2020年北师大八年级上《第2章实数》单元测试卷含答案解析

合集下载

《第2章实数》单元测试卷含答案解析

《第2章实数》单元测试卷含答案解析

北师大新版八年级数学上册《第2章实数》单元测试一、选择题1.下面四个实数,你认为是无理数的是()A.B.C.3 D.0.32.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个7.下列计算正确的是()A.=×B.=﹣C.=D.=8.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根9.下列各式正确的是()A.B.C.D.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6二、填空题11.﹣的相反数是.12.16的算术平方根是.13.写出一个比﹣3大的无理数是.14.化简﹣=.15.比较大小:2π(填“>”、“<”或“=”).16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.17.若x,y为实数,且|x+2|+=0,则(x+y)2014的值为.18.已知m=,则m2﹣2m﹣2013=.三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简: +++…+.参考答案与试题解析一、选择题1.下面四个实数,你认为是无理数的是()A.B.C.3 D.0.3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、3、0.3是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.【考点】实数的运算;正数和负数.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b【考点】二次根式的性质与化简;实数与数轴.【分析】现根据数轴可知a<0,b>0,而|a|>|b|,那么可知a+b<0,再结合二次根式的性质、绝对值的计算进行化简计算即可.【解答】解:根据数轴可知,a<0,b>0,原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选C.【点评】本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【考点】二次根式的性质与化简.【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根以及立方根逐一分析4条结论的正误,由此即可得出结论.【解答】解:①∵52=25,∴5是25的算术平方根,①正确;②∵=,∴是的一个平方根,②正确;③∵(±4)2=(﹣4)2,∴(﹣4)2的平方根是±4,③错误;④∵02=03=0,12=13=1,∴立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点评】本题考查了方根、算术平方根以及立方根,解题的关键是根据算术平方根与平方根的定义找出它们的区别.7.下列计算正确的是()A.=×B.=﹣C.=D.=【考点】二次根式的混合运算.【分析】根据二次根式的性质对各个选项进行计算,判断即可.【解答】解:=×,A错误;=,B错误;是最简二次根式,C错误;=,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质是解题的关键.8.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【考点】估算无理数的大小.【分析】先根据数轴判断A的范围,再根据下列选项分别求得其具体值,选取最符合题意的值即可.【解答】解:根据数轴可知点A的位置在2和3之间,且靠近3,而=2,<2,2<=2<3,=2,只有8的算术平方根符合题意.故选C.【点评】此题主要考查了利用数轴确定无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.9.下列各式正确的是()A.B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的运算性质化简.【解答】解:A、原式=,错误;B、被开方数不同,不能合并,错误;C、运用了平方差公式,正确;D、原式==,错误.故选C.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6【考点】估算无理数的大小.【分析】先求出+1的范围,再根据范围求出即可.【解答】解:∵3<<4,∴4<+1<5,∴[+1]=4,故选B.【点评】本题考查了估算无理数的大小的应用,关键是求出+1的范围.二、填空题11.﹣的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故答案为:.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.12.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.13.写出一个比﹣3大的无理数是如等(答案不唯一).【考点】实数大小比较.【分析】根据这个数即要比﹣3大又是无理数,解答出即可.【解答】解:由题意可得,﹣>﹣3,并且﹣是无理数.故答案为:如等(答案不唯一)【点评】本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.14.化简﹣=﹣.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2﹣3=﹣.【点评】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.15.比较大小:2<π(填“>”、“<”或“=”).【考点】实数大小比较.【分析】首先利用计算器分别求2和π的近似值,然后利用近似值即可比较求解.【解答】解:因为2≈2.828,π≈3.414,所以<π.【点评】本题主要考查了实数的大小的比较,主要采用了求近似值来比较两个无理数的大小.16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】平方根.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.17.若x,y为实数,且|x+2|+=0,则(x+y)2014的值为1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y方程组,然后解方程组求出x、y的值,再代入原式求解即可.【解答】解:由题意,得:,解得;∴(x+y)2014=(﹣2+3)2014=1;故答案为1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.18.已知m=,则m2﹣2m﹣2013=0.【考点】二次根式的化简求值.【分析】先分母有理化,再将m2﹣2m﹣2013变形为(m﹣1)2﹣2014,再代入计算即可求解.【解答】解:m==+1,则m2﹣2m﹣20130=(m﹣1)2﹣2014=(+1﹣1)2﹣2014=2014﹣2014=0.故答案为:0.【点评】此题考查了二次根式的化简求值,分母有理化,完全平方公式,二次根式的化简求值,一定要先化简再代入求值.三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)根据零指数幂、负整数指数幂和二次根式的意义计算.【解答】解:(1)原式=1﹣3+2﹣+=0;(2)原式=1﹣2﹣(2﹣)÷1=1﹣2﹣2+=﹣3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法和除法,再合并同类项,最后代入求出即可;(2)先算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab)=a2﹣4b2﹣b2=a2﹣5b2,当a=,b=时,原式=()2﹣5×()2=﹣13;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=时,原式=﹣2.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【考点】实数的运算.【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;注:每填对一个得,每填错一个扣,但本小题总分最少0分.(2)设这个数为x,则x=a(a为有理数),所以x=(a为有理数).(注:无“a为有理数”扣;写x=a视同x=)【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+5+﹣3=6+;(2原式=2×××=;(3)原式=(﹣2+6)÷2=(+4)÷2=+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.【考点】实数与数轴;勾股定理.【分析】(1)依据勾股定理求得OB的长,从而得到OC的长,故此可得到点C表示的数;(2)由29=25+4,依据勾股定理即可做出表示﹣的点.【解答】解:(1)在Rt△AOB中,OB===,∵OB=OC,∴OC=.∴点C表示的数为.(2)如图所示:取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC===.∵OA=OC=.∴点A表示的数为﹣.【点评】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.【考点】勾股定理;二次根式的应用.【分析】(1)利用勾股定理得出AB,BC,AC的长,进而得出答案;(2)直接利用各边长结合勾股定理得出答案.【解答】解:(1)如图①所示:AB=4,AC==3,BC==,所以AB的长度是有理数,AC和BC的长度是无理数;(2)如图②所示:【点评】此题主要考查了勾股定理以及二次根式的应用,正确应用勾股定理是解题关键.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简: +++…+.【考点】分母有理化.【分析】(1)原式各项仿照题中分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可得到结果.【解答】解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣【点评】此题考查了分母有理化,熟练掌握分母有理化的方法是解本题的关键.。

数学八年级上北师大版第2章实数单元测试(解析版)

数学八年级上北师大版第2章实数单元测试(解析版)

第2章实数一、选择题(共20小题)1.下列四个式子中,x的取值范围为x≥2的是()A.B.C.D.2.若式子在实数范围内有意义,则x的取值范围是()A.x=1 B.x≥1 C.x>1 D.x<13.x取下列各数中的哪个数时,二次根式有意义()A.﹣2 B.0 C.2 D.44.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥25.要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠16.若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤37.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥48.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤19.要使二次根式在实数范围内有意义,则x的取值范围是()A.x= B.x≠C.x≥D.x≤10.要使式子有意义,则a的取值范围为()A.B.C.D.11.若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠312.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣213.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠214.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣115.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c16.在式子,,,中,x可以取2和3的是()A.B.C.D.17.使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C.x≥5 D.x≥﹣518.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠19.二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤220.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(共10小题)21.代数式在实数范围内有意义,则x的取值范围是.22.使二次根式有意义的x的取值范围是.23.使有意义的x的取值范围是.24.要使式子在实数范围内有意义,则x的取值范围是.25.使有意义的x的取值范围是.26.若,则(x+y)y= .27.二次根式在实数范围内有意义,则x的取值范围为.28.使式子1+有意义的x的取值范围是.29.已知x、y为实数,且y=﹣+4,则x﹣y= .30.若式子有意义,则实数x的取值范围是.第2章实数参考答案与试题解析一、选择题(共20小题)1.下列四个式子中,x的取值范围为x≥2的是()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数分别进行分析即可.【解答】解:A、x﹣2≥0,且x﹣2≠0,解得:x>2,故A错误;B、x﹣2>0,解得:x>2,故B错误;C、x﹣2≥0,解得x≥2,故C正确;D、2﹣x≥0,解得x≤2,故D错误;故选:C.【点评】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,题目比较基础.2.若式子在实数范围内有意义,则x的取值范围是()A.x=1 B.x≥1 C.x>1 D.x<1【考点】二次根式有意义的条件.【分析】二次根式有意义:被开方数是非负数.【解答】解:由题意,得x﹣1≥0,解得,x≥1.故选B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.A.﹣2 B.0 C.2 D.4【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意,得x﹣3≥0,解得,x≥3.观察选项,只有D符合题意.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:A.【点评】本题考查的知识点为:二次根式的被开方数是非负数.A.x>0 B.x>3 C.x≥3 D.x≤3【考点】二次根式有意义的条件.【专题】常规题型.【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.7.若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4【考点】二次根式有意义的条件.【分析】二次根式有意义,被开方数是非负数.【解答】解:依题意知,x﹣4≥0,解得x≥4.故选:D.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x的取值范围.【解答】解:根据题意,得x﹣1≥0,解得,x≥1.故选:C.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.要使二次根式在实数范围内有意义,则x的取值范围是()A.x= B.x≠C.x≥D.x≤【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得5x﹣3≥0,再解不等式即可.【解答】解:由题意得:5x﹣3≥0,解得:x≥,故选:C.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.10.要使式子有意义,则a的取值范围为()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】二次根式的被开方数是非负数,且分式的分母不等于0.【解答】解:依题意得1﹣2a>0,解得a<.故选:A.【点评】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.若代数式有意义,则实数x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【专题】计算题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+1≥0且x﹣3≠0,解得:x≥﹣1且x≠3.故选:B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.要使二次根式在实数范围内有意义,则实数x的取值范围是()A.x>2 B.x≥2 C.x>﹣2 D.x≥﹣2【考点】二次根式有意义的条件.【分析】直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥﹣2,则实数x的取值范围是:x≥﹣2.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【考点】二次根式有意义的条件.【分析】二次根式的被开方数大于等于零.【解答】解:依题意,得2﹣x≥0,解得 x≤2.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣1【考点】二次根式有意义的条件;分式有意义的条件.【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【解答】解:依题意,得x+1≥0且x﹣1≠0,解得 x≥﹣1且x≠1.故选:A.【点评】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c【考点】二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法.【专题】代数综合题.【分析】根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解.【解答】解:A、x<1,则x﹣1<0,无意义,故A错误;B、方程x2+x﹣2=0的根是x1=1,x2=﹣2,故B错误;C、的化简结果是,故C错误;D、a,b,c均为实数,若a>b,b>c,则a>c正确,故D正确.故选:D.【点评】本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键.16.在式子,,,中,x可以取2和3的是()A.B.C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.【解答】解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.17.使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C.x≥5 D.x≥﹣5【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+5≥0,解得x≥﹣5.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.18.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.19.(2014•达州)二次根式有意义,则实数x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x<2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,﹣2x+4≥0,解得x≤2.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.20.要使式子有意义,则m的取值范围是()A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:m≥﹣1且m≠1.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.二、填空题(共10小题)21.代数式在实数范围内有意义,则x的取值范围是x≥1 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.22.使二次根式有意义的x的取值范围是x≥﹣3 .【考点】二次根式有意义的条件.【专题】计算题.【分析】二次根式有意义,被开方数为非负数,列不等式求解.【解答】解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.【点评】用到的知识点为:二次根式的被开方数是非负数.23.使有意义的x的取值范围是x≥1 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.24.要使式子在实数范围内有意义,则x的取值范围是x≥.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2x﹣1≥0,解得x≥.故答案为:x≥.【点评】本题考查的知识点为:二次根式的被开方数是非负数.25.使有意义的x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.26.若,则(x+y)y= .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得x、y的值,根据负数的乘方,可得答案.【解答】解:由,得x=4,y=﹣2,(x+y)y=(4﹣2)﹣2=2﹣2==,故答案为:.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出x、y的值是解题关键,又利用了负整数指数幂与正整数指数幂互为倒数.27.二次根式在实数范围内有意义,则x的取值范围为x≥﹣.【考点】二次根式有意义的条件.【专题】计算题.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式在实数范围内有意义,∴2x+1≥0,解得x≥﹣.故答案为:x≥﹣.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.28.使式子1+有意义的x的取值范围是x≥0 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式即可.【解答】解:由题意得,x≥0.故答案为:x≥0.【点评】本题考查的知识点为:二次根式的被开方数是非负数.29.已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .【考点】二次根式有意义的条件.【专题】计算题.【分析】根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.【解答】解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.【点评】考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.30.若式子有意义,则实数x的取值范围是x≤2且x≠0 .【考点】二次根式有意义的条件;分式有意义的条件.【专题】计算题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2﹣x≥0且x≠0,解得x≤2且x≠0.故答案为:x≤2且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.。

北师大版2020-2021学年八年级数学上册第二章实数同步试题(含答案)

北师大版2020-2021学年八年级数学上册第二章实数同步试题(含答案)

第二章测试卷一、单选题(共5题;共10分)1.已知一组数据−16,π,−√4,0.0456,√5,1.010010003…,则无理数的个数是( )A. 1B. 2C. 3D. 42.若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为().A. 4B. 8C. ±4D. ±83.下列说法中,不正确的是( )A. 10的立方根是√103B. -2是4的一个平方根C. 49的平方根是23D. 0.01的算术平方根是0.14.下列各数中比3大比4小的无理数是()A. √10B. √17C. 3.1D. 1035.用计算器计算,若按键顺序为,相应算式是()A. √4×5﹣0×5÷2=B. (√4×5﹣0×5)÷2=C. √4.5﹣0.5÷2=D. (√4.5-0.5)÷2=二、填空题(共4题;共4分)6.实数4的算术平方根为________.7.√64的相反数的立方根是________.8.若一个数的立方根等于这个数的算术平方根,则这个数是________.9.若二次根式√x−3有意义,则x的取值范围是________.三、计算题(共2题;共20分)10.解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.(2)2(x﹣1)3+16=0.11.已知:x为√13的整数部分,y为√13的小数部分. (1)求分别x,y的值;(2)求2x-y+ √13的值.四、解答题(共3题;共15分)12.将下列各数填入相应的集合内-7,0.32, 13,0, √8, √12, √1253, π,0.1010010001….①有理数集合{ …}②无理数集合{ …}③负实数集合{ … }.13.有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2…,若无理数的个数为x,整数的个数为y,非负数的个数为z,求x+y+z的值.14.如图,面积为48 cm2的正方形的四个角是面积为3 cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子.求这个长方体的底面边长和高分别是多少?(精确到0.1 cm,√3≈1.732)五、综合题(共5题;共43分)15.已知√a−17+√17−a=b+8.(1)求a的值;(2)求a2﹣b2的平方根.16.已知一个正数的两个不相等的平方根是a+6与2a−9.(1)求a的值;(2)求关于x的方程ax2−16=0的解17.观察下面的变形规律:√2+1=√2−1,√3+√2=√3−√2,√4+√3=√4−√3,√5+√4=√5−√4,…解答下面的问题:(1)若n为正整数,请你猜想√n+1+√n=________;(2)计算:(2+13+24+3+…+2018+2017)×(√2018+1)18.判断下面说法是否正确,并举例说明理由.(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数.19.先化简,再求值:a+ √1−2a+a2,其中a=1007.如图是小亮和小芳的解答过程.(1)________的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:________;(3)先化简,再求值:a+2 √a2−6a+9,其中a=﹣2007.答案解析部分一、单选题1.【答案】C【解析】【解答】解:π,√5,1.010010003…,是无理数,∴无理数有3个.故答案为:C.【分析】无限不循环小数叫做无理数,对于开方开不尽的数、圆周率都是无理数;据此判断即可.2.【答案】D【解析】【解答】解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故答案为:D.【分析】根据8x m y与6x3y n的和是单项式,可得这两个单项式是同类项,根据同类项的定义,可求出m、n的值,然后代入计算即可.3.【答案】C【解析】【解答】解:A、10的立方根是√103,故A不符合题意;B、2是4的一个平方根,故B不符合题意;C、49的平方根是± 23,故C符合题意;D、0.01的算术平方根是0.1,故D不符合题意;故答案为:C【分析】利用立方根、算术平方根及平方根的性质进行解答即可。

北师大 八年级数学上册第二章实数测试卷(精华)(带答案)

北师大 八年级数学上册第二章实数测试卷(精华)(带答案)

北师大 八年级数学上册第二章实数测试卷(精华)(带答案)第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。

1、若x 2=a,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )3.14(C )113 (D )0.1010010001…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是0.01的算术平方根,则x=( )(A )0.0001 (B )±0.0001 (C )0.1 (D )±0.16、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )a =(D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。

(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。

(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。

3、如果a 21-有意义,则a 的取值范围是 。

北师版八上数学 第二章 实数 单元测试卷(含答案)

北师版八上数学 第二章 实数 单元测试卷(含答案)

北师版八上数学第二章实数单元测试卷一.选择题(共10小题)1.关于0的叙述正确的是()A.是正整数B.是负整数C.是整数D.分数2.比﹣2小的数是()A.0B.1C.﹣3D.﹣13.点A为数轴上表示﹣2的点,将A点沿着数轴向右移动8个单位后,再向左移动4个单位到点B,则点B表示的数为()A.2B.3C.4D.54.已知|a|=5.|b|=2,且a、b异号,则a+b的值为()A.3B.3或﹣3C.±3,±7D.7或﹣75.下列不是具有相反意义的量的是()A.前进5米和后退5米B.进球4个和失球2个C.身高增加2cm和体重减少2kgD.节余50元和超支80元6.若a是最小的正整数,b是最大的负整数,则﹣a+b的值为()A.0B.1C.2D.﹣27.一根木料长10米,第一次锯掉这根木料的,第二次锯掉余下的,两次锯掉的长度()A.第一次锯掉的长B.第二次锯掉的长C.两次锯掉的一样长D.无法确定8.由四舍五入法得到的近似数562.10,下列说法正确的是()A.精确到十分位B.精确到个位C.精确到百分位D.精确到千位9.下列各组数中,互为相反数的是()A.﹣5与﹣(+5)B.﹣8与﹣(﹣8)C.+(﹣8)与﹣(+8)D.8与﹣(﹣8)10.规定一种新的运算“*”:对于任意有理数x,y,满足x*y=x﹣y+xy.如3*2=3﹣2+3×2=7,则1*2=()A.4.B.3C.2D.1二.填空题(共10小题)11.某蓄水池的标准水位记为0m,高于标准水位的高度记为正,低于标准水位的高度记为负.若水面低于标准水位12m,则记作m.12.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.13.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第7次和第2020次落下时,落点处离原点的距离分别是个单位.14.已知a是﹣[﹣(﹣5)]的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则3a+2b+c的值是.15.若|x﹣5|=4,则x=;若|a﹣b|=b﹣a,则b a.(比较大小)16.a是最大的负整数,b是最小的正整数,c是绝对值最小的数,则a﹣b+c=.17.若a,b,c都是非零有理数,则+++=.18.用四舍五入法,精确到百分位,对2.019取近似数是.19.观察下列运算过程:S=1+3+32+33+…+32016+32017,①①×3,得3S=3+32+33+…+32017+32018,②②﹣①,得2S=32018﹣1,S=.用上面的方法计算:1+5+52+53+…+52017结果是.20.按键顺序为的算式的结果为.三.解答题(共7小题)21.小明用32元钱买了8条毛巾,如果每条毛巾以5元的价格为标准出售,超出的记作正数,不是的记作负数,记录如下:0.5,﹣1,﹣1.5,1,﹣2,﹣1,﹣2,0.当小明卖完毛巾后盈利了还是亏损了?22.如图,数轴的原点为O.点A表示﹣1,点B表示2.(1)数轴是什么图形?(2)数轴原点O右边的部分(色括原点)是什么图形?怎样表示?(3)射线OA上的点表示什么数?端点表示什么数?(4)数轴上表示不小于﹣1且不大于2的部分是什么图形?怎样表示?23.计算:|﹣|+|﹣|+|﹣|+…+|﹣|24.回答问题:四个数相乘,积为负,其中可能有几个因数为负数?25.“先驱者10号”是人类发往太阳系外的第一艘人造太空探测器,至收到它回到的信号时,它已飞离地球12200000000km.(1)用科学记数法表示这个距离;(2)地球赤道长约4千万米,用科学记数法表示赤道长;“先驱者10号”飞离地球的距离是地球赤道长的多少倍?26.计算:(1)﹣4+5﹣11;(2)﹣40﹣28﹣(﹣19)+(﹣24);(3)(﹣32)÷4×(﹣);(4)(﹣24)×(﹣﹣);(5)(﹣2)2+(﹣3)×2﹣12÷(﹣4);(6)﹣14+(﹣2)÷(﹣)﹣|﹣9|.27.计算(﹣4)÷2,4÷(﹣2),(﹣4)÷(﹣2).联系这类具体数的除法,你认为a、b是有理数(b≠0)时,下列式子是否成立?可以由此总结出什么规律?(1)==﹣;(2)=.参考答案与试题解析一.选择题(共10小题)1.解:0不是正数,也不是负数和分数,但0是整数,故A、B、D错误,C正确.故选:C.2.解:∵0>﹣2,1>﹣2,﹣3<﹣2,﹣1>﹣2,∴所给的数中,比﹣2小的数是﹣3.故选:C.3.解:点A沿着数轴向右移动8个单位后,表示的数是﹣2+8=6,再向左移动4个单位表示的数是6﹣4=2.故选:A.4.解:∵|a|=5,|b|=2,∴a=±5,b=±2,∵a、b异号,∴当a=5时,b=﹣2,此时原式=5﹣2=3,当a=﹣5时,b=2,此时原式=﹣5+2=﹣3,故选:B.5.解:A、前进5米和后退5米,是具有相反意义的量,故本选项不符合题意;B、进球4个和失球2个,是具有相反意义的量,故本选项不符合题意;C、身高增加2cm和体重减少2kg,不是具有相反意义的量,故本选项符合题意;D、节余50元和超支80元,是具有相反意义的量,故本选项不符合题意.故选:C.6.解:∵a是最小的正整数,b是最大的负整数,∴a=1,b=﹣1,∴﹣a+b=﹣1+(﹣1)=﹣2.故选:D.7.解:根据题意得:10×=4(米),(10﹣4)×=4(米),则两次锯掉的一样长.故选:C.8.解:近似数是562.10精确到0.01,即百分位.故选:C.9.解:A、﹣(+5)=﹣5,﹣5与﹣(+5)相等,不是互为相反数,故本选项不符合题意;B、﹣(﹣8)=8,﹣8与﹣(﹣8)是互为相反数,故本选项符合题意;C、+(﹣8)=﹣8,﹣(+8)=﹣8,+(﹣8)与﹣(+8)相等,不是互为相反数,故本选项不符合题意;D、﹣(﹣8)=8,8与﹣(﹣8)相等,不是互为相反数,故本选项不符合题意.故选:B.10.解:∵x*y=x﹣y+xy.∴1*2=1﹣2+1×2=1﹣2+2=1,故选:D.二.填空题(共10小题)11.解:根据题意,水面低于标准水位12m可表示为﹣12m.故答案为:﹣12.12.解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.13.解:由题意可得,第1次落点在数轴上对应的数是1,第2次落点在数轴上对应的数是﹣1,第3次落点在数轴上对应的数是2,第4次落点在数轴上对应的数是﹣2,则它跳第7次落点在数轴上对应的数是4,2020÷2=1010,则第2020次落点在数轴上对应的数是﹣1010,即当它跳第7次和第2020次落下时,落点处离原点的距离分别是4个单位长度、1010个单位长度,故答案为:4,1010.14.解:因为a是﹣[﹣(﹣5)]的相反数,所以a=5;因为最小的正整数是1,且b比最小的正整数大4,所以b=5;因为相反数等于它本身的数是0,所以c=0,所以3a+2b+c=3×5+2×5+0=25.故答案为:25.15.解:∵|x﹣5|=4,∴x﹣5=4,或x﹣5=﹣4,解得,x=9,或x=1;∵|a﹣b|=b﹣a,∴a﹣b≤0,∴a≤b,即b≥a.故答案为:9或1;≥.16.解:∵a是最大的负整数,b是最小的正整数,c是绝对值最小的数,∴a=﹣1,b=1,c=0,∴a﹣b+c=﹣1﹣1+0=﹣2.故答案为:﹣2.17.解:当a,b,c同为正数时,原式=1+1+1+1=4;当a,b,c同为负数时,原式=﹣1﹣1﹣1﹣1=﹣4;当a,b,c中两个数为正数,一个为负数时,原式=1+1﹣1﹣1=0;当a,b,c中两个数为负数,一个为正数时,原式=1﹣1﹣1+1=0;综上所述则+++所有可能的值为0或±4.故答案为:0或±4.18.解:2.019≈2.02(精确到百分位).故答案为2.02.19.解:设S=1+5+52+53+ (52017)则5S=5+52+53+ (52018)5S﹣S=52018﹣1,4S=52018﹣1,则S=,故答案为:.20.解:按键顺序为就是求3的4次方,34=81.故答案为:81.三.解答题(共7小题)21.解:0.5﹣1﹣1.5+1﹣2﹣1﹣2+0=﹣6,那么总销售额:5×8﹣6=34(元),成本价:32元,因此共盈利:34﹣32=2(元).故小明卖完毛巾后,盈利了2元.22.解:(1)数轴可以看做规定了原点、正方向、单位长度的直线;(2)是一条射线,表示为射线OB;(3)表示负数,端点表示“0”;(4)是一条线段,表示为线段AB.23.解:|﹣|+|﹣|+|﹣|+…+|﹣|===24.解:四个数相乘,积为负,因此负因数的个数为奇数,可能1或3个因数为负数,答:其中可能有1个因数为负数,或者有3个因数为负数.25.解:(1)12200000000=1.22×1010km;(2)4千万=40000000=4×107m,1.22×1010km=1.22×1013m,(1.22×1013)÷(4×107)=3.05×105.答:“先驱者10号”飞离地球的距离是地球赤道长的3.05×105倍.26.解:(1)原式=﹣4﹣11+5=﹣15+5=﹣10;(2)原式=﹣40﹣28+19﹣24=﹣40﹣28﹣24+19=﹣92+19=﹣73;(3)原式=32÷4×=8×=;(4)原式=﹣24×(﹣)﹣24×﹣24×(﹣)=18﹣20+2=0;(5)原式=4﹣6+3=1;(6)原式=﹣1+6﹣9=﹣4.27.解:(1)==﹣,成立;(2)=,成立,两数相除同号得正,异号得负,并把绝对值相除.。

2020-2021学年北师大版八年级上册数学《第2章 实数》单元测试卷(有答案)

2020-2021学年北师大版八年级上册数学《第2章 实数》单元测试卷(有答案)
∴结果越来越趋向﹣1.
故选:C.
6.解:A、﹣|2|= ,故A错误;
B、﹣4=﹣ ,故B错误;
C、只有符号不同的两个数互为相反数,故C正确;
D、﹣ 与 不是相反数,故D错误;
故选:C.
7.解: , , , , , , ,其中是最简二次根式的有: , ,共两个.
故选:A.
8.解:∵ =2 , =4, = , = ,
15.计算:

=.
16.计算(1) =,(2) =,(3) =.
17.计算:( +1)2019﹣4( +1)2016﹣6( +1)2017+2019=.
18.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为米(精确到0.01).
19.计算: =, =, =.
A.|x+5|B. C.(x﹣y)2nD.
5.任意给定一个负数,利用计算器不断进行开立方运算,随着开立方次数增加,结果越来越趋向( )
A.0B.1C.﹣1D.无法确定
6.下列各组数中互为相反数的一组是( )
A.﹣|2|与 B.﹣4与﹣
C.﹣ 与| |D.﹣ 与
7.下列二次根式: , , , , , , ,其中是最简二次根式的有( )
20.如果 =4,那么a=.
三.解答题
21.化简:
(1) ;
(2)( )3;
(3)| ﹣ |;
(4)﹣ + + ;
(5)﹣2× +|1﹣ |﹣( )﹣2.
22.先阅读下面的解题过程,然后解答:化简 .
解:∵ , ,
∴ .
根据上述方法化简: .
23.计算:

2020年北师大版八年级数学上册第二章实数单元测试题(含答案)

2020年北师大版八年级数学上册第二章实数单元测试题(含答案)

第二章 实数试卷 [时间:120分钟 分值:150分]A 卷(共100分)一、选择题(共10个小题,每小题3分,共30分) 1.化简42的结果是( ) A .-4 B .4 C .±4 D .22.下列各数:173,8,2π,0.333 333,364,1.212 212 221 222 21(每两个1之间依次多一个2)中,无理数有()A .2个B .3个C .4个D .5个 3.-|-2|的值为( ) A. 2 B .- 2 C .± 2 D .24.下列二次根式中能与23合并的是( ) A.8 B.13C.18D.95.下列判断正确的是( ) A.5-12<0.5B .若ab =0,则a =b =0C.ab=abD.3a可以表示边长为a的等边三角形的周长6.按如图所示的程序计算,若开始输入的n值为2,则最后输出的结果是()A.14 B.16C.8+5 2 D.14+27.实数a,b在数轴上对应点如图所示,则化简b2+(a-b)2-|a|的结果是()A.2a B.2bC.-2b D.-2a8.三个实数-6,-2,-7之间的大小关系是()A.-7>-6>-2 B.-7>-2>- 6C.-2>-6>-7 D.-6<-2<-79.若(m-1)2+n+2=0,则m+n的值是()A.-1 B.0C.1 D.210.如图是按一定规律排成的三角形数阵,按图中的数阵排列规律,第9行从左至右第5个数是()… … … A .210 B.41 C .5 2 D.51二、填空题(共4个小题,每小题4分,共16分) 11.81的平方根是_____,-125的立方根是______. 12.3-127的相反数为_____,倒数为______,绝对值为_____.13.计算:24+82-(3)0=________.14.如图是一个正方体纸盒的展开图,其相对两个面上的实数互为相反数,用“<”将A ,B ,C 所表示的实数依次连起来为___________.三、解答题(共6个小题,共54分) 15.(8分)计算:(1) (3)2+|-2|-(π-2)0;(2) ⎝⎛⎭⎪⎫8-12× 6. 16.(12分)计算: (1)1216-(18-43)÷23; (2)(2+3+1)(2-3+1).17.(7分)(1)[2019·荆州]已知a =(3-1)(3+1)+|1-2|,b =8-2+⎝ ⎛⎭⎪⎫12-1,求b -a 的算术平方根;(2)已知x =3+5,y =3-5,试求代数式y x +xy 的值. 18.(12分)求下列各式中x 的值: (1)x 2-7=0; (2)x 3+216=0; (3)(x -3)2=64.19.(7分)某小区为了促进全民健身活动的开展,决定在一块面积约为900 m 2的正方形空地上建一个篮球场,已知篮球场的面积为420 m 2,其中长是宽的2815倍,球场的四周必须至少留出1 m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?20.(8分)已知x ,y 为实数,且满足y =x -12+12-x +12,求5x +||2y -1-y 2-2y +1的值.B 卷(共50分)四、填空题(共5个小题,每小题4分,共20分)21.定义运算“”的运算法则为x y =xy +4,则(26)8=____.22.定义[x ]等于不超过实数x 的最大整数,定义{x }=x -[x ],例如[π]=3,{π}=π-[π]=π-3.(1)填空(直接写出结果):[3]=____,{3}=_________,[3]+{3}=_____;(2)计算:[2+5]+{2+5}-{2}+[5]=_______.23.一个直角三角形的两边长分别为3和4,则它的面积为________.24.如图,点A为正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是______.25.如图,每个小正方形的边长为2,连接小正方形的三个顶点,可得到△ABC,则AC边上的高是__________.五、解答题(共3个小题,共30分)26.(8分)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而1<2<2,于是可用2-1来表示2的小数部分.请解答下列问题:(1)21的整数部分是____,小数部分是__________;(2)如果7的小数部分为a,15的整数部分为b,求a+b-7的值;(3)已知100+110=x+y,其中x是整数且0<y<1,求x+110+24-y的平方根.27.(10分)问题背景:在△ABC中,AB,BC,AC三边的长分别为5,10,13,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.图1图2(1)请你将△ABC的面积直接填写在横线上:____;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别为5a,8a,17a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积;探索创新:(3)若△ABC三边的长分别为m2+16n2,9m2+4n2,16m2+4n2 (m>0,n>0,且m≠n),试运用构图法画出示意图并求出这个三角形的面积.28.(12分)如图,细心观察图形,认真分析各式,然后解答问题:OA 22=(1)2+1=2,S 1=12;OA 23=12+(2)2=3,S 2=22;OA 24=12+(3)2=4,S 3=32;…(1)推算出OA 10的长;(2)若一个三角形的面积是5,请通过计算说明它是第几个三角形.参考答案1. B 2. B【解析】 173是分数,属于有理数;0.333 333是有限小数,属于有理数;364=4,是整数,属于有理数;无理数有8,2π,1.212 212 221 222 21(每两个1之间依次多一个2)共3个.故选B.3. B 4. B5. D【解析】 5-12≈0.6>0.5,错误;若ab =0,则a =0或b =0,错误;选项C 当a <0,b <0时,ab 有意义,而a ,b 没有意义,错误;故选D.6. C 7. B【解析】 如图,b >0,a -b <0,a <0,则b 2+(a -b )2-|a |=b +b -a -(-a )=2b .8. C 9. A 10. B【解析】 由图形可知,第n 行最后一个数为n (n +1)2,所以第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41,故选B.11.±3 -5 12. 13 -3 13 13. 23+1【解析】 本题考查二次根式的化简,原式=43+42-1=23+2-1=23+1.14. B >A >C【解析】 由题意可得A +(-327)=0,B +(-10)=0,C +3=0.∴A =327=3,B =10,C =-3, ∴B >A >C .15.解:(1)原式=3+2-1=4.(2)原式=⎝⎛⎭⎪⎫22-22×6=322×6=3 3.16.解:(1)原式=26-(1218÷3-2) =26-126+2 =362+2.(2)原式=(2+1)2-(3)2 =2+22+1-3 =2 2.17.解:(1)∵a =(3-1)(3+1)+|1-2|=3-1+2-1=1+2,b =8-2+⎝ ⎛⎭⎪⎫12-1=22-2+2=2+2.∴b -a =2+2-1-2=1. ∴b -a =1=1.(2)y x +x y =x 2+y 2xy =(x +y )2-2xy xy当x =3+5,y =3-5时, 原式=(23)2-2×(-2)-2=-8.18.解:(1)x =±7 (2)x =-6 (3)x =11或-519.解:设篮球场的宽为x m ,那么长为2815x m . 根据题意得2815x ·x =420, 解得x 2=225.∵x 为正数,∴x =15 m , 则2815x +2=2815×15+2=30 m , 正方形空地的边长为30 m ,∴能按规定在这块空地上建一个篮球场. 20.解:由题意得⎩⎪⎨⎪⎧x -12≥0,12-x ≥0.解得x =12,则y =12.5x +||2y -1-y 2-2y +1=52+0-14=2.21. 6【解析】 根据新定义的运算法则x y =xy +4,可得26=2×6+4=16=4,所以(26)8=48=4×8+4。

北师大八年级数学上册第二章实数测试卷(带答案)

北师大八年级数学上册第二章实数测试卷(带答案)

八 年 级 上 册 数 学第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。

1、若x 2=a ,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )(C )113 (D )…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是的算术平方根,则x=( )(A ) (B )± (C ) (D )±6、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )b a = a=b (D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。

(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。

(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。

3、如果a 21-有意义,则a 的取值范围是 。

4、算术平方根等于本身的数有 。

5、a 是9的算术平方根,而b 的算术平方根是9,则=+b a 。

北师大版八年级数学上册 第二章 实数 单元测试卷(有答案)

北师大版八年级数学上册 第二章 实数 单元测试卷(有答案)

北师大版八年级数学上册第二章实数单元测试卷一、选择题(本大题共10小题,共30分)1. 在实数√3,π,−37,3.5,√163,0,3.102100210002,√4中,无理数共有( )A. 3个B. 4个C. 5个D. 6个 2. 下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)√83的平方根是±√2;(4)√8+183=2+12=212.共有多少个是错误的?( ) A. 1 B. 2 C. 3 D. 4 3. 在实数−2√5、0、−5、3中,最小的实数是( )A. −2√5B. 0C. −5D. 34. 估计√8+√18的值应在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5. 在二次根式√0.2a ,√28,√10x ,√a 2−b 2中,最简二次根式有( )A. 1 个B. 2 个C. 3 个D. 4 个6. 如图,数轴上A ,B 两点对应的实数分别是1和√3.若点A 与点C 到点B 的距离相等,则点C 所对应的实数为( )A. 2√3−1B. 1+√3C. 2+√3D. 2√3+1 7. 计算:(2019−π)0+(−2)2−(12)−1的值为( )A. 3B. −5C. 4.5D. 3.58. 已知a −b =14,ab =6,则a 2+b 2的值是( )A. 196B. 208C. 36D. 2029. 如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于( )A. 28.72B. 0.2872C. 13.33D. 0.133310. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是( )A. 30cm 2B. 30πcm 2C. 15cm 2D. 15πcm 2二、填空题(本大题共5小题,共15分)11. 实数227,√7,−8,√23,√36,π3中的无理数是____________ .12. 用计算器计算:√2018≈______(结果精确到0.01)13. √4+(−3)2−20140×|−4|+(16)−1=______.14. 将实数√5,π,0,−6由小到大用“<”号连起来,可表示为______.15. 定义新运算“☆”:a ☆b =√ab +1,则2☆(3☆5)=______.三、计算题(本大题共1小题,共8.0分)16. 计算:(1)−√11125; (2)√0.09−√0.25.四、解答题(本大题共5小题,共55分)17. 按要求把下列各数填入相应的括号里:2.5,−0.5252252225…(每两个5之间依次增加一个2),−102,0,13,2π−6,3.(1)非负数集合:{};(2)非负整数集合:{};(3)有理数集合:{};(4)无理数集合:{}.18.求下列各式中x的值。

北师大新版八年级上册《第2章 实数》2020年单元测试卷(3)(附答案详解)

北师大新版八年级上册《第2章 实数》2020年单元测试卷(3)(附答案详解)

北师大新版八年级上册《第2章实数》 2020年单元测试卷(3)一、选择题(本大题共16小题,共48.0分) 1. −35的相反数是( )A. −35B. 35C. 53D. −532. −12−14的值是( )A. −14B. −34C. 34D. 143. 如果|a|=−a ,下列成立的是( )A. a >0B. a <0C. a ≥0D. a ≤04. 下列正确的式子是( )A. −|−12|>0 B. −(−4)=−|−4| C. −56>−45D. −3.14>−π5. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg 、(25±0.2)kg 、(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg6. 有理数a 、b 在数轴上的对应的位置如图所示,则( )A. a +b <0B. a +b >0C. a −b =0D. a −b >07. 如果a 表示有理数,那么a +1,|a +1|,(a +1),|a|+1中肯定为正数的有( )A. 1个B. 2个C. 3个D. 4个8. 我们定义一种新运算a ⊕b =a+ba−b ,例如5⊕2=5+25−2=73,则式子7⊕(−3)的值为( )A. 15B. 25C. −15D. −259. 在下列各数0.2、3π、0、227、√1−19273、6.1010010001…、13111、√27无理数的个数是( )A. 1B. 2C. 3D. 410. 下列六种说法正确的个数是( )①无限小数都是无理数; ②正数、负数统称实数数; ③无理数的相反数还是无理数; ④无理数与无理数的和一定还是无理数; ⑤无理数与有理数的和一定是无理数; ⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3D. 411. 下列语句中正确的是( )A. −9的平方根是−3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是312. 下列运算中,错误的有( )①√125144=1512;②√(−4)2=±4;③√−22=−√22=−2;④√125=−15.A. 1个B. 2个C. 3个D. 4个13. √(−5)2的平方根是( )A. ±5B. 5C. −5D. ±√514. 下列运算正确的是( )A. √−13=−√−13B. √−33=√33C. √−13=√|−1|3D. √−13=−√1315. 若a 、b 为实数,且b =√a2−1+√1−a 2a+7+4,则a +b 的值为( )A. ±1B. 4C. 3或5D. 516. 已知一个正方形的边长为a ,面积为S ,则( )A. S =√aB. S 的平方根是aC. a 是S 的算术平方根D. a =±√S二、填空题(本大题共14小题,共48.0分)17. 若+50元表示收入50元,那么支出30元表示为______.18. 吐鲁番盆地低于海平面155米,记作−155m ,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高______ m 。

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)一、选择题、1.8、π这4个数中,无理数有()1.在√6、32A.1个B.2个C.3个D.4个2.下列说法错误的是()A.4的算术平方根是2B.√2是2的平方根C.−1的立方根是−1D.−3是√(−3)2的平方根3.下列式子中,属于最简二次根式的是()A.√8B.√11C.√45D.√164.如图,√7在数轴上对应的点可能是()A.点E B.点F C.点M D.点P5.无理数−√10+1在()A.−3和−2之间B.−4和−3之间C.−5和−4之间D.−6和−5之间6.若使二次根式√x−3在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x≠3D.x>37.下列计算正确的是()A.(2√2)2=4√2B.√2×√3=√6C.√2+√3=√5D.√12÷√3=48.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2 +1 C.1﹣√2D.﹣√2二、填空题9.若一个正数的两个平方根分别是5a+1和a+5,则a的值是.10.一个数的平方等于64,则这个数的立方根是 .11.若a 是√7的整数部分,b 是它的小数部分,则a ﹣b = .12.计算:|1−√3|+√14= . 13.若x ,y 是实数,且y =√x −4+√4−x +3,则12√xy 的值为 .三、解答题14.计算:(1)√−273+√(−3)2+√−13; (2)−12+√643−(−2)×√9.15.计算:(1)√27÷√3−2√15×√10+√8 (2) √3(√2−√3)−√24−|√6−3|16.把下列各实数填在相应的大括号内整 数{ …};分 数{ …};无理数{ …}.17.已知5a +2的立方根是3,4a +2b +1的平方根是±5,求a -2b 的算术平方根.18.如图,有一块长方形木板,木工沿虚线在木板上截出两个面积分别为12 dm 2和27 dm 2的正方形木板,求原长方形木板的面积.1.B2.D3.B4.C5.A6.B7.B8.C9.−110.±211.4−√712.√3−1213.√314.(1)解:√−273+√(−3)2+√−13 =﹣2+|﹣3|﹣1=﹣4+3﹣1=﹣5;(2)解:−12+√645−(−2)×√9=﹣5+4﹣(﹣2)×4=3﹣(﹣6)=3+6=9.15.(1)解:原式=3√3÷√3−25√5×√10+2√2=3−2√2+2√2=3(2)解:原式=√6−3−2√6−3+√6=−617.解:因为5a+2的立方根是3,4a+2b+1的平方根是±5,所以5a+2=27,4a+2b+1=25,解得a =5,b=2,所以a-2b=5-4=1,所以a-2b的算术平方根为118.解:∵两个正方形的面积分别为12 dm2和27 dm2∴这两个正方形的边长分别为√12 dm和√27 dm由题图可知,原长方形的长为(√12+√27) dm,宽为√27 dm∴原长方形的面积为:(√12+√27)×√27=18+27=45(dm2).。

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。

北师大版 八年级上册 数学 第2章 实数 单元测试卷 (解析版)

北师大版 八年级上册 数学 第2章 实数 单元测试卷 (解析版)

解:
的平方根是 ,

的算术平方根是 4,那么
的平方根是

7 / 11
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
解得 解得
; 的算术平方根是 4, , ,
, ,
的平方根是:

17.如果
,那么

解:由题意得:


解得: , ,


故答案为: .
18.如图,以原点 为圆心, 为半径画弧交数轴于点 ,则点 所表示的数是

最接近 的整数是 .
故答案为: .
12.计算:

解:原式

故答案为: .
13.比较大小:
.(填“ ”,“ ”,“ ”号)
解:





故答案为: .
14.计算:

解:原式

故答案为: .
15.若二次根式
在实数范围内有意义.则 的取值范围是

解:由题意得:

解得: ,
故答案为: .
16.已知
的平方根是 ,
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
、4 是 64 的立方根,原说法错误,故此选项不符合题意; 、 是 的立方根,原说法正确,故此选项符合题意;

,16 的平方根是 ,原说法错误,故此选项不符合题意.
故选: . 5.下列运算中,正确的是
A.
B.
C.
D.
解: .不是同类二次根式不能合并,选项错误; .不是同类二次根式不能合并,选项错误;


(1)试化简:

(2)直接写出:

北师大八年级数学上《第2章实数》单元测试含答案解析

北师大八年级数学上《第2章实数》单元测试含答案解析

第2章实数一、填空题(共9小题)1.计算: +(﹣1)﹣1+(﹣2)0= .2.计算: = .3.计算:(π﹣3.14)0++(﹣)﹣1﹣4cos45°=.4.计算= .5.计算:(﹣2)3+(﹣1)0= .6. = .7.计算: = .8.计算:﹣ ++= .9.计算:2﹣1﹣(π﹣3)0﹣= .二、解答题(共21小题)10.计算:﹣|﹣|+(﹣)0.11.计算:3×(﹣2)+|﹣4|﹣()0.12.计算:|﹣1|++(3.14﹣π)0﹣4cos60°.13.计算:|﹣2|+(﹣1)﹣(π﹣)0.14.计算:.15.(1)计算:cos45°﹣()0(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x+6…第三步=x+2…第四步小明的做法从第步开始出现错误,正确的化简结果是.16.|﹣|+()﹣1﹣(﹣π)0﹣3tan30°.17.计算:3tan30°﹣|﹣|﹣()﹣2+(π﹣3.14)0.18.计算:|﹣|﹣+()﹣1+2sin60°.19.计算:()﹣2+﹣2cos45°+|2﹣3|.20.计算:(﹣π)0+|1﹣|﹣()﹣1﹣2sin60°.21.计算:|﹣2|﹣4sin45°+(﹣1)+.22.计算:.23.计算:2cos45°﹣+(﹣)﹣1+(π﹣3.14)0.24.计算:()﹣1+|1﹣|﹣﹣2sin60°.25.计算: +(﹣1)﹣+(π﹣3)0﹣.26.计算:.27.计算:|﹣2|+(3﹣π)0﹣2﹣1+.28.计算:|﹣4|﹣+cos30°.29.计算:.30.计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.第2章实数参考答案与试题解析一、填空题(共9小题)1.计算: +(﹣1)﹣1+(﹣2)0= 2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.【解答】解:原式=2﹣1+1=2.故答案为:2.【点评】本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.2.计算: = 3 .【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据有理数乘方的法则、负整数指数幂及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1×4﹣1=3.故答案为:3.【点评】本题考查的是实数的运算,熟知有理数乘方的法则、负整数指数幂及0指数幂的计算法则是解答此题的关键.3.计算:(π﹣3.14)0++(﹣)﹣1﹣4cos45°=﹣2 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+2﹣3﹣4×=﹣2.故答案为:﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.计算= 2.【考点】实数的运算;零指数幂.【分析】首先根据算术平方根的计算方法,求出的值是多少;然后根据a0=1(a≠0),求出的值是多少;最后再求和,求出算式的值是多少即可.【解答】解: =2.故答案为:2.【点评】(1)此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.5.计算:(﹣2)3+(﹣1)0= ﹣7 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣8+1=﹣7.故答案为:﹣7.【点评】本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.6.(•营口)= 2 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行零指数幂、负整数指数幂、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+2﹣2×=2.故答案为:2.【点评】本题考查了实数的运算,涉及了零指数幂、负整数指数幂、特殊角的三角函数值等知识,属于基础题.7.计算: = ﹣1 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】根据零指数幂的意义得到原式=1﹣2,然后进行减法运算.【解答】解:原式=1﹣2=﹣1.故答案为﹣1.【点评】本题考查了实数的运算:实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.也考查了零指数幂.8.计算:﹣ ++= .【考点】实数的运算.【专题】计算题.【分析】本题涉及二次根式,三次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣ ++=﹣6++3=﹣.故答案为﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.9.计算:2﹣1﹣(π﹣3)0﹣= ﹣1 .【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣=﹣1.故答案为:﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.二、解答题(共21小题)10.计算:﹣|﹣|+(﹣)0.【考点】实数的运算;零指数幂.【分析】本题涉及二次根式化简、绝对值、零指数幂三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣|﹣|+(﹣)0=2﹣+1=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式化简、绝对值、零指数幂等考点的运算.11.计算:3×(﹣2)+|﹣4|﹣()0.【考点】实数的运算;零指数幂.【分析】分别进行零指数幂、绝对值、有理数的乘法运算,然后合并即可.【解答】解:原式=﹣6+4﹣1=﹣3.【点评】本题考查了实数的运算,属于基础题,掌握各部分的运算法则.12.计算:|﹣1|++(3.14﹣π)0﹣4cos60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据去绝对值法则和负整数指数幂以及零指数幂的运算法则化简,再由特殊角的锐角三角函数计算即可.【解答】解:原式=1+(﹣3)+1﹣4×=1﹣3+1﹣2=﹣3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值13.计算:|﹣2|+(﹣1)2013﹣(π﹣)0.【考点】实数的运算;零指数幂.【分析】分别根据绝对值的性质、有理数乘方的法则即0指数幂的计算法则计算出各数,再根据实数运算的法则进行解答即可.【解答】解:原式=2﹣1﹣1=0.【点评】本题考查的是实数的运算,熟知绝对值的性质、有理数乘方的法则即0指数幂的计算法则是解答此题的关键.14.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算乘方,化简二次根式,再根据零指数幂和负整数指数幂运算法则教师,然后进行乘法,加减即可.【解答】解:原式=2﹣1﹣5+1+9,=6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值15.(1)计算:cos45°﹣()0(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x+6…第三步=x+2…第四步小明的做法从第二步开始出现错误,正确的化简结果是.【考点】实数的运算;分式的加减法;零指数幂;特殊角的三角函数值.【专题】阅读型.【分析】(1)根据0次幂,三角函数即可解答;(2)根据分式的化简,即可解答;【解答】解:(1)原式==1﹣1=0.(2)小明的做法从地二步开始出现错误;正确化简结果是:.故答案为:二,.【点评】本题考查了0次幂、三角函数值、分式的化简,解决本题的关键是明确分式的加减不要去掉分母.16. |﹣|+()﹣1﹣(2013﹣π)0﹣3tan30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=+5﹣1﹣=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.计算:3tan30°﹣|﹣|﹣()﹣2+(π﹣3.14)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=3×﹣﹣4+1=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.计算:|﹣|﹣+()﹣1+2sin60°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2+6+2×=6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.计算:()﹣2+﹣2cos45°+|2﹣3|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】首先根据算术平方根、负整数指数幂的运算方法,以及45°的三角函数值,还有绝对值的求法计算,然后根据加法交换律和加法结合律,求出算式()﹣2+﹣2cos45°+|2﹣3|的值是多少即可.【解答】解:()﹣2+﹣2cos45°+|2﹣3|===()+(3)=5=【点评】(1)此题主要考查了算术平方根的含义以及求法,以及绝对值的含义和求法,要熟练掌握.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°等特殊角的三角函数值.20.计算:(2013﹣π)0+|1﹣|﹣()﹣1﹣2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+﹣1﹣3﹣2×=1+﹣1﹣3﹣=﹣3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等考点的运算.21.计算:|﹣2|﹣4sin45°+(﹣1)2013+.【考点】实数的运算;特殊角的三角函数值.【分析】本题涉及绝对值、特殊角的三角函数值、乘方、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果..【解答】解:|﹣2|﹣4sin45°+(﹣1)2013+=2﹣4×﹣1+2=2﹣2﹣1+2=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、乘方、二次根式等考点的运算.22.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行负整数指数幂、二次根式的化简及绝对值的运算,代入特殊角的三角函数值合并即可.【解答】解:原式===.【点评】本题考查了实数的运算,涉及了绝对值、负整数指数幂及特殊角的三角函数值,属于基础题.23.计算:2cos45°﹣+(﹣)﹣1+(π﹣3.14)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行特殊角的三角函数值、二次根式的化简、负整数指数幂、零指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=2×﹣4﹣4+1=﹣7.【点评】本题考查了实数的运算,涉及了特殊角的三角函数值、二次根式的化简、负整数指数幂、零指数幂等知识,属于基础题.24.计算:()﹣1+|1﹣|﹣﹣2sin60°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】分别进行负整数指数幂、绝对值、开立方、特殊角的三角函数值等运算,然后按照实数的运算法则计算即可.【解答】解:原式=2+﹣1+2﹣2×=3.【点评】本题考查了实数的运算,涉及了负整数指数幂、绝对值、开立方、特殊角的三角函数值等知识,属于基础题.25.计算: +(﹣1)2013﹣+(π﹣3)0﹣.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用平方根定义化简,第二项利用乘方的意义化简,第三项利用负指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用立方根定义化简,计算即可得到结果.【解答】解:原式=4﹣1﹣4+1﹣2=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】推理填空题.【分析】本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1+1﹣2+4=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.27.计算:|﹣2|+(3﹣π)0﹣2﹣1+.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】分别根据绝对值的性质、0指数幂及负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+1﹣﹣3=﹣.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.28.计算:|﹣4|﹣+cos30°.【考点】实数的运算;特殊角的三角函数值.【专题】计算题.【分析】本题涉及绝对值、平方根、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4﹣4+=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握绝对值、平方根、特殊角的三角函数等考点的运算.29.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣+2×=1﹣2+1=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负整数指数幂、特殊角的三角函数值等考点的运算.30.计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何非0数的0次幂等于1进行计算即可得解.【解答】解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.【点评】本题考查了实数的运算,主要利用了特殊角的三角函数值,负整数指数幂,二次根式的化简,零指数幂,是基础运算题,注意运算符号的处理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大新版八年级数学上册《第2章实数》2020年单元测试卷一、选择题1.下面四个实数,你认为是无理数的是()A.B.C.3 D.0.32.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个7.下列计算正确的是()A.=×B.=﹣C.=D.=8.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根9.下列各式正确的是()A.B.C.D.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6二、填空题11.﹣的相反数是.12.16的算术平方根是.13.写出一个比﹣3大的无理数是.14.化简﹣=.15.比较大小:2π(填“>”、“<”或“=”).16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.17.若x,y为实数,且|x+2|+=0,则(x+y)2020的值为.18.已知m=,则m2﹣2m﹣2020=.三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简: +++…+.北师大新版八年级数学上册《第2章实数》2020年单元测试卷参考答案与试题解析一、选择题1.下面四个实数,你认为是无理数的是()A.B.C.3 D.0.3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、3、0.3是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.【考点】实数的运算;正数和负数.【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选C.【点评】本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.3.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b【考点】二次根式的性质与化简;实数与数轴.【分析】现根据数轴可知a<0,b>0,而|a|>|b|,那么可知a+b<0,再结合二次根式的性质、绝对值的计算进行化简计算即可.【解答】解:根据数轴可知,a<0,b>0,原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选C.【点评】本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.5.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【考点】二次根式的性质与化简.【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.6.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根以及立方根逐一分析4条结论的正误,由此即可得出结论.【解答】解:①∵52=25,∴5是25的算术平方根,①正确;②∵=,∴是的一个平方根,②正确;③∵(±4)2=(﹣4)2,∴(﹣4)2的平方根是±4,③错误;④∵02=03=0,12=13=1,∴立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点评】本题考查了方根、算术平方根以及立方根,解题的关键是根据算术平方根与平方根的定义找出它们的区别.7.下列计算正确的是()A.=×B.=﹣C.=D.=【考点】二次根式的混合运算.【分析】根据二次根式的性质对各个选项进行计算,判断即可.【解答】解:=×,A错误;=,B错误;是最简二次根式,C错误;=,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质是解题的关键.8.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【考点】估算无理数的大小.【分析】先根据数轴判断A的范围,再根据下列选项分别求得其具体值,选取最符合题意的值即可.【解答】解:根据数轴可知点A的位置在2和3之间,且靠近3,而=2,<2,2<=2<3,=2,只有8的算术平方根符合题意.故选C.【点评】此题主要考查了利用数轴确定无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.9.下列各式正确的是()A.B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的运算性质化简.【解答】解:A、原式=,错误;B、被开方数不同,不能合并,错误;C、运用了平方差公式,正确;D、原式==,错误.故选C.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.10.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6【考点】估算无理数的大小.【分析】先求出+1的范围,再根据范围求出即可.【解答】解:∵3<<4,∴4<+1<5,∴[+1]=4,故选B.【点评】本题考查了估算无理数的大小的应用,关键是求出+1的范围.二、填空题11.﹣的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故答案为:.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.12.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.13.写出一个比﹣3大的无理数是如等(答案不唯一).【考点】实数大小比较.【分析】根据这个数即要比﹣3大又是无理数,解答出即可.【解答】解:由题意可得,﹣>﹣3,并且﹣是无理数.故答案为:如等(答案不唯一)【点评】本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.14.化简﹣=﹣.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2﹣3=﹣.【点评】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.15.比较大小:2<π(填“>”、“<”或“=”).【考点】实数大小比较.【分析】首先利用计算器分别求2和π的近似值,然后利用近似值即可比较求解.【解答】解:因为2≈2.828,π≈3.414,所以<π.【点评】本题主要考查了实数的大小的比较,主要采用了求近似值来比较两个无理数的大小.16.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】平方根.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.17.若x,y为实数,且|x+2|+=0,则(x+y)2020的值为1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y方程组,然后解方程组求出x、y的值,再代入原式求解即可.【解答】解:由题意,得:,解得;∴(x+y)2020=(﹣2+3)2020=1;故答案为1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.18.已知m=,则m2﹣2m﹣2020=0.【考点】二次根式的化简求值.【分析】先分母有理化,再将m2﹣2m﹣2020变形为(m﹣1)2﹣2020,再代入计算即可求解.【解答】解:m==+1,则m2﹣2m﹣20200=(m﹣1)2﹣2020=(+1﹣1)2﹣2020=2020﹣2020=0.故答案为:0.【点评】此题考查了二次根式的化简求值,分母有理化,完全平方公式,二次根式的化简求值,一定要先化简再代入求值.三、解答题(共66分)19.(2012﹣π)0﹣()﹣1+|﹣2|+;(2)1+(﹣)﹣1﹣÷()0.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)根据零指数幂、负整数指数幂和二次根式的意义计算.【解答】解:(1)原式=1﹣3+2﹣+=0;(2)原式=1﹣2﹣(2﹣)÷1=1﹣2﹣2+=﹣3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.20.先化简,再求值:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab),其中a=,b=;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法和除法,再合并同类项,最后代入求出即可;(2)先算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:(1)(a﹣2b)(a+2b)+ab3÷(﹣ab)=a2﹣4b2﹣b2=a2﹣5b2,当a=,b=时,原式=()2﹣5×()2=﹣13;(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=时,原式=﹣2.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.21.有这样一个问题:与下列哪些数相乘,结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母):A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).【考点】实数的运算.【分析】(1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据(1)的结果可以得到规律.【解答】解:(1)A、D、E;注:每填对一个得,每填错一个扣,但本小题总分最少0分.(2)设这个数为x,则x=a(a为有理数),所以x=(a为有理数).(注:无“a为有理数”扣;写x=a视同x=)【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意.22.计算:(1)++﹣;(2)2÷×;(3)(﹣4+3)÷2.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+5+﹣3=6+;(2原式=2×××=;(3)原式=(﹣2+6)÷2=(+4)÷2=+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.甲同学用如图方法作出C点,表示数,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示﹣的点A.【考点】实数与数轴;勾股定理.【分析】(1)依据勾股定理求得OB的长,从而得到OC的长,故此可得到点C表示的数;(2)由29=25+4,依据勾股定理即可做出表示﹣的点.【解答】解:(1)在Rt△AOB中,OB===,∵OB=OC,∴OC=.∴点C表示的数为.(2)如图所示:取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC===.∵OA=OC=.∴点A表示的数为﹣.【点评】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键.24.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,,2.【考点】勾股定理;二次根式的应用.【分析】(1)利用勾股定理得出AB,BC,AC的长,进而得出答案;(2)直接利用各边长结合勾股定理得出答案.【解答】解:(1)如图①所示:AB=4,AC==3,BC==,所以AB的长度是有理数,AC和BC的长度是无理数;(2)如图②所示:【点评】此题主要考查了勾股定理以及二次根式的应用,正确应用勾股定理是解题关键.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简: +++…+.【考点】分母有理化.【分析】(1)原式各项仿照题中分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可得到结果.【解答】解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣【点评】此题考查了分母有理化,熟练掌握分母有理化的方法是解本题的关键.。

相关文档
最新文档