1、经过直线AB外一点P,分别用两种不同的方法,画出垂直于直线AB的....ppt

合集下载

数学课件 华东师大版七年级上册 同步教学第5章相交线与平行线第二节平行线

数学课件 华东师大版七年级上册 同步教学第5章相交线与平行线第二节平行线

12.在写艺术字时,常常运用画“平行线段”这种基本方法,如图 所示写的是字母“M”.
(1)请从正面、上面、右面三个不同方向上各找出一组平行线段, 并用字母表示出来;
解:正面:AB∥EF;上面:A′B′∥AB; 右面:DD′∥HI.(答案不唯一)
(2)EF 与 A′B′有何位置关系? 解:EF∥A′B′.
8 如图,平面内有A,B,C三点,且三点不在同一条直 线上,过这三点画两条平行线,这样的平行线能画几 种?画图说明.
解:能画三种,如图所示.
9 如图,(1)过BC上一点P画AB的平行线交AC于T; (2)过点C画MN∥AB; 解:(1)如图.(2)如图.
(3)直线PT,MN具有何种位置关系?试说明理由. 解:PT∥MN,理由如下:因为PT∥AB,MN∥AB, 所以PT∥MN.
8 如图,P是线段AB的中点,过点P画BC的平行线交AC 于点Q,再过点Q画AB的平行线交BC于点S. 解:所画图形如图所示.
(1)用刻度尺测量后确定AQ与QC,CS与BS的数量关系; 解:经测量得到AQ=QC,CS=BS.
(2)用刻度尺测量后确定PQ与BC,QS与AB的数量关系,你 发现了什么?用简洁的语言把你发现的规律叙述出来. 经测量得到 PQ=12BC,QS=12AB. 经过三角形一边的中点,画另一边的平行线,则这条
3 如图,将一张长方形纸对折三次,则产生的折痕与折 痕间的位置关系是( C )
A.平行 C.平行或垂直
B.垂直 D.无法确定
4 【原创题】如图,能相交的是___②___,平行的是 __③____.
5 在如图所示的方格纸中,经过点C画与线段AB平行的 直线l1. 略
6 读下列语句,并画出图形. P是直线AB外一点,直线CD经过点P且与直线AB平行, 直线EF也经过点P且与直线AB垂直. 解:如图所示.

《垂线 》教案 (公开课)2022年人教版数学

《垂线 》教案 (公开课)2022年人教版数学

5.1.2 垂线4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

中考尺规作图大全-(含练习答案)

中考尺规作图大全-(含练习答案)

中考尺规作图大全-(含练习答案)尺规作图是一种使用没有刻度的直尺和圆规的方法。

基本作图是尺规作图的最基本、最常用的方法,而一些复杂的尺规作图都是由基本作图组成的。

基本作图包括五种:作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线。

题目一要求作一条线段等于已知线段a。

作法是先作射线AP,然后在射线AP上截取AB=a,这样线段AB就是所求作的图形。

题目二要求作已知线段MN的垂直平分线,即找到点O 使得MO=NO(即O是MN的中点)。

作法是分别以M、N 为圆心,以大于MN的相同线段为半径画弧,两弧相交于P、Q,然后连接PQ交MN于O,这样点PQ就是所求作的MN 的垂直平分线。

题目三要求作已知角AOB的角平分线OP。

作法是以O 为圆心,任意长度为半径画弧,分别交OA、OB于M、N,然后以M、N为圆心,以大于MN的线段长为半径画弧,两弧交∠AOB内于P,最后作射线OP,这样射线OP就是∠AOB的角平分线。

题目四要求作一个角等于已知角AOB。

作法是先作射线O’A’,然后以O为圆心,任意长度为半径画弧,交OA于M,交OB于N,接着以O’为圆心,以OM的长为半径画弧,交O’A’于M’,再以M’为圆心,以MN的长为半径画弧,交前弧于N’,最后连接O’N’并延长到B’,这样∠A’O’B’就是所求作的角。

题目五要求经过直线AB上一点P做已知直线CD的垂线。

作法是以P为圆心,任意长为半径画弧,交AB于M、N,然后分别以M、N为圆心,以大于MN的长为半径画弧,两弧交于点Q,最后连接CQ、DQ即可得到所求作的CD。

3.删除明显有问题的段落(无问题段落为1、2、4、5)4.改写每段话3)过D、Q作直线CD。

则直线CD是求作的直线。

改写为:作直线CD,使其经过点P并垂直于直线AB,方法如下:6)题目六:经过直线外一点作已知直线的垂线已知:如图,直线AB及外一点P。

求作:直线CD,使CD经过点P,且CD⊥AB。

华东师大版七年级数学上册第5章第1节垂线优质课件

华东师大版七年级数学上册第5章第1节垂线优质课件

知2-练
1 下列选项中,过点P画AB的垂线CD,三角板放法 正确的是( )
2 下列说法正确的是( )
知2-练
A.在同一平面内,过直线外一点向该直线画垂线,
垂足一定在该直线上
B.在同一平面内,过线段或射线外一点向该线段
或射线画垂线,垂足一定在该线段或射线上
C.过线段或射线外一点不一定能画出该线段或射
知3-讲
线的垂线
D.过直线外一点与直线上一点画的一条直线与该
直线垂直
知识点 3 垂线的基本事实
知3-讲
关于垂线的基本事实: (1)在同一平面内,过一点有且只有一条直线与已知直线
垂直. (2)连接直线外一点与直线上各点的所有线段中,垂线段
最短,简单说成:垂线段最短.(过直线外一点画已 知直线的垂线,连接这点与垂足之间的线段,叫这点 到已知直线的垂线段)
知3-讲
例4 如图所示,AB是一条河流,要铺设管道将河水引 到C、D两个用水点,现有两种铺设管道的方案: 方案一:分别过点C,D作AB的垂线,垂足分别 为点 E,F,沿CE,DF铺设管道; 方案二:连接CD交AB于点P,沿PC,PD铺设管 道.这两种铺设管道的方案哪一种更节省材料? 为什么?(忽略河流的宽度)
知1-练
1 当两条直线相交所成的四个角中,有一个角是___ 时,就说这两条直线互相垂直,其中的一条直线叫 做另一条直线的________,它们的交点叫做______.
2 垂直定义的应用格式:如图, (1)因为∠AOC=90°,所以______. (2)因为AB⊥CD,所以∠AOC=_____°.
知1-练
第5章 相交线与平行线
5.1 相交线
第2课时 垂线——垂线 的定义与性质
1 课堂讲解 2 课时流程

华师大版八年级数学上册《尺规作图4.经过一已知点作已知直线的垂线》课件

华师大版八年级数学上册《尺规作图4.经过一已知点作已知直线的垂线》课件
一点 P,使点 P 既在线段 AB 的垂直平分线上,又在线段 CD 的 垂直平分线上.
图 13-4-18
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
解:(1)作线段 AB 的垂直平分线 EF; (2)作线段 CD 的垂直平分线 MN,MN 交 EF 于点 P. 则点 P 就是所求作的点,如图 13-4-48.
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
重难互动探究
探究问题一 经过已知点作已知直线的垂线及其运用 例 1 [课本练习第 1 题变式题] 如图 13-4-16 所示,
过点 P 作∠A 两边的垂线.
图 13-4-16
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
[解析] 此题即为过直线外一点作直线的垂线. 解:如图所示,PM,PN 即为所求作的直线.
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
[归纳总结] (1)过直线上一点作垂线即作出平角的平分线. (2)过直线外一点作垂线,利用等腰三角形“三线合一”的性 质. (3)作“高”即过直线外一点作已知直线的垂线,垂线段即为 高.
有古
一人
个云
在:
路“
上读。万Leabharlann ”卷从书古,
至行
今万
,里
学路
习。
和”
旅今
行人
都说
是:
图 13-4-11
图 13-4-12
13.4.4 经过一已知点作已知直线的垂线 13.4.5 作已知线段的垂直平分线
(2)如图 13-4-12,点 P 是直线 AB 外一点,在直线 AB 上取两点 C 和 D,使得 PC=PD.作∠CPD 的平分线 PN, 则直线 PN 与直线 AB 的关系是 PN⊥AB .

垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)

垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)

专题5.4垂线(知识讲解)1.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;2.理解并运用“垂线段最短”解决实际问题;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.特别说明:(1)记法:直线a 与b 垂直,记作:a b ⊥;直线AB 和CD 垂直于点O,记作:AB⊥CD 于点O.(2)垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:90AOC ∠=° 判定性质CD⊥AB.:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).特别说明:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.特别说明:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.特别说明:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、垂线➽➼定义的理解➼➻垂直✬✬直角1.如图,直线AB ,CD 相交于点O ,下列条件:90AOD ∠=︒①;AOC BOC ∠=∠②;AOC BOD ∠=∠③,其中能说明AB CD ⊥的有()A .①B .①或②C .①或③D .①或②或③【答案】B 【分析】根据垂直定义“当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直”进行判定即可.解:90AOD ∠=︒①,可以得出AB CD ⊥,故符合题意;180AOC BOC ∠+∠=︒ ②,AOC BOC ∠=∠,故符合题意,90AOC BOC ∴∠=∠=︒,可以得出AB CD ⊥;AOC BOD ∠=∠③,不能得到AB CD ⊥,故不符合题意;故能说明AB CD ⊥的有①②.故选:B .【点拨】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90︒.举一反三:【变式1】如图,同一平面内的三条直线交于点O ,130∠=︒,260∠=︒,AB 与CD 的关系是()A .平行B .垂直C .重合D .以上均有可能【变式2】如图,120∠=︒,则2∠的度数是()A.50︒B.60︒C.70︒D.80︒【答案】C【分析】根据图象可得:∠1+∠2=90°,代入求解即可得出结果.解:∵∠1+∠2+90°=180°,∴∠1+∠2=90°,∵∠1=20°,∴∠2=70°,故选:C.【点拨】题目主要考查角度计算,从图中得出∠1+∠2=90°是解题关键.类型二、垂线➽➼垂线的画法条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点拨】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.举一反三:【变式1】下列用三角板过点P画AB的垂线CD,正确的是()【变式2】过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以【答案】D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.解答:由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点拨】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.类型三、垂线➽➼点到直线的距离✬✬垂线段画法3.如图,90AOB ∠=︒,P 是OB 上的一点,用刻度尺分别度量点P 到直线OA 和到直线OC 的距离.【答案】点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm【分析】过点P 作PD OC ⊥,用刻度尺分别度量PO 和PD 的长度,即可得到点P 到直线OA 和到直线OC 的距离.【详解】解:过点P 作PD OC ⊥,用刻度尺分别度量,可得点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm .【点拨】本题考查了点到直线的距离,解题的关键是清楚点到直线的距离是垂线段的长度.举一反三:【变式1】如图,AB 、CD 、NE 相交于点O ,OM 平分BOD ∠,OM ON ⊥,55AOC ∠=︒.(1)线段______的长度表示点M 到NE 的距离;(2)比较MN 与MO 的大小(用“<”号连接):____________,并说明理由:____________;(3)求AON ∠的度数.【答案】(1)MO ;(2)MO MN <,是因为垂线段最短;(3)62.5︒【分析】(1)根据点到直线的距离求解即可;(2)根据垂线段最短求解即可;(3)根据垂直的定义和角之间的关系求解即可.(1)解:线段MO 的长度表示点M 到NE 的距离,故答案为:MO ;(2)解:比较MN 与MO 的大小为:MO MN <,是因为垂线段最短,故答案为:MO MN <,是因为垂线段最短;(3)解:55BOD AOC ∠=∠=︒ ,OM 平分BOD ∠,27.5BOM ∴∠=︒,18018027.59062.5AON BOM MON ∴∠=︒-∠-∠=︒-︒-︒=︒.【点拨】本题考查了点到直线的距离、角平分线、垂线段最短,解题的关键是掌握点到直线的距离.【变式2】已知:点P 是直线MN 外一点,点A 、B 、C 是直线MN 上三点,分别连接PA 、PB 、PC .(1)通过测量的方法,比较PA 、PB 、PC 的大小,直接用“>”连接;(2)在直线MN 上能否找到一点D ,使PD 的长度最短?如果有,请在图中作出线段PD ,并说明它的理论依据;如果没有,请说明理由.【答案】(1)PA PB PC >>;(2)见解析,垂线段最短【分析】(1)直接测量,比较大小即可;(2)作MN 的垂线,垂足为D ,PD 即所求.解:(1)通过测量可知, 3.7PA =cm , 3.2PB =cm , 2.8PC =cm ,故PA PB PC >>;(2)过点P 作PD MN ⊥,则PD 最短.理由:垂线段最短【点拨】本题考查了垂线段最短的性质,解题关键是能熟练的测量线段的长度,知道垂线段最短.类型四、垂线➽➼点到直线的距离✬✬垂线段的长4.如图,在ABC 中,90ACB ∠=︒,8cm AC =,6cm BC =,10cm AB =,点P 从点A 出发,沿射线AB 以2/cm s 的速度运动,点Q 从点C 出发,沿线段CB 以1cm /s 的速度运动,P 、Q 两点同时出发,当点Q 运动到点B 时P 、Q 停止运动,设Q 点的运动时间为t 秒.(1)当t =______时,2BP CQ =;(2)当t =______时,BP BQ =;(3)画CD AB ⊥于点D ,并求出CD 的值;(4)当t =______时,有2ACP ABQ S S = .举一反三:【变式1】如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.【答案】4.8【分析】根据垂线段最短可知:当MP⊥AB时,MP有最小值,利用三角形的面积可列式计算求解MP的最小值.解:当MP⊥AB时,MP有最小值,∵AB=10,MB=6,MA=8,∠AMB=90°,∴AB•MP=AM•BM,即10MP=6×8,解得MP=4.8.故答案为:4.8.【点拨】本题主要考查垂线段最短,三角形的面积,找到MP最小时的P点位置是解题的关键.【变式2】如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC 上(不与点A,C重合)移动,则线段BP最短时的长为_________________.中考真题专练4.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .【点拨】本题考查垂线段最短,熟知垂线段最短是解答的关键.举一反三:【变式1】(2022·河南·中考真题)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A .26°B .36°C .44°D .54°【答案】B 【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解.解: EO ⊥CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,2180905436∴∠=︒-︒-︒=︒.故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.【变式2】(2021·北京·中考真题)如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A .30︒B .40︒C .50︒D .60︒【变式3】(2021·浙江杭州·中考真题)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则()A .PT PQ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ≤【答案】C 【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,∴是垂线段,即连接直线外的点P与直线上各点的所有线段中距离最短,PQ=,当点T与点Q重合时有PQ PT≥,综上所述:PT PQ故选:C.【点拨】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.。

七年级下册《平行线》说课稿

七年级下册《平行线》说课稿

七年级下册《平行线》说课稿七年级下册《平行线》说课稿1说教学目标知识与技能:1、会用三角尺和直尺熟练准确的画出一组平行线。

2、会利用画垂线的方法准确的画出长方形。

3、培养学生作图的能力。

过程与方法:通过操作活动,使学生经历画平行线的全过程,培养学生作图的能力。

情感态度和价值观:通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。

说重点难点重点:巩固对平行线的认识,会用三角尺和直尺准确的画出一组平行线。

难点:准确的画出垂线和一组平行线。

会利用画垂线和画平行线的方法准确的画出长方形。

教学过程一、复习导入1、回忆一下,什么叫平行线?2、我们身边哪些物体的边是互相平行的。

我们怎么样才能画出一组平行线呢?这节课我们就来学习画平行线板书课题:画平行线二、探究新知1、可以用直尺和三角尺画平行线。

步骤:1)用左手固定直尺,用右手将三角尺的一条直角边紧贴着直尺,沿另一条直角边画一条直线。

2)将三角尺紧贴着直尺移动位置,再画出一条直线,这条直线与第一步画出的直线平行。

可以用画平行线的方法检验两条直线是不是互相平行。

2、大家用自己手中的直尺和三角板自己画一组平行线,然后小组内的同学互相检查,对方画的是否平行。

3、小组活动:在你所画的这组平行线之间画几条与平行线垂直的线段,量一量这些线段的长度,你能发现什么?在小组内交流一下全班汇报小结:平行线间的距离是相等的。

学生汇报学生举生活中的实例。

学生认真观察后叙述画平行线的步骤学生画一组平行线,组内的同学互相检查。

小组讨论后全班汇报复习所学的平行线知识,为学习新知识作准备。

使学生掌握画平行线的方法,培养学生作图的能力。

通过动手操作,使学生理解平行线间的距离是相等的4、小组讨论:怎样画一个长3厘米、宽2厘米的长方形?长方形的对边是互相平行的。

相邻的两条边是互相垂直的。

可以用垂线或平行线的方法来画。

全班汇报组内研究的画法:先画一条长3厘米的线段,再过两个端点在线段的同侧分别画两条与它垂直的2厘米长的线段,最后把两条线段的端点用线连接起来。

广东省珠海九中七年级数学下册《5.1.2 垂线》教案(1) 新人教版

广东省珠海九中七年级数学下册《5.1.2 垂线》教案(1) 新人教版

《5.1.2 垂线(1)》教案教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线. 教学重点两条直线互相垂直的概念、性质和画法. 教学过程一、创设问题情境,研究垂直等有关概念1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线……,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生, 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?bb a教师在组织学生交流中,应学生明白:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是直角是特殊情况.其特殊之处还在于:当∠a 是直角时,它的邻补角,对顶角都是直角,即a 、b 所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。

如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”, 如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB 垂直于直线CD , 垂足为O”,则记为AB⊥CD,垂足为O ,并在图中任意一个角处作上直角记号,如图.O DCBA5.简单应用(1)学生观察课本P6图5.1-6中的一些互相垂直的线条, 并再举出生活中其他实例.(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L 的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L 的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.PM A NPBPBA学生画完图后,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线.三、小结本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?四、作业1.课本P7练习,P9.3,4,5,9.2.选用课时作业设计.一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.( )二、填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.(1)ODC BA (2)O DCBAE(3)O D CBA2.如图2,AO⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 三、解答题.1.已知钝角∠AOB,点D 在射线OB 上. (1)画直线DE⊥OB;(2)画直线DF⊥OA,垂足为F.2.已知:如图,直线AB,垂线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.E ODC BA3.你能用折纸方法过一点作已知直线的垂线吗?作业答案:一、1.× 2.∨ 3.∨二、1.145° 2.60° 3. 互相垂直 三、1.略 2.互相垂直 3.可以.将已知直线折叠使折线过这个已知点,那么这条折线是已知直线的垂线,因为折线把平角分成两个相等的角,所以每个角为90°.5.1.2垂线(第2课时)垂线(二)教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。

冀教版七年级下册数学《相交线》PPT(第1课时)

冀教版七年级下册数学《相交线》PPT(第1课时)

或者MN⊥EF于O
或者AB⊥OE于O
M
F
E
E
A
O
B
N
垂线的画法 你能借助三角尺或量角器经过直线AB外的一点P画出AB 的垂线吗?.
P
Q
A
B
AQ
B
P
∴ PQ为所求
∴ PQ为所求
方法归纳 画垂线的方法可归纳为“一落、二过、三画” 1.一落:把三角尺的一条直角边落在已知直线上; 2.二过:让三角尺的另一条直角边经过已知的点; 3.三画:沿着直角边经过已知点画直线.
①在直线c的两侧 ②在直线a,b的之间
内错角
c
1 2
a
34
65
b
78
3 5
典例精析 例1 如图,直线DE截直线AB ,AC,构成8个角,指出所有的
同位角,内错角,同旁内角.
解:两条直线是AB,AC,截线是DE,
所以8个角中, 同位角:∠2与∠5,∠4与∠7,∠1
D
21 34
B
A
58
67 E C
与∠8, ∠6和∠3;
解析:过一点有且只有一条直线与已知直线垂直;过直 线外一点并过直线上一点不一定有一条直线与已知直线 垂直.故D错.故选D.
三 点到直线的距离
合作探究 问题 在灌溉时,要把河中的水引到农田P处,如何挖掘能使渠 道最短?
m
P.
P
C
B
A
E
Fm
知识要点 直线外的一点与直线上各点的连接的所有线段中,垂线 段最短.
情境引入
问题引入 在奥运会的跳远比赛中,裁判员在测量运动员的跳远
成绩时,拉紧的皮尺与起跳线有什么关系?这样做的依据 是什么?

2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

2020届人教版中考数学一轮复习-第17讲 尺规作图(有答案)

第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE 是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF 是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。

2024年秋季学期新华师大版七年级上册数学课件 第4章 相交线和平行线 4.1 相交线 2.垂线

2024年秋季学期新华师大版七年级上册数学课件 第4章 相交线和平行线 4.1 相交线 2.垂线

易, 仅供下载者本人使用,禁止
转载!
A.1
B.2
C.3
D.4
4.在体育课上,某同学跳远的情况如图所示,直线l表示 起跳线,经过测量,PB=3.3米,PC=3.1米,PD=3.5米, 则该同学的实际跳远成绩是_3_._1__米.
5.如图,已知直线AB、CD都经过O点,OE为射线,若∠1=35°,
∠2=55°,则OE与AB的位置关系是垂直 .
震动,比惩罚更强烈。每当想起叶圣陶先生的话:你这糊涂的先生,在你教鞭下有瓦特,在你的冷眼里有牛顿,在你的讥笑里 有爱迪生。身为教师,就更加感受到自己职责的神圣和一言一行的重要。
善待每一个学生,做学生喜欢的老师,师生双方才会有愉快的情感体验。一个教师,只有当他受到学生喜爱时,才能真正 实现自己的最大价值。 义务教育课程方案和课程标准(2022年版)简介 新课标的全名叫做《义务教育课程方案和课程标准(2022 年版)》,文件包括义务教育课程方案和16个课程标准(2022 年版), 不仅有语文数学等主要科目,连劳动、道德这些,也有非常详细的课程标准。 现行义务教育课程标准,是2011年制定的,离现在已经十多年了;而课程方案最早,要追溯到2001年,已经二十多年没更新过 了,很多内容,确实需要根据现实情况更新。 所以这次新标准的实施,首先是对老课标的一次升级完善。另外,在双减的大背景下颁布,也能体现出,国家对未来教育改革 方向的规划。 课程方案课程标准是啥?课程方案是对某一学科课程的总体设计,或者说,是对教学过程的计划安排。简单说,每个年级上什 么课,每周上几节,老师上课怎么讲,课程方案就是依据。 课程标准是规定某一学科的课程性质、课程目标、内容目标、实施建议的教学指导性文件,也就是说,它规定了,老师上课都 要讲什么内容。 课程方案和课程标准,就像是一面旗帜,学校里所有具体的课程设计,都要朝它无限靠近。所以,这份文件的出台,其实给学 校教育定了一个总基调,决定了我们孩子成长的走向。 各门课程基于培养目标,将党的教育方针具体化细化为学生核心素养发展要求,明确本课程应着力培养的正确价值观、必备品 格和关键能力。进一步优化了课程设置,九年一体化设计,注重幼小衔接、小学初中衔接,独立设置劳动课程。与时俱进,更 新课程内容,改进课程内容组织与呈现形式,注重学科内知识关联、学科间关联。结合课程内容,依据核心素养发展水平,提 出学业质量标准,引导和帮助教师把握教学深度与广度。通过增加学业要求、教学提示、评价案例等,增强了指导性。 教育部将组织宣传解读、培训等工作,指导地方和学校细化课程实施要求,部署教材修订工作,启动一批课程改革项目,推动 新修订的义务教育课程有效落实。

华师大版八年级上册1尺规作图课件

华师大版八年级上册1尺规作图课件

为半径画弧,交OA 于点E,交OB 于点F;
分别以点E 和点F 为圆心、大于
1
EF
的长为半径画
2
弧,两弧在∠ AOB 的内部交于点C;
画射线OC;
感悟新知
知4-练
同理,作∠ AOC 的平分线OM. 则∠ AOM 即为所求 作的角(如图13.4-6).
感悟新知
4-1. 已知:∠ AOB(如图). 求作:∠ AOB 的补角的平分线. 解:如图,射线OD即为所求.
2
过点P 和点Q 作直线PQ,则直线PQ 就是要求作
的垂线.
感悟新知
图示
知5-讲
感悟新知
知5-讲
2. 经过已知直线外一点作已知直线的垂线
步骤
已知:直线AB 和AB 外一点P.
求作:直线PQ,且PQ ⊥ AB.
作法:以点P 为圆心、适当长为半径画弧,交直
线AB 于点M、N;
1
分别以点M 和点N 为圆心、大于 径画弧,两弧交于点Q;
答案:B
感悟新知
知1-练
1-1. 在下列各项中,属于尺规作图的是( D ) A. 利用三角尺画45°角 B. 用直尺和三角尺画平行线 C. 用直尺画一工件边缘的垂线 D. 用圆规在已知直线上截取一条线段等于已知线段
感悟新知
知识点 2 作一条线段等于已知线段
知2-讲
已知:线段a. 求作:线段AB,使AB=a. 步骤 作法:作射线AP; 在射线AP 上截取AB=a,则线段AB 就是 要求作的线段.
解:如图13.4-2,线段AB 即为所求.
知2-练
感悟新知
知2-练
作法:作射线OP; 在射线OP 上顺次截取OM=MB=a; 在线段OB 上顺次截取ON=NA=b,则线段AB 就是所 求作的线段.

垂线 习题 (含答案)

垂线 习题 (含答案)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图是某跳远运动员在一次比赛中跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A处开始并与起跳线1垂直于点B,然后记录AB的长度,这样做的理由是( )A.过一点可以作无数条直线B.垂线段最短C.过两点有且只有一条直线D.两点之间线段最短【答案】B【解析】【分析】根据垂线段的性质:垂线段最短进行解答即可.【详解】解:这样做的理由是根据垂线段最短.故选:B.【点睛】此题主要考查了垂线段的性质,关键是掌握性质定理.2.下列说法①一个角的余角一定是锐角;②因为∠1=∠2,所以∠1与∠2是对顶角;③过一点与已知直线平行的直线只有一条;④从直线外一点到这条直线的垂线段叫做点到直线的距离;⑤两条直线被第三条直线所截,同位角相等.其中正确的个数为()A.1B.2C.3D.4【答案】A【解析】【分析】根据互余的定义、对顶角的定义、点到直线的距离的定义、平行线的性质来逐一判断即可.【详解】解:一个角的余角一定是锐角,所以①正确;相等的角不一定是对顶角,所以②错误;过直线外一点与已知直线平行的直线只有一条,所以③错误;从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④错误;两条平行直线被第三条直线所截,同位角相等,所以⑤错误.故本题答案应为:A.【点睛】本题主要考查了互余、对顶角、点到直线的距离的定义及平行线的性质等知识点,熟练掌握数学基础知识是解题的关键.3.如图,直线AB和CD相交于O,那么图中∠DOE与∠COA 的关系是()A.对顶角B.相等C.互余D.互补【答案】C【解析】【分析】先由垂直的定义得到∠AOE=∠BOE=90°,则∠DOE+∠BOD=90°,再根据对顶角相等得到∠BOD=∠AOC,所以∠DOE+∠AOC=90°,然后根据互余的定义进行判断.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠DOE+∠BOD=90°,∵∠BOD=∠AOC,∴∠DOE+∠AOC=90°,即∠DOE与∠COA互余.故选:C.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质过一点有且只有一条直线与已知直线垂直.也考查了对顶角和两角互余.4.下列说法正确的是( )A.直线一定比射线长B.过一点能作已知直线的一条垂线C.射线AB的端点是A和B D.角的两边越长,角度越大【答案】B【解析】【分析】根据基本概念和公理,利用排除法求解.【详解】解:A、直线和射线长都没有长度,故本选项错误;B、过一点能作已知直线的一条垂线,正确;C、射线AB的端点是A,故本选项错误;D、角的角度与其两边的长无关,错误;故选:B.【点睛】本题考查了直线、射线和线段.相关概念:直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.过两点有且只有一条直线.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.5.如图,BD⊥AC于点D,EC⊥AB于点E,AF⊥BC点F,AF、BD、CE交于点O,则图中能表示点A到直线OC的距离的线段长是()A.AE B.AF C.AD D.OD【答案】A【解析】【分析】根据点到直线的距离的概念即可解答.【详解】解:点A到直线OC的距离的线段长是AE,故选:A.【点睛】本题考查点到直线的距离,解题的关键是理解点到直线的距离的概念.6.如图,A、B、C、D都在直线MN上,点P在直线外,若∠1=60°,∠2=90°,∠3=120°,∠4=150°,则点P到直线MN的距离是()A.P,A两点之间的距离B.P,B两点之间的距离C.P,C两点之间的距离D.P,D两点之间的距离【答案】A【解析】【分析】根据点到直线的距离的定义进行判断即可.【详解】∵∠2=90°,∴点P到直线MN的距离是P,A两点之间的距离,故选A.【点睛】本题考查了点到直线的距离,熟记概念是解题的关键.7.如图,直线AB、CD相交于点O,OE⊥AB于O,∠EOC=35°,则∠AOD的度数为A.125°B.115C.55°D.35°【答案】A【解析】【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质,求∠AOD的度数.【详解】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°.故选:A.【点睛】本题考查了垂线,对顶角、邻补角等知识点.本题也可以利用邻补角的定义先求得∠BOD=55°,再由邻补角的定义求∠AOD的度数.8.下列说法中不正确的是()A.两点之间的所有连线中,线段最短B.两点确定一条直线C.小于平角的角可分为锐角和钝角两类D.在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】C【解析】【分析】利用线段公理、确定直线的条件、角的分类及垂线的定义分别判断后即可确定正确的选项.【详解】解:A、两点之间的所有连线中,线段最短,正确;B、两点确定一条直线,正确;C、小于平角的角可分为锐角、直角和钝角三类,故此选项错误;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确.故选C.【点睛】本题主要考查了线段、直线、垂线及角的分类.9.在同一平面内,下列判断中错误的是()A.过一点有且只有一条直线与已知直线垂直B.垂直于已知线段并且经过这条线段中点的垂线只有一条C.垂直于已知直线的垂线只有一条D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】C【解析】【分析】根据垂线的定义和性质分析即可.(1)过直线上或直线外的一点,有且只有一条直线和已知直线垂直;(2)从直线外一点到这条直线上各点所连的线段中,垂直线段最短。

【教《两条直线的位置关系》第2课时示范公开课教案【北师大数学七年级下册】

【教《两条直线的位置关系》第2课时示范公开课教案【北师大数学七年级下册】

《两条直线的位置关系》教学设计第2课时一、教学目标1.通过画、折等活动,进一步丰富对两条直线互相垂直的认识,掌握两条直线互相垂直的符号表示.2.能通过具体情境说出并掌握垂直和垂线的概念.3.会借助三角尺、量角器、方格纸画垂线,积累操作活动经验.4.通过操作活动,探索并了解有关两条直线互相垂直的一些性质,理解“垂线的性质”、“垂线段最短”的性质以及点到直线的距离.二、教学重难点重点:理解并掌握垂线的概念及性质,了解点到直线的距离.难点:能够运用垂线的概念及性质进行运算并解决实际问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题1:①在同一平面内,两条直线的位置关系有和两种.②若两条直线只有一个公共点,我们称这两条直线为.③在同一平面内,不相交的两条直线叫做.预设:①相交;平行②相交线;③平行线对顶角的性质:对顶角相等.∠1=∠2 (或∠3=∠4)问题2:下列说法正确的有()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个预设:B.余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等.教师补充:同角:是一个角;等角:是两个角.问题3:如图,已知:直线AB与CD交于点O,∠EOD=90°,回答下列问题:(1)∠AOE的余角是;补角是;(2)∠AOC的余角是;补角是;对顶角是.预设:(1)∠AOC;∠BOE;(2)∠AOE;∠BOC;∠BOD.理的进行思考和表达思考的过程,获得分析问题和解决问题的能力.观察图片,你能找出其中相交的线吗?它们有什么特殊的位置关系?预设:追问:你还能举出哪些例子呢?垂直的定义:两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直.其中的一条直线叫做另一条直线的垂线,它们的交点叫垂足.注意:两条线段互相垂直是指这两条线段所在的直线互相垂直.垂直的表示方法:通常用符号“⊥”表示两条直线互相垂直.如图,直线AB与直线CD垂直.记作:AB⊥CD读作:AB垂直于CD,垂足为O.直线l与直线m垂直,记作:l⊥m,垂足为O.【注意】“⊥”是“垂直”的记号,而“┐”是图形中“垂直”(直角)的标记.垂直的性质、定义判定的应用格式:∵AB⊥CD∴∠1=90 °线垂直直角(90°)∵∠1=90°(已知)∴AB⊥CD(垂直的定义)直角(90°) 线垂直【做一做】教师活动:鼓励学生探索画垂线的方法,积累数学活动经验.方法不唯一,只要正确、可操作即可.问题1:你能借助三角尺在一张白纸上画出两条互相垂直的直线吗?问题2:如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?教师提示:方格纸是由小正方形构成!问题3:你能用折纸的方法折出互相垂直的直线吗?试试看!1.折叠长方形纸片的一个角;2.沿①中的折痕对折,使它与①中的折痕互相重合;3.展开长方形纸片,则两次折叠所形成的折痕互相垂直.【想一想】教师活动:指导学生独立完成,然后请学生上台展示自己所做的题目.教师鼓励学生运用自己的语言描述所得到的结论.如图,已知直线l,用三角尺或量角器画直线l的垂线,你能画出多少条?总结:这样画l的垂线可以画无数条.如图,点 A 在直线l上,过点A画直线l的垂线,你能画出多少条?总结:这样画l 的垂线可以画一条.如果点A在直线l外呢?过点A你能画多少条直线l 的垂线?总结:这样画l 的垂线可以画一条.垂线的性质:平面内,过一点有且只有一条直线与已知直线垂直.注意:1.“过一点”中的点,可以在已知直线上,也可以在已知直线外;2.“有且只有”中,“有”指存在,“只有”指唯一性.教师活动:引导学生归纳“想一想”的结论,在学习垂线性质的基础上引出点到直线的距离的概念.点P是直线l 外一点,PO⊥l,点O是垂足,线段PO叫做点P到直线l 的垂线段.垂线段PO的长度叫做点P到直线l的距离.过直线外一点向已知直线作垂线时,这一点与垂足之间的线段叫做垂线段.点P是直线l外一点,PO⊥l,点O是垂足,点A,B,C在直线l上,比较线段PO、P A、PB、PC的长短,你发现了什么?总结:直线外一点与直线上各点所连的所有线段中垂线段最短.【议一议】问题:体育课上老师是怎样测量跳远成绩的?你能说说其中的道理吗?教师活动:学生先独立思考,然后小组展开交流,最后派两位同学上台讲解,并及时对学生肯定和鼓励.然后课件展示答案.答案:线段PO的长度即为所求.根据:直线外一点与直线上各点所连的所有线段中垂线段最短.∠AOM和∠NOC的度数.解:∵∠BOE=∠NOE(已知),∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∵AO⊥BC,∴∠AOC=90°,又∵∠MOC=∠BON=40°(对顶角相等).∴∠AOM=∠AOC-∠MOC=90°-40°=50°,∴∠NOC=140°,∠AOM=50°.例2 如图,已知直线AB、CD都经过O点,OE为射线,若∠1=35°,∠2=55°,则OE 与AB的位置关系是.解:∵∠1=35°,∠2=55°(已知)∴∠AOE=180°-∠1-∠2=180°-35°-55°=90°∴OE⊥AB(垂直的定义)教师总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相教师给出练习,随时观察学生完成情况并进行相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.画一条直线l,在直线l上取一点A,在直线外取一点B,分别经过点A,B 用三角尺或量角器画直线l的垂线.答案:直线AP就是所求垂线.直线BC就是所求垂线.2.分别找出下列图中互相垂直的线段.答案:(1)AO⊥OC,OB⊥OD.(2)DC⊥BC,DC⊥CE,DC⊥BE;AC⊥BC,AC⊥CE,AC⊥BE;DA⊥BC,DA⊥CE,DA⊥BE.3.两条直线相交所成的四个角分别满足下列条件之一,其中不能判定这两条直线垂直的条件是( )A. 两对对顶角分别相等B. 有一对对顶角互补C. 有一对邻补角相等D. 有三个角相等答案:A.4.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线的距离的线段共有( )A.2条B.3条C.4条D.5条答案:D5. 如图,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近?画图并说明理由.(2)从码头到铁路怎样走最近?画图并说明理由.(3)从火车站到河流怎样走最近?画图并说明理由.答案:(1)如图所示,沿BA走最近,理由:两点之间线段最短.(2)沿AC走最近,理由:垂线段最短.(3)沿BD走最近,理由:垂线段最短.思维导图的形式呈现本节课的主要内容:。

人教版七年级数学下册课件5.1.2垂线

人教版七年级数学下册课件5.1.2垂线
们(2)的判交断点ODO与叫A做B_的__位__置_关.系,并说明理由.
活动5 课堂小结
1.垂线的相关概念. 2.垂线的画法. 3.垂线的性质. 4.点到直线的距离.
四、作业布置与教学反思 1.作业布置
(1)教材P8 习题5.1第3,4,5,6题;
2.教学反思
A
C OD B 图5.1-5
2.教材P4 探究. 提出问题: (1)如何利用三角板过一点作已知直线的垂线? (2)通过画图,你认为过一点作已知直线的垂线,能作几条?
3.教材P5 探究. 提出问题: (1)观察图5.19,你能用哪些方法说明线段PO最短? (2)你从中能得出什么结论? (3)垂线段和点到直线的距离有哪些区别和联系?
1
1
∴∠FOC+∠EOC= =
2
1 2
∠AOC+ 2 ∠BOC (∠AOC+∠BOC)=
1 2
×180°=90°
即∠EOF=90°,
∴OE⊥OF.
练习
1.教材P5 练习第1,2题. 2.教材P6 练习. 3.下列选项中,过点P画AB的垂线,三角尺放法正确的是( C )
练习
4.如图,O为直线AB上一点,∠AOC= ∠13 BOC,OC是∠AOD的平分线. (1)求∠COD的度数; (2)判断OD与AB的位置关系,并说明理由.
__垂__线__段___最短.简单说成:__垂__线__段__最__短__.
3.直线外一点到这条直线的_垂__线__段__的__长____,叫做点到
直线的距离.

活动4 例题与练习
例1 (1)如图①,过点P画AB的垂线; (2)如图②,过点P分别画OA,OB的垂线; (3)如图③,过点A画BC的垂线.
又解∵:∠(1A)O∵C∠+AO∠CB=OC=∠1B8O0C°,, 例反1过来(1,)如如图果①AB,⊥过C点DP,画那A么B的∠A垂O线C等;于多少度? (垂2)直你定从义中、能垂得直出公什理么的结理论解?与运用.

人教版数学七年级下册5.1《垂线》名师教案

人教版数学七年级下册5.1《垂线》名师教案
探究二垂线的性质
活动一画图实践
1.作直线EF的垂线.
(1)直线EF,画出直线EF的垂线,能画几条?EF
小组内交流,明确直线EF的垂线有多少条?即存在,但位置有不______性.〔无数条〕〔不确定〕
(2)怎样才能确定直线EF的垂线位置呢?
在直线EF上取一点A,过点A画EF的垂线, 能画几条?再经过直线EF外一点B画直线EF的垂线,这样的垂线能画出几条?
垂线性质:
答案:1条,如图:
2条,如图:
垂线的性质:在同一平面内,过一点有且只有一条直线与直线垂直.
〔4〕如图AB与直线BC垂直。
点A与直线BC上各点的距离长短不一,我们可以
发现其中最短的应该是线段AB。线段AB的长度就
是点A到直线BC的距离。请量一量线段AB的长度.
结论:.
简记为:.
(5)直线外一点到这条直线的,叫做点到直线的距离.
(4)点到直线的距离是从直线外一点向这条直线所作的垂线段的长度,它是一个数量概念,只能量出或求出,而不能画出,画出的是垂线段,不是点到直线的距离;点到直线的距离问题通常伴随着过一点作直线的垂线,作图的准确性直接影响到计算与区分,务必仔细、标准.
4、随堂检测
一、选择题
1.如下图,以下说法不正确的选项是( )
4、学习难点
掌握垂线的性质,并会利用所学知识进展简单的推理.
二、教学设计
〔一〕课前设计
1、预习任务
任务1
阅读教材P3-4,思考:垂线的定义是什么?我们用符号语言怎么表示?
任务2
阅读教材P4-5垂线有哪些性质?过一点如何作直线的垂线?
任务3
阅读教材P5,什么是点到直线的距离?
2、预习自测
〔1〕、两条直线相交所成的四个角中,有一个角是时,这两条直线就互相垂直.其中一条直线叫做另一条直线的,它们的交点叫做.假设“直线AB垂直于直线CD,垂足为O〞,那么记为__________________,并在图中任意一个角处作上直角记号.

北师大版七年级数学下册2.1两条直线的位置关系(第二课时)课件

北师大版七年级数学下册2.1两条直线的位置关系(第二课时)课件
直线外一点与直线上各 点连接的所有线段中, 垂线段最短.
ZYT
探究新知
如图 ,过点 A 作 l 的垂线,垂足为 B,线段AB的长度 叫做点 A 到直线 l的距离.
ZYT
探究新知
你知道体育课上老师是怎样测量跳远成绩的?你能说说 其中的道理吗?
线段PO的长度即为所求
O P
ZYT
典例精析
例2 在灌溉时,要把河中的水引到农田P处,如何挖掘 能使渠道最短?请画出图来,并说明理由.
探究新知
垂线的性质:平面内,过一点有且只有一条直线与已知直 线垂直. 提示: 1.“过一点”中的点,可以在已知直线上,也可以在已知直线外; 2.“有且只有”中,“有”指存在,“只有”指唯一性.
ZYT
探究新知
知识点 3 点到直线的距离
如图 ,点 P 是直线 l 外一点,PO⊥l,点 O 是垂足.点 A,B,C 在直线 l 上,比较线段 PO,PA,PB,PC 的长 短,你发现了什么?
A
M
B ∴直线MF为所求垂线.
D CNF
ZYT
典例精析
例2 如图,量出 (1)村庄A与货场B的距离, (2)货场B到铁道的距离.
C
8m B
0m 10m 20m 30m
A 25m
ZYT
巩固练习
马路两旁两名同学A、B,若A同学到马路对边怎样走最近?若
A同学到B同学处怎样走最近?
解:过点A作AC⊥BC,垂足为C,A
ZYT
探究新知
知识点 1 垂线的定义
观察下面图片,你能找出其中相交的线吗?它们有什么 特殊的位置关系?
a
b
两条直线相交成四个角,如果有一个角是直角,那么 称这两条直线互相垂直 ,其中的一条直线叫做另一条直线 的垂线,它们的交点叫做垂足.

第2课时 垂线及其性质

第2课时 垂线及其性质

第2课时垂线及其性质【教学目标】1.理解垂直的概念,会用三角尺或量角器过一点画一条直线的垂线.2.掌握过一点有且只有一条直线垂直于已知直线.【教学重点】两条直线互相垂直的概念、性质及画法.【教学难点】过一点作已知直线的垂线.教学过程一、创设情境,导入新课课件展示:教师引导学生观察图片并思考下列问题:如果把十字街上的两条道路看作直线AB和CD,AB、CD相交于点O形成4个角,如果∠AOC=90°,那么其他3个角的度数是多少?为什么?除利用三角尺和量角器外,教师还可以鼓励学生运用推理得出结论.生:90°,因为对顶角相等,邻角互补.师:上图给我们展现了两条直线相交的一种特殊情况——垂直.教师出示相交线模型,学生观察思考,固定木条a,逆时针转动木条b,当b的位置变化时,a、b所成的角α是如何变化的?生:当b的位置变化时,角α从锐角变为直角再变为钝角.师:当α是直角时是特殊情况,其特殊之处还在于它的相邻的角和对顶角都是直角.垂直的定义:直线AB和CD相交所成的4个角中,如果有一个角是直角,就说这两条直线互相垂直,记作“AB⊥CD”,读作“AB 垂直于CD”,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.师:垂直定义中“互相垂直”是说两条直线的位置关系,而“垂线”是其中一条直线对另一条直线的称呼.你能举出在日常生活中,两条直线互相垂直的情形吗?生:黑板相邻的两条缘线,地砖间的缝隙、围棋盘上的方格线、方格纸上的横竖线等,引导学生多举生活中的垂直实例.二、操作实践,探究性质师:同学们在纸上画一条直线l,你能画出直线l的垂线吗?试试看,这样的垂线l能画多少条?学生可用折纸法和利用三角尺或量角器.生:能画垂线,并有无数条.师:你能过直线l上一点P画直线l的垂线吗?试试看,能画几条?学生画图交流得出:能画垂线,并且只有一条.师:若点P在直线l外,你会过点P画直线l的垂线吗?试试看,能画几条?学生动手操作,并分组讨论得出:能画垂线,并且只有一条.学生完成后,教师示范:1.用三角尺画垂线:一靠——让三角尺的一条直角边靠住已知直线;二移——沿直线左右移动三角尺,让另一条直角边靠住已知点;三画——沿这条直角边画直线.2.用折线法画垂线:教师引导学生仿照课本所示的方法操作.师:通过以上的画图和折纸,你知道过一点画已知直线的垂线能画几条吗?鼓励学生运用自己的语言描述所得到的结论.生:过一个点有一条直线垂直于已知直线.师:以上的两个活动汇成了一点认识:只要通过一个点,不管这点在直线上,还是在直线外向已知直线作垂线能作一条且只能作一条.用简洁的语言表达出来就是:过一点有且只有一条直线垂直于已知直线.注意画一条线段或射线的垂线,就是画它们所在直线的垂线.三、巩固练习1.如图,三角形ABC中,D是BC的中点,连接AD,请分别画出自点B、C向AD所作的垂线(垂足为E、F).第1题图第3题图2.下列语句中,正确的有__3__个.①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能够画一条且只能画一条直线和已知直线垂直.3.如图,OA⊥OB,OC⊥OD,若∠DOA=140°,则∠COB=__40°__.四、课堂小结教师引导学生一起回顾这节课所学的主要内容及注意哪些问题,鼓励学生用自己的语言进行回答,教师归纳总结.1.垂直的定义.2.性质1.3.过一点画已知直线的垂线.。

关于几何语言1

关于几何语言1

例如,“读下列语句,并画出它们的图形:直线a、b相交于点C,直 线b、c相交于点A,直线a、c相交于点B。这时我们说‘直线a、b、 c两两相交‘。”此题要求我们把几何文字语言“翻译”成几何图形语 言,如果“翻译”(画)成图4就错了,因为题中a虽然出现两次 (“直线a、c相交”和“直线a、b相交”),可是都在同一道题中, 所以在图中只能出现一次。至于直线b、c同样如此,分别在图中只 允许出现一次。正确的“翻译”(画法)应是图5。
注意理解下面这几种常见的几何叙述:
(1),"有且只有",如:经过两点作直线,有且只有一 条直线; (2),"确定",如:两点确定一条直线; (3),"连结AB"
正确书写几何符号。不能臆造几何符号。
通行的几何符号已经得到了人们的公认,成了世界通用的 符号,一般是不能随意变动t和随便臆造,如“∠ ”表示锐 角, 表示钝
读句画图:
(1)画射线AM; (2)射线AM上截取线段AB; (3)再在射线AM上顺次截取BC=CD=AB。 试观察图中的线段AB、AC、AD、BC、BD之间有什么关系?
A
B
C
D
M
3、要联系实际去理解概念。如“点A在直线a上”,不能理 解成“点A在直线a的上面”。
4、注意不要犯循环定义的错误.如:“有公共端点且 互为反向延长线的两条射线形成的图形是一条直线” ,这是事实,但是,这不能作为“直线”的定义, 原因是:射线是由直线定义的,所以射线不能再 定义直线。
5、注意定义中的条件。如:互余的定义“如 果两个角的和是一个直角,那么这两个角叫 做互为余角”,这里“两个”角是一个条件, 是三个角就不对。
将定义翻译成符号语言并画出图形.符号语言能将文字语言与图形 结合起来,有利于学生理解几何概念的本质属性,也为文字证明 题打下基础.例如: (1)点M是线段AB的中点,可画出图1,翻译为符号语言: AM=BM,或BM= AB,或AB=2AM=2BM. (2)两直线相交,对顶角相等,可画出图2,翻译为符号 语言:∠BOC=∠AOD,∠AOC=∠DOB; (3)直级AB与CD互相垂直,垂足为O,可画出图3,翻译 为AB⊥CD,或∠AOD=90°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档