初中数学七年级(下)期末复习华师版
华师大版七年级下册数学练习课件-期末复习1一元一次方程
▪ 16.(12分)已知:线段AB=40 cm.
▪ (1)如图1,点P沿线段AB自A点向B点以3 cm/s运动,同时点 Q沿线段BA自B点向A点以5 cm/s运动,问经过几秒后P、Q 相遇?
▪ (2)几秒后,P、Q相距16 cm?
▪ (3)如图2,AO=PO=8 cm,∠POB=40°,点P绕着点O以 20°/s的速度顺时针旋转一周停止,同时点Q沿直线AB自B 点向A点运动,假若点P、Q两点能相遇,求点Q运动的速 度.
阅后面的答案得知这个方程的解是 x=-2,那么“□”处应该是( A )
A.+2
B.-2
C.+3
D.-3
7.若“△”是新规定的某种运算符号,设 x△y=xy+x+y,则 2△m=-16 中,
m 的值为( D )
A.8
B.-8
C.6
D.-6
22
▪ 8.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航 行需2小时,水速是3千米/小时B,则轮船在静水中的速度是 ()
▪ A.18千米/小时 B.15千米/小时 ▪ C.12千米/小时 D.20千米/小时
23
▪ 二、填空题(每小题5分,共20分) ▪ 9. 下面的框图表示解这个方程的流程:其中,“移项”这一
步等式骤的性的质1依据是_________________.
24
▪ 10.若3x4n-7+5=0是一元一次方程,2则n=__________. ▪ 11. 五个完全相同的小长方形拼成如图所示的大长方形,若
(2)-x=12(x-4); 解:去分母,得-2x=x-4;移项,得-2x-x=-4;合并同类项,得-3x= -4;系数化为 1,得 x=43.
11
(3)x-2 3-2x+3 1=1. 解:去分母,得 3(x-3)-2(2x+1)=6;去括号,得 3x-9-4x-2=6;移项、 合并同类项,得-x=17;系数化为 1,得 x=-17.
华师版初中数学七年级下册期末测试题及答案(3套)
华师版初中数学七年级下册期末测试题(一)一、选择题:本大题共小题,在每小题给出的四个选项中,只有一项是符合题目要求的.下列方程中,解为x=的是()A x=B x﹣=C x﹣=D x-=不等式x£在数轴上表示正确的是()A B C D小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A正五边形B正六边形C正八边形D正十边形下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A. B.C D.一个三角形的两边长分别是和,则它的第三边长可能是()A B C D下列不等式组中,无解的是()Axx<ìí<-îBxx<ìí>-îCxx>ìí>-îDxx>ìí<-î若xy=-ìí=î是关于x,y的二元一次方程k=x y的一个解,则k的值()A B C D明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时斤=两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A x﹣=x﹣B x x+-=C x=x Dx x-+=如右图,五边形A B C D E的一个内角∠A D,则∠∠∠∠等于A DB DCD D D若关于x,y的二元一次方程组a xb ya xb y+=-ìí-=î的解为xy=-ìí=î则方程组a xb ya xb y+=-ìí-=î的解为()Axy=-ìí=îBxy=-ìí=îCxyì=ïïíï=ïîDxyì=-ïïíï=ïî二、填空题:本大题共个小题已知a>b,则﹣a___﹣b(填“>”、“<”或“=”号).由x y=,得到用x表示y的式子为y=________.为建设书香校园,某中学的图书馆藏书量增加后达到万册,则该校图书馆原来图书有_____万册.如图,A B C E D C△≌△,∠C=D,点D在线段A C上,点E在线段C B延长线上,则∠∠E=_____D.如图,A B C沿着射线B C的方向平移到D E F的位置,若点E是B C的中点,B F=c m,则平移的距离为___c m.如图,在A B C中,点D在B C边上,∠B A C=D,∠A B C=D,射线D C绕点D逆时针旋转一定角度α,交A C于点E,∠A B C的平分线与∠A D E的平分线交于点P.下列结论:①∠C=D;②∠P=∠B A D;③α=∠P﹣∠B A D;④若∠A D E=∠A E D,则∠B A D=α.其中正确的是______.(写出所有正确结论的序号)三、解答题:本大题共个小题,解答应写出文字说明、证明过程或演算步骤.解方程组:x yx y+=ìí+=î.解不等式组:xx x->-ìï+-í-£ïî.若代数式x﹣与x﹣的值互为相反数,求x的值.作图:在如图所示的方格纸中,每个小方格都是边长为个单位的正方形.按要求画出下列图形:()将△A B C向右平移个单位得到△A′B′C′;()将△A′B′C′绕点A′顺时针旋转D得到△A′D E;()连结E C′,则△A′E C′是三角形.如图,在A B C中,∠A=D,∠A B C=D.()求∠C的度数;()若B D是A C边上的高,D E∥B C交A B于点E,求∠B D E的度数.如图,在四边形A B C D中,∠D=D,E是B C边上一点,E F⊥A E,交C D于点F.()若∠E A D=D,求∠D F E的度数;()若∠A E B=∠C E F,A E平分∠B A D,试说明:∠B=∠C.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n元,月份购进台A型空调和台B型空调共元;月份购进台A型空调和台B型空调共元.()求m,n的值;()月份该商场计划购进这两种型号空调共元,其中B型空调的数量不少于台,试问有哪几种进货方案?已知x,y同时满足x y=﹣a,x﹣y=a.()当a=时,求x﹣y的值;()试说明对于任意给定的数a,x y的值始终不变;()若y>﹣m,x﹣6m,且x只能取两个整数,求m的取值范围.阅读理解:如图,在A B C 中,D 是B C 边上一点,且B D m D C n=,试说明A B D A C D S m S n =△△.解:过点A 作B C 边上的高A H ,∵A B D S B D A H =×△,A C D S D C A H =×△,∴A B D A C D B D A HS B DS C D D C A H×==×△△,又∵B D m D C n=,∴A B D A C D Sm S n =△△.根据以上结论解决下列问题:如图,在A B C 中,D 是A B 边上一点,且C D ⊥A B ,将A C D 沿直线A C 翻折得到A C E ,点D 的对应点为E ,A E ,B C 的延长线交于点F ,A B =,A F =.()若C D =,求A C F 的面积;()设△A B F 的面积为m ,点P ,M 分别在线段A C ,A F 上.①求P F P M 的最小值(用含m 的代数式表示);②已知A M M F =,当P F P M 取得最小值时,求四边形P C F M 的面积(用含m 的代数式表示).参考答案一、选择题:C D B B C:D A D B D二、填空题<﹣x ①③④三、解答题x y x y +=ìí+=î①②,①﹣②,得y =,把y =代入②,得x =,解得x =﹣,故方程组的解为:x y =-ìí=î.xx x ->-ìïí+--£ïî①②,解不等式①,得x >﹣,解不等式②,得x 5,故不等式组的解集为:﹣<x 5.根据题意得:x ﹣x ﹣=,移项合并得:x =,解得:x =.()如图,将A 、B 、C 三点向右平移个单位,得到A ′、B ′、C ′,连接A ′、B ′、C ′,△A ′B ′C ′为所作;()如图,将△A′B′C′绕点A′顺时针旋转D得到△A′D E,△A′D E为所作;()连结E C′,如图,∵△A′B′C′绕点A′顺时针旋转D得到△A′D E,∴A′E=A′C′,∠E A′C′=D,∴△A′E C′是等腰直角三角形.故答案为:等腰直角()∵∠A∠A B C∠C=D,∴∠C=D﹣D﹣D=D.()∵B D⊥A C,∴∠B D C=D,∴∠D B C=D﹣∠C=D,∵D E∥B C,∴∠B D E=∠C B D=D.()解:∵E F⊥A E,∴∠A E F=°,四边形A E F D的内角和是°,∵∠D=°,∠E A D=°,∴∠D F E=°﹣∠D﹣∠E A D﹣∠A E F=°;()证明:∵四边形A E F D的内角和是°,∠A E F=°,∠D=°,∴∠E A D∠D F E=°,∵∠D F E∠C F E=°,∴∠E A D=∠C F E,∵A E平分∠B A D,∴∠B A E=∠E A D,∴∠B A E=∠C F E,∵∠B∠B A E∠A E B=°,∠C∠C F E∠C E F=°,∠A E B=∠C E F,∴∠B=∠C.()依题意得:m nm n+=ìí+=î,解得:mn=ìí=î.答:m的值为,n的值为.()设购进B型空调x台,则购进A型空调x-=(﹣x)台,依题意得:xx³ìïí->ïî,解得:5x<.又∵x,(﹣x)均为整数,∴x为的倍数,∴x可以取,,,∴该商场共有种进货方案,方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台.()∵x,y同时满足x y=﹣a,x﹣y=a.∴两式相加得:x﹣y=+a,∴x﹣y=+a,当a=时,x﹣y的值为;()若x y=﹣a①,x﹣y=a②.则①’②得到:x y=,∴x y=,∴不论a取什么实数,x y的值始终不变.()∵x y=,∴y=﹣x,∵y>﹣m,x﹣6m,∴x mx m->-ìí->î整理得x mmx+ìï+í³ïî<,∵x只能取两个整数,故令整数的值为n,n,有:n﹣<m+5n,n<m5n.故n m nn m n-£ìí-£-î<<,∴n﹣<n﹣且n﹣<n,∴<n<,∴n=,∴mm£ìí£î<<,∴<m5.()∵C D⊥A B,∴∠A D C=D,由翻折得,C E=C D=,∠A E C=∠A D C=D,∴C E⊥A F,∵A F=,∴S△A C F=A F•C E=’’=.()①如图,作M N⊥A C于点O,交A B于点N,连接F N、P N ,,由翻折得,∠O A M=∠O A N,∵A O =A O ,∠A O M =∠A O N =D ,∴△A O M ≌△A O N (A S A ),∴O M =O N ,A M =A N ,∴A C 垂直平分M N ,∴P M =P N ,∴P F P M =P F P N 6F N ,∴当点P 落在F N 上且F N ⊥A B 时,P F P M 的值最小,为此时F N 的长;如图,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,由S △A B F =A B •F N =m ,得’F N =m ,解得,F N =m ,此时P F P M =F N =m ,∴P F P M 的最小值为m .②如图,当P F P M 取最小值时,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,设C D =C E =a ,P M =P N =x ,∵A B =,A F =,∴A B C A F Ca S Sa´==´,∴S △A F C =S △A B F =m ;∵A M M F =,∴A M =A F =’=,∴A N =A M =,∴B N ===,∴A F NB F NS S==,∴S △A F N =S △A B F =m ,由S △A P M =’x ,S △A P N =’x ,得S △A P M =S △A P N ,设S △A P M =S △A P N =n ,∵A P M F P MS A M SM F ==,∴S △F P M =n ,由S △A P N S △A P M S △F P M =S △A F N =m ,得n n n =m ,∴n =m ,∴S △A P M =n =m ,∴S 四边形P C F M =m m =m .华师版初中数学七年级下册期末测试题(二)一、选择题(每小题只有一个正确答案,请将你所选择的答案所对应的序号填入下面答题表内.本大题共个小题,每小题分,共分)下列方程中,是一元一次方程的是()A x +B a b +=C x x-=D x -=下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D 若方程(a )x y 是二元一次方程,则a 必须满足()A a ¹B a ¹-C a =D a ¹语句“x 的与x 的和不超过”可以表示为()A xx +£B xx +³C x £+D xx +=已知三条线段长分别为c m 、c m 、a ,若这三条线段首尾顺次联结能围成一个三角形,那么a 的取值可以是()A c mB c mC c mD c m一份数学试卷共道选择题,每道题都给出了个答案,其中只有一个正确选项,每道题选对得分,不选或错选倒扣分,已知小丽得了分,设小丽做对了x 道题,则下列所列方程正确的是.()A x x --=B x x +-=C x x+-=D x x-+=已知x y x y +=ìí+=î,则x y +等于()AB C D 已知实数a ,b 满足a +>b +,则下列选项错误的为()A a >bB a +>b +C ﹣a <﹣bD a >b《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出元,还盈余元;每人出元,还差元,问共有多少人?这个物品的价格是多少?设共同购买物品的有x 人,该物品的价格为y 元,则根据题意,列出的方程组为()Ax yx y-=ìí-=-îBx yx y-=ìí-=îCy xy x-=ìí-=îDy xy x-=-ìí-=-î如图,已知△A B C≌△C D E,其中A B=C D,那么下列结论中,不正确的是()A A C=C E B∠B A C=∠EC DC∠A C B=∠E C D D∠B=∠D小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为米分,跑步的平均速度为米分,若他要在不超过分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A x(﹣x)6B x(﹣x)5C x(﹣x)6D x(﹣x)5如图,∠A B C=∠A C B,B D、C D分别平分△A B C的内角∠A B C、外角∠A C P,B E平分外角∠M B C 交D C的延长线于点E.以下结论:①∠B D E=∠B A C;②D B⊥B E;③∠B D C+∠A B C=D;④∠B A C +∠B E C=D.其中正确的结论有()A个B个C个D个二、填空题(本大题共个小题,每小题分,共分)若单项式x m﹣y与单项式x y n是同类项,则m﹣n=___.已知xy=ìí=î是关于x,y的二元一次方程m x y+=-的一个解,则m的值为__________.内角和为°的多边形是__________边形.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据____.若一个正多边形的每个外角都等于D,则用这种多边形能铺满地面吗?(填“能”或“不能”)答:________.关于x的不等式组x b ax a b-ìí-î><的解集为﹣<x<,则a b=___.三、解答题(本大题共个小题,共分)解方程:x x---=-.解方程组:x y x y-=ìí+=î解不等式组:xx x-£ìï-íïî<,把它的解集在数轴上表示出来,并求出它的所有整数解的和.按下列要求在网格中作图:()将图①中的图形先向右平移格,再向上平移格,画出两次平移后的图形;()将图②中的图形绕点O旋转D,画出旋转后的图形;()画出图③关于直线A B的轴对称图形.列一元一次方程解应用题:随着天气寒冷,为预防新冠病毒卷土重来,某社区组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排个志愿者,在乙街道安排个志愿者,但到现场后发现任务较重,决定增派名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的倍,请问新增派的志愿者中有多少名去支援甲街道?如图,A D为△A B C的中线,B E为△A B D的中线,过点E作E F⊥B C,垂足为点F.()∠A B C=D,∠E B D=D,∠B A D=D,求∠B E D的度数;()若△A B C的面积为,E F=,求C D.某商店需要购进甲、乙两种商品共件其进价和售价如表:(注:获利售价进价)()若商店计划销售完这批商品后能获利元,问甲、乙两种商品应分别购进多少件?()若商店计划投入资金少于元,且销售完这批商品后获利多于元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案已知A B∥C D,点E、F分别在直线A B、C D上,P F交A B于点G.()如图,直接写出∠P、∠P E B与∠P F D之间的数量关系:;()如图,E Q、F Q分别为∠P E B与∠P F D的平分线,且交于点Q,试说明∠P=∠Q;()如图,若∠Q E B=∠P E B,∠Q F D=∠P F D,()中的结论还成立吗?若成立,请说明理由;若不成立,请求出∠P与∠Q的数量关系;()在()的条件下,若∠C F P=D,当点E在A、B之间运动时,是否存在P E∥F Q?若存在,请求出∠Q的度数;若不存在,请说明理由.参考答案一、选择题:D D A A CA B D A CA D二、填空题七三角形具有稳定性不能三、解答题去分母,得:(x ﹣)﹣(x ﹣)﹣,去括号:x ﹣﹣x ﹣,移项、合并,得:﹣x ﹣,解得:x ,∴原方程的解为x .x y x y -=ìí+=î①②由①得:x y =+③把③代入②得:()y y ++=y \=-y \=-把y =-代入③得:x =所以方程组的解是:x y =ìí=-î.不等式组x x x -£ìïí-ïî①<②,解①得:x ≤,解②得:x >,∴不等式组的解集为<x ≤,解集表示在数轴上为:它的整数解为和,所有整数解的和为.()如图①即为两次平移后的图形;()如图②即为旋转后的图形;()如图③即为关于直线A B的轴对称图形.设新增派的志愿者中有x 名去支援甲街道,则有(x 名去支援乙街道.根据题意可列方程:x x+=´+-,解得:x =.故新增派的志愿者中有名去支援甲街道.()∵∠A B C =D ,∠B A D =D ,∠A B C ∠B A D ∠A D B =D ,∴∠A D B D ﹣D ﹣D D ,∵∠E B D ∠A D B ∠B E D °,∠E B D D ,∴∠B E D D ﹣D ﹣D D ;()∵A D 为△A B C 的中线,B E 为△A B D 的中线,△A B C 的面积为,∴A B DS=´=,B D ES =,B D C D ,∵E F ⊥B C ,E F ,∴B D E S B D =´×,解得:B D ,即C D .()设甲种商品应购进x 件,乙种商品应购进y 件根据题意得:x y x y +=ìí+=î,解得:x y=ìí=î答:甲种商品购进件,乙种商品购进件;()设甲种商品购进a 件,则乙种商品购进()a -件根据题意得:a a a a +-<ìí+->î解不等式组,得:a <<∵a 为非负整数,∴a 取,,∴a -相应取,,方案一:甲种商品购进件,乙种商品购进件方案二:甲种商品购进件,乙种商品购进件方案三:甲种商品购进件,乙种商品购进件答:有三种购货方案,其中获利最大的是方案一故答案为()甲种商品购进件,乙种商品购进件()有三种购货方案,见解析,其中获利最大的是方案一()如图,∵A B ∥C D ,∴∠P F D ∠A G F ,∵∠A G F ∠P ∠P E B ,∴∠P ∠P E B ∠P F D ;()如图,∵A B ∥C D ,∴∠Q F D ∠A K F ,∵∠A K F ∠Q ∠Q E B ,∴∠Q ∠Q E B ∠Q F D ,∵E Q 、F Q 分别为∠P E B 与∠P F D 的平分线,∴∠Q E B =∠P E B ,∠Q F D =∠P F D∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知,∠P∠P E B∠P F D,∴∠P∠Q;()()中的结论不成立,∠P∠Q,理由为:由()中知,∠Q∠Q E B∠Q F D,∵∠Q E B=∠P E B,∠Q F D=∠P F D,∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知∠P∠P E B∠P F D,∴∠P∠Q;()存在P E F Q,此时∠P∠P F Q,∵∠C F P D,∴∠P F D D﹣∠C F P D﹣D D,∵∠D F Q=∠P F D,∴∠D F Q’D D,∴∠P F Q∠P F D﹣∠D F Q D﹣D°,∴∠P D,由()知∠P∠Q,∴∠Q’D D.华师版初中数学七年级下册期末测试题(三)一、选择题(每小题分,共分)若x y =ìí=î是方程a x y -=的一个解,则a 的值是()A B C -D -我国已经进入G 时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A BC D 若a >b ,则下列不等式变形不正确的是()A ﹣a <﹣b B a m <b mC a ﹣>b ﹣D a >b 方程x y =有几组正整数解?()A 组B 组C 组D 组《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出钱,会多出钱;每人出钱,又差钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A.xy x y +=ìí-=î B.xy x y -=ìí+=î C.xy x y +=ìí+=î D.xy x y-=ìí-=î如图,将△A O B绕点O按逆时针方向旋转D后得到△C O D,若∠A O B=D,则∠A O D的度数是()A DB DCD D D若关于x的不等式x﹣a5只有个正整数解,则a的取值范围是()A<a<B5a<C5a5D<a5多边形的边数由增加到时,其外角和的度数()A增加B减少C不变D不能确定商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.种B.种C.种D.种如图,△A B C的面积为.第一次操作:分别延长A B,B C,C A至点A,B,C,使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C.第二次操作:分别延长A B,B C,C A至点A,B,C;使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C,…按此规律,要使得到的三角形的面积超过,最少经过()次操作.A. B. C. D.二、填空题(每小题分,共分)三角形三边长分别为,a,,则a的取值范围是_____.如果一个多边形的内角和等于它的外角和的倍,那么这个多边形是___边形.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则a Ð=_______°.规定一种新运算:a b =a ﹣b ,若[(﹣x )]=,则x 的值为_____.在一个三角形中,如果一个角是另一个角的倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为D ,D ,D 的三角形是“灵动三角形”.如图,∠M O N =D ,在射线O M 上找一点A ,过点A 作A B ⊥O M 交O N 于点B ,以A 为端点作射线A D ,交线段O B 于点C (规定D <∠O A C <D ).当△A B C 为“灵动三角形”时,则∠O A C的度数为____________.三、解答题(共个小题,满分分)解不等式组x x x x -£-ìí>-î①②,请按照下列步骤完成解答:()解不等式①,得;()解不等式②,得;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为.如图,已知△A B C≌△D E F,∠A=D,∠B=D,B F=.求∠D F E的度数和E C的长.如图,在正方形网格中,△A B C是格点三角形.()画出△A B C,使得△A B C和△A B C关于直线l对称;()过点C画线段C D,使得C D A B,且C D=A B;()直接写出以A、B、C、D为顶点的四边形的面积为.整式m x n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x﹣﹣m x n﹣﹣﹣求关于x的方程﹣m x n=的解.已知关于x、y的二元一次方程组x y mx y m-=ìí+=-+î的解满足x y>﹣,求m的取值范围.如图,在A B C 中,A D 是角平分线,E 为边A B 上一点,连接D E ,E A D E D A Ð=Ð,过点E 作E F B C ^,垂足为F .()D E 与A C 平行吗?请说明理由;()若B A C Ð=°,B Ð=°,求D E F Ð的度数.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.名称A 种头盔B 种头盔批发价(元个)零售价(元个)()第一次,该商店批发A ,B 两种头盔共个,用去元钱,求A ,B 两种头盔各批发了多少个?()第二次,该商店用元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润不低于元,则该超市第二次至少批发A 种头盔多少个?如图,将一副直角三角板放在同一条直线A B上,其中∠O N M=D,∠O C D=D()观察猜想将图中的三角尺O C D沿A B的方向平移至图②的位置,使得点O与点N重合,C D与M N相交于点E,则∠C E N=度.()操作探究将图中的三角尺O C D绕点O按顺时针方向旋转,使一边O D在∠M O N的内部,如图,且O D恰好平分∠M O N,C D与N M相交于点E,求∠C E N的度数;()深化拓展将图中的三角尺O C D绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边C D恰好与边M N平行,请你求出此时旋转的角度.参考答案一、选择题:B C B B B:B B C C C二、填空题<a<六DD或D三、解答题-£-()解不等式①,x x-£-去括号:x x移项,合并同类项:x£得:x5;>-()解不等式②,x x移项,合并同类项得:x>﹣得:x>﹣;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为﹣<x5.故答案为:x5,x>﹣,﹣<x5.∵∠A=D,∠B=D,∴∠A C B=D﹣∠A﹣∠B=D﹣D﹣D=D,∵△A B C≌△D E F,∴∠D F E=∠A C B=D,E F=B C,∴E F﹣C F=B C﹣C F,即E C=B F=.()如图,△A B C为所作;()如图,C D或C D′为所作;()以A、B、C、D为顶点的四边形的面积=´-´´-´´-´´-´´=.故答案为.由题意可得:当x=时,m x n=﹣,∴m’n=﹣,解得:n=﹣,当x=时,m x n=,∴m’﹣=,解得:m=,∴关于x的方程﹣m x n=为﹣x﹣=,解得:x=﹣.方程组x y mx y m-=ìí+=-+î①②,①②得:x=m,解得:x=m,把x=m代入①得:m﹣y=m,解得:y=﹣m,∴方程组的解为x my m=+ìí=-+î,代入x y>﹣得:﹣m>﹣,解得:m<.()D E A C,理由如下:A D 是B AC Ð的角平分线B A DC A D\Ð=ÐE A D E D AÐ=Ð E D A C A D\Ð=ÐD E A C \;(2) B A C Ð=°,B Ð=°C B A C B \Ð=°-Ð-Ð=°D E A CE DF C \Ð=Ð=°E F B C^ D E F E D F \Ð=°-Ð=°.()设第一次A 种头盔批发了x 个,B 种头盔批发了y 个.根据题意,得x y x y +ìí+î==,解得:x yìíî==,答:第一次A 种头盔批发了个,B 种头盔批发了个.()设第二次批发A 种头盔a 个,则批发B 种头盔a -个.由题意,得()()a a --+-´³,解得:a ³,答:第二次该商店至少批发个A 种头盔.()∵∠E C N =D ,∠E N C =D ,∴∠C E N =o o D .故答案为D .()∵O D 平分∠M O N ,∴∠D O N =∠M P N =’D =D ,∴∠D O N =∠D =D ,∴C D ∥A B ,∴∠C E N =D ﹣∠M N O =D ﹣D =D ;()如图,C D在A B上方时,设O M与C D相交于F,∵C D∥M N,∴∠O F D=∠M=D,在△O D F中,∠M O D=D﹣∠D﹣∠O F D,=D﹣D﹣D,=D,当C D在A B的下方时,设直线O M与C D相交于F,∵C D∥M N,∴∠D F O=∠M=D,在△D O F中,∠D O F=D﹣∠D﹣∠D F O=D﹣D﹣D=D,∴旋转角为D D=D,综上所述,旋转的角度为D或D时,边C D恰好与边M N平行.故答案为o或o.。
华师大版初中数学七年级下册第10章轴对称、平移与旋转章末复习课件
【例1】下列图形中,不是轴对称图形的是
()
【思路点拨】根据定义,如果一个图形沿一条直线折叠,直线 两旁的部分能够互相重合,这个图形叫做轴对称图形. 【自主解答】选C.根据轴对称图形的概念:把一个图形沿着某 条直线折叠,两边能够重合的图形是轴对称图形.A,B,D是 轴对称图形,只有C不是轴对称图形.
【例2】如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得
到,若AC=3cm,则A′C=
cm.
【思路点拨】先根据平移的性质得出AA′=2 cm,再利用AC= 3 cm,即可求出A′C的长.
【自主解答】∵将△ABC沿射线AC方向平移2 cm得到△A′B′C′, ∴AA′=2 cm, 又∵AC=3 cm, ∴A′C=AC-AA′=1 cm. 答案:1
【中考集训】 1.在6×6方格中,将图①中的图形N平移后位置如图②所示, 则图形N的平移方法中,正确的是( )
A.向下移动1格
B.向上移动1格
C.向上移动2格
D.向下移动2格
【解析】选D.由平移的定义知,图形N向下移动2格.
2.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平
移的距离是边BC长的两倍,那么图中的四边形ACED的面积
章末复习
第 10 章
请写出框图中数字处的内容: ①_把__一__个__图__形__沿__着__某__一__条__直__线__翻__折__过__去__,__如__果__它__能__够__与__另__一__ _个__图__形__重__合__,__那__么__就__说__这__两__个__图__形__成__轴__对__称__; ②_关__于__轴__对__称__的__两__个__图__形__全__等__;__对__称__点__的__连__线__垂__直__于__对__称__轴__,__ _并__且__被__对__称__轴__平__分__;__对__应__边__(_或__延__长__线__)_的__交__点__在__对__称__轴__上__; ③_平__面__图__形__在__它__所__在__的__平__面__上__的__平__行__移__动__; ④_平__移__前__后__的__两__个__图__形__全__等__;__对__应__边__平__行__(_或__在__一__条__直__线__上__)_ _且__相__等__;__对__应__点__的__连__线__平__行__(_或__在__同__一__条__直__线__上__)_且__相__等__;
华师大版七年级下册数学知识点总结
七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或同一个的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52 (2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x 2-3x+1=0、2x+y =l -3y 、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a 、b 为常数,且a ≠0)一元一次方程的一般式为:ax=b (其中a 、b 为常数,且a ≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】
华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。
华东师大版数学七年级下册期末复习综合练习题
期末复习综合练习题一.选择题1.下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.若x>y,则下列式子中正确的是()A.x﹣2>y﹣2 B.x+2<y+2 C.﹣2x>﹣2y D.3.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°5.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是32,则图中阴影部分面积等于()A .16B .8C .4D .26.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A .90°B .120°C .135°D .150°7.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )A .25°B .30°C .50°D .55°8.等腰三角形的两边长分别为3cm 和7cm ,则周长为( ) A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm9.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种边长相同、形状不同的正多边形地砖,与正三角形地砖作平面镶嵌,则该学校不应该购买的地砖是( ) A .正方形B .正六边形C .正八边形D .正十二边形10.如图,将△ABC 绕点A 按逆时针方向旋转100°,得到△AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的大小为( )A .70°B .80°C .84°D .86°二.填空题11.若|x﹣y﹣5|与|2x+3y﹣15|互为相反数,则x+y=.12.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.13.不等式组有2个整数解,则实数a的取值范围是.14.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.15.如图,将∠ACB沿EF折叠,点C落在C'处.若∠BFE=65°.则∠BFC'的度数为.三.解答题16.m为何值时,代数式的值与代数式的值的和等于5?17.解方程组:①②.18.解不等式组,并把它们的解在数轴上表示出来.19.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,3),B (2,5),C (4,2)(每个方格的边长均为1个单位长度)(1)将△ABC 平移,使点A 移动到点A 1,请画出△A 1B 1C 1;(2)作出△ABC 关于O 点成中心对称的△A 2B 2C 2,并直接写出A 2,B 2,C 2的坐标; (3)△A 1B 1C 1与△A 2B 2C 2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.20.如图,在平面直角坐标系xOy 中,点A (3,3),点B (4,0),点C (0,﹣1). (1)以点C 为中心,把△ABC 逆时针旋转90°,画出旋转后的图形△A ′B ′C ; (2)在(1)中的条件下, ①点A 经过的路径的长为 (结果保留π);②写出点B ′的坐标为 .21.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.22.某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?23.已知,在△ABC中,∠A=∠C,点F和E分别为射线CA和射线BC上一点,连接BF和FE,且∠BFE=∠FEB.(1)如图1,当点F在线段AC上时,若∠FBE=2∠ABF,则∠EFC与∠FBE的数量关系为.(2)如图2,当点F在CA延长线上时,探究∠EFC与∠FBA的数量关系,并说明理由.(3)如图3在(2)的条件下,过C作CH⊥AB于点H,CN平分∠BCH,CN交AB于N,由N作NM⊥NC交CF于M,若∠BFE=5∠FBA,MN∥FB时,求∠ABC的度数.参考答案一.选择题1. A.2. A.3. C.4. C.5. B.6. C.7. C.8.B.9.C.10. B.二.填空11. 712..13. 8≤a<13.14. 115. 50°三.解答题16.解:根据题意得:+=5,去分母得:12m﹣2(5m﹣1)+3(7﹣m)=30,去括号得:12m﹣10m+2+21﹣3m=30,移项合并同类项得:﹣m=7,系数化1得:m=﹣7.17.解:①,①+②得:4x=8,解得:x=2,将x=2代入①得:2+2y=9,解得:y=,则方程组的解为;②方程组整理得:,①﹣②得:6y=27,解得:y=,将y=代入②得:3x﹣9=9,解得:x =6, 则方程组的解为.18.解:∵解不等式①得:x ≥﹣2, 解不等式②得:x <2,∴原不等式组的解为:﹣2≤x <2, 在数轴上表示为:.19.解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;点A 2,B 2,C 2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A 1B 1C 1与△A 2B 2C 2关于点P 中心对称,如图, 对称中心的坐标的坐标为(﹣2,﹣1). 20.解:(1)如图所示,△A ′B ′C 即为所求;(2)①②(﹣1,3).21.解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+32°=122°,故答案为:122°;(2)∵CE和BE分别是∠ACB和∠ABD的角平分线,∴∠1=∠ACB,∠2=∠ABD,又∵∠ABD是△ABC的一外角,∴∠ABD=∠A+∠ACB,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A=;(3)∠QBC=(∠A+∠ACB),∠QCB=(∠A+∠ABC),∠BQC=180°﹣∠QBC﹣∠QCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BQC=90°﹣∠A.22.解:(1)设购买一个足球需要x元,购买一个篮球需要y元,列方程得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元.(2)设购买了a个篮球,则购买了(96﹣a)个足球.列不等式得:80a+50(96﹣a)≤5720,解得a≤30.∵a为正整数,∴a最多可以购买30个篮球.∴这所学校最多可以购买30个篮球.23.解:(1)如图1中,设∠EFC=z,∠ABF=x,∠A=∠C=y,∵∠BEF=∠BFE,∠BEF=y+z,∴∠BFE=y+z,∵∠BFC=∠A+∠ABF,∴y+z+z=x+y,∴x=2z,∴∠ABF=2∠EFC.∵∠FBE=2∠ABF,∴∠EBF=4∠CFE故答案为∠EBF=4∠EFC.(2)结论:∠ABF=2∠EFC.理由;如图2中,设∠EFC=z,∠ABF=x,∠BAC=∠BCA=y,∵∠BAC=∠ABF+∠BFA,∠ACB=∠EFC+∠E,∴∠BFA=y﹣x,∠E=y﹣z,∵∠E=∠BFE,∴y﹣x+z=y﹣z,∴x=2z,∴∠ABF=2∠EFC.(3)如图3中,设∠EFC=x,则∠ABF=2x,∵∠BFE=5∠ABF,∴∠E=∠BFE=10x,∵MN∥BF,∴∠MNA=∠ABF=2x,∵∠ANM+∠ANC=90°,∠ANC+∠NCH=90°,∴∠HCN=∠ANM=∠BCN=2x,∴∠BCH=4x,∠CBH=90°﹣4x,在△BEF中,∵∠EBF+∠E+∠BFE=180°,∴2x+90°﹣4x+10x+10x=180°,∴x=5,∴∠ABC=90°﹣4x=70°.。
七年级数学(下册)-期末复习提纲-华东师大版
七年级数学下期期末复习提纲第六章元一次方程一、基本概念(-)方程的变形法则法则1:方程两边都________ 或____ 同一个数或同一个 ______ ,方程的解不变。
例如:在方程7-3x二4左右两边都减去7,得到新方程:-3时3二4-7。
在方程6x=-2x-6左右两边都加上4x,得到新方程:8x二-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号.例如:(1)将方程x-5=7移项得:x=7+5 即x=12(2)将方程4x=3x—4 移项得:4x—3x=—4 即x= —4法则2:方程两边都除以或 _______ 同一个 _________ 的数,方程的解不变。
2例如:(1)将方程一5x = 2两边都除以-5得:x=--53 1 2 2(2)将方程专x=^两边都乘以土得:x=-2 3 3 9这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数:如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.泄义:只含屯一个未知数、并且含有未知数的式子都是_________ ,未知数的次数是一,这样的方程叫做一元一次方程。
例如:方程7-3x二4、6x=-2x-6都是一元一次方程。
而这些方程5x:-3x+l=0. 2x+y=l-3y.占=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b二0 (英中a、b为常数,且aHO)一元一次方程的一般式为:ax二b (其中a、b为常数,且aHO)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华师大版七年级数学下册总复习
华师大版七年级数学下册总复习按住ctrl键点击查看更多初中七年级资源第1课时一元一次方程(复习1)教学目的:1.知识与技能:(1)了解一元一次方程的概念,根据方程的特点灵活运用一元一次方程的解法解一元一次方程。
(2)进一步提高学生运用方程解决实际问题的能力。
2.过程与方法:(1)通过复习一元一次方程的解法,进一步渗透“转化”的思想方法。
(2)进一步了解用方程解决实际问题的基本过程,体会数学的应用价值。
3.情感态度与价值观:(1)鼓励学生大胆尝试,从中获得成功的体验,激发学生学习数学的热情。
(2)通过学习,更加关注生活,增强用数学的意识。
教学重点与难点:1.一元一次方程的解法和列出一元一次方程解应用题。
2.根据具体问题中的数量关系列出一元一次方程解决实际问题。
课型:复习课教学方法:转化归纳教学过程:一、知识结构图:二、重要知识与方法规律总结:1.一元一次方程的概念。
2.方程的基本变形。
3.移项法则。
4.解一元一次方程的一般步骤。
5.列出一元一次方程解应用题的步骤。
三、典型例题。
1.当a为何值时,x -1=0是一元一次方程?2.已知2是关于x的方程x -2a=0的一个解,则2a-1的值是_______。
3.5(x+2)=2a+3与的解相同,那么a的值是_______4.已知=0,则=________5.已知=5 ,且ax-2a=6,求a的值。
6.解方程7.解方程8.实践与探索P14―――15问题四、课堂练习:教材19面A 1.(2)(4)(6)2―――7五、课堂小结:在解一元一次方程时要注意选择合理的解方程步骤,解方程的方法、步骤可以灵活多样,但基本思路都是把“复杂”转化为“简单”,把“新”转化为“旧”,求出解后,要自觉反思求解过程和检验方程的解是否正确。
方程是刻画现实世界的有效数学模型,列方程解实际问题的关键是找出“相等关系”,在寻找相等关系时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义。
华师大版数学七年级下册期末复习试题(三)(有答案)
华师大版数学七年级下册期末复习试题(三)一、选择题(3分×8=24分)1、如果2(23)3250a b c a b c+-+-+=,那么ab的值为()A 、1B 、-1C 、5 D、-52、已知方程组325a xb y mc xd y n+=⎧⎨-=⎩的解是21xy=⎧⎨=-⎩,则方程组(2)3(3)2(2)5(3)a xb y mc xd y n++-=⎧⎨+--=⎩的解是()A21xy=⎧⎨=-⎩B42xy=⎧⎨=⎩C2xy=⎧⎨=⎩D4xy=⎧⎨=-⎩3、小亮在计算多边形内角和时,先测量各个内角的度数,再求和,结果得1570°,下列说法中错误的是()A 、小亮多加了一个内角,这个内角的度数是130°;B 、小亮少加了一个内角,这个内角的度数是50°;C 、小亮测量的多边形的边数可能是10;D、小亮测量的多边形的边数一定是11;4、已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是().A 、k<-3B、1≤ k<3 C 、-3≤k<-1D、k≥-35、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
下列说法错误的是()A 、2秒或5秒时,甲到A、B、C的距离和为40个单位;B 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲、乙在数轴上相遇点代表的数是-10.4;C 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-44;D、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-8;6、点A1、A2、A3、……A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1A O=1,点A2在点A1的右边,且A2A1=2,点A3在点A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4,……,依照上述规律点A2008、A2009所表示的数分别为()。
华师大七年级下全册复习课件(一张共168ppt)
数学·新课标(HS)
第8章复习
解:(1)在 m>n 两边同乘 z,而 z 是什么数没有确定.若 z >0,由不等式的性质 2,知 mz>nz;若 z<0,由不等式的性 质 3,知 mz<nz,故(1)是错误的.
(2)当 z=0 时,mz2=nz2,故(2)是错误的. (3)由不等式的性质 1 知,不等式两边同加上 z,不等号方 向不改变,故(3)是正确的. (4)在 mz2>nz2 两边同除以 z2,而这里 z2>0,由不等式的 性质 2,不等号方向不改变,故(4)是正确的.
数学·新课标(HS)
第8章复习 [点评]这类题目既考查了学生对一元一次不等式组的解
法,又考查了不等式的解集在数轴上的表示方法,可谓“一 箭双雕”.要特别注意数轴上空心圆圈与实心圆点的区别.
数学·新课标(HS)
第8章复习 ►考点五 一元一次不等式组的应用 例 5 某超市销售甲、乙两种商品,甲商品每件进价 10 元,
数学·新课标(HS)
第8章复习
3.基本方法 (1)解一元一次不等式的方法:解一元一次不等式与解一元 一次方程类似,都具有以下步骤:①去分母;② 去括号 ; ③ 移项 ;④ 合并同类项 ;⑤系数化为 1.需注意的是, 在“去分母”与“系数化为 1”的过程中,两边同乘以或除以 一个负数时,不等号要 改变方向 . (2)在数轴上表示解集的方法:大于向 右 画,小于向 左 画;含等号用 实心圆点 ,不含等号用 空心圆圈 .
1.若不等式组23xx++7a><40x,-1
取值A范.围a为>0 B.a=0 C.a>4 D.a=4
的解集为 x<0,则 a 的 (B )
最新华师版七年级数学下册期末复习PPT全套共104页
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——ቤተ መጻሕፍቲ ባይዱ联
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
最新华师版七年级数学下册期 末复习PPT全套
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
华东师大版七年级下册期末数学复习试卷(解析版)
华东师大版七年级(下)数学期末复习试卷一.选择题(共12小题).1.方程x﹣5=3x+7移项后正确的是()A.x+3x=7+5B.x﹣3x=﹣5+7C.x﹣3x=7﹣5D.x﹣3x=7+5 2.等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm4.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.5.若关于x的方程1+ax=3的解是x=﹣2,则a的值是()A.﹣2B.﹣1C.21D.26.张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠()A.正三角形B.正方形C.正六边形D.正八边形7.若x是方程2x+m﹣3(m﹣1)=1+x的解为负数,则m的取值范围是()A.m>﹣1B.m<﹣1C.m>1D.m<18.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.109.如图,直线AB∥CD,直线EF分别与AB、CD相交()A.∠1+∠2﹣∠3=180°B.∠1﹣∠2+∠3=180°C.∠3+∠2﹣∠1=180°D.∠1+∠2+∠3=180°10.如图,AD是△ABC的角平分线,∠C=20°,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E()A.80°B.60°C.40°D.30°11.某品牌的VCD机成本价是每台500元,3月份的销售价为每台625元.经市场预测,该商品销售价在4月份将降低20%,那么在6月份销售该品牌的VCD机预计可获利()A.25%B.20%C.8%D.12%12.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是()A.6+15=21B.36+45=81C.9+16=25D.30+34=64二.填空题(共6小题,满分24分,每小题4分)13.一个汽车牌照号码在水中的倒影为,则该车牌照号码为.14.若=,则=.15.写出不等式组的解集为.16.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元元.17.已知方程组的解为,写出一个满足条件的方程组.18.一副直角三角板如上图放置,点C在FD的延长线上,AB∥CF,∠E=45°,∠A=60°°.三.解答题(共9小题,满分78分)19.解方程(组):(1)15﹣(7﹣5x)=2x+(5﹣3x);(2)﹣=0.75;(3);(4).20.根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或,②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2)由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)求不等式(x﹣3)(x+1)<0的解集;(2)求不等式<0的解集.21.如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).22.如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远(请保留作图痕迹)23.已知方程组的解中,x为非正数(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.24.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.25.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)分别计算出当∠A为70°,80°时∠A1的度数;(2)根据(1)中的计算结果写出∠A与∠A1之间等量关系;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与∠A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A6与∠A的数量关系;(4)如图,若E为BA延长线上一动点,连EC,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论27.某中学拟组织七年级师生去参观苏州博物馆.下面是张老师和小芳、小明同学有关租车问题的对话:张老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了5辆60座和3辆45座的客车到苏州博物馆,一天的租金共计6750元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车则可少租1辆根据以上对话,解答下列问题:(1)客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)求出满足条件的a的值.(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满参考答案一.选择题(共12小题,满分44分)1.解:方程x﹣5=3x+3,移项得:x﹣3x=7+2,故选:D.2.解:①3cm是腰长时,三角形的三边分别为3cm、3cm,能组成三角形,周长=3+3+2=11cm,②3cm是底边长时,三角形的三边分别为3cm、7cm,能组成三角形,周长=3+5+4=13cm,综上所述,这个等腰三角形的周长是11cm或13cm.故选:C.3.解:A、3+4<7;B、8+7=15;C、13+12>20;D、4+5<11.故选:C.4.解:由轴对称图形的概念可知第1个,第2个.第5个不是轴对称图形,是中心对称图形.故选:D.5.解:把x=﹣2代入方程,得1﹣4a=3,解得a=﹣1.故选:B.6.解:A、正三角形的每个内角是60°;B、正方形的每个内角是90°;C、正六边形的每个内角是120°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能密铺.故选:D.7.解:2x+m﹣3(m﹣5)=1+x,去括号得:2x+m﹣5m+3=1+x,移项得:7x﹣x=1﹣m+3m﹣2,合并同类项得:x=2m﹣2,∵方程的解为负数,即x<6,∴2m﹣2<5,解得:m<1,故选:D.8.解:∵360÷40=9,∴这个多边形的边数是9.故选:C.9.解:∵AB∥CD,∴∠3=∠4,∵∠5+∠5=180°,∴∠3+∠7=180°…①,∵∠1+∠5=∠5…②,∴∠5=∠2﹣∠6…③,把③代入①得,∠3+∠2﹣∠8=180°.故选:C.10.解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选:C.11.解:设在6月份销售该品牌的VCD机预计可获利的利率为x,依题意得625×(1﹣20%)(8+8%)=500(1+x),解之得x=6.08=8%,答:6月份销售该品牌的VCD机预计可获利2%.故选:C.12.解:A、6+15=21,所以A是错误的;B、36+45=81,所以B是正确的;C、9+16=25,所以C是错误的;D、30+34=64,所以D是错误的.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:∴该汽车牌照号码为WL027.故答案为:WL027.14.解:根据=得5a=5b,则=.故答案为:.15.解:不等式①的解集为x<3,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣2≤x<3.故答案为:﹣1≤x<7.16.解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+15,解得:x=125.故答案为:125.17.解:∵方程组的解为,由两个二元一次方程组成,∴方程组为:(不唯一),故答案为:(不唯一).18.解:∵AB∥CF,∠A=60°,∴∠ACM=∠A=60°,∵∠BCA=30°,∴∠BCD=30°,∵∠EFD=90°,∠E=45°,∴∠EDC=∠E+∠EFD=135°,∴∠DBC=180°﹣30°﹣135°=15°,故答案为:15.三.解答题(共9小题,满分78分)19.解:(1)15﹣(7﹣5x)=3x+(5﹣3x),去括号,得15﹣5+5x=2x+4﹣3x,移项,得5x﹣6x+3x=5﹣15+5,合并同类项,得6x=﹣3,系数化为6,得x=﹣;(2)﹣=2.75,方程变形,得﹣=,去分母,得2(30+2x)﹣3(20+3x)=3,去括号,得60+4x﹣80﹣12x=3,移项,得4x﹣12x=6﹣60+80,合并同类项,得﹣8x=23,系数化为1,得x=﹣;(3)方程组变形,得,①×4+②×2得13x=26,解得x=2,把x=6代入①得,y=5,所以方程组的解为;(4)方程变形,得,①×3﹣②得x=,把x=代入①得,所以方程组的解为.20.解:(1)原不等式可化为:①或②,由①得,空集,由②得,﹣7<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3;(2)由<0知①,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<5的解集为x>1或x<﹣4.21.解:(1)如图,△A1B1C7为所作;(2)A(4,1),B,4),3);(3)点P关于直线l的对称点P1的坐标为(8﹣m,n).故答案为4,1;6,4;3,7;﹣m+2,n.22.解;如图.23.解:(1)方程组解得:,∵x为非正数,y为负数;∴,解得:﹣2<a≤3;(2)∵﹣2<a≤5,即a﹣3≤0,∴原式=3﹣a+a+2=5.24.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷8=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;③∠BG4C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.25.解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:2.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.3x+500=980(元).因为980>960,所以选择乙印刷厂比较合算.26.解:(1)∵A1C、A1B分别是∠ACD、∠ABC的角平分线,∴∠A3BC=∠ABC3CD=∠ACD;由三角形的外角性质知:∠A=∠ACD﹣∠ABC,∠A6=∠A1CD﹣∠A1BC,即:∠A2=(∠ACD﹣∠ABC)=;当∠A=70°时,∠A1=35°;当∠A=80°.(2)由(1)知:∠A7=∠A.(3)同(1)可求得:∠A7=∠A4=∠A,∠A3=∠A2=∠A,…依此类推,∠A n=∠A;当n=6时,∠A6=∠A.(4)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=7(∠QEC+∠QCE);即:2∠A1=5(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.27.解:(1)设60座和45座的客车每辆每天的租金分别是x元、y元解得答:60座和45座的客车每辆每天的租金分别是900元和750元(2)由已知,七年级人数为(45a+15)人由题意解得因为a为整数∴a=8(3)由(2)七年级共45×5+15=375人设60座和45座车分别为m辆n辆则60m+45n=3754m+3n=25则有m=解得n∴n为可取0﹣8的整数∵m为整数∴n=4时,m=4n=7时,m=5∴租车方案有两种:方案一:60座4辆,45座3辆方案二:60座4辆,45座7辆。
(完整word版)华师版七年级下册数学知识点总结
七年级数学下期期末复习纲要第六章一元一次方程一、基本观点(一)方程的变形法例法例 1:方程两边都或同一个数或同一个,方程的解不变。
比如:在方程 7-3x=4 左右两边都减去7,获得新方程: -3x+3=4-7 。
在方程 6x=-2x-6 左右两边都加上4x ,获得新方程: 8x=-6 。
移项:将方程中的某些项改变符号后,从方程的一边挪动到另一边,这样的变形叫做移项,注意移项要变号。
比如: (1) 将方程 x- 5= 7 移项得: x= 7+5 即 x =12(2) 将方程 4x= 3x- 4 移项得: 4x- 3x =- 4 即x =- 4法例 2:方程两边都除以或同一个的数,方程的解不变。
2比如: (1) 将方程- 5x = 2 两边都除以 -5 得: x=-53 1 2得: x= 2(2) 将方程2 x =3 两边都乘以3 9这里的变形往常称为“将未知数的系数化为1”。
注意:( 1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如碰到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
( 2)无论上一乘以或除以数时,都要注意结果的符号。
方程的解的观点:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的观点及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
比如:方程7-3x=4 、 6x=-2x-6 都是一元一次方程。
2 1而这些方程5x - 3x+1= 0、 2x+y= l - 3y、x-1 =5 就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(此中 a、 b 为常数,且a≠0)一元一次方程的一般式为:ax=b (此中 a、 b 为常数,且a≠ 0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,归并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号归并同类项一次,以简易运算。
华师版七年级下期数学总复习题
1七年级下期数学总复习题一、选择题:(本大题共10小题,每小题3分,共30分。
)1.2a =则a 的值为 ( ) A .2 B .-2 C .±2 D .±122.我国国民生产总值达到11.69万亿..元,人民生活总体达到小康水平。
其中11.69万亿..元用科学记数法表示应为 ( )A .1.169×1013 B .1.169×1014 C .11.69×1013 D .0.1169×10143.下列各组中的两项不属于同类项的是( )A .233m n 和23m n - B .5xy 和25xy C .-1和14D .2a 和3x 4.若13a +与273a -互为相反数,则a=( ) A .43 B .10 C .43-D .-105.x=1是方程3x —m+1=0的解,则m 的值是( ) A .-4 B .4 C .2 D .-2 6.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元; B .125元; C .135元;D .140元.7.下列图形中,线段PQ 的长表示点P 到直线MN 的距离是( )8.甲从A 点出发向北偏东45°方向走到B 点,乙从A 点出发向西偏北30°方向走到C 点,则∠BAC 等于( )A .135° B .105° C .75° D .15°9.如下图所示的立方体,如果把它展开,可以是下列图形中的10.如图,l 1∥12,l 为11、12的截线,∠1=70°,则下列结论中不正确的个数有:( ) ①∠5=70°;②∠3=∠6;③∠2+∠6=220°;④∠4+∠7=180 A .1个 B .2个 C .3个 D .4个二、填空题(每小题2分,共34分) 11.若3x =-,则1x=_________,若3x =-,则x -=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级(下)期末考试数学试题
一、 耐心填一填!(每空2分,共24分)
1.若2x+5=7,则2x= 。
2.已知x=-3是方程(2m+1)x-3=0的解,则m= 。
3.一个三角形的内角中,至少有 个锐角。
4.一个多边形的每一个外角为300,那么这个多边形的边数为 。
5.只用一种正多边形可以铺满地板,这样的正多边形有 。
6.已知等腰三角形的一个内角为700,则它的顶角为 度。
7.如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm ,则ΔABD 的周长为 。
8.如图,∠A=200,∠C=400,∠ADB=800,则∠ABD= ,∠DBC= ,图中共有等腰三角形 个。
9.举一个是不可能事件的例子: ;
10.姜堰人民商场4月份随机抽查了6天的营业额,结果分别如下:
2.8,
3.2,3.4,3.7,3.0,3.1。
(单位:万元)
试估计该商场4月份的总营业额,大约是 万元。
二、 精心选一选!(每题4分,共32分)
11. Wangbei ’computer shows the dates on the screen, Which of these dates are symmetrical (轴对称)? ( )
A 06:01:08
B 16:11:91
C 08:10:13
D 04:08:04
12.若ΔABC 的三边分别为m 、n 、p ,且0)(2=-+-p n n m ,则这个三角形为( )
A. 等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
13.我国民间流传着许多诗歌形式的数学题,令人耳目一新,你能解决“鸡兔同笼”问题吗? 鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( )
A ⎩⎨⎧=+=+1002236y x y x
B ⎩⎨⎧=+=+1002218y x y x
C ⎩⎨⎧=+=+1002436y x y x
D ⎩⎨⎧=+=+100
4236y x y x
14.已知43
22=-
x ,则x 的值是 ( ) A
E D C B (第7题) A B D C 第8题
A. –3
B. 9
C.-3或9
D.以上结论都不对
14.正五边形的对称轴共有( )
A. 2条
B. 4条
C. 5条
D.无数条
15.以下的调查适合作抽样调查的有 ( )
①了解一批灯泡的使用寿命; ②研究某种新式武器的火力;
③了解七年级(5)班同学期中考试的数学成绩; ④审查一篇科学论文的正确性.
A.1种
B.2种
C. 3种
D. 4种
16.一名射击运动员连续射靶10次,命中的环数如下:9.1,8.7,8.8,10,9.7,8.8,9,
9.6,9.9,9.8 那么,这名运动员这10次射击命中环数的平均数为( )
A. 93.4
B.9.34
C. 9.26
D. 9.42
17.已知一组数据为:20,30,40,50,50,60,70,80,50,其平均数a 、中位数b 和众数c 的大小关系是( )
A.a>b>c
B.c>b>a
C.b<c<a
D.a=b=c
三、细心算一算!(每题6分,共24分)
18.解方程或方程组:
(1)
33222+=-x x (2)2.034.13223.02x x -=+
(3)⎩⎨
⎧=++-=7
4382y x x y (4)2x-y=3x+2y=7
四、用心想一想,你一定是生活中的智者!
19.如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?(本题6分)
居民区A
·
居民区B
·
街道
20.请你在下图的方格内,设计一个轴对称图形,要求有2条对称轴(本题6分)
五、会用你学过的方程知识解决问题吗?
22. (本题8分)现加工一批机器零件,甲单独完成需4天,乙单独完成需6天。
现由乙
先做1天,然后两人合做,完成后共得报酬600元。
若按个人完成的工作量给付报酬,你应如何分配呢?
23. (本题8分)今年春季不少地区爆发“非典”灾害,人民财产损失惨重。
很多师生自发地给灾区人民献爱心。
某校师生捐款购买了大量消毒液,分别装入大小相同的包装箱中,若每箱装25瓶,则余40瓶无处可装,若每箱装40瓶,又余20只空箱。
若每瓶消毒液卖12.5元,则该校共捐了多少元?
六、看谁说得好!
24.在等边三角形ABC中,BD平分∠ABC,延长BC到E,使CE=CD,连接D、E.
(1)成逸同学说:BD=DE,她说得对吗?请你说明道理。
(2)小敏说:把“BD平分∠ABC”改成其它条件,也能得到同样的结论,你认为应该如何改呢?(本题8分)A
B D
E C
25.在ΔABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,如果ΔADE 的周长为10cm ,BC=5cm ,那么ΔABC 的周长是多少?可要说清理由呀!(本题8分)
七、请你做裁判!
26.甲、乙两人各自投掷一个普通的正方体骰子,如果两者的积为奇数,那么甲得1分;如果两者之积为偶数,那么乙得1分。
连续投掷20次,谁得分高,谁就获胜。
(本题8分)
(1)请你想一想,谁获胜的可能性(机会)大?简要说明理由。
(2)你认为这个游戏公平吗?如果不公平,请为他们设计一个公平的游戏。
A D O E C B
27.(本题8分)世界杯决赛分成八个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分。
请问:
(1)小组共比赛多少场?
(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?
八、其实并不难!
28.小明学习了“一元一次方程”后,联系实际编了这样一道题:我是五月份出生的,我现在的年龄的2倍加上7,正好是我出生那个月的总天数。
你猜我现在几岁?(本题10分)
(1)你求出小明现在的年龄;
(2)你自己的年龄或者是你与家人的年龄也编一道应用题(只编题,不用解答。
但所编的题要简明、合理,能运用已学方程知识解答出来)。
参考答案
一填空:
1. 2 ;
2. –1;
3. 2;
4. 12;
5. 正三角形、正方形、正六边形
6.40或70;
7.21cm ;8.800,400,2;9.略;10. 96;
二、选择
11.C ; 12.C ; 13.B ; 14.D ; 15.C ; 16.B ; 17.B ;18.D ;
三、解方程
19.(1)x=0; (2)x=0.2 (3)⎩⎨⎧-==2
5y x ;(4)⎩⎨⎧-==13y x
四、20.
如图,作A 关于街道的对称点A′连接A′B,交街道于P ,则P 即为牛奶站。
21.略
22.甲得300元,乙得300元。
23.共1440瓶,计18000元。
24.(1)对;求得∠DBC=∠DEB=300
(2)BD 为AC 边上的中线;BD 为AC 边上的高;
25. 略
26.(1)乙获胜的可能性大。
因为两个骰子的点数可能出现4种情况:奇数与奇数、奇数与偶数、偶数与奇数、偶数与偶数。
其中有三种情况,两者的积都是偶数。
(2)这个游戏不公平。
可以这样设计公平游戏:甲、乙两人各自投掷一个普通的正方体骰子,如果两者和为奇数,那么甲得1分;如果两者之和为偶数,那么乙得1分。
连续投掷20次,谁得分高,谁就获胜。
27(1)每小组共比赛6场。
(2)在小组比赛中,现有一队得6分,则该队出线进入16强是一个不确定事件。
因为在小组的6场比赛中,如果每一场都能分胜负,共有3×6=18分,完全可能有3个队,每个队都得到6分。
所以能保证得6分的就一定能出线。
A′ 街道 居民区B · 居民区A · P ·。