无线通信中的发射分集技术的应用研究

合集下载

无线通信中的信号增强与恢复技术研究与分析

无线通信中的信号增强与恢复技术研究与分析

无线通信中的信号增强与恢复技术研究与分析在当今数字化和信息化的时代,无线通信已经成为人们生活和工作中不可或缺的一部分。

从手机通话、无线网络连接到卫星通信,无线通信技术的应用无处不在。

然而,在无线通信的过程中,信号往往会受到各种因素的干扰和削弱,导致通信质量下降。

为了解决这一问题,信号增强与恢复技术应运而生。

这些技术的研究和发展对于提高无线通信的可靠性、稳定性和效率具有重要意义。

一、无线通信中信号面临的挑战在无线通信中,信号在传输过程中会经历多种损耗和干扰。

首先是路径损耗,信号在传播过程中会随着距离的增加而逐渐减弱。

其次是阴影衰落,由建筑物、山脉等障碍物阻挡信号传播路径导致。

此外,多径衰落也是一个常见问题,信号通过多条不同的路径到达接收端,导致不同路径的信号相互干扰和叠加。

同时,无线通信还面临着噪声干扰的问题。

环境中的电磁噪声、设备内部的热噪声等都会影响信号的质量。

这些干扰和损耗使得接收端接收到的信号变得微弱和失真,严重影响通信的效果。

二、信号增强技术(一)天线技术天线是无线通信系统中用于发送和接收信号的关键组件。

通过采用高增益天线、智能天线和多输入多输出(MIMO)天线技术,可以有效地增强信号的强度和方向性。

高增益天线能够集中信号能量,增加传输距离;智能天线可以根据信号的来源和方向动态调整波束,提高信号接收质量;MIMO 天线技术则通过多个天线同时发送和接收多个数据流,显著提高系统的容量和性能。

(二)功率控制技术功率控制是通过调整发射端的功率来优化信号传输。

在保证通信质量的前提下,适当降低发射功率可以减少对其他用户的干扰,提高频谱利用率;而在信号较弱的情况下,增加发射功率可以增强接收端的信号强度。

(三)分集技术分集技术是利用多个独立的信号副本进行合并处理,以降低衰落的影响。

常见的分集技术包括空间分集、频率分集和时间分集。

空间分集通过多个天线接收不同路径的信号;频率分集利用不同的频率传输相同的信息;时间分集则在不同的时间发送重复的信息。

5G中MIMO技术分析及应用

5G中MIMO技术分析及应用

5G中MIMO技术分析及应用多输入多输出天线技术是无线移动通信领域的重大突破,在不增加带宽的情况下,MIMO技术成倍的提高了通信质量和频谱利用率,是新一代通信系统必备的关键技术。

在5G的建设中,大规模MIMO技术是一项关键技术,它解决了过去传统天线技术信道容量低的问题,提高通信系统的容量,所需成本低,整个系统地顽健性强。

MIMO技术因其覆盖能力强而成为5G采用的关键技术。

标签:MIMO;大规模MIMO天线一、多输入多输出天线技术(MIMO)MIMO技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。

它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。

MIMO技术经历了从最初的点到点通信,到单小区多用户MIMO,再到多小区MIMO的发展历程。

点对点单用户MIMO由于在实际中天线数目是受限制的,所以信道容量不可能无限制增长。

多用户MIMO利用天线空间的自由度实现多用户分离,其核心思想就是在尽可能地提高用户接收功率的同时,降低不同用户之间的干扰。

MIMO技术之所以在4G系统中广泛应用,主要是因为MIMO 技术通过利用收发两端配置的多根天线,可以充分的利用空间资源,成倍的提高系统信道容量。

一方面,多根天线的应用可以形成分集效应,用来对抗多径效率及平坦性衰落,从而提高系统的顽健性,利用空间的自由度提高单位时间内的信息传播量,间接地提高频谱资源的利用效率。

大规模MIMO技术,又称大规模天线阵列,指在收发两端装备超大数目的天线以发送和接收信号,从而使通信系统可以在相同的时频资源块上同时服务数十个用户。

二、大规模MIMO技术的优势大规模MIMO能够提高系统容量及能量效率,主要特点是在基站侧装配了大量的天线,可以在基站和用户之间形成多条独立传输的数据链路,因此,可以获得更大的空间复用增益。

TD-LTE系统中MIMO技术的应用场景与介绍

TD-LTE系统中MIMO技术的应用场景与介绍
TD-LTE系统中MIMO技术的应用场景与介绍
1 引言日前,上海贝尔股份有限公司参加工业和信息化部和中国移动共同组织的多项实验室和外场验证及测试,并首批成功完成了该测试。作为第一批成功完成该项测试的厂商之一,上海贝尔将为中国移动在上海开展的大规模4G TD-LTE试验网部署项目提供端到端LTE解决方案。大规模外场测试在真实环境下布网,边界条件复杂,与实验室环境有诸多不同。TD-LTE技术采用多天线的发射接收技术,利用不同的传输模式来适配复杂的自然环境从而达到性能最优。在LTE系统的研发过程中,经过几年的摸索与实践,上海贝尔阿尔卡特朗讯公司积累了众多经验。下面以大规模试验网络需要的布网技术角度,对几种MIMO的原理及应用场景进行描述,对波束赋形的天线模式、物理层过程、波束赋形在TD-LTE基站系统中的实现和原理以及几种波束赋形算法的特点和应用场景进行介绍与分析。在LTE(Long Term Evolution,长期演进技术)标准中,被采纳的MIMO技术主要包括发送分集、空分复用、波束赋形等。其中基于用户专用参考信号的下行波束赋形技术能够利用时分复用LTE(TD-LTE)系统中的上/下行信道的互易性,针对单个用户进行动态的波束赋形,从而有效提高传输速率和增强小区边缘覆盖性能。这些都在阿尔卡特朗讯的解决方案中得到了验证。本文对此进行了总结,对真实的网络部署有参考意义。2 TD-LTE MIMO应用场景在本次中国移动大规模外场测试主要选用以下3种MIMO技术适配不同的应用场景。2.1 发射分集(Tx Diversity)LTE的多天线发送分集技术选用SFBC(Space Frequency Block 声所导致的符号错误率。SFBC通过在发射端增加信号的冗余度,使信号在接收端获得分集增益。发射分集方案不能提高数据率。LTE采用的SFBC技术对编码矩阵进行了改进,能保证在有天线损坏的情况下也可以正常传输,传输数据更为简单,图1为SFBC发送端基本框图。 图1 SFBC发送端基本框图对发射信号以发送分集进行传输可以获得额外的分集增益和编码增益,从而可以在信噪比相对较小的无线环境下使用高阶调制方式,但无法获取空间并行信道带来的速率红利。空时编码技术在无线相关性较大的场合也能很好地发挥效能。SFBC可以较普遍地应用于表1所示场景。表1 SFBC应用场景 发送分集发射方式对信道条件要求不高,对SNR,信道相关性,移动速度均不敏感。但是该发射方式无法获取空间并行信道带来的速率红利,发送分集方案不能提高数据率。当信道间相关性大且SNR较低或移动速度过高情况下(对应无线信道条件差),会考虑切换到发送分集的发射方案,例如信道恶化的场景下。当信道处于理想状态或信道间相关性小时,发射端采用空分复用的发射方案,例如密集城区、室内覆盖高SNR条件等场景。2.2 空分复用技术(Spatial Multiplexing)空分复用技术是在发射端发射相互独立的信号,接收端采用干扰抑制的方法进行解码,此时的理论空口信道容量随着收发端天线对数量的增加而线性增大,从而能够显著提高系统的传输速率。空分复用允许在同一个下行资源块上传输不同的数据流,这些数据流可以来自于一个用户(单用户MIMO/SU-MIMO),也可以来自多个用户(多用户MIMO/MU-MIMO)。单用户MIMO可以增加一个用户的数据传输速率,多用户MIMO可以增加整个系统的容量(见图2)。 图2 空间复用基本框图空分复用能最大化MIMO系统的平均发射速率,但只能获得有限的分集增益,在信噪比较小时使用可能无法使用高阶调制方式。无线信号在密集城区、室内覆盖等环境中会频繁反射,使得多个空间信道之间的衰落特性更加独立,从而使得空分复用的效果更加明显。无线信号在市郊、农村地区多径分量少,各空间信道之间的相关性较大,因此空分复用的效果要差许多。无线信号在密集城区、室内覆盖等环境中会频繁反射,使得多个空间信道之间的衰落特性更加独立,从而使得空分复用的效果更加明显。对于适用于密集城区地区的MIMO应用,可以用OpenLoop MIMO和CloseLoop MIMO两种MIMO模式选择,其中CloseLoop MIMO对环境要求较高,由于拥有PMI/RI的反馈调整,其数据可靠性较强,对于OpenLoop MIMO,其健壮性较强,对SNR要求和信道相关性要求不如前者严格(见表2,表3)。无线信号在市郊、农村地区多径分量少,各空间信道之间的相关性较大,因此空间复用的效果要差许多。表2 CL-MIMO应用场景 表3 OL-MIMO应用场景 2.3 波束赋形(Beam Forming)波束成型技术又称为智能天线,通过对多根天线输出信号的相关性进行相位加权,使信号在某个方向形成同相叠加,在其他方向形成相位抵消,从而实现信号的增益。系统发射端能够获取信道状态信息时(例如TDD系统),系统会根据信道状态调整每根天线发射信号的相位(数据相同),以保证在目标方向达到最大的增益;当系统发射端不知道信道状态时,可以采用随机波束成形的方法实现多用户分集(见图3)。图3 定向智能天线的信号仿真效果系统发射端能够获取信道状态信息时(例如TDD系统),系统会根据信道状态调整每根天线发射信号的相位,以保证在目标方向达到最大的增益。波束成型技术在能够获取信道状态信息时,可以实现较好的信号增益及干扰抑制使的小区边缘性能提升(见表4)。波束成型技术不适合密集城区、室内覆盖等环境,由于反射的原因,接收端会收到太多路径的信号,导致相位叠加的效果不佳。表4 波束成型应用场景 波束赋形技术对环境要求严格,不适用于密集城区。在阿尔卡特朗讯的LTE-TDD的系统方案中,针对波束赋形技术能够适配的场景的无线信道情况不同,应用不同的波束赋形算法,从而获得最大的增益与健壮性,达到性能最优。下面对阿尔卡特方案中的几种典型的算法做简单的介绍。(1)per-RB-MRT(窄带加权)per-RB-MRT是基于EBB(Eigen Beam Forming,SEBB)波束赋形算法的一个子类;利用对每个子载波/资源块瞬时信道状态信息的特征值分解成对应的下行波束加权向量。可适用于角度扩展比较大的应用场合(如城区微小区覆盖、基站天线架设不太高的场合);复杂度高;在信道移动性较低,信道估计质量较好的情况下,可以获得最优的波束赋形增益;在移动性较高,信道估计交差的情况下,性能不是很健壮。(2)Full-BW-EBB算法(宽带加权)Full-BW-EBB是基于EBB波束赋形算法的另一个子类,利用对每个子载波/资源块的瞬时信道状态信息“统计特性”的特征值分解形成对应的下行波束赋形的加权向量。可适用于角度扩展较大的应用场合;复杂度低于基于MRT的波束成形;在信道移动性较低,信道估计质量较好的情况下,相对于基于MRT的波束成形可获得的波束赋形增益较低;在信道移动性较高、信道估计质量较差的情况下,性能比较健壮。(3)DOA算法(基于到达方向估计)DOA基于对用户信号到达方向的估计形成下行波束赋形的加权向量。适用于具有视距路径(Line Of Sight,LOS)或角度扩展(Angle Spread,AS)较小的应用场合(如郊区宏小区覆盖、基站天线架设较高的场合),获得高的波束赋形增益;复杂度较低;对于角度扩展较大的应用场合,有效性不高。2.4 应用场景大规模外场测试中无线通信环境边界条件复杂,布网期间众多因素均可导致网络性能的差异,应该依照不同的边界环境具体权衡与选择(见图4)。阿尔卡特朗讯也做了大量的针对各种场景的仿真与测试工作,力求提高其健壮性以适应复杂场景。 图4 MIMO多种模式的切换门限考虑MIMO的几种模式分别适用于不同的场景,按照切换的边界件来分,从离城市中心到郊区以及小区边缘,分别可以用如下传输方式布网:离基站比较近、信号较强、靠近市中心、多径衰落较强的城市中心地区,可以使用传输模式4(CL-MIMO),由于有闭环的RI/PMI反馈,其速率稳定、误码率较低,可以获得多天线增益,但是对边界条件要求比较严格;如果环境较为恶劣,SNR较低,信道相关性稍低,可以适应传输模式3(OL-MIMO)方式;在城市郊区较为开阔、信道相关性较高的郊区地区,依照速度的不同,选择对应算法的Beam Forming算法(传输模式7)。以上各种模式均可切换成发射分集模式,发射分集模式的健壮性强,对速度、信道环境与SNR要求均不高,但是无法产生多天线速率增益,只可以享受由于多天线并行传输带来的分集增益。LTE-TDD外场大规模布网,信道边界条件复杂,使用不同的传输技术以适配不同的应用场景尤为重要。如果选择不当,不仅不能达到网络性能最优,而且会造成网络干扰加大等恶劣影响。阿尔卡特朗讯在长期的研发与测试过程中,通过多种技术来适配各种不同的无线应用场景,每种技术在相应的场景下能有效地提高其数据健壮与性能增益,波束赋形技术更可以利用时TD-LTE系统中上/下行信道互易性,针对单个用户动态地进行波束赋形,从而有效提高传输速率和增强小区边缘的覆盖性能。

mimo的原理及应用

mimo的原理及应用

mimo的原理及应用1. MIMO的简介多输入多输出(Multiple-Input Multiple-Output,MIMO)是一种无线通信技术,通过在多个天线之间传输和接收数据,提高无线信号的传输效率和可靠性。

MIMO技术在现代无线通信系统中得到了广泛应用,包括LTE、Wi-Fi和5G等。

2. MIMO的原理MIMO技术基于空间分集原理,利用多个天线同时发送和接收独立的数据流,通过多径传播的特性,将数据流在空间中分离出来,从而提高信号的传输速率和抗干扰能力。

MIMO系统的原理可以简单描述为以下几个步骤:1.信号发射端:将要发送的数据流分为多个独立的子流,并通过不同的天线同时发送。

2.多径传播:由于无线信号在传播过程中会经历多条路径,每条路径上的传播特性不同,因此到达接收端的信号会被分为多个不同的子信号。

3.空间分离:接收端的天线接收到的信号会受到多径效应的影响,通过对接收信号进行处理,可以将各个子信号分离出来。

4.信号处理:接收端对接收到的子信号进行处理和解调,恢复原始数据。

3. MIMO的优势和应用MIMO技术具有以下几个优势,使其在无线通信系统中得到广泛应用:3.1 增强信号传输速率通过多个天线同时发送和接收多个子信号,MIMO技术可以大大增加信号的传输速率。

每个天线都可以发送不同的数据流,从而增加了系统的总传输能力。

3.2 提高系统容量和覆盖范围MIMO技术通过空间分集原理,可以在有限的频谱资源下提高系统的容量。

通过合理设计和布置天线,可以达到更好的信号覆盖范围,提供更稳定和高质量的无线通信服务。

3.3 抗干扰和抑制多径衰落由于MIMO系统利用了多个天线和多径传播的特性,可以利用接收信号的空间分离性质抑制干扰信号和多路径信号的衰落。

这使得MIMO系统在复杂的无线信道中具有较好的抗干扰能力和稳定性。

3.4 支持多用户和多任务传输MIMO技术可以同时为多个用户提供高速和可靠的无线通信服务,支持多用户之间的同时传输。

无线通信中的分集技术

无线通信中的分集技术

无线通信中的分集技术——浅析极化分集在天线中的应用通信一班王敏(200800120200)引言:在移动通信系统中,无线传播将遇到由于多径效应产生的多径衰落以及由于地形地物遮挡引起的阴影衰落,在某些特定的点,信号可能会相互抵消.在几米的范围内,信号可能会变化20~30dB.为了克服衰落,提高系统性能人们通常采用分集技术。

一、天线系统中的分集技术分集技术就是利用两个或更多的不相关信号进行处理,不相关信号的采集可以通过空域、时域和频域三种方式实现,具体的实现方法有以下几种:第一、空间分集。

也称天线分集,就是采用多付接收天线来接收信号,然后进行合并。

为保证接收信号的不相关性,这就要求天线之间的距离足够大,在理想情况下,接收天线之间的距离只要波长λ的一半就可以了。

第二、极化分集。

在移动环境下,空中的水平路径和垂直路径是不相关的,因而信号也呈现不相关的衰落特性。

这就可在发射和接收端各装两付天线,一个水平极化天线,一个垂直极化天线,这就可以得到两个不相关的信号。

第三、角度分集。

信号在传输过程中受环境的影响,使得到达接收的信号不可能是同方向的,这样在接收端安装方向性天线就可得到不相关的信号进行合并。

第四、频率分集。

频率分集是指在多于一个载频上传送信号,其原理是基于在信道相干带宽之外的频率上不会出现同样的衰落。

第五、时间分集。

对于一个随机衰落的信号,若对其振幅进行顺序取样,对时间间隔大于相干时间的两个样点是互不相关的。

在实际的天线系统中,使用的分集方式主要有以下两种:(一)空间分集:一面天线接收信号最小可以通过另一面天线接收最大信号而得到补偿.用这种方法得到的平均接收电平的增加被称为分集增益.水平间距一般在3~5米之间,它与相关系数、方位角、基站高度有关。

(二)极化分集:极化分集是采用两个相互垂直的天线进行接收.可以采用水平/垂直极化或者±45°交叉极化。

采用极化分集(接收)技术,一个扇区需要一面双极化天线。

无线通信中的分集技术

无线通信中的分集技术

无线通信中的发射分集技术摘要:发射分集技术是无线通信中的一项关键技术,在第三代移动通信技术中已经普遍采用。

文章主要讨论发射分集技术的研究背景与意义,阐述各种发射分集技术的特点及比较不同发射分集技术的性能与应用,最后对于该技术的应用前景进行了阐述。

关键词:发射分集开环发射分集闭环发射分集一、发射分集技术的研究背景与意义无线通信技术面临的最主要问题是时变的信道衰落,这也是它和光纤、铜线通信等相比面临的一个重要挑战。

在衰落环境下降低误码率是相当困难的,需要发射端(基站)采用更高的功率进行发射或者采用额外的带宽,但这在下一代通信系统中都是不合适的。

理论上,抵抗信道衰落的最好方法是进行功控,也就是如果发射端预先知道信道条件,那么在发射的时侯预先将信号变形来抵消衰落带来的影响。

但是这种方法需要发射端有较大的动态范围,另外发射端也不知道信道的条件,因此在大多数散射环境中,是采用天线分集方法来抵抗信道衰落的。

传统的天线分集是在接收端(移动台)采用多根天线进行接收分集的,并采用合并技术来获得好的信号质量,例如“Rake接收机”。

但是由于移动台尺寸受限,采用接收天线分集技术较困难,而且在移动台端进行接收分集代价高昂,增加了用户的设备成本。

从理论与实际应用中都发现相同阶数的发射分集与接收分集具有相同的分集增益。

因此为了适应下一代移动通信的要求,只有增加基站的复杂度,在基站端采用发射分集技术才是比较合适的方法。

发射分集的概念实际上是由接收分集技术发展来的,是为减弱信号的衰落效应,在一副以上的天线上发射信号,并将发射信号设计成在不同的信道中保持独立的衰落,在接收端再对各路径信号进行合并,从而减少衰落的严重性。

由于基站的复杂度较移动台端限制少,且天线有足够空间,因此通常在基站端采用多副天线进行发射分集提高下行性能,在接收端采用一副天线进行接收。

发射分集的成本代价相对于接收分集来说,是移动通信业务运营商和用户所较能接受的;而且发射分集能够实现同一发射信号使多个移动台获得发射增益(支持点对多点发射),而传统的接收分集的发射增益只是针对一个移动台。

试析无线网络通信基本原理与实践应用

试析无线网络通信基本原理与实践应用

试析无线网络通信基本原理与实践应用摘要:无线网络通信的理论依据和应用体系结构非常广阔。

文章选取五个重点,分别从无线频谱、无线传输、信号传播、应用空间与技术分析等议题,加以探讨。

无线网络通信技术的核心是其工作机制:调幅、调频、调相等;无线通信承担着多种网络的功能,可以看作是有关技术中的一个感应器;在通讯中,信号传输是通信的主要组成部分,能够发展出无线网络信号。

最后,在实际的技术和技术上,也要有相应的技术支撑。

关键词:无线网络;通信基本原理;实践应用一、无线频谱在无线网络中,频谱是实现无线网络通信的关键技术。

频谱是无线网络通信的核心,它是一种非常关键的信息来源。

无线电通信频段可划分为未经许可的频段和经许可的频段:如名称所示,不需要工信部批准,直接就能使用,当然要符合他们制定的相关标准。

Wi-Fi使用2.4GHz和5GH,使用许可的频率。

通信频率标准涉及到不同的场景,不同的信道,不同的技术方案,不同的应用领域也不尽相同。

在不同环境下,无线信道在不同环境下会有一定的差异。

通信频率的选择不同,通信效果也会有很大的差别。

只有经过国家通信管理局的许可,才可以获得许可的频率,而且使用过程中必须遵循相关的法律和规章。

2G、3G、4G、5G技术是中国移动、中国联通、电信三大电信公司的专利。

在频带上有两种不同的用途:FDD(频分复用)和TDD(时分复用)。

在FDD中,手机接收与发送的讯号各有差异。

对于电信公司来说,最有价值的是频段。

把无线网络看成是水田,而无线波段则是耕作农田的土壤。

当土地较少时,如果想要高产率,只能下功夫工作在种植改进的种类上。

各个时代的手机通讯发展都等同于更多的高产品种的培养,结合荒地的开垦,我们还可以找到一种方法来使用在以前困难的不毛之地,实现产量的翻倍增长。

从通信角度看,为了增加产量,在相同带宽(单位:MHz)下实现更快的数据传输速度(单位:Mbit/s)。

4G、5G能够提供多种不同的频段,为了测定其能力,需要计算作为频谱效率而公知的每单位频带的传输速度:速率(Mbit/s)/带宽(MHz)=频谱效率(bit/s/Hz)。

分集和合并技术

分集和合并技术

分集和合并技术分集:发射机提供多余⼀个信号副本,接收机以⼀定的合并⽅式合并接收到的多个信号副本来提⾼通信质量的信号传输技术叫分集。

分集技术的理论基础是:由于⽆线信道的随机性,⼀定条件下,信道响应是不相关(什么含义)。

其基本原理是接收机通过多个信道接收到承载相同信息的多个副本,由于多个信道之间的传输特性不同,信号多个副本的衰落就会不同。

接收机使⽤多个副本包含的信息能⽐较正确的恢复出原发射信号。

如果不采⽤分集技术,在收到信道深衰落(什么含义)影响时,发射机必须提⾼发射功率才能保证通信链路的正常连接。

简单来说⼀句话就是:分散传输,集中处理。

如果接收机收到的信号之间的相关性很⼤,可视为通过同⼀信道到达接收机,不会体现分集效果。

分集技术可以分成三种形态:时间分集技术;时间分集是在不同时间区间内多次重发,只要各次发送的时间间隔⾜够⼤,则各次发送信号经历的信道衰落就可以认为是相互独⽴的。

频率分集技术;频率分集是采⽤两个或两个以上具有⼀定频率间隔的微波频率同时发送和接收同⼀信息,然后进⾏合并或者选择,利⽤不同频段的信号经衰落后在统计上不相关,即不同频率衰落统计特性上的差异,来实现抗频率选择性衰落的功能。

实现频率分集的条件是两个频率之间的间隔要⼤(多⼤)。

空间分集技术;在移动通信中,空间的变化会导致信道环境的变化。

当接收机接受两个来⾃不同信道的信号时,由于其受到的信道衰落影响是不相关的,故⼆者在同⼀时刻受到深衰落影响的可能性较⼩。

基于这⼀点,我们可以在接收机使⽤两个天线。

这两个天线的距离⾜以保证接收到的信号经历的信道是独⽴的。

这样接收机两个天线独⽴的接收同⼀信号,然后合并输出。

这⼀技术叫空间分集。

⼀般来说,空间距离越⼤,多径传播的差异就越⼤,所接收信号的相关性就越⼩。

为了获得满意的分集效果,两天线间距应该⼤于0.6个波长,并且最好选在1/4波长的奇数倍。

如果天线间距减⼩,即使⼀个1/4波长的距离也能获得良好的分集效果。

浅析发射分集与接收分集技术

浅析发射分集与接收分集技术

浅析发射分集与接收分集技术1 概述1.1 多天线信息论简介近年来,多天线系统(也称为MIMO系统)引起了人们很大的研究兴趣,多天线系统原理如图1所示,它可以增加系统的容量,改进误比特率(BER).然而,获得这些增益的代价是硬件的复杂度提高,无线系统前端复杂度、体积和价格随着天线数目的增加而增加。

使用天线选择技术,就可以在获得MIMO系统优势的同时降低成本。

图1 MIMO系统原理有两种改进无线通信的方法:分集方法、复用方法。

分集方法可以提高通信系统的鲁棒性,利用发送和接收天线之间的多条路径,改善系统的BER。

在接收端,这种分集与RAKE接收提供的类似。

分集也可以通过使用多根发射天线来得到,但是必须面对发送时带来的相互干扰。

这一类主要是空时编码技术。

另外一类MIMO技术是空间复用,来自于这样一个事实:在一个具有丰富散射的环境中,接收机可以解析同时从多根天线发送的信号,因此,可以发送并行独立的数据流,使得总的系统容量随着min(Mτ,M t)线性增长,其中Mτ和M t是接收和发送天线的数目。

1.2 空时处理技术空时处理始终是通信理论界的一个活跃领域。

在早期研究中,学者们主要注重空间信号传播特性和信号处理,对空间处理的信息论本质探讨不多。

上世纪九十年代中期,由于移动通信爆炸式发展,对于无线链路传输速率提出了越来越高的要求,传统的时频域信号设计很难满足这些需求。

工业界的实际需求推动了理论界的深入探索。

在MIMO技术的发展,可以将空时编码的研究分为三大方向:空间复用、空间分集与空时预编码技术,如图2所示。

1.3多天线分集接收是抗衰落的传统技术手段,但对于多天线发送分集,长久以来学术界并没有统一认识。

1995年Telatarp[3]首先得到了高斯信道下多天线发送系统的信道容量和差错指数函数。

他假定各个通道之间的衰落是相互独立的。

几乎同时, Foschini 和Gans 在[4]得到了在准静态衰落信道条件下的截止信道容量(OutageCapacity)。

分集技术及应用

分集技术及应用

分集技术及应用1分集接收的概念在移动通信系统中,移动台经常工作在各种复杂的地理环境中,移动的方向和速度是任意的,发送的信号经过附近各种物体的反射、散射等而形成多路径传播,使到达接收机输入端的信号往往是多个幅度和相位各不相同的信号的叠加,从而形成短期衰落(快衰落)。

此外,还有长期衰落(慢衰落),它是由于电磁场受到地形或高大建筑物的阻挡或者气象条件的变化而形成的,慢衰落的信号电平起伏相对较缓。

分集接收就是为了克服各种衰落,提高系统性能而发展起来的移动通信中的一项重要技术,其基本思路是:将接收到的多径信号分离成不相关的(独立的)多路信号,然后将这些信号的能量按一定规则合并起来,使接收的有用信号能量最大,对数字系统而言,使接收端的误码率最小,对模拟系统而言,提高接收端的信噪比。

2分集技术的分类根据分集的目的可分为:(1)宏观分集它以抗慢衰落为目的。

由于地面等高线的多样性,局部地区有多种多样的变化。

如果仅仅使用一个天线场地,由于地形是变化的,如丘陵或山坡,移动台接收不到中心位置地面信号,因此,必须采用两个独立天线场地来发射或接收两个或多个不同信号,并组合这些信号,以降低慢衰落。

选择性组合技术是宏观分集方案中最受欢迎的技术之一,它意味着总是选择两个衰落信号中最强的一个。

(2)微观分集它是以抗快衰落为目的采用同一天线场地方式的分集技术。

根据获得独立路径信号的方法又可分为:空间分集、时间分集、频率分集、极化分集、角度分集和多径分集等。

根据信号传输的方式可分为:(1)显分集构成明显的分集信号的传输方式,指利用多副天线接收信号的分集。

(2)隐分集分集作用隐含在传输信号之中的方式,在接收端利用信号处理技术实现分集。

隐分集是只需一副天线来接收信号的分集,因此,在数字移动通信中得到了广泛的应用。

目前,主要的隐分集技术有交织编码技术、跳频技术、直接扩频技术等。

3几种常用的显分集技术(1)空间分集空间分集是利用多副接收天线来实现的。

分集技术

分集技术

分集的基本原理是通过多个信道(时间、频率或者空间)接收到承载相同信息的多个副本,由于多个信道的传输特性不同,信号多个副本的衰落就不会相同。

接收机使用多个副本包含的信息能比较正确的恢复出原发送信号。

如果不采用分集技术,在噪声受限的条件下,发射机必须要发送较高的功率,才能保证信道情况较差时链路正常连接。

在移动无线环境中,由于手持终端的电池容量非常有限,所以反向链路中所能获得的功率也非常有限,而采用分集方法可以降低发射功率,这在移动通信中非常重要。

分集技术包括2个方面:一是分散传输,使接收机能够获得多个统计独立的、携带同一信息的衰落信号;二是集中处理,即把接收机收到的多个统计独立的衰落信号进行合并以降低衰落的影响。

因此,要获得分集效果最重要的条件是各个信号之间应该是“不相关”的。

分集技术-技术分类总结起来,发射分集技术的实质可以认为是涉及到空间、时间、频率、相位和编码多种资源相互组合的一种多天线技术。

根据所涉及资源的不同,可分为如下几个大类:1.空间分集我们知道在移动通信中,空间略有变动就可能出现较大的场强变化。

当使用两个接收信道时,它们受到的衰落影响是不相关的,且二者在同一时刻经受深衰落谷点影响的可能性也很小,因此这一设想引出了利用两副接收天线的方案,独立地接收同一信号,再合并输出,衰落的程度能被大大地减小,这就是空间分集。

空间分集是利用场强随空间的随机变化实现的,空间距离越大,多径传播的差异就越大,所接收场强的相关性就越小。

这里所提相关性是个统计术语,表明信号间相似的程度,因此必须确定必要的空间距离。

经过测试和统计,CCIR建议为了获得满意的分集效果,移动单元两天线间距大于0.6个波长,即d>0.61,并且最好选在l/4的奇数倍附近。

若减小天线间距,即使小到1/4,也能起到相当好的分集效果。

空间分集分为空间分集发送和空间分集接收两个系统。

其中空间分集接收是在空间不同的垂直高度上设置几副天线,同时接收一个发射天线的微波信号,然后合成或选择其中一个强信号,这种方式称为空间分集接收。

mimo 效果分类 空间分集 空间复用 波束赋形

mimo 效果分类 空间分集 空间复用 波束赋形

mimo 效果分类空间分集空间复用波束赋形标题:深度探讨MIMO技术在无线通信中的应用与发展一、MIMO技术概述MIMO(Multiple-Input Multiple-Output)技术是指利用多个发射天线和多个接收天线来进行无线通信的技术。

它可以大幅提高无线通信系统的容量和覆盖范围,为用户提供更加稳定和高速的通信体验。

在当今的无线通信领域,MIMO技术已经成为了一种主流的技术,并且在5G时代有望发挥更为重要的作用。

1. MIMO效果分类根据MIMO系统中天线配置和通信方式的不同,MIMO效果可以分为空间分集(Spatial Diversity)、空间复用(Spatial Multiplexing)、波束赋形(Beamforming)等多种分类。

其中,空间分集主要用于提高系统的可靠性和覆盖范围,空间复用可用于提高系统的容量和频谱利用效率,而波束赋形则可以用于精确定位和定向通信。

2. 空间分集技术空间分集技术是一种通过多天线接收来抵抗信号衰减的技术。

它利用接收端的多个天线接收到的信号间的差异,通过信号处理算法来抵消多径效应和时延扩展的影响,从而提高系统的可靠性和抗干扰能力。

空间分集技术在移动通信系统和室内无线通信系统中得到了广泛的应用,有效地提高了系统的覆盖范围和通信质量。

3. 空间复用技术空间复用技术是一种通过多天线传输来提高系统的通信容量和频谱利用效率的技术。

它利用发射端的多个天线同时发送不同的信号流,通过接收端的信号处理算法来将这些信号流分离开来,从而实现了多用户之间的独立传输,大幅提高了系统的频谱利用效率。

在5G时代,空间复用技术将成为提高系统容量的重要手段,为大规模物联网和高清视频传输提供了重要支持。

4. 波束赋形技术波束赋形技术是一种通过调整天线的辐射方向来实现定向通信的技术。

它利用信号处理算法对天线的相位和幅度进行精确控制,从而将信号能量聚集在特定的方向上,实现了对特定用户或特定区域的精确覆盖和通信。

浅析发射分集与接收分集技术

浅析发射分集与接收分集技术

浅析发射分集与接收分集技术1 概述1.1 多天线信息论简介近年来,多天线系统(也称为MIMO 系统)引起了人们很大的研究兴趣,多天线系统原理如图1所示,它可以增加系统的容量,改进误比特率(BER).然而,获得这些增益的代价是硬件的复杂度提高,无线系统前端复杂度、体积和价格随着天线数目的增加而增加。

使用天线选择技术,就可以在获得MIMO 系统优势的同时降低成本。

图1 MIMO 系统原理有两种改进无线通信的方法:分集方法、复用方法。

分集方法可以提高通信系统的鲁棒性,利用发送和接收天线之间的多条路径,改善系统的BER 。

在接收端,这种分集与RAKE 接收提供的类似。

分集也可以通过使用多根发射天线来得到,但是必须面对发送时带来的相互干扰。

这一类主要是空时编码技术。

另外一类MIMO 技术是空间复用,来自于这样一个事实:在一个具有丰富散射的环境中, 接收机可以解析同时从多根天线发送的信号,因此,可以发送并行独立的数据流,使得总的系统容量随着min(,)线性增长,其中和是接收和发送天线的数目。

1.2 空时处理技术空时处理始终是通信理论界的一个活跃领域。

在早期研究中,学者们主要注重空间信号传播特性和信号处理,对空间处理的信息论本质探讨不多。

上世纪九十年代中期,由于移动通信爆炸式发展,对于无线链路传输速率提出了越来越高的要求,传统的时频域信号设计很难满足这些需求。

工业界的实际需求推动了理论界的深入探索。

在MIMO 技术的发展,可以将空时编码的研究分为三大方向:空间复用、空间分集与空时预编码技术,如图2所示。

图2 MIMO 技术的发展1.3 空间分集研究多天线分集接收是抗衰落的传统技术手段,但对于多天线发送分集,长久以来学术界并没有统一认识。

1995年Telatarp[3]首先得到了高斯信道下多天线发送系统的信道容量和差错指数函数。

他假定各个通道之间的衰落是相互独立的。

提高数据速率/ 频谱效率减小差错率/ 提高可靠性提高数据速率/ 减小差错率几乎同时, Foschini和Gans在[4]得到了在准静态衰落信道条件下的截止信道容量(Outage Capacity)。

基于多项无线通信技术的发射分集系统

基于多项无线通信技术的发射分集系统

( TB 。 o t o o a r q e c iiin mutpe ig ( S C) rh g n lfe u n y dvso lilxn OFDM ) a d c d iiin mutpe a cs ( n o e dvso lil c es CDM A ) a d , n
Ab ta t Th s h ss o src : i t e i c mb n s i e wi h e h t t c n l g e i r ls o t t r e o e h o o is n wiee s c mm u i t n h nc i a o
- s a e t b o k c d p c -i me l c o e
过与单独 OF M 以及 S COF D TB - DM 系统 在同等条件下 的仿真 比较 , 说明该 系统具 有优越的误码 率性 能 。 关键词 :空 时分 组码 ;正交频分复 用 ;码分多址 ;分集
中 图分 类 号 :TN9 4 1 文 献 标 识 码 :A
W iee s ta m i i e st y tm s d n e e a iee s r ls r ns td v r iy s se ba e o s v r lw r ls c m m u c to t c no o is o nia in e h lg e
po o e TBC OFDM - r p s saS - CDM A y tm t u p r fcm p trsmua in ,whc a ie st a a i t p c , s se wi s p o t o u e i lto s h o ihh sdv riyc p bl yi s a e i n t n r q e c ils W ih c m p rs n w i i peOF i a dfe u n y fed . me t o a io t sm l DM n TB OF h a d S C- DM y tmsu d r t es me c n iin s se n e h a o dt o t r u h s uain ,t er s lss o t ep p s d s se a c e eg o ef r n  ̄ h g i lt s h e u t h w h r o e y tm c na hiv o p ro ma c o m o o d

MIMO技术的发展与应用

MIMO技术的发展与应用

文章编号:1001-893X(2005)01-0007-05M I M O技术的发展与应用3赵亚男,张禄林,吴伟陵(北京邮电大学信息工程学院,北京100876)摘 要:给出了多输入多输出(M I M O)技术的概念,详细叙述了M I M O技术的研究现状,阐述了M I M O 的关键技术和M I M O技术的应用,研究和分析表明无线移动通信领域智能天线技术的重大突破就是多M I M O技术,它能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是下一代移动通信系统中最富有竞争力的技术之一。

文章最后给出了M I M O技术今后的研究方向。

关键词:多输入多输出技术;贝尔空时分层结构;空时分组码;空时格形码;智能天线中图分类号:T N929.5 文献标识码:ADevelop ment and Appli cati on of M I M O TechnologyZHAO Ya-nan,ZHAN G Lu-lin,WU W ei-ling (School of I nf or mati on Engineering,Beijing University of P osts and T eleco m municati ons,Beijing100876,China)Abstract:The concep t of Multi p le-I nputMulti p le-Out put(M I M O)technol ogy is intr oduced.Research conditi on ofM I M O technol ogy is narrated and the key techniques and app licati on ofM I M O technol ogy are discussed.Analysis indicates thatM I M O technol ogy is the i m portant p r ogress of s mart antenna in wireless communicati on.It can enhance capacity and frequency s pectrum utilizati on efficiency of communicati on syste m while maintaining bandwidth.M I M O is one of the most competitive technol ogies in the next genera2 ti on mobile communicati on syste m.Research trend ofM I M O technol ogy in future is given finally.Key words:Multi p le-I nput Multi p le-Out put(M I M O);Bell Labs layered s pace-ti m e architecture (BLAST);Space-ti m e bl ock codes;Space-ti m e trellis codes;S mart antenna 无线通信技术在不断发展,有限的无线资源面临着通信数据大爆炸的困境,如何用较少的频率资源来传输更多的信息以及抑制无线电干扰技术成为无线通信技术发展的两大挑战。

MIMO系统原理介绍和应用

MIMO系统原理介绍和应用

来源:communicationpedia 通信学术百科-CRS通信学社()MIMO 编辑词条发表评论(1)多用户MIMO示意图MIMO(Multiple-Input Multiple-Out-put)系统是一项考虑用于802.11n的技术。

802.11n是下一代802.11标准,可将吞吐量提高到100Mbps。

同时,专有MIMO技术可改进已有802.11a/b/g网络的性能。

该技术最早是由Marconi于1908年提出的,它利用多天线来抑制信道衰落。

根据收发两端天线数量,相对于普通的SISO(Single-Input Sin gle-Output)系统,MIMO还可以包括SIMO(Single-Input Multi-ple-Output)系统和M ISO(Multiple-Input Single-Output)系统。

目录•• 概述•• 技术•• 研究状况•• 应用[显示全部]概述编辑本段回目录MIMO 表示多输入多输出。

通常用于 IEEE 802.11n,但也可以用于其他 802.11 技术。

MIMO 有时被称作空间多样,因为它使用多空间通道传送和接收数据。

只有站点(移动设备)或接入点(AP)支持 MIMO 时才能部署 MIMO。

MIMO 的优点是能够增加无线范围并提高性能。

连接到老的 802.11g 接入点的 802.11 n 站点能够以更高的速度连接到更远的距离。

例如,如果使用老站点,从 25 英尺的距离连接到接入点的速度是 1Mbps;而使用 802.11n MIMO 时站点的速度为 2Mbps。

增加到 2Mbps 的范围,允许用户在更远的距离保持连接。

无线电发送的信号被反射时,会产生多份信号。

每份信号都是一个空间流。

使用单输入单输出(SISO)的当前或老系统一次只能发送或接收一个空间流。

MIMO 允许多个天线同时发送和接收多个空间流。

它允许天线同时传送和接收。

老接入点到老客户端 - 只发送和接收一个空间流MIMOMIMO 接入点到 MIMO 客户端 - 同时发送和接收多个空间流MIMO可以看出,此时的信道容量随着天线数量的增大而线性增大。

LTE-MIMO-基本原理介绍

LTE-MIMO-基本原理介绍

0.045
0.047
4T2R
0
0.01
0.02
0.03
0.04
0.05
0.06
0.0495

eNodeB
UE
MIMO仿真结果 - Case 4
小区频谱效率
0.045
0.047
0.054
4T2R
0
0.4
0.8
1.0
1.4
1.8
2.2
1.748
4T2R
0
0.01
0.02
0.03
0.04
什么是MIMO?
MIMO (Multiple Input Multiple output:多输入多输出)系统,其基本思想是在收发两端采用多根天线,分别同时发射与接收无线信号。
SU-MIMO(单用户MIMO):指在同一时频单元上一个用户独占所有空间资源,这时 的预编码考虑的是单个收发链路的性能; MU-MIMO(多用户MIMO):指在同一时频单元上多个用户共享所有的空间资源,相当于一种空分多址技术,这时的预编码还要和多用户调度结合起来,评估系统的性能。
空时发射分集
空频发射分集与空时发射分集类似,不同的是SFTD是对发送的符号进行频域和空域编码 将同一组数据承载在不同的子载波上面获得频率分集增益
空频发射分集
在不同的发射天线上发送具有不同相对延时的同一个信号, 人为地制造时间弥散,能够获得分集增益。且循环延时分集采用的是循环延时而不是线性延时,延迟是通过固定步长的移相(Cyclic Shift,循环移相)来等效实现延迟 。

小区边缘
非码本波束成形
1

低速移动

小区边缘
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线通信中的发射分集技术的应用研究
发表时间:2016-11-22T09:19:46.843Z 来源:《基层建设》2016年18期作者:占志喜[导读] 通信信道时变衰落是现阶段无线通信技术当中最需要解决的一大问题。

广州市汇源通信建设监理有限公司 510000
摘要:通信信道时变衰落是现阶段无线通信技术当中最需要解决的一大问题,由于误码率很难在衰落状态下被降低,因此基站需要发射更高功率或在现有基础上使用其他带宽。

但由于种种原因导致上述方法皆无法具体落实在实际运用当中,发射分集技术的出现将彻底解决这一问题。

本文将主要介绍无线通信中存在的几大发射分集技术,并且简要介绍其具体应用。

关键词:无线通信;发射分集技术;应用
引言:所谓的分集技术简单来说指的就是利用各种各样的方式接收同一信号,该技术的运行成本较低且能够大大优化无线通信性能,因此在无线通信当中得到了广泛使用。

发射分集技术就是在分集技术的基础之上,通过多副天线发射信号且保证信号能够在不同信道中独立衰落,最后合并接收到的所有信号,进而解决通信信道的时变衰落。

本文则通过介绍无线通信中不同种类的发射分集技术及其应用,帮助人们加深对发射分集技术的认知。

一、时空发射分集
现阶段在无线通信当中经常使用的发射分集技术之一就是时空发射分集技术,该技术主要由发射天线和接收天线构成,一般情况下,发射天线为两副,接收天线为一副。

基站使用两副发射天线发射信号,而移动台则负责使用接收天线接收信号。

在此过程中,经由两副发射天线发射的信号已经被时空编码,最终移动台只用一副接收天线便可以合并两种信号。

由于时空发射分集技术能够有效抑制通信信道的衰落,而其使用的高级调制手段能够使得复用因子数大大降低,因此该技术可以实现高分急增益,对解决通信信道衰落导致压缩系统容量问题起到一定的辅助作用。

当前在第三代移动通信系统物理信道当中常常会使用这种由时空和编码相结合的发射分集方法,但事实证明若想实现高增益必须处于多径衰落信道当中,这也使得该技术的应用范围受到极大限制[1]。

二、延迟分集
简单来说时间分集与空间分集相互叠加即为延迟分集,由此也可以看出延迟分集具有操作简便的巨大优势,但在延迟分集技术当中,始终保持延迟误差估计的高敏感度,也就是说延迟分集技术当中无可避免的会出现延迟估计误差。

而误差的出现将直接导致通信性能下降,甚至对实现分集增益产生一定抑制作用。

除此之外,接收端在使用延迟分集技术接收信号的过程当中会出现延迟传送的情况,使得信号无法出现实时合并最终影响分集增益。

因而在实际无线网络通信当中,延迟分集技术一般被运用在能够准确估计延时的通信系统当中。

图1 延迟分集技术
三、时间转换发射分集
时间转换发射分集技术是当前最常运用在无线通信系统当中的一种分集技术,简单、便捷、高效是时间转换发射分集技术最主要的特点。

该技术借助轮询时间片选择天线,虽然过程简单快捷但是在某种程度上也会影响其控制功率。

控制功率需要建立在测量信噪比和估计信道的基础之上,接收端在估计信道的过程当中其实也是在估计多个时隙当中的导频信号[2]。

时间转换分集技术的运用使得各时隙中的信号经由多副天线发射,也就是说信号需要经过多个传输路径,这也导致接收端必须同时估计多个信道,进而影响接收端的性能。

基于此种情况,时间转换发射分集技术多运用在很少出现信噪比误差的控制功率算法中。

四、相移发射分集
所谓的相移发射分集技术可以被看做是频率分集加上空间分集。

与时空发射分集技术相似,在相移发射分集技术当中也有发射天线两副、接收天线一副,但在两副发射天线当中使用的频率却大相径庭,因此接收端往往需要根据接收到不同信号中的频率对其加以区分,之后才能进入合并环节最终实现分集增益。

相移发射分集与人为生成多普勒频移于通信信道中有着异曲同工之妙,也就是说相移发射分集技术能够有效消除迅速移动的接收端致使通信信道衰落并产生多普勒频移,通常情况下相移发射分集技术被运用在高速运动的接收端当中。

五、相位结合发射分集
相位分集加上空间分集即构成了相位结合发射分集技术,发送方配置天线的发射对应位置,使得接收端能够尽可能接受到最大能量的信号。

相位结合发射分集技术将估计上下行链路中的信道进行统一处理,由于上下行链路在时分双工系统中传输频率相同,且基本呈对称状态,因此在时分双工系统当中最适宜使用此种发射分集技术[3]。

相关文档
最新文档