睛】本题考查了勾股定理解析:【解析】【分析】=OA 为半径,所以OA A【详解】由题意得,OA =∵点A 在原点的左边,∴点A 表示的实数是故答案为【点睛】本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA 的长是解答本题的关键.25.【解析】【分析】设绳索长为x 尺竿子长为y 尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy 的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5152x y x y +⎧⎪⎨-⎪⎩== 【解析】【分析】设绳索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】 解:根据题意得:5152x y x y +⎧⎪⎨-⎪⎩==. 故答案为:5152x y x y +⎧⎪⎨-⎪⎩==. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题26.512x -<,-2 【解析】【分析】先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①② 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 27.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.28.(1)证明见解析;(2)50°. 【解析】证明:(1)∵∠A =∠AGE ,∠D =∠DGC又∵∠AGE =∠DGC ∴∠A =∠D ∴AB ∥CD(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD =∠1∴CE ∥FB ∴∠C =∠BFD ,∠CEB +∠B =180°又∵∠BEC =2∠B +30° ∴2∠B +30°+∠B =180°∴∠B =50°又∵AB ∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.29.见解析【解析】【分析】首先根据EF∥AD可得∠2=∠3,进而得到∠1=∠3,可判断出DG∥AB,然后根据两直线平行,同旁内角互补可得∠DGA+∠BAC=180°,进而得到答案.【详解】解:∵EF∥AD,(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠2,(已知)∴∠1=∠3(等量代换)∴DG∥BA,(内错角相等两直线平行)∴∠AGD+∠CAB=180°,(两直线平行,同旁内角互补)∵∠CAB=70°,(已知)∴∠AGD=110°(等式性质).【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定与性质定理.30.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a∥b(已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。
马鞍山市七年级上册数学期末试卷及答案-百度文库
马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.52.﹣3的相反数是( )A .13- B .13 C .3- D .33.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,3 4.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-2 5.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a - 6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=09.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+ C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚 二、填空题13.=38A ∠︒,则A ∠的补角的度数为______.14. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.若方程11222m x x --=++有增根,则m 的值为____. 17.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 21.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 22.|﹣12|=_____. 23.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .24.已知一个角的补角是它余角的3倍,则这个角的度数为_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.27.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.28.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.29.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.30.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.31.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:-<-<-<<,2.52 1.501故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r h π的系数和次数分别是π,3;故选:A .【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++ =5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.5.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.6.C解析:C【解析】【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.8.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.9.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.12.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用二、填空题13.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:A∠=,38∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.14.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 16.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键17.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的解析:24 2525【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 21.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.22.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.24.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24, ∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2,解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t)解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)10;(2)212±;(3)288. 5±±, 【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a 的值为10.(2)分两种情况,点A 在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a 的值.同理可求出当点A 在原点的左侧时,a 的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b =-4,则a 的值为 10(2)解:当A 在原点O 的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m 2=, 所以,OA=212,点A 在原点O 的右侧,a 的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.27.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.28.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.30.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,。
七年级上册马鞍山数学期末试卷测试题(Word版 含解析)
七年级上册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为( ) A .53610⨯B .60.3610⨯C .53.610⨯D .43610⨯2.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .39 4.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2 C .1- D .2- 5.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2 B .|x +2| C .x 2+2 D .x 2-2 6.下列四个数中,最小的数是()A .5B .0C .1-D .4-7.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯8.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .9.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .10.图中几何体的主视图是( )A .B .C .D .11.-8的绝对值是( ) A .8B .18C .-18D .-812.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-13.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段14.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上15.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-二、填空题16.地球的半径大约为6400000m ,用科学计数法表示地球半径为___________m . 17.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________. 18.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.19.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________. 20.多项式32ab b +的次数是______.21.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____. 22.若232a b -=,则2622020b a -+=_______. 23.有5个面的棱柱是______棱柱. 24.计算t 3t t --=________.25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.27.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4. (1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.28.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)29.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 30.先化简,再求值:(3a 2b -ab 2)-2(ab 2+3a 2b ),其中a =-12,b =2. 31.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数.(2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示) 32.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由. 33.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯--四、压轴题34.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .35.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.36.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果. 37.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长;(3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.38.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级上册马鞍山数学期末试卷测试题(Word版 含解析)
七年级上册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.下列各图是正方体展开图的是( )A .B .C .D .2.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为()A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯ 3.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )A .B .C .D .4.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -5.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( )A .116元B .145元C .150元D .160元6.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )7.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是()A .1B .3C .7D .98.下列方程为一元一次方程的是( )A .12y y +=B .x+2=3yC .22x x =D .3y=29.下列平面图形不能够围成正方体的是( ) A . B . C . D .10.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④12.如图正方体纸盒,展开后可以得到( )A .B .C .D . 13.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.17.一个角的度数为2018',则这个角的补角的度数是________.18.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.19.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20.已知关于x 的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.按照下图程序计算:若输入的数是 -3 ,则输出的数是________23.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .24.若a -2b =1,则3-2a +4b 的值是__.25.单项式345ax y -的次数是__________. 三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.28.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.29.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 . (2)请选择其中一种方法,写出完整的解答过程.30.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分 BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数.(2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示)31.如图,在三角形ABC 中,CD 平ACB ∠,交AB 于点D ,点E 在AC 上,点F 在CD 上,连接DE ,EF .(1)若70ACB ∠=︒,35CDE ∠=︒,求AED ∠的度数;(2)在(1)的条件下,若180BDC EFC ∠+∠=︒,试说明:B DEF ∠=∠.32.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.33.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P 和图形M ,点B 是图形M 上任意一点,我们把线段PB 长度的最小值叫做点P 与图形M 之间的距离.例如,以点M 为圆心,1cm 为半径画圆如图1,那么点M 到该圆的距离等于1cm ;若点N 是圆上一点,那么点N 到该圆的距离等于0cm ;连接MN ,若点Q 为线段MN 中点,那么点Q 到该圆的距离等于0.5cm ,反过来,若点P 到已知点M 的距离等于1cm ,那么满足条件的所有点P 就构成了以点M 为圆心,1cm 为半径的圆.(初步运用)(1)如图2,若点P 到已知直线m 的距离等于1cm ,请画出满足条件的所有点P . (深入探究)(2)如图3,若点P 到已知线段的距离等于1cm ,请画出满足条件的所有点P . (3)如图4,若点P 到已知正方形的距离等于1cm ,请画出满足条件的所有点P .四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
安徽省马鞍山市第一学期期末考试七年级数学试卷(解析版)
七年级数学第一学期期末素质测试一、选择题(每小题4分,计40分)1. 3的相反数的倒数是( ) A. 3- B. 13-C. 3D. 132.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( ) A. 92810⨯ B. 82.810⨯ C. 92.810⨯ D. 102.810⨯3.下列说法中正确的是( ) A. 0不是单项式; B. 316x π的系数为16; C.27ah的次数为2; D. 365x y +-不是多项式; 4.下列说法中,其中正确的的个数是( ) (1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则a -一定是负数;(4)a 是大于1-的负数,则2a 小于3aA. 1B. 2C. 35.甲、乙两个超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,购买此商品更合算的超市是( )A. 甲超市B. 乙超市C. 两超市一样D.与商品价格有关6.下列四个图形中,经过折叠能围成如图一所示的几何图形的是( )(图一)DCBA7.在有理数范围内定义运算“*”,其规则为2*3a bA B +=-,则方程(2*3)(4*x)49=的解为( )A. 3- B. 55- C. 56-8.方程213x -=与方程3103a x--=的解相同,则的值为( ) A. 3 B. 2 C. 1 D. 539.如图二,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )10.下列说法中,不正确的有( ) (1)正方体有8个顶点和6个面;(2)两个锐角的和一定大于90°; (3)若2AOB BOC ∠=∠,则OC 是AOB ∠的平分线;(4)两点之间,线段最短; (5)钝角的补角一定大于这个角的本身;(6)射线OA 也可以表示为射线AO A. 2个 B. 3个 C. 4个 个二、填空题(每小题5分,计20分)11.若多项式22232(5y 3x mx )x -+-+的值与x 无关,则m 的等于________; 12.写出一个满足下列条件的一元一次方程:(1)未知数的系数为23-;(2)方程的解是6,则这样的方程可写为_____________________________;13.如果线段10AB =,点C 、D 在直线AB 上,6BC =,D 是AC 的中点,则A 、D 两点间的距离是____________;14.有理数a 和b 在数轴的位置如图三所示,则下列结论中:(1) 0a b -> (2) 0ab > (3) 0a b -<< (4) a b a -<-< (5) |a ||b ||a b |+=-其中正确的是________________________(把正确的结论的序号都选上) 三、解答题(共8小题,计90分) 15.(8分)计算:23213|3|(3)()24348-------⨯16.(10分)先化简,再求值:22228102(2a 10ab 8b )a ab b -+--+,其中12a =,13b =-17.(10分)解方程:113(x 1)45225x x x --+=-18.(12分)2017年李明家买了一辆轿车,他连续记录了一周中每天行驶的路程(如下表),以为标准,多于50km 的记“+”,不足50km 的记“-”,刚好50km 的记“0”。
度安微省马鞍山市七年级上册期末考试卷
故选:C.
24.
【小题1】C
【小题2】A
【解析】
试题分析:
【小题1】读图可得,该日的最低气温是℃,最高气温是31℃,气温日较差是31℃﹣℃=℃,中午炎热,早晚较凉,选项C符合题意.
故选:A.
10.A
【解析】
试题分析:七大洲中,欧洲和北美洲位于赤道以北,全部位于北半球.
故选:A.
11.B
【解析】
试题分析:读图可知,A表示晴天,B表示沙尘暴,C表示冰雹,D表示雷雨.根据题意.
故选:B.
12.C
【解析】
试题分析:全世界共有七大洲,按面积由大到小排列分别为:亚洲、非洲、北美洲、南美洲、南极洲、欧洲和大洋洲.根据题意.
A.湿热的环境 B.干燥的环境 C.平原环境 D.城市环境
29.下列国家中,属于发达国家的是
A.中国 B.印度 C.日本 D.越南
第II卷(非选择题)
二、综合题
30.读图,回答下列问题:
(1)写出图中A、B、C三地的地理坐标:
A:(,)B:(,)C:(,)
(2)在图中A、B、C三地中,位于南、北半球分界线上的是地,位于东半球的是地,位于西半球的是地.
2022-2022学年度安微省马鞍山市七年级上册期末考试卷
第I卷(选择题)
一、选择题
1.国际上习惯用哪个经线圈作为划分东西半球的分界线
A.900E、900W B.00、1600E
C.00、1800D.200W、1600E
2.地球的平均半径是
A.5371千米 B.6371千米
C.6713千米 D.6173千米
安徽省马鞍山市七年级(下)期末数学试卷
11.<; 12.5; 13.m<0; 14.﹣1; 15.11; 16.120°; 17.x=2; 18.3;
三、解答题(本大题共 6 小题,共 46 分)
19【解答】解:(﹣1)2020﹣
×6
=1﹣4÷3+
=1﹣ +
=. 20【解答】解:(1)原式=a(a2﹣b2)=a(a+b)(a﹣b);
(2)1﹣ ≥ +(1+x),
A.变为原来的 3 倍 C.变为原来的
B.不变 D.变为原来的
5.(3 分)如图,将一副直角三角板按照图中所示位置摆放,点 E 在边 AB 上,两条斜边互 相平行,∠DEF=∠ABC=90°,∠A=30°,∠D=45°,则∠AED 等于( )
A.15°
B.20°
C.25°
D.30°
6.(3 分)若关于 x 的二次三项式 x2﹣4x+b 因式分解为(x﹣1)(x﹣3),则 b 的值为( )
(4)能使 S△ABC=S△QBC 的格点 Q(A 点除外)共有
个.
23.(8 分)阅读材料:若 m2﹣2mn+2n2﹣8n+16=0,求 m、n 的值. 解:∵m2﹣2mn+2n2﹣8n+16=0 ∴(m2﹣2mn+n2)+(n2﹣8n+16)=0 ∴(m﹣n)2+(n﹣4)2=0 ∴(m﹣n)2=0,(n﹣4)2=0 ∴n=4,m=4. 根据上述材料,解答下面的问题:
3﹣(x﹣1)≥2x+3(1+x), 3﹣x+1≥2x+3+3x, ﹣x﹣2x﹣3x≥3﹣3+1, ﹣6x≥1, x≤﹣ .
21【解答】解:∵AD⊥BC 于 D,EG⊥BC 于 G (已知) ∴∠ADC=∠EGC=90° ∴AD∥EG,(同位角相等,两直线平行). ∴∠1=∠2,(两直线平行,内错角相等). ∠E=∠3(两直线平行,同位角相等) 又∵∠E=∠1(已知) ∴∠2=∠3,(等量代换).
七年级下册马鞍山数学期末试卷测试题(Word版 含解析)
七年级下册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.实数4的算术平方根是()A .2B .2C .2±D .162.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D 3.在平面直角坐标系中,点A (1,﹣2021)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角5.已知,如图,点D 是射线AB 上一动点,连接CD ,过点D 作//DE BC 交直线AC 于点E ,若84ABC ∠=︒,20CDE ∠=︒,则ADC ∠的度数为( )A .104︒B .76︒C .104︒或76︒D .104︒或64︒ 6.下列说法正确的是( ) A .9的立方根是3 B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是2 7.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=50°,∠2=40°,则∠3等于( )A .80°B .70°C .90°D .100°8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.49的算术平方根是___.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.12.如图:已知AB ∥CD ,CE ∥BF ,∠AEC =45°,则∠BFD =_____.13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.16.在平面直角坐标系xoy 中,对于点(,)P x y 我们把(1,1)P y x -++叫做点P 的伴随点,已知1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到123,,,n A A A A ⋯,若点1A 的坐标为(3,1),则点2021A 的坐标为_______三、解答题17.计算下列各题:(1)327-+2(3)--31-(2)3331632700.1251464---++-. 18.求下列各式中x 的值:(1)2360x -=;(2)31348x -=-. 19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C .证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC ;(2)将ABC 向下平移2个单位长度,再向左平移2个单位长度得到三角形111A B C ,画出平移后的图形并写出1A 、1B 、1C 的坐标.21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.二十二、解答题22.有一块面积为100cm 2的正方形纸片.(1)该正方形纸片的边长为 cm (直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm 2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?二十三、解答题23.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.24.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠ ︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.25.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.26.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B .【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E ,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.D【分析】根据各象限内点的坐标特征解答.【详解】解:∵点A(1,-2021),∴A点横坐标是正数,纵坐标是负数,∴A点在第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D 在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.【详解】解:当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE-∠CDE=84°-20°=64°.综上所述:∠ADC=104°或64°.故选:D.【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.6.C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:939A项错误;算术平方根等于它本身的数是1和0,故B项错误;﹣2是4的一个平方根,故C项正确;42D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键. 7.C【分析】根据AB ∥CD 判断出∠1=∠C =50°,根据∠3是△ECD 的外角,判断出∠3=∠C +∠2,从而求出∠3的度数.【详解】解:∵AB ∥CD ,∴∠1=∠C =50°,∵∠3是△ECD 的外角,∴∠3=∠C +∠2,∴∠3=50°+40°=90°.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.7【详解】试题分析:因为,所以49的算术平方根是7.故答案为7.考点:算术平方根的定义.解析:7【详解】试题分析:因为2749,所以49的算术平方根是7.故答案为7.考点:算术平方根的定义.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是解析:8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=5+5﹣2=8,∴AD=BC=8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.12.45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,解析:45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,∴∠BFD =∠AEC ,∵∠AEC =45°,∴∠BFD =45°.故答案为:45°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE .∴EB 1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB 的中位线从而得出答案.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 15.(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),A解析:(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),AB⊥x轴,AB=2,∴|a|=2,∴a=±2,∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.∴点A的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.16.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A解析:()3,1【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505…1,∴2021A的坐标与A1的坐标相同,为(3,1).故答案是:(3,1).【点睛】考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+=解析:(1)1 (2)11 4 -【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14 =114- 18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+, 合并同类项得,318x =-, 开立方得,12x =-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等) ∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4)35.【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用253<的范围进而得出a ,b 的值,即可得出答案.【详解】 解:(2319(6)27--3630=-+=;()2331121(2)2789⎛-+-⨯- ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.二十二、解答题22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm ;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm ,则宽为3xcm ,则4x •3x =90,∴12x 2=90,∴x 2=304,解得:x 或x = ∴长方形纸片的长为,∵56,∴10<∴小丽不能用这块纸片裁出符合要求的纸片.【点睛】本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.二十三、解答题23.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB ∥CD ,PB ′∥QC ′,∴∠BPB ′=∠BEQ =∠CQC ′,即12t ﹣180=45+3t ,解得,t =25;③当30<t ≤45时,如图,则∠BPB ′=12t ﹣360°,∠CQC ′=3t +45°,∵AB ∥CD ,PB ′∥QC ′,∴∠BPB ′=∠BEQ =∠CQC ′,即12t ﹣360=45+3t ,解得,t =45;综上,当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.24.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【详解】解:(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P作FD的平行线PQ,则DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.26.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
2022届安徽省马鞍山市七年级第二学期期末检测语文试题含解析
B.丰富多采——丰富多彩,窜——cuàn;
C.漠——mò;
故选D。
3.下列句子修辞方法的使用不恰当的一项是( )
A.在他脸上找不到一点奋发向上的灵气,找不到精神光彩,找不到陀思妥耶夫斯基眉宇之间那种像大理石穹顶一样缓缓隆起的非凡器宇。
B.等到快日落的时候,微黄的阳光斜射在山腰上,那点薄雪好像姹紫嫣红的花朵,微微露出点粉色。
【解析】
【详解】
A.“事迹在心中传扬”主谓搭配不当;
B.两个介宾短语连用,使句子缺少主语,可去掉“使”;
D.两面对一面,语义前后不对应,可去掉“能否”。
故选C。
三、现代文阅读
7.阅读下面的文章,完成下列小题。
那些温暖我的小贿赂
张亚凌
转眼,已做了二十多年的教师,坦诚地说,我没有清廉到不拿家长或孩子的一针一线。那些曾经收受过的小贿赂,成了我教学生涯中最美的风景。
2022届安徽省马鞍山市七年级第二学期期末检测语文试题
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、句子默写
1.古诗文默写。
他就是那样很狼狈地走了八里路。看着他离去的身影,我脑子像过电影:
他调皮也爱捣蛋,我为此很头疼,没少敲打他,还很严厉地惩戒过他,他一度沉迷于武打小说,上课都看,盛怒之下我拧了他的耳朵,将他借来的书撕得粉碎,训斥他时竟把我自己气哭了,他再也没有在课堂上看武打小说了。
九十年代初,我被分配到一所偏僻的农村学校,我的办公室也就是我的宿舍。那时一个月工资不到200块,由乡镇财政拨款,总是半年不发。每周小镇有集会时我就买些蔬菜自己做饭,米面油都是从家里带。
2022届安徽省马鞍山市初一下期末检测语文试题含解析
2022届安徽省马鞍山市初一下期末检测语文试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、句子默写1.读下列古诗文句子,将空缺处的原文语句书写在横线上。
①不畏浮云遮望眼,_______________。
(王安石《登飞来峰》)②___________________,关山度若飞(《木兰诗》)③谁家玉笛暗飞声,___________________。
(李白《春夜洛城闻笛》)④_____________________,化作春泥更护花(龚自珍《己亥杂诗》)⑤可怜夜半虚前席,_________________。
(李商隐《贾生》)⑥造化钟神秀,___________________。
(杜甫《望岳》)⑦男儿有泪不轻弹,只因未到伤心处。
岑参在远赴边塞的途中流下了思乡之泪:故园东望路漫漫,双袖龙钟泪不干;陈子昂自感生不逢时,在幽州台上流下了悲伤之泪:__________,___________。
⑧《爱莲说》中具体表现莲具有君子美德的对偶句是“_________,_________” 。
【答案】自缘身在最高层万里赴戎机散入春风满洛城落红不是无情物不问苍生问鬼神阴阳割昏晓念天地之悠悠独怆然而涕下出淤泥而不染濯清涟而不妖【解析】【详解】本题考查的是对于诗歌的理解和背诵能力。
默写题不论分几种类型,都是以记忆、积累为根本的,然后在此基础上加以理解、应用、赏析。
解题时一是要看清题目的要求,二是要认真审题,找出合适的诗句,三是答题时不能写错别字。
注意“戎机”“怆然”“濯”等易错字。
二、选择题2.下列加点字的注音有误的一项是()A.哉.(zāi)俯瞰.(kàn)震悚.(sǒng)炽.热(chì)B.碾.(niǎn)屏.障(píng)毡.鞋(zhān)告罄.(qìng)C.涕.(tì)嗥.鸣(háo)褪.色(tèi)淤.泥(yū)D.啮.(niè)门槛.(kǎn)服侍.(shì)譬.如(pì)【答案】C【解析】此题考查学生对字音的掌握情况,这就要求学生平时的学习中注意字音的识记和积累,特别是形近字、多音字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马鞍山市2003~2004学年度第二学期期末考试
初一数学试题
考生注意:本卷共4页,26小题,满分100分,考试时间120分钟.
一.填空题(本大题共10小题,每小题3分,满分30分。
请将答案直接填在题后的横线上) 1.小明买2副羽毛球拍,付出50元,找回1.2元,则每副球拍的单价为 元。
2. 一组数据2,4,5,6,4,6,8,10,它的众数是 。
3.当x = 时,等式3x -5=5+x 成立。
4.等腰三角形的一个内角为40°,则这个三角形顶角的大小为 。
5.已知方程
y x 285
1
=-,用含y 的代数式表示x ,那么x = 。
6.如图,已知∠1=32°,,∠3=115°,那么∠2= 。
7.一个多边形的每一个外角都是30°,那么这个多边形的边数为 。
8.当x = 2 时,代数式2x +3与3-5x 的值互为相反数。
9.在等式y=kx+b 中,当x=2时,y=-2,当x =6时,y=-4,那么|k -b |= 。
10.掷二枚骰子,得到的点数和为4的成功率(机会)记为a ,得的点数和为5的的成功率(机会)记为b ,则a 与b 的大小关系是 。
二.选择题(本大题共10小题,每小题3分,满分30分。
每小题所给的四个选择支中只有一个是正确的,请将正确答案的代号填在题后的括号内) 11.下列方程中,是一元一次方程的是 ( ) (A )
211
=-x
(B )012
=-x
(C )32=-y x
(D )2
13=
-x 12.等边三角形的对称轴有 ( ) (A )4条 (B )3条 (C )2条 (D )1条
13.某商场将一种商品A 按标价的9折出售,仍可获利润10%,若商品A 标价为33元,那么商品进货价为 ( ) (A )31元 (B )30.2元 (C )29.7元 (D )27元 14.若二元一次方程组⎩⎨
⎧=-=+2
33
2y x y x 的解同时也是方程12-=-my x 的解,那么m 的值为 ( )
(A )-2 (B )-1 (C )3 (D )4
15.某班有x 人,分y 组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人。
求全班人数,下列方程组中正确的是 ( )
(A )⎩⎨⎧-=-=-5837y x y x
(B )⎩⎨⎧-=-=-583
7x y x y
(C )⎩⎨⎧=--=-583
7x y x y
(D )⎩
⎨⎧=--=-583
7y x y x
16.对于数据3,3,2,3,6,3,10,3,6,3,2。
给出四个判断:①这组数据的众数是3;②这组数据的众数与中位数不同;③这组数据的中位数与平均数
以上判断中,正确的有 ( ) (A )1个 (B )2个 (C )3个 (D )4个
17.为了解小学课堂教学质量,市教育局决定对全市小学教学质量进行调查。
方法是通过考试(参加考试的为全市小学六年级学生),随机抽取其中1000名学生的语文、数学、英语三科总成绩进行分析。
对于这次调查,以下说法不正确的是 ( ) (A) 调查方法是抽样调查。
(B) 全市小学六年级学生是总体。
(C) 参加考试的某个学生的语文、数学、英语三科的总成绩是个体。
(D) 被抽到的1000名学生的语文、数学、英语三科总成绩是样本。
18.下列四组多边形中,能密铺地面的是( D )
①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形。
(A )①②③ (B )②③④ (C )②③ (D )①②③④ 19.下列各组线段中,不能构成三角形的一组是 ( ) (A )2cm ,4cm ,6cm (B )3cm ,5cm ,7cm (C )4cm ,6cm ,8cm (D )5cm ,7cm ,9cm 20.教科书117页游戏1中的“抢30”游戏,规则是:第一人先说“1”或“1、2”,第二个要接着往下说一个或二个数,然后又轮到第一个,再接着往下说一个或二个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜。
若按同样的规则改为抢“40”,其结果是 ( ) (A )后报数者胜 (B )先报数者胜 (C )两者都可能胜 (D )很难预料
三.解答题(本大题共6题,共40分) 21.(本题10分,每小题5分)解下列方程或方程组: (1)2
1
512-=+x x
(2)⎩
⎨⎧-=-=+9231365y x y x
22.(本题6分)如图,P、Q是∠AOB内的两点,试用尺规作图找出到角的两边OA、OB距离相等且与P、Q两点距离相等的点M(保留作图痕迹,不必写画法)。
23.(本题6分,每空1分)下列7个事件中:
(1)掷一枚硬币,正面朝上。
(2)打开电视机,正在播电视剧。
(3)随意翻开一本有400页的书,正好翻到第100页。
(4)天上下雨,马路潮湿。
(5)你能长到身高4米。
(6)买奖券中特等大奖。
(7)掷一枚骰子的得到的点数小于8。
其中(将序号填入题中的横线上即可)
确定事件为;不确定事件为;
不可能事件为;必然事件为;
不确定事件中,发生可能性最大的是,发生可能性最小的是
24.(本题满分6分)某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。
已知每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨。
现有15天时间可以用来加工这种蔬菜。
如何合理安排粗加工和精加工的时间,才能使公司恰好在15天内将蔬菜全部加工完?该公司出售这些加工后的蔬菜共可获利多少元?
25.(本题6分)如图,AD∥BC,BD平分∠ABC,试问AB与AD相等吗?说明理由。
26.(本小题6分)现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元。
已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款。
某单位办公室需购茶瓶4只,茶杯若只(不少于4只)。
(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买,为什么?
(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?
初一数学参考解答
21.(1)3=x (2)⎩⎨
⎧=-=3
1
y x 22.略
23.确定事件为 (4)、(5)、(7);不确定事件为 (1)、(2)、(3)、(6);
不可能事件为 (5) ;必然事件为 (4)、(7) ;
不确定事件中,发生可能性最大的是 (1) ,发生可能性最小的是 (7)
24.解: 设应安排x 天精加工, y 天粗加工,.根据题意,有
⎩
⎨⎧=+=+14016615y x y x …………………………………(2分)
解这个方程组,得⎩⎨⎧==5
10
y x
…………………………………(4分)
出售这些加工后的蔬菜一共可获利2000×6×10+1000×16×5=200000(元) ………(5分) 答:安排10天精加工,5天粗加工可按期完成加工任务,此时共可获利200000元。
………(6分)
25.解:AB=AD ……………………………(2分)
因为BD 平分∠ABC ,所以∠ABD=∠CBD ………(3分) 又因为AD ∥BC ,所以∠CBD=∠ADB ………………(4分) 从而∠ABD=∠ADB ……………………………(5分) 所以三角形ABD 为等腰三角形,AB=AD ……………(6分)
26.解:
(1)在甲店买需付:4×20+(40-4)×5=260(元) ……………………(1分) 在乙店买需付:(4×20+5×40)×92%=257.6(元) ……………………(2分) 故选择到乙店购买。
(2)设购买茶杯x 只,则两种优惠方法应付的钱分别为: 甲商店:4×20+(x -4)×5=5x +60 ……………………(3分) 乙商店:(4×20+5x )×92%=)16(5
23
+x ……………………(4分) 由题意,当
605)16(5
23
+=+x x 时,两种优惠方法是一样的,
解这个方程得:x =34 ……………………(5分) 答:(1)到乙店购买。
(2)当购买34只茶杯时,两家商店优惠方法的效果是一样的。
……(6分)。