排列组合应用题的解题技巧剖析

合集下载

套路揭秘解题方法之排列组合的应用技巧

套路揭秘解题方法之排列组合的应用技巧

套路揭秘解题方法之排列组合的应用技巧在数学的学习中,我们经常会遇到排列与组合的问题。

排列与组合是高中数学中的重要内容,也是解题中经常用到的方法之一。

本文将为大家揭秘排列组合的应用技巧,帮助大家更好地理解和应用。

一、排列与组合的基本概念排列与组合是数学中的两个概念,用来描述不同元素之间的选择和排列方式。

在计算排列与组合时,我们需要考虑元素是否重复,以及元素的顺序是否重要。

具体来说,排列是指从给定的元素集合中选取若干元素按照一定顺序排列的方式,组合是指从给定的元素集合中选取若干元素无序地组合的方式。

二、排列与组合的计算公式在解决排列与组合问题时,我们可以利用相应的计算公式进行求解。

对于排列问题,如果元素有重复,我们使用重复排列的计算公式;如果元素无重复,则使用一般排列的计算公式。

对于组合问题,我们使用组合的计算公式。

1. 重复排列的计算公式:当有n种元素,每种元素分别有m₁、m₂、···、mₙ个,且重复排列取r个元素时,重复排列的总数为:P(n₁、n₂、···、nₙ;r) = n!/(m₁!×m₂!×···×mₙ!)×r!2. 一般排列的计算公式:当有n种不同的元素,排列取r个元素时,一般排列的总数为:P(n, r) = n!/(n-r)!3. 组合的计算公式:当有n种不同的元素,组合取r个元素时,组合的总数为:C(n, r) = n!/(n-r)!×r!三、排列组合的应用技巧在实际应用中,排列与组合经常用于解决各种问题。

以下是一些常见的排列组合应用技巧:1. 集合的幂集:幂集是指一个集合的所有子集的集合。

一个集合,如果有n个元素,那么这个集合的幂集的元素个数为2的n次方。

2. 握手问题:在一个活动中,有n个人,每个人都要与其他人握手一次,问握手的总次数是多少。

探析排列组合常见的十六种解题方法

探析排列组合常见的十六种解题方法

探析排列组合常见的十六种解题方法ʏ福建省泉州市第七中学 彭耿铃高考排列组合试题能有效地考查同学们的阅读判断能力㊁转化与化归处理能力及应用意识㊂这类试题新颖别致,联系社会实际,贴近生活,反映了排列组合应用领域的广阔,体现了数学的应用价值㊂本文特精选一些排列组合例题予以分类探析,旨在探究题型及解题方法,希望同学们能决胜于高考㊂求解排列㊁组合问题的常见方法有以下几种㊂(1)限制条件排除法:先求出不考虑限制条件的个数,然后排除不符合条件的个数,相当于减法原理;(2)相邻问题捆绑法:在特定条件下,将几个相关元素当作一个元素来考虑,待整个问题排好之后再考虑它们 内部 的排列数,主要用于解决相邻问题;(3)插空法:先把不受限制的元素排列好,然后把特定元素插在它们之间或两端的空当中;(4)特殊元素㊁位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置;(5)多元问题分类法:将符合条件的排列分为几类,根据分类计数原理求出排列总数;(6)元素相同隔板法:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入m -1块隔板来完成分组,此法适用于同元素分组问题;(7) 至多 ㊁ 至少 间接法: 至多 ㊁ 至少 的排列组合问题,需分类讨论且一般分类的情况较多,所以通常用间接法,即排除法,它适用于反面明确且易于计算的问题;(8)选排问题先取再排法:选排问题很容易出现重复或遗漏的错误,因此常先取出元素(组合)再排列,即先取再排;(9)定序问题消序法:甲㊁乙㊁丙顺序一定,采用消序法,即除法,用总排列数除以顺序一定的排列数;(10)有序分配逐分法:有序分配是指把元素按要求分成若干组,常采用逐分的方法求解㊂一㊁定位问题优先法(特殊元素和特殊位置优先考虑)例1 由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?解析:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置㊂先排末位共有C 13种方法;然后排首位共有C 14种方法;最后排其他位置共有A 34种方法㊂由分步计数原理得,有C 14C 13A 34=288(个)满足要求的数㊂例2 6个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )㊂A.192种 B .216种C .240种D .288种解析:若最左端排甲,其他位置共有A 55=120(种)排法;若最左端排乙,最右端共有4种排法,其余4个位置有A 44=24(种)排法㊂所以共有120+4ˑ24=216(种)排法,选B ㊂小结:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其他元素㊂若以位置分析为主,需先满足特殊位置的要求,再处理其他位置㊂若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其他条件㊂二㊁相邻元素捆绑法例3 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?解析:可先将甲乙两个元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其他元素进行排列,同时对相邻元素内部进行自排㊂由分步计数原理可得,共有A55A22A22=480(种)不同的排法㊂例4某人射击了8枪,命中4枪,4枪命中且恰好有3枪连在一起的情形共有种㊂解析:命中的3枪捆绑在一起,与命中的另一枪插入到未命中4枪形成的5个空位,共有A25=20(种)情况㊂小结:要求某几个元素必须排在一起的问题,可以用捆绑法来解决㊂即将需要相邻的元素合并为一个元素,再与其他元素一起进行排列,同时要注意合并元素内部也必须排列㊂三㊁不相邻问题插空法例5某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()㊂A.72B.120C.144D.168解析:歌舞类节目设为a1,a2,a3,小品类节目设为b1,b2,相声类节目设为c㊂先排a1,a2,a3不相邻,顺序如ˑb1ˑb2ˑcˑ,共A33A34种方法,b1b2相邻前提下,ˑb1b2ˑcˑ插空法共A22A33A22种方法,所以同类节目不相邻的排法种数为A33A34-A22A33A22=A33㊃(A34-4)=6ˑ20=120,选B㊂例66把椅子摆成一排,3人随机就座,任何2人不相邻的坐法种数为()㊂A.144B.120C.72D.24解析:先把3把椅子隔开摆好,它们之间和两端有4个位置,再把3人带椅子插放在四个位置,共有A34=24(种)方法,故选D㊂例7(2022年新高考Ⅱ卷)有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有()种㊂A.12B.24C.36D.48解析:因为丙丁要在一起,先把丙丁捆绑,看作一个元素,连同乙,戊看成三个元素排列,有A33种排列方式㊂为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式㊂注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有A33ˑ2ˑ2=24(种)不同的排列方式,选B㊂小结:元素相离问题可先把没有位置要求的元素进行排队,再把不相邻元素插入中间和两端㊂四㊁定序问题除序(去重复)㊁空位㊁插入法例87人排队,其中甲乙丙3人顺序一定,共有多少种不同的排法?解析:法一(除序法):对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是A77A33=840㊂法二(空位法):设想有7把椅子,让除甲乙丙以外的4人就座共有A47种方法,其余的三个位置甲乙丙共有1种坐法,则共有1ˑA47=840(种)方法㊂法三(插入法):先选三个座位让甲乙丙三人坐下,共有C37种方法,余下4个空座位让其余四人就座,共有A44种方法,则共有C37A44=840(种)方法㊂小结:定序问题可以用除序法,还可转化为空位法㊁插入法㊂五㊁重排问题求幂法例9把6名实习生分配到7个车间实习,共有多少种不同的分法?解析:完成此事共分六步,把第一名实习生分配到车间有7种分法,把第二名实习生分配到车间也有7种分法, ,由分步计数原理知共有76种不同的分法㊂小结:允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置㊂一般地,n个不同的元素没有限制地安排在m 个位置上的排列数为m n ㊂六㊁环排问题线排法例10 8人围桌而坐,共有多少种坐法?解析:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定1人并从此位置把圆形展成直线,其余7人共有(8-1)!=7!=5040(种)排法㊂小结:一般地,n 个不同元素作圆形排列,共有(n -1)!种排法㊂如果从n 个不同元素中取出m 个元素作圆形排列,共有1nA mn ㊂七㊁排列组合混合问题先选后排法例11 有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少种不同的装法解析:第一步从5个球中选出2个组成复合元素,共有C 25=10(种)方法;再把4个元素(包含一个复合元素)装入4个不同的盒内,有A 44=24(种)方法㊂根据分步计数原理,装球的方法共有C 25A 44=240(种)㊂例12 (2021年全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰㊁短道速滑㊁冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )㊂A.60种 B .120种C .240种D .480种解析:根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人组成一个小组,有C 25种选法;然后连同其余3人,看成4个元素,4个项目看成4个不同的位置,4个不同的元素在4个不同的位置的排列方法数为A 44㊂根据乘法原理,完成这件事共有C 25ˑA 44=240(种)不同的分配方案,选C ㊂例13 (2020年全国Ⅱ卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种㊂解析:因为4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,所以先取2名同学看作一组,选法有C 24种㊂现在可看成是3组同学分配到3个小区,分法有A 33种㊂根据分步乘法原理,可得不同的安排方法有C 24A 33=6ˑ6=36(种)㊂小结:解决排列组合混合问题,先选后排是最基本的指导思想,此法与相邻元素捆绑策略相似㊂八㊁元素相同问题隔板法例14 有10个运动员名额,分给7个班,每班至少1人,有多少种分配方案?解析:10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙㊂在9个空隙中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法,共有C 69=84(种)分法㊂小结:将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m -1块隔板,插入n 个元素排成一排的n -1个空隙中,所有分法数为C m -1n -1㊂九㊁正难则反总体淘汰法例15 从1,3,5,7,9这5个数中,每次取出2个不同的数分别记为a ,b ,共可得到l g a -l gb 的不同值的个数是( )㊂A.9 B .10 C .18 D .20解析:l g a -l g b =l gab,从1,3,5,7,9中任取2个数分别记为a ,b ,共有A 25=20(种)结果㊂其中l g13=l g 39,l g 31=l g 93,故共可得到不同值的个数为20-2=18,选C ㊂例16 某学校安排甲㊁乙㊁丙㊁丁4位同学参加数学㊁物理㊁化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲㊁乙不能参加同一学科,则不同的安排方法有种㊂解析:把4位同学分成3组,有C 24=6(种)方法,然后进行全排列,即有C 24A 33=36(种)方法,去掉甲㊁乙在一个组的情况,当甲㊁乙在一个组时,参加的方法有A 33=6(种)㊂故符合题意的安排方法有36-6=30(种)㊂小结:有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰㊂十㊁平均分组问题除法例17将5名同学分到甲㊁乙㊁丙3个小组,若甲小组至少2人,乙㊁丙组至少1人,则不同的分配方案种数为()㊂A.80B.120C.140D.50解析:先将5名同学分成3组,有两种分配方案,一是3组人数分别为2,2,1,分组方法有C25C23C11A22=15(种),然后将有2人的两组分给甲㊁乙或甲㊁丙,分配方法是15ˑ(A22+ A22)=60(种);二是3组人数分别为3,1,1,分组方法有C35C12C11A22=10(种),然后将有1人的两组分给乙㊁丙两组,分配方法有10ˑA22 =20(种)㊂共有60+20=80(种)方案,选A㊂小结:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为平均分的组数)避免重复计数㊂十一㊁合理分类与分步法例18甲㊁乙两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()㊂A.10种B.15种C.20种D.30种解析:由题意知比赛局数至少为3局,至多为5局㊂当局数为3局时,情况为甲或乙连赢3局,共2种㊂当局数为4局时,若甲赢,则前3局中甲赢2局,最后一局甲赢,共有C23=3(种)情况㊂同理,若乙赢,也有3种情况,共有3+3=6(种)情况㊂当局数为5局时,前4局,甲㊁乙各赢2局,最后1局胜出的人赢,共有2C24=12(种)情况㊂综上可知,共有2+6+12=20(种)情况㊂选C㊂十二㊁构造模型法例19马路上有编号为1,2,3,4,5, 6,7,8,9的9盏路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种㊂解析:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯有C35 =10(种)㊂小结:一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决㊂十三㊁分解与合成法例2030030能被多少个不同的偶数整除?解析:先把30030分解成质因数的乘积形式30030=2ˑ3ˑ5ˑ7ˑ11ˑ13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数有C05+C15+C25+C35+C45+C55=32(个)㊂例21正方体的8个顶点可连成多少对异面直线解析:我们先从8个顶点中任取4个顶点构成四面体,共有C48-12=58(个),每个四面体有3对异面直线,正方体中的8个顶点可连成3ˑ58=174(对)异面直线㊂例22从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有()㊂A.24对B.30对C.48对D.60对解析:(1)方法一:与正方体的一个面上的一条对角线成60ʎ角的对角线有8条,故共有8对,正方体的12条面对角线共有8ˑ12 =96(对),且每对均重复计算一次,故共有962 =48(对)㊂选C㊂方法二:正方体的面对角线共有12条,两条为一对,共有C212=66(对)㊂同一个面上的对角线不满足题意,对面中的对角线也不满足题意,一组平行平面共有6对不满足题意的对角线对数,所以不满足题意的共有3ˑ6=18(对)㊂从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有66-18=48(对)㊂选C㊂小结:分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略㊂十四㊁复杂问题化归法例2325人排成5ˑ5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解析:将这个问题退化成9人排成3ˑ3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少种选法㊂这样每行必有1人,从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去㊂从3ˑ3方队中选3人的方法有C13C12C11=6(种)㊂再从5ˑ5方阵选出3ˑ3方阵便可解决问题㊂从5ˑ5方队中选取3行3列,有C35C35=100(种)选法,所以从5ˑ5方阵选不在同一行也不在同一列的3人,有C35C35C13C12C11=600(种)选法㊂例24用a代表红球,b代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+a b表示出来,如: 1 表示一个球都不取㊁ a 表示取出一个红球,而 a b 表示把红球和蓝球都取出来㊂以此类推,下列各式中,其展开式可用来表示从5个无区别的红球㊁5个无区别的蓝球㊁5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()㊂A.(1+a+a2+a3+a4+a5)(1+b5)㊃(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)㊃(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析:分三步:第一步,5个无区别的红球可能取出0个,1个, ,5个,则有(1+a+ a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个, ,5个,有(1+c)5种不同的取法㊂所以所求的取法种数为(1+a+a2+ a3+a4+a5)(1+b5)(1+c)5,选A㊂小结:处理复杂的排列组合问题时可以把一个问题退化成一个简单的问题,通过先解决这个简单问题,从而下一步解决原来的问题㊂十五㊁数字排序问题查字典法例25用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()㊂A.144个B.120个C.96个D.72个解析:首位填4时,比40000大的偶数有2ˑ4ˑ3ˑ2=48(个);首位填5时,比40000大的偶数有3ˑ4ˑ3ˑ2=72(个)㊂故共有48+72=120(个)数满足题意,选B㊂小结:数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数㊂十六㊁住店法例267名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数为㊂解析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将7名学生看作7家 店 ,五项冠军看作5名 客 ,每个 客 有7种住宿法,由乘法原理知有75种可能㊂小结:解决 允许重复排列问题 要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作 客 ,能重复的元素看作 店 ,再利用乘法原理直接求解㊂排列组合历来是高中学习中的难点,同学们只要对基本的解题策略熟练掌握,就可以选取不同的技巧来解决问题㊂对于一些比较复杂的问题,我们可以将几种策略结合起来应用,把复杂的问题简单化㊂请同学们对以上排列组合的几种常见的解题策略加以复习巩固,能举一反三,触类旁通,进而为后续的概率学习打下坚实的基础㊂(责任编辑徐利杰)。

高中数学排列组合应用解题技巧

高中数学排列组合应用解题技巧

高中数学排列组合应用解题技巧在高中数学中,排列组合是一个重要的概念和应用领域。

它不仅在数学中有着广泛的应用,也在现实生活中起到重要的作用。

本文将介绍一些高中数学排列组合应用解题技巧,帮助学生更好地理解和应用这一知识点。

一、排列问题排列是指从一组元素中选取若干个元素按照一定的顺序进行排列的问题。

在解决排列问题时,我们需要注意以下几个关键点。

1. 确定元素的个数:排列问题中,我们需要明确元素的个数。

例如,有5个人参加比赛,我们需要确定从中选取几个人进行排列。

2. 确定元素的顺序:排列问题中,元素的顺序是重要的。

例如,5个人参加比赛,我们需要确定他们的排列顺序。

3. 使用排列公式:在解决排列问题时,我们可以使用排列公式来计算可能的排列数。

排列公式为:A(n,m) = n!/(n-m)!,其中n表示元素的总数,m表示选取的元素个数。

例如,有5个人参加比赛,我们需要确定其中3个人的排列顺序。

根据排列公式,我们可以计算出A(5,3) = 5!/(5-3)! = 5!/2! = 60种可能的排列方式。

二、组合问题组合是指从一组元素中选取若干个元素进行组合的问题。

在解决组合问题时,我们需要注意以下几个关键点。

1. 确定元素的个数:组合问题中,我们需要明确元素的个数。

例如,有5个人参加比赛,我们需要确定从中选取几个人进行组合。

2. 不考虑元素的顺序:组合问题中,元素的顺序不重要。

例如,5个人参加比赛,我们只关心选取的人数,而不关心他们的排列顺序。

3. 使用组合公式:在解决组合问题时,我们可以使用组合公式来计算可能的组合数。

组合公式为:C(n,m) = n!/[(n-m)! * m!],其中n表示元素的总数,m表示选取的元素个数。

例如,有5个人参加比赛,我们需要确定其中3个人进行组合。

根据组合公式,我们可以计算出C(5,3) = 5!/[(5-3)! * 3!] = 5!/2!*3! = 10种可能的组合方式。

三、应用举例下面通过一些具体的例子来说明排列组合在实际问题中的应用。

【学习方法指导】解答排列组合问题

【学习方法指导】解答排列组合问题

【学习方法指导】解答排列组合问题解答排列组合问题:解答排列组合问题解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。

同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。

下面介绍几种常用的解题方法和策略。

一、合理的分类和准确的分步方法来解决有约束的排列组合问题,应该根据元素的性质进行分类,并按照事物的连续过程逐步进行,以确保每一步都是独立的,从而达到分类标准清晰、层次分明、不重复、不遗漏的目的。

二、元素分析与位置分析法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

三、对于非相邻元件的排列,可以将非相邻元件插入排列的元件和两端的间隙之间。

四、总体淘汰法对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。

五、固定顺序问题使用“除法”。

对于某些元素按一定顺序排列的问题,可以将这些元素与其他元素一起排列,然后将总排列数除以这些元素的总排列数。

六、构造模型“隔板法”对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。

七、“直接排列法”将若干元素排列在前排和后排。

如果没有其他特殊要求,可以统一排处理。

八、表格法有些较复杂的问题可以通过列图表使其直观化。

解决这类问题常用的数学思想是分类讨论、变换和对称。

排列组合是高中数学的重点和难点之一,也是进一步学习概率的基础。

事实上,许多概率问题也可归结为排列组合问题。

这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复”和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧,最终达到能够灵活运用。

排列组合解题的高效技巧与策略

排列组合解题的高效技巧与策略

排列组合解题的高效技巧与策略排列组合是数学中的一个重要概念,它在解决问题时可以帮助我们快速、高效地找出正确的答案。

本文将介绍一些排列组合解题的高效技巧与策略,帮助读者更好地应对相关问题。

1. 理解排列和组合的概念在开始讨论解题技巧之前,我们首先需要理解排列和组合的概念。

排列是指从一组元素中选取一部分元素按照一定的顺序进行排列,而组合是指从一组元素中选取一部分元素,不考虑顺序的情况下进行组合。

2. 利用公式计算排列组合数排列和组合问题的解答往往涉及到计算排列数和组合数。

针对不同的问题,我们可以利用相应的公式来计算。

例如,计算从n个元素中选取r个元素的排列数可以使用下面的公式:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

3. 利用乘法原理和加法原理乘法原理和加法原理是解决排列组合问题的基本原理。

乘法原理指出,如果一个任务可以分为k个相互独立的子任务,每个子任务有n1、n2、...、nk种选择,则总的选择方式数为n1 * n2 * ... * nk。

而加法原理指出,如果一个任务可以通过两个步骤完成,第一步有n种选择,第二步有m种选择,则总的选择方式数为n + m。

4. 利用递推关系简化计算在解决排列组合问题时,有时可以利用递推关系简化计算过程,减少计算量。

例如,C(n, r) = C(n-1, r-1) + C(n-1, r)就是一个常见的递推关系。

通过利用递推关系,我们可以将原始问题转化为更小规模的子问题,从而简化计算过程。

5. 利用二项式定理求解复杂问题二项式定理是数学中的一个重要定理,它展示了如何将一个二次多项式展开成一个多项式的和。

利用二项式定理,我们可以求解复杂的排列组合问题。

例如,在计算(x + y)^n的展开式中,我们可以得到展开式中各个项的系数,进而能够解决一些特殊问题。

6. 善于应用化简的方法在解决排列组合问题时,有时候问题的描述较为复杂,难以直接进行计算。

排列组合解题方法和策略总结

排列组合解题方法和策略总结

排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。

排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。

以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。

2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。

3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。

4.分类讨论:对于一些复杂的问题,需要进行分类讨论。

根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。

5.排除法:在某些情况下,可以通过排除法求解问题。

根据问题的限制条件,排除一些不可能的情况,从而减少计算量。

6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。

通过递推关系,逐步推导出最终的排列组合情况。

7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。

通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。

8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。

通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。

解决排列组合问题需要掌握一定的方法和策略。

通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。

同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。

排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。

例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。

2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。

行测排列组合技巧

行测排列组合技巧

行测排列组合技巧在行测中,排列组合是一个重要的数学知识点,也是考生们经常会遇到的题型。

掌握好排列组合技巧,可以帮助我们更快更准确地解题,提高做题效率。

下面将介绍一些行测中常用的排列组合技巧,希望对大家备考有所帮助。

首先,我们来了解一下排列和组合的概念。

在数学中,排列是指从n个不同元素中取出m个元素,按照一定顺序排列的方式。

排列通常用P(n,m)来表示。

组合是指从n个不同元素中取出m个元素,不考虑顺序的方式。

组合通常用C(n,m)来表示。

在行测中,排列组合常用的技巧有以下几点:1. 确定排列组合的题目类型:在做题时,首先要明确题目中是考察排列还是组合,根据题目要求来确定解题思路。

排列题目一般要求考生考虑元素的顺序,组合题目则不考虑元素的顺序。

2. 排列的计算方法:在排列中,当元素没有重复时,排列的计算方法为P(n,m) = n!/(n-m)!,其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。

如果元素有重复的情况,需要根据重复元素的个数进行调整。

3. 组合的计算方法:在组合中,组合的计算方法为C(n,m) = n!/(m!(n-m)!),其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。

组合题目中一般要求考生不考虑元素的排列顺序。

4. 排列组合的应用:在实际题目中,排列组合常常和概率、数列等知识点结合,需要考生综合运用多种技巧来解题。

在做题时,要注意题目中的条件,灵活运用排列组合知识,找到合适的解题方法。

5. 多做练习:排列组合是一个需要大量练习的知识点,只有通过不断的练习,才能熟练掌握排列组合的技巧。

建议考生多做排列组合的题目,提高解题能力。

总的来说,排列组合是行测中常见的数学题型,掌握好排列组合的技巧,可以帮助我们更好地解题,提高解题效率。

希望以上介绍的排列组合技巧对大家有所帮助,祝大家在行测中取得好成绩!。

高中数学排列组合与概率的综合应用题解析与求解

高中数学排列组合与概率的综合应用题解析与求解

高中数学排列组合与概率的综合应用题解析与求解在高中数学中,排列组合与概率是两个重要的概念和技巧。

排列组合主要涉及对对象的选择和排列,而概率则是研究事件发生的可能性。

在解决实际问题时,这两个概念常常会结合起来使用。

本文将通过具体的题目来说明如何应用排列组合与概率的知识解决综合应用题。

题目一:某班有10个男生和8个女生,从中选出3个人组成一个小组,其中至少有1个男生。

求这样的小组的可能数。

解析:这是一个典型的排列组合问题,我们需要从10个男生中选出至少1个男生,再从8个女生中选出剩下的2个人。

根据排列组合的知识,我们可以得出解题步骤如下:1. 选出1个男生的可能数:C(10, 1) = 102. 从8个女生中选出2个人的可能数:C(8, 2) = 283. 将步骤1和步骤2的结果相乘,得到最终的结果:10 * 28 = 280所以,这样的小组的可能数为280。

通过这个题目,我们可以看到排列组合的应用,以及如何将多个步骤结合起来求解问题。

这对于高中学生来说,是一个很好的练习。

题目二:某班有10个男生和8个女生,从中随机选出3个人组成一个小组,求这样的小组中至少有1个男生的概率。

解析:这是一个概率问题,我们需要计算满足条件的小组数与总的小组数的比值。

根据概率的定义,我们可以得出解题步骤如下:1. 满足条件的小组数:根据题目一的解析,我们已经知道满足条件的小组数为280。

2. 总的小组数:从18个人中选出3个人的可能数为C(18, 3) = 816。

3. 将步骤1除以步骤2,得到最终的结果:280 / 816 ≈ 0.343。

所以,这样的小组中至少有1个男生的概率约为0.343。

通过这个题目,我们可以看到概率的应用,以及如何计算概率的具体步骤。

这对于高中学生来说,是一个很好的练习。

题目三:某班有10个男生和8个女生,从中选出3个人组成一个小组,求这样的小组中至少有2个男生的概率。

解析:这是一个概率问题,我们需要计算满足条件的小组数与总的小组数的比值。

排列组合应用题的解题技巧

排列组合应用题的解题技巧

排列组合应用题的解题技巧排列组合应用题是高考常见题型,内容独特,解题方法灵活多变,学生普遍感到难以把握,不知怎样解,下面介绍几种常见的解题方法与技巧。

一、优先法解排列组合的应用问题应遵循先特殊后一般,先选元素再排列的原则。

即对于特殊元素应先满足特殊元素的要求,再考虑其他元素;对于特殊位置应先满足特殊位置的要求,再考虑其他位置;这样就会保证分类时既不重复也不遗漏。

例1、某校从8名老师中选派4名老师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有多少种?解:按特殊元素甲、乙实行分类。

甲和乙不同去分为三种情况:(1)甲去乙不去,(2)甲不去乙去,(3)甲、乙都不去。

当甲去乙不去时,丙去,此时不同的选派方案有2404425=⋅A C (种)当甲不去乙去时,丙不去,此时不同的选派方案有2404435=⋅A C (种)当甲、乙都不去时,丙不去,此时不同的选派方案有1204445=⋅A C (种)所以不同的选派方案共有240+240+120=600(种)例2、三个女生和五个男生排成一排,如果两端都不排女生,有多少种不同的排法? 解:方法一、特殊元素优先考虑:先排女生,从中间6个位置选3个女生去排即:36A ,剩余5个全排列即:55A 。

所以共有:144005536=⋅A A 方法二、特殊位置优先考虑:先排两端,从5个男生中选2个排两端有:25A ,其余6个全排列即:55A .所以共有:144006625=⋅A A 二、对等法有些限制条件的肯定和否定是对等的,各占全体的二分之一,还有“顺序一定”与“平均分组”问题要用除法,即:判断限制条件中的各种可能出现的情形是否对等的,也就是各种情形出现的概率是否相等。

例3、(1):期中考试安排科目8门,语文要排在数学之前考,共有多少种安排顺序?(2):四名男生和三名女生按要求站成一排,三名女生顺序一定,则有几种排法?(3):将6本不同的书平均分成3堆,每堆2本,有几种分法?解:(1)不加任何限制,整个排法有88A 种,“语文安排在数学之前考”与“数学安排在语文之前考”的排法是相等的,所以语文要排在数学之前考共有88228821A A A =种安排顺序. (2)7名学生的全排列有77A 种,3名女生有33A 种排序。

考公排列组合解题技巧

考公排列组合解题技巧

考公排列组合解题技巧
在各类考试中,排列组合问题一直是重点与难点。

为了更有效地解决这类问题,以下是一些关键的解题技巧。

一、理解基本概念
在处理排列组合问题时,首先需要明确什么是排列、什么是组合。

排列是指从n个不同元素中取出m个元素(0≤m≤n),按照一定的顺序放入一起,构成一个有序的组合;而组合则是从n个不同元素中取出m个元素(0≤m≤n),不考虑顺序放入一起。

两者的主要区别在于顺序是否重要。

二、掌握计算公式
1. 排列数公式:A=n(n-1)(n-2)...(n-m+1)
2. 组合数公式:C=n!/[m!(n-m)!]
3. 插空法、捆绑法等其他常用方法。

三、分析具体问题
针对具体问题,首先要明确是排列问题还是组合问题,其次要分析元素的性质、限制条件等因素,选择合适的方法进行计算。

四、运用间接法
在某些情况下,通过间接法可以更简便地解决问题。

例如,在求排列数时,可以先求出总数,然后减去其他不满足条件的情况数。

五、重视组合特点
组合问题有其自身的特点,如无序性、独立性等。

在解题时,要充分利用这些特点简化问题。

六、培养逻辑思维
排列组合问题往往涉及到复杂的逻辑关系,需要我们进行深入的分析和推理。

培养逻辑思维有助于更好地解决这类问题。

七、熟悉常见问题
为了更好地应对考试,需要对各种类型的排列组合问题都有所了解,并掌握相应的解题技巧。

总的来说,解决排列组合问题需要扎实的理论基础、灵活的思维方式和丰富的解题经验。

希望以上技巧能对大家有所帮助。

资格中的排列组合题解题技巧和方法

资格中的排列组合题解题技巧和方法

资格中的排列组合题解题技巧和方法资格考试中的排列组合题是一个常见的题型,对于很多考生来说可能会觉得比较困难。

但实际上,在掌握一些解题技巧和方法后,排列组合题是可以迎刃而解的。

本文将结合一些实例,介绍几种常见的解题技巧和方法。

首先,我们来看一个典型的排列问题:某班有10名学生,要从中选出3名学生组成一个小组,用以代表班级参加活动。

那么,有多少种不同的选组方式呢?解题思路一:使用排列组合公式根据排列组合的原理,从n个元素中选取m个元素进行排列的方式共有C(n,m)种。

所以,本题的解法就是计算C(10,3)。

解题思路二:利用分步解决的思想首先,在这个题目中,先确定组成小组的第一名学生,有10个选择;然后,从剩下的9名学生中选取第二名学生,有9个选择;最后,从剩下的8名学生中选取第三名学生,有8个选择。

因此,本题的解法就是计算10*9*8。

解题思路三:使用结果减去不符合条件的情况在这个题目中,我们也可以先求出所有可能的结果总数,即10*9*8,然后再去掉不符合条件的情况。

在本题中,不符合条件的情况就是选出的三名学生相同的情况,也就是有3种情况。

所以,本题的解法就是10*9*8-3。

以上三种解题思路得到的结果都是120种。

这说明,不同的解题思路可能得到相同的结果,只是在步骤上有所差异。

因此,对于排列组合题来说,关键是理解题意和理清思路,选择一个适合自己的解题方法即可。

除了以上的解题思路,还有一些其他的方法可以应用于排列组合题中。

例如,在某些题目中,可以利用互补原理进行解题。

互补原理指的是:“如果事件A和事件B是两个互为对立的事件,且事件A发生与否与事件B发生与否完全相反,那么这两个事件的发生概率之和为1。

”通过利用互补原理,可以将题目中的复杂问题简化为两个简单的互为对立的事件,从而简化解题过程。

另外,在某些题目中,可以利用排列和组合的关系进行解题。

排列和组合是排列组合数学中的两个概念,两者之间有着紧密的联系。

排列组合题型方法总结

排列组合题型方法总结

排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。

在实际问题中,排列组合经常用于解决具体的计数问题。

在本文中,我将总结一些常见的排列组合题型及解题方法。

一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。

在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。

解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。

2. 圆排列:将不同的元素排成一个圆,求出排列的总数。

解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。

3. 重复排列:将一组相同的元素排列,求出排列的总数。

解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。

4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。

解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。

二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。

在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。

解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。

2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。

解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。

3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。

解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。

4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。

解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。

三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。

下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。

排列组合八种题型的技巧解法

排列组合八种题型的技巧解法

排列组合八种题型的技巧解法一、占位子问题例1:将编号为1、2、3、4、5的5个小球放进编号为1、2、3、4、5的5个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法。

一就是认真审题。

在切换题目之前先使学生认真审题,从特定字眼小球和盒子都已“编号”著手,确切这就是一个“排序问题”,然后对题目展开等价切换。

二是转换题目。

在审题的基础上,为了激发学生兴趣,使其进入角色,我将题目转换为:让学号为1、2、3、4、5的学生坐到编号为1、2、3、4、5的五张凳子上(凳子已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法。

三就是解决问题。

这时我出马另一名学生去精心安排这5十一位学生挤位子(学生之争着上台,积极性已经获得了很大的提升),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),不懈努力地“出谋划策”,没两分钟的时间,同学们存有了统一的观点:先选取合乎题目特定条件“两个学生与其正下方的凳子编号相同”的两位同学,存有c种方法,使他们坐在与自己编号相同的凳子上,然后剩的三位同学不挤编号相同的凳子存有2种排法,最后根据乘法原理获得结果为2×c=20(种)。

这样原题也就获得了化解。

四是学生小结。

接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案(课堂气氛又一次活跃起来)。

五就是老师总结。

对于这一类占到位子问题,关键就是把握住题目中的特定条件,先从特定对象或者特定位子抓起,再考虑通常对象,从而最终解决问题。

二、分组问题基准2:从1、3、5、7、9和2、4、6、8两组数中分别挑选出3个和2个数共同组成五位数,问这样的五位数存有几个?(本题我是先让学生计算,有很多同学得出的结论是p×p)一就是认真审题。

先由学生审题,明晰共同组成五位数就是一个排序问题,但是由于这五个数源自两个相同的组与,因此就是一个“分组排序问题”,然后对题目展开等价切换。

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结一、排列组合解题概述排列组合解题是一种常见的数学解题方法,它是从实际问题中抽象出的数学思路,即利用数学的思想研究问题的中可能的不同情况。

它是指将从某概念领域中抽出的元素,按一定规则进行排列组合,以求出符合要求的所有可能情况,并且再对这些可能情况进行比较选择。

二、关于排列组合解题的技巧1、熟悉必要的知识排列组合解题一般有四种情形,分别是无重复排列,有重复排列,无重复组合,有重复组合。

读者在学习排列组合解题技巧时要先熟练掌握这四种情形的基本概念。

2、理解问题为正确解决排列组合解题,必须结合问题本身,仔细阅读题干,弄清所求的具体内容,讨论其间的联系和规律,并把握到全局。

3、合理分类将题目中的个体或要素,按某种形式或方法进行分类,这样就可以有效地缩小解题范围,把问题转化成容易求解的形式。

4、计算概率排列组合解题究竟有多少种可能,有时可以利用数学概率公式,计算概率,从而辅助解题,快速缩小解题步骤,提高解题效率。

5、模拟实验在排列组合解题过程中,可以采用模拟实验的方法,通过模拟试验来找出具体的结果情况,以有效节约解题时间。

6、求解问题求解排列组合解题有三种方法:因式分解法、基本计算法和穷举法。

因式分解法是把问题分解为几个不同的小问题进行全面求解;基本计算法就是用一定的数学计算技巧,用必要的算式和穷举函数,来对复杂的问题进行求解;穷举法就是把所有可能的情况都列出来,逐一筛查出正确的结果。

三、总结排列组合的解题方法,是从实际问题中抽象出的数学思路,它可以帮助我们把复杂的问题转化为容易解答的数学计算。

其具体解题技巧也有很多,这就要求读者先有足够的数学知识,精确把握问题,合理地分类,根据题意来确定使用穷举法、因式分解法、基本计算法等,以最短时间最高效地解决问题。

排列与组合问题的解题思路与示例解析

排列与组合问题的解题思路与示例解析

排列与组合问题的解题思路与示例解析在数学中,排列与组合是一类常见的问题类型,需要运用一定的思维方法和技巧来解决。

本文将介绍一些解题思路和示例解析,帮助读者更好地理解和应用排列与组合的知识。

一、排列问题排列是指从一组元素中选取若干个元素按照一定顺序进行排列的方式。

解决排列问题的关键在于确定元素的选取顺序和确定每个位置的元素个数。

1.1 顺序问题在解决排列问题时,首先需要确定元素的选取顺序。

例如,有6个人参加一场比赛,需要确定他们的名次。

这是一个顺序问题,因为名次的不同会导致结果的不同。

解决这类问题时,可以使用乘法原理。

即,第一个位置有6种选择,第二个位置有5种选择,以此类推,直到最后一个位置有1种选择。

因此,总的排列方式为6 × 5 × 4 × 3 × 2 × 1 = 720种。

1.2 重复元素问题在一组元素中,如果存在重复的元素,解决排列问题时需要考虑重复元素的影响。

例如,有4个字母A、B、C、D,需要排列成3位的字符串。

解决这类问题时,可以使用分情况讨论的方法。

首先,考虑第一位的选择,共有4种选择。

然后,考虑第二位的选择,由于第一位已经选择了一个元素,所以只剩下3种选择。

最后,考虑第三位的选择,由于前两位已经选择了两个元素,所以只剩下2种选择。

因此,总的排列方式为4 × 3 × 2 = 24种。

二、组合问题组合是指从一组元素中选取若干个元素,不考虑元素的顺序。

解决组合问题的关键在于确定元素的选取个数和确定元素的组合方式。

2.1 选取个数问题在解决组合问题时,首先需要确定元素的选取个数。

例如,有8个人参加一场晚会,需要从中选取3个人组成一个小组。

解决这类问题时,可以使用组合数的公式。

即,从8个人中选取3个人的组合数为C(8,3) = 8! / (3! × (8-3)!) = 56种。

2.2 重复元素问题在一组元素中,如果存在重复的元素,解决组合问题时需要考虑重复元素的影响。

排列组合应用题的解题技巧剖析

排列组合应用题的解题技巧剖析

2012-10教学实践排列组合应用题是高中数学的教学难点,由于它联系实际、生动有趣,一直受到各省高考命题组的青睐。

排列组合的应用题变化多样,这就要求学生解题思路必须灵活,而能帮助学生解题的理论,除了两个基本原理(分类计数原理和分步计数原理)外,并无现成的统一方法可套用。

本文就该问题进行归纳与分析,以期能对学习者有所启示。

一、画格子法这是排列组合问题中一种最基本、最常用的方法,绝大多数问题都可用这种方法解决。

这种画格子的方法实际上就是分步计数原理。

例1.由数字0,1,2,3,4可以组成多少个无重复数字的5位数?分析:由于是5位数,故可画5个连续的格子来代替这个数字。

解题时一般要求从最高的位置开始考虑,如本题所要求的是个5位数,因此该数的万位必须非零,这就意味着最左边的格子(万位)内所填数字可以有4种选择(如:1,2,3,4),故可在最左边的格子内填上4。

对于第二个格子,由于第一个格子已经用了一个数字,而题目要求数字无重复,故该格子(千位)内所填数字可以有4种选择,可在该格子内填上4。

同理,第三个格子填3,第四个格子填2,第五个格子填1。

按分步计数原理可知,本题所求数字的个数为:n=4×4×3×2×1=96。

二、相邻问题捆绑法某些排列组合问题中,要求某些元素必须相邻,对于这类问题,解题的常用方法是:将相邻元素“捆绑”起来看作一个大元素,然后再与其他元素“重新”排列或组合,从而达到求解目的。

例2.有5部各不相同的手机参加展览,排成一行,其中有2部手机来自同一厂家,则此2部手机恰好相邻的排法有多少种?分析:由于这2部手机必须相邻,所以将这两个元素“捆绑”在一起看作一个大元素,则本题就看作是4台手机的排列问题了。

“捆绑”的时候有A22种方法,4台手机有A36种方法,故此题的排法有A22·A44=48种。

三、相离问题插空法某些排列组合问题中,要求某些元素互不相邻,对于这类问题,解题的常用方法是:先排好没有限制条件的元素,然后将这些要求不相邻的几个元素插入上述元素的空当和两端。

经典排列组合应用题的解法技巧

经典排列组合应用题的解法技巧

解排列组合应用题的解法技巧一. 运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。

例1:n个人参加某项资格考试,能否通过,有多少种可能的结果?例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种练习:1投递问题:3封信2个邮箱有多少投递方案2映射个数计算:从集合A={1,2,3,}到集合B={a,b}能建立多少映射二. 特殊元素(位置)优先----(优待法)所谓“优待法”是指在解决排列组合问题时,对于有限制条件的元素(或位置)要优先考虑.例3:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到无重复数字的五位偶数多少个?注0,2,4,6,8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。

例4:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?【eg】在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个.〔注〕这道例题是典型的限制排列组合题.解题时,若从元素入手(即元素优先),常要分类讨论,分类时要注意堵漏防重;若从位置入手(即位置优待1,常要分步解答,分步时要注意分步完整,各步相连.练习(1)由数字0,1,2,…,9组成没有重复数字的三位数,且能被3整除(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?三. 捆绑法在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.例5:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?〔注〕运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.四. 插空法不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.例6:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?注:捆绑法与插入法一般适用于有如上述限制条件的排列问题【eg】用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。

排列组合常见21种解题方法剖析

排列组合常见21种解题方法剖析

排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合应用题的解题技巧剖析
作者:梁昊欣
来源:《新课程·中旬》2012年第10期
排列组合应用题是高中数学的教学难点,由于它联系实际、生动有趣,一直受到各省高考命题组的青睐。

排列组合的应用题变化多样,这就要求学生解题思路必须灵活,而能帮助学生解题的理论,除了两个基本原理(分类计数原理和分步计数原理)外,并无现成的统一方法可套用。

本文就该问题进行归纳与分析,以期能对学习者有所启示。

一、画格子法
这是排列组合问题中一种最基本、最常用的方法,绝大多数问题都可用这种方法解决。

这种画格子的方法实际上就是分步计数原理。

例1.由数字0,1,2,3,4可以组成多少个无重复数字的5位数?
分析:由于是5位数,故可画5个连续的格子来代替这个数字。

解题时一般要求从最高的位置开始考虑,如本题所要求的是个5位数,因此该数的万位必须非零,这就意味着最左边的格子(万位)内所填数字可以有4种选择(如:1,2,3,4),故可在最左边的格子内填上4。

对于第二个格子,由于第一个格子已经用了一个数字,而题目要求数字无重复,故该格子(千位)内所填数字可以有4种选择,可在该格子内填上4。

同理,第三个格子填3,第四个格子填2,第五个格子填1。

按分步计数原理可知,本题所求数字的个数为:
n=4×4×3×2×1=96。

二、相邻问题捆绑法
某些排列组合问题中,要求某些元素必须相邻,对于这类问题,解题的常用方法是:将相邻元素“捆绑”起来看作一个大元素,然后再与其他元素“重新”排列或组合,从而达到求解目的。

例2.有5部各不相同的手机参加展览,排成一行,其中有2部手机来自同一厂家,则此2部手机恰好相邻的排法有多少种?
分析:由于这2部手机必须相邻,所以将这两个元素“捆绑”在一起看作一个大元素,则本题就看作是4台手机的排列问题了。

“捆绑”的时候有A22种方法,4台手机有A36种方法,故此题的排法有A22·A44=48种。

三、相离问题插空法
某些排列组合问题中,要求某些元素互不相邻,对于这类问题,解题的常用方法是:先排好没有限制条件的元素,然后将这些要求不相邻的几个元素插入上述元素的空当和两端。

例3.联欢会上要演出3个歌唱节目和5个舞蹈节目,如果歌唱节目不能连排,那么有几种排节目的方法?
四、分组问题分步法
例4.四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种?
五、交叉问题集合法
某些排列组合问题中,符合各个条件的部分有交集,对于这类问题,解题的常用方法是:借用求集合元素个数的公式:card(A∪B)=cardA+cardB-card(A∩B),然后依题意把这个card(A∪B)减去即可。

例5.学校从10名学生礼仪队员中选6人列队参加校门口的值日,其中甲要求不站第一,乙要求不站最后,请问共有多少种不同的站法?
分析:从10名学生礼仪队员中选6人列队,在没有任何约束条件下的站法有A610种。

不妨设A={甲站第一},B={乙站最后},则A∪B={甲站第一或乙站最后},card(A∪B)=A59+A59-A48种。

故符合题意的站法有A610-(A59+A59-A48)=122640种。

六、定序问题缩倍法
某些排列组合问题中,要求某些元素必须有一定的顺序,对于这类问题,解题的常用方法是缩倍法。

即先求出所有元素的全排列,然后除以各受约束元素的全排列。

例6.现有3个红球、2个黄球、3个白球,各个球除了颜色之外无任何差别,将这8个球排成一排,共有多少种排法?
七、定位问题优选法
某些排列组合问题中,要求某些元素需要排在特定位置,对于这类问题,解题的常用方法是优选法。

即优先排下这个(这些)特殊元素,然后再排其他元素。

例7.2名指导老师与6名竞赛获奖学生照相留念,若指导老师不站在两端,则共有多少种不同的排法?
分析:2名老师与6名学生共8人照相,由于老师受位置的条件约束,故在除两端外的6个位置中优先排老师有A26种排法,然后剩下的6个位置中排学生有A66种排法,因此本题共有A26·A66=21600种排法。

本文就排列组合应用题进行归纳与分析,从7个方面为学习者展示了解题技巧,但应注意的是,这些解题技巧并非彼此独立的,要解决某一问题,有可能要同时运用到上述多种技巧来处理。

因此,要熟练掌握该问题,还是应该以练为主,练习得来的经验永远是比背题型、背方法来得牢固。

相关文档
最新文档