2020年甘肃省天水市中考数学试卷-解析版
2020年甘肃省天水市中考数学试卷(含解析)
2020年甘肃省天水市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4| D.﹣2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×1063.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42 B.42,43 C.42,42 D.42,415.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4 B.﹣7≤a≤﹣4 C.﹣7≤a<﹣4 D.﹣7<a≤﹣410.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分)11.分解因式:m3n﹣mn=.12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.已知函数y=,则自变量x的取值范围是.14.已知a+2b=,3a+4b=,则a+b的值为.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(共78分)19.(8分)(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.20.(10分)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.22.(7分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)23.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA 为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).24.(10分)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)25.(10分)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.﹣是负数,符合题意;故选:D.2.【解答】解:341000=3.41×105,故选:A.3.【解答】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.4.【解答】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为=42,故选:C.5.【解答】解:连接OA、OB,如图,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.6.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.7.【解答】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.8.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.9.【解答】解:∵3x+a≤2,∴3x≤2﹣a,则x≤,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤<3,解得:﹣7<a≤﹣4,故选:D.10.【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.二、填空题11.【解答】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).12.【解答】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.13.【解答】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.14.【解答】解:a+2b=①,3a+4b=②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.15.【解答】解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为.16.【解答】解:设圆锥的底面半径为r,由题意得,=2πr,解得,r=,故答案为:.17.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).18.【解答】解:由题意可得,△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即CE=2,故答案为:2.三、解答题19.【解答】解:(1)原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=3+;(2)原式=﹣•=﹣=﹣==,当a=时,原式====1.20.【解答】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:=.21.【解答】解:(1)∵△AOC的面积为4,∴|k|=4,解得,k=﹣8,或k=8(不符合题意舍去),∴反比例函数的关系式为y=﹣,把点A(﹣2,a)和点B(b,﹣1)代入y=﹣得,a=4,b=8;答:a=4,b=8;(2)根据一次函数与反比例函数的图象可知,不等式mx+n>的解集为x<﹣2或0<x<8;(3)∵点A(﹣2,4)关于y轴的对称点A′(2,4),又B(8,﹣1),则直线A′B与y轴的交点即为所求的点P,设直线A′B的关系式为y=cx+d,则有,解得,,∴直线A′B的关系式为y=﹣x+,∴直线y=﹣x+与y轴的交点坐标为(0,),即点P的坐标为(0,).22.【解答】解:(1)由题意得,∠PAB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠PAB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×=20(海里),在Rt△APH中,tan∠PAB=tan30°==,即=,解得:x=10+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.23.【解答】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD===2,∴OD=OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=×2 ×2﹣=2﹣.24.【解答】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=AC,∴AB:AC=:1.故答案为:1.理解运用:(1)设CA=CB=m,则AB=m,由题意2m+m=4+2,∴m=2,∴AC=CB=2,AB=2,∴AD=DB=,CD=AC•sin30°=1,∴S△ABC=•AB•CD=.故答案为.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.25.【解答】解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣20)元,由题意得:,解得:x=50,经检验,x=50是原方程的解,且符合题意,50﹣20=30,答:A种商品每件的进价是50元,B种商品每件的进价是30元;(2)设购买A种商品a件,则购买B商品(40﹣a)件,由题意得:,解得,∵a为正整数,∴a=14、15、16、17、18,∴商店共有5种进货方案;(3)设销售A、B两种商品共获利y元,由题意得:y=(80﹣50﹣m)a+(45﹣30)(40﹣a)=(15﹣m)a+600,①当10<m<15时,15﹣m>0,y随a的增大而增大,∴当a=18时,获利最大,即买18件A商品,22件B商品,②当m=15时,15﹣m=0,y与a的值无关,即(2)问中所有进货方案获利相同,③当15<m<20时,15﹣m<0,y随a的增大而减小,∴当a=14时,获利最大,即买14件A商品,26件B商品.26.【解答】解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:∵点A的坐标为(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴S△AOC=OA•OC=×2×6=6,∴S△BCD=S△AOC=×6=,当y=0时,﹣x2+x+6=0,解得:x1=﹣2,x2=4,∴点B的坐标为(4,0),设直线BC的函数表达式为:y=kx+n,则,解得:,∴直线BC的函数表达式为:y=﹣x+6,∵点D的横坐标为m(1<m<4),∴点D的坐标为:(m,﹣m2+m+6),点G的坐标为:(m,﹣m+6),∴DG=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,CF=m,BE=4﹣m,∴S△BCD=S△CDG+S△BDG=DG•CF+DG•BE=DG×(CF+BE)=×(﹣m2+3m)×(m+4﹣m)=﹣m2+6m,∴﹣m2+6m=,解得:m1=1(不合题意舍去),m2=3,∴m的值为3;(3)由(2)得:m=3,﹣m2+m+6=﹣×32+×3+6=,∴点D的坐标为:(3,),分三种情况讨论:①当DB为对角线时,如图2所示:∵四边形BNDM是平行四边形,∴DN∥BM,∴DN∥x轴,∴点D与点N关于直线x=1对称,∴N(﹣1,),∴DN=3﹣(﹣1)=4,∴BM=4,∵B(4,0),∴M(8,0);②当DM为对角线时,如图3所示:由①得:N(﹣1,),DN=4,∵四边形BNDM是平行四边形,∴DN=BM=4,∵B(4,0),∴M(0,0);③当DN为对角线时,∵四边形BNDM是平行四边形,∴DM=BN,DM∥BN,∴∠DMB=∠MBN,∴点D与点N的纵坐标相等,∵点D(3,),∴点N的纵坐标为:﹣,将y=﹣代入y=﹣x2+x+6中,得:﹣x2+x+6=﹣,解得:x1=1+,x2=1﹣,当x=1+时,如图4所示:则N(1+,﹣),分别过点D、N作x轴的垂线,垂足分别为E、Q,在Rt△DEM和Rt△NQB中,,∴Rt△DEM≌Rt△NQB(HL),∴BQ=EM,∵BQ=1+﹣4=﹣3,∴EM=﹣3,∵E(3,0),∴M(,0);当x=1﹣时,如图5所示:则N(1﹣,﹣),同理得点M(﹣,0);综上所述,点M的坐标为(8,0)或(0,0)或(,0)或(﹣,0).。
2020甘肃天水中考数学试卷及答案
2020甘肃天水中考数学试卷及答案(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0B.1C.2D.3【考点】15:绝对值;14:相反数.【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.下列运算正确的是()A.2x+y=2xyB.x•2y2=2xy2C.2x÷x2=2xD.4x﹣5x=﹣1【考点】4H:整式的除法;35:合并同类项;49:单项式乘单项式.【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【考点】X3:概率的意义.【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.13×107kgB.0.13×108kgC.1.3×107kgD.1.3×108kg【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130000000kg=1.3×108kg.故选:D.6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【考点】27:实数.【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.【解答】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选C.8.下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【考点】G2:反比例函数的图象;F4:正比例函数的图象;H2:二次函数的图象;R5:中心对称图形.【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.故选C9.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π【考点】M5:圆周角定理;M2:垂径定理;MO:扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x的取值范围是x≥﹣2且x≠0.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:214.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【考点】38:规律型:图形的变化类.【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+116.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【考点】SA:相似三角形的应用.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x 轴的另一个交点是(﹣1,0);④当1y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.(共78分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判定.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD 的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A 型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;R2:旋转的性质.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax ﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).猜你喜欢:。
2020年甘肃省天水市中考数学试卷及答案
2020年甘肃省天水市中考数学试卷及答案A 卷(100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.下列四个实数中,是负数的是()A.()3-- B.()22- C.|4|- D.2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.53.4110⨯ B.63.4110⨯ C.334110⨯ D.60.34110⨯3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,415.如图所示,PA 、PB 分别与O 相切于A 、B 两点,点C 为O 上一点,连接AC 、BC ,若70P ∠=︒,则ACB ∠的度数为()A.50︒B.55︒C.60︒D.65︒6.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.7.若函数()20y ax bx c a =++≠的图象如图所示,则函数y ax b =+和cy x=在同一平面直角坐标系中的图象大致是()A. B. C. D.8.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高1.5m ,测得 1.2AB m =,12.8BC m =,则建筑物CD 的高是()A.17.5mB.17mC.16.5mD.18m9.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为()A.74a -<<- B.74a -≤≤- C.74a -≤<- D.74a -<≤-10.观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2 ,若1002S =,用含S 的式子表示这组数据的和是()A.22S S- B.22S S+ C.222S S- D.2222S S --二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:3m n mn -=_________.12.一个三角形的两边长分别为2和5,第三边长是方程28120x x -+=的根,则该三角形的周长为_______.13.函数3x y x =-中,自变量x 的取值范围是___________.14.已知1023a b +=,16343a b +=,则+a b 的值为_________.15.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.16.如图所示,若用半径为8,圆心角为120︒的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是_________.17.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为_____.18.如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(1)计算:1014sin 6032|2020124-︒⎛⎫-+-+ ⎪⎝⎭.(2)先化简,再求值:21111211a a a a a a ---÷-+++,其中3a =20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.如图所示,一次函数()0y mx n m =+≠的图象与反比例函数()0k y k x=≠的图象交于第二、四象限的点()2,A a -和点(),1B b -,过A 点作x 轴的垂线,垂足为点C ,AOC △的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出kmx n x+>中x 的取值范围;(3)在y 轴上取点P ,使PB PA -取得最大值时,求出点P 的坐标.B 卷四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60︒方向上,继续航行30分钟后到达B 处,此时测得灯塔P 在北偏东45︒方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:1.414≈ 1.732≈)23.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F .(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若BD =6AB =,求阴影部分的面积(结果保留π).24.性质探究如图(1),在等腰三角形ABC 中,120ACB ∠=︒,则底边AB 与腰AC 的长度之比为_________.理解运用(1)若顶角为120︒的等腰三角形的周长为4+,则它的面积为_________;(2)如图(2),在四边形EFGH 中,EF EG EH ==.在边FG ,GH 上分别取中点,M N ,连接MN .若120FGH ∠=︒,20EF =,求线段MN 的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为__________(用含α的式子表示)25.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.如图所示,抛物线()20y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为()2,0A -,点C 的坐标为()0,6C ,对称轴为直线1x =.点D 是抛物线上一个动点,设点D 的横坐标为()14m m <<,连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当BCD 的面积等于AOC 的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点,,,B D M N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.数学试题参考答案1-10DADCB CBADA 11、()()11mn m m +-12、13132x ≥-且3x ≠.14、115、2216、8317(﹣1,5)18219(1)原式34(2142=⨯--+-+,214=-+-,3=+;(2)原式21111(1)1a a a a a -+=-⨯-+-,1111a a =--+,11(1)(1)a a a a +-+=-+,221a =-,当a ==()222213121===--.20(1)1836%50÷=(人),故答案为:50;(2)()50481820-++=补全图形如下:(3)2036014450⨯︒=︒,故答案为:144;(4)画树状图得:∵共有12种等可能的结果,其中是“一男一女”的有8种情况,∴一男一女的概率为:P (一男一女)=82=123.21(1)由题意得:1||42AOC S k ∆==∴||8k =,8k =±又∵反比例函数图象经过第二、四象限∴8k =-,8y x -=当2x =-时,842a -==-;当1y =-时,81b-=-,解得8b =(2)由图象可以看出kmx n x+>的解集为2x <-或08x <<(3)如图,作点A 关于y 轴的对称点A ′,直线A ′B 与y 轴交于P ,此时PA -PB 最大(PB -PA =PB -PA ′≤A ′B ,共线时差最大)∵()2,4A -关于y 轴的对称点为()2,4A ',又()8,1B -,则直线A B '与y 轴的交点即为所求P 点.设直线A B '的解析式为y cx d=+则2481c d c d +=⎧⎨+=-⎩解得56173c d ⎧=-⎪⎪⎨⎪=⎪⎩∴直线A B '的解析式为51763y x =-+∴直线A B '与y 轴的交点为(170,3).即点P 的坐标为()170,3P .【点睛】本题主要考查了反比例函数与一次函数综合,涉及了轴对称以及待定系数法求函数的关系式、线段的最值等知识,理解作点A 关于y 轴的对称点A ′,直线A ′B 与y 轴交于P ,此时PA -PB 最大.22解:(1)作PH AB ⊥交AB 的延长线于点H ∵906030PAB ∠=︒-︒=︒,904545PBH ∠=︒-︒=︒∴453015APB PBH PAB ∠=∠-∠=︒-︒=︒;(2)设PH x =海里,则BH PH x ==海里,30402060AB =⨯=海里∵在Rt APH ∆中,tan 30PHAH︒=∴3203x x =+解得:1027.3225x =≈>.∴海监船继续向正东方向航行安全.23解:(1)BC 与O 相切.理由如下:如图,连接OD .∵AD 平分BAC ∠,∴CAD OAD ∠=∠,又∵OA OD =,∴OAD ODA ∠=∠,∴CAD ODA ∠=∠,∴//OD AC ,∴90BDO C ∠=∠=︒又∵OD 为O 的半径,∴BC 与O 相切.(2)设O 的半径为r ,则OA OD r ==,6OB r =-,由(1)知90BDO ∠=︒,在Rt BOD ∆中,222OD BD OB +=,即222(6)r r +=-,解得2r =.∵23tan 2BD BOD OD ∠===,∴60BOD ∠=︒.∴21602360BOD ODF r S S S OD BD π∆=-=⋅⋅-阴影扇形,2160222360π⨯⨯=⨯⨯,23π=.24性质探究解:作CD ⊥AB 于D ,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC ,∠ACB=120°,∴AD=BD ,∠A=∠B=30°,∴AC=2CD ,CD ,∴CD ,∴232AB AC CD==;(;理解运用(1)解:如图①所示:同上得:AC=2CD ,CD ,∵∴,解得:CD=1,∴,∴△ABC 的面积=12AB×CD=12;(2)①证明:∵EF=EG=EH ,∴∠EFG=∠EGF ,∠EGH=∠EHG ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH ;②解:连接FH ,作EP ⊥FH 于P ,如图②所示:则PF=PH ,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH ,∴∠EFH=30°,∴PE=12EF=10,∴,∴,∵点M 、N 分别是FG 、GH 的中点,∴MN 是△FGH 的中位线,∴MN=12类比拓展解:如图③所示:作AD ⊥BC 于D ,∵AB=AC ,∴BD=CD ,∠BAD=12∠BAC=α,∵sin BD AB α=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴2sin 2sin BC AB AB ABαα⋅==;故答案为:2sinα(或2sin :1α).25(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元.依题意得2000120020x x =-,解得50x =,经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件,依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a ,∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元;②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.26(1)由题意得124206b a a b c c ⎧-=⎪⎪-+=⎨⎪=⎪⎩,解得34326a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩故抛物线的函数表达式为233642y x x =-++(2)过点D 作DE x ⊥轴于点E ,交BC 于点G ,过点C 作CF ED ⊥交ED 的延长线于点F.∵点A 的坐标为()2,0-,∴2OA =∵点C 的坐标为()0,6∴6OC =∴1126622AOC S OA OC ∆=⋅=⨯⨯=∴3396442BCD AOC S S ∆∆==⨯=当0y =时,2336042x x -++=,解得12x =-,24x =.∴()4,0B 设直线BC 的函数表达式为y kx n=+则406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.则点D 的坐标为236,342m m D m -++,点G 的坐标为3,62()G m m -+,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为()4,0,∴4OB =.∴1122BCD CDG BDG S S S DG CF DG BE ∆∆∆=+=⋅+⋅2211133()34622242DG CF BE DG BO m m m m ⎛⎫=+=⋅=⨯-+⨯=-+ ⎪⎝⎭.则有239622m m -+=解得11m =(不合题意,舍去),23m =.∴m 的值为3.(3)存在,点M 的坐标为()8,0,()0,0,,()在233642y x x =-++中,当3x =时,154y =,∴43,15D .分三种情况讨论:①当DB 为对角线时,如图(1),易知点D 与点N 关于直线1x =对称.∴151,4N ⎛⎫- ⎪⎝⎭,4DN =,∴4BM =,又∵()4,0B ,∴()18,0M ②当DM 为对角线时,如图(2),151,4N ⎛⎫- ⎪⎝⎭,4DN =,∴4BM =.又∵()4,0B ,∴()20,0M ③当DN 为对角线时.∵43,15D ,易知点N 的纵坐标为154-.将154y =-代入233642y x x =-++中,得233156424x x -++=-,解得1114x =+,2114x =-.当114x =+时,点N 的位置如图(3)所示,则15114,4N ⎛⎫+- ⎪ ⎪⎝⎭分别过点,D N 作x 轴的垂线,垂足分别为点,E Q ,易证DEM NQB ∆∆≌.∵1144143BQ =-=,∴143EM =,又∵()3,0E ,∴)314,0M 当114x =时,点N 的位置如图(4)所示,则15114,4N ⎛⎫-- ⎪⎝⎭.。
2020年甘肃省天水市中考数学试卷附详细答案解析
2020年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.32.(4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1 4.(4分)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.(4分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg 6.(4分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.(4分)关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点8.(4分)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是9.(4分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.(4分)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q 从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x 之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)若式子有意义,则x的取值范围是.12.(4分)分解因式:x3﹣x= .13.(4分)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= .14.(4分)如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=.15.(4分)观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.(4分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的 A处,则小明的影子AM长为米.17.(4分)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.(4分)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(10分)(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.20.(8分)一艘轮船位于灯塔P南偏西60°方向的 A处,它向东航行20海里到达灯塔P南偏西45°方向上的 B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说 0.5戏剧 4散文 10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2人恰好是乙和丙的概率.四、解答题(共50分)22.(8分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC 相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(10分)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.(12分)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.2020年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2020•天水)若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.【点评】本题考查的是绝对值,熟知0的绝对值是0是解答此题的关键.2.(4分)(2020•天水)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)(2020•天水)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.【点评】此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.(4分)(2020•天水)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.【点评】本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(2020•天水)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2020•天水)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【分析】先设小正方形的边长为1,然后找个与∠B有关的 RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.【点评】本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B有关的直角三角形.7.(4分)(2020•天水)关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.【解答】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选C.【点评】本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.8.(4分)(2020•天水)下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形.故选C【点评】本题考查正比例函数、反比例函数、二次函数的性质、中心对称图形的定义等知识,解题的关键是理解中心对称图形的定义,属于基础题.9.(4分)(2020•天水)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S 阴影=()A.2πB.πC.πD.π【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.【点评】考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.10.(4分)(2020•天水)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y 与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.二、填空题(本大题共8小题,每小题4分,共32分)11.(4分)(2020•天水)若式子有意义,则x的取值范围是x≥﹣2且x≠0 .【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.【点评】本题考查了分式有意义的条件、二次根式有意义的条件.解题时需注意:分母x不为零.12.(4分)(2020•天水)分解因式:x3﹣x= x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.(4分)(2020•天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14.(4分)(2020•天水)如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.【点评】本题考查的是翻折变换,正方形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.15.(4分)(2020•天水)观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1 .(用含有n的代数式表示)【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1【点评】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.16.(4分)(2020•天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的 A处,则小明的影子AM长为 5 米.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.17.(4分)(2020•天水)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是 6 .【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E 的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.【点评】本题考查轴对称﹣最短路线问题、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.(4分)(2020•天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x 轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.【点评】本题考查二次函数的性质、方程与二次函数的关系、函数与不等式的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用函数图象解决问题,所以中考常考题型.三、解答题(本大题共3小题,共28分)19.(10分)(2020•天水)(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.【点评】此题考查了实数的运算,分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2020•天水)一艘轮船位于灯塔P南偏西60°方向的 A 处,它向东航行20海里到达灯塔P南偏西45°方向上的 B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC 不变列出方程x=20+x,解方程即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴PC=BC=x海里,在Rt△APC中,∵tan∠APC=,∴AC=PC•tan60°=x,∴x=20+x,解得x=10+10,则PC=(10+10)海里.答:轮船航行途中与灯塔P的最短距离是(10+10)海里.【点评】本题考查了解直角三角形的应用﹣方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.21.(10分)(2020•天水)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说 0.5戏剧 4散文 10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2人恰好是乙和丙的概率.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(共50分)22.(8分)(2020•天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC 边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.【点评】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.23.(10分)(2020•天水)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD 的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.24.(10分)(2020•天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.25.(10分)(2020•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.【点评】此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意数形结合思想的应用.26.(12分)(2020•天水)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B 的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),。
2020年甘肃天水中考数学试卷(解析版)
2020年甘肃天水中考数学试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.下列四个实数中,是负数的是( ).A. B. C. D.2.天水市某网店年父亲节这天的营业额为元,将数用科学记数法表示为( ).A. B. C. D.3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是( ).弘扬伏羲文化A.文B.羲C.弘D.化4.某小组名学生的中考体育分数如下:,,,,,,,.该组数据的众数、中位数分别为( ).A.,B.,C.,D.,5.如图所示,、分别与相切于、两点,点为上一点,连接,,若,则的度数为( ).A.B.C.D.6.下列图形中,是中心对称图形但不是轴对称图形的是( ).A.B.C.D.7.若函数()的图象如图所示,则函数和在同一平面直角坐标系中的图象大致是( ).A.B.C.D.8.如图所示,某校数学兴趣小组利用标杆测量建筑物的高度,已知标杆高,测得,,则建筑物的高是( ).A.B.C.D.9.若关于的不等式只有个正整数解,则的取值范围为( ).A.B.C.D.10.观察等式:;;;已知按一定规律排列的一组数:, ,,,,,若,用含的式子表示这组数据的和是( ).A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.分解因式: .12.一个三角形的两边长分别为和,第三边长是方程的根,则该三角形的周长为 .13.已知函数,则自变量的取值范围是 .14.已知,,则的值为 .15.如图所示,是放置在正方形网格中的一个角,则的值是 .16.如图所示,若用半径为,圆心角为的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 .17.如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为 .18.如图,在边长为的正方形内作,交于点,交于点,连接,将绕点顺时针旋转得到.若,则的长为 .三、解答题(本大题共8小题,共78分)(1)(2)19.解答下列问题.计算:.先化简,再求值:,其中.20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)(2)(3)(4)不满意一般满意非常满意满意人数程度非常满意不满意一般满意此次调查中接受调查的人数为 人.请你补全条形统计图.扇形统计图中“满意”部分的圆心角为 度.该兴趣小组准备从调查结果为“不满意”的位市民中随机选择位进行回访,已知这位市民中有位男性,位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.(1)(2)(3)21.如图所示,一次函数的图象与反比例函数的图象交于第二、四象限的点和点,过点作轴的垂线,垂足为点,的面积为.分别求出和的值.结合图象直接写出中的取值范围.在轴上取点,使取得最大值时,求出点的坐标.北东北22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时海里的速度向正东方向航行,在处测得灯塔在北偏东方向上,继续航行分钟后到达处,此时测得灯塔在北偏东方向上.(1)(2)求的度数.已知在灯塔的周围海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:)(1)(2)23.如图,在中,,平分交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交、于点、.OBACDFE试判断直线与⊙的位置关系,并说明理由.若,,求阴影部分的面积(结果保留).(1)12(2)(3)24.请回答下列各题性质探究如图,在等腰三角形中,,则底边与腰的长度之比为 .图理解运用若顶角为的等腰三角形的周长为则它的面积为 .如图,在四边形中,.在边,上分别取中点,,连接.若,,求线段的长.图M 类比拓展顶角为的等腰三角形的底边与一腰的长度之比为 .(用含的式子表示)25.(1)(2)(3)天水市某商店准备购进、两种商品,种商品每件的进价比种商品每件的进价多元,用元购进种商品和用元购进种商品的数量相同.商店将种商品每件的售价定为元,种商品每件的售价定为元.种商品每件的进价和种商品每件的进价各是多少元?商店计划用不超过元的资金购进、两种商品共件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?“五一”期间,商店开展优惠促销活动,决定对每件种商品售价优惠元,种商品售价不变,在()的条件下,请设计出的不同取值范围内,销售这件商品获得总利润最大的进货方案.(1)(2)(3)26.如图所示,抛物线与轴交于、两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接,,,.求抛物线的函数表达式.当的面积等于的面积的时,求的值.在()的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,,,为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】解析:.故选.解析:正方体的表面展开图,相对面之间一定相隔一个正方形,“弘”与“文”是相对面;“扬”与“羲”是相对面;“伏”与“化”是相对面.故选.解析:个数据中出现三次,出现次数最多,所以众数为,将个数据按大小顺序排列为:、、、、、、、,则中位数为第、个数的平均数,所以中位数为,综上所述,这组数据的众数、中位数分别为、.故选.解析:连接、,∵、分别与相切于,两点,∴,,∴,D 1.A 2.D 3.C 4.B 5.∴,∴.故选.解析:由函数的图象可得:,,,∴,∴函数的图象经过一、三、四象限,函数的图象经过一、三象限,故选.解析:根据题意可知:,∴,∵,,,∴,∴,解得:.故选.解析:解不等式:,又∵原不等只有个正整数解,∴,∴,C 6.B 7.A 8.D 9.∴,∴.故选.解析:由题意可知:,,∴,∵,∴原式.故选.解析:.故答案为:.解析:解方程,,∴或,当第三边长为时,三角形三边长为,,,,不符合三角形三边关系,不能组成三角形,舍去;A 10.11.12.当第三边长为时,三角形三边长为,,,符合三角形三边关系,可以组成三角形,则该三角形的周长为.故答案为:.解析:得且.解析:由题可得,即,则.解析:如图所示,连接,取格点和格点,∴,,,,,,在和中,,∴≌,∴,,∵,∴,且13.14.15.∴,又∵,∴,∴.故答案为:.16.解析:∵半径为,圆心角为,∴弧长,∴,∴底面周长为,圆的周长,∴,∴,∴底面半径为.17.解析:如图,过点作轴的垂线段,垂足为.过点作轴的垂线段,垂足为.连接,交于点.∵四边形是正方形,∴,,,在与中,,∴,,∴,∴,∵点与点关于点对称,∴点的坐标为.18.解析:∵绕点顺时针旋转得到,∴≌,∴,,∵四边形是正方形,∴,,∵,∴,∴,∵,∴,∴,在和中,,∴≌,∴,∴,(1)(2)∵,∴,设,则,,∴在中,,∴,解得:,∴.故答案为:.解析:.,当时,.解析:(1).(2),.19.(1)(2)画图见解析.(3)(4).20.(1)(2)(3)(4)(1)(2)(3)∵非常满意的有人,占,∴此次调查中接受调查的人数:(人).由可知此次调查中接受调查的人数为:人,其中“满意”的人数为:(人),则补全条形统计图如下:不满意一般满意非常满意满意人数程度由可知“满意”的人数为:(人),则扇形图中“满意”部分对应扇形的圆心角为:.画树状图得:开始男男女女男女女男女女男男男男女女∵共有种等可能的结果,选择的市民刚好是“一男一女”的情况是种.∴选择的市民刚好是“一男一女”的概率为:.解析:由题意得:,∴,,又∵反比例函数图象经过第二、四象限,∴,,当时,;当时,,解得.由图象得,当或时,.∵关于轴的对称点为,又,则直线与轴的交点即为所求点.(1), .(2)或.(3).21.(1)(2)(1)设直线的解析式为,则,解得,∴直线的解析式为,∴直线与轴的交点为,即点的坐标为.解析:作交的延长线于点,北东北则,,∴.设海里,则海里,海里,在中,,∴,解得:.∴海监船继续向正东方向航行安全.解析:连接,OBAC DF E∵平分,∴,(1).(2)安全.22.(1)与⊙相切.证明见解析.(2).23.(2)(1)1(2)又∵,∴,∴,∴∴又∵为⊙的半径,∴与⊙相切.设⊙的半径为,则,,由()知,在中,,即,解得.∵,∴,∴.解析:过点作于点,图∵是等腰三角形,,∴,,∴,∴.如图所示:阴影扇形(1)或12(2)(3)或24.(2(3)图同上得:,,∴,:解得:,∴,∴的面积.∵,,∴,又∵,∴,连接,图M∵,∴为顶角为的等腰三角形,∴,∵、分别为,的中点,∴为的中位线,∴.如图所示:作于,(1)(2)(3)图3∵,∴,,∵,∴,∴,∴,故答案为:.解析:设种商品每件的进价为元,种商品每件的进价为元.依题意得,解得,经检验是原方程的解且符合题意,当时,,答:种商品每件的进价为元,种商品每件的进价为元.设购进种商品件,购进种商品件,依题意得,解得,∵为整数,∴,,,,,∴该商品有种进货方案.设销售、两种商品总获利元,则,①当时,,与的取值无关,即()中五种方案都获利元,(1)种商品每件的进价为元,种商品每件的进价为元.(2)种.(3)①当时,与的取值无关,即()中五种方案都获利元,②当时,获利最大,购进种商品件,购进种商品件,③当时,获利最大,购进种商品件,购进种商品件.25.(1)(2)②当时,,随的增大而增大,∴当时,获利最大,即在()的条件下,购进种商品件,购进种商品件,获利最大,③当时,,随的增大而减小,∴当时,获利最大,即在()的条件下,购进种商品件,购进种商品件,获利最大.解析:由题意得,解得,故抛物线的函数表达式为.过点作轴于点,交于点,过点作交的延长线于点.∵点的坐标为,∴,∵点的坐标为,∴,∴,∴,当时,,解得,,(1).(2).(3)点的坐标为,,,.26.(3)∴.设直线的函数表达式为,则,解得,∴直线的函数表达式为,则点的坐标为,点的坐标为,∴,∵点的坐标为,∴,∴.则有,解得(不合题意,舍去),,∴的值为.存在点的坐标为,,,.分三种情况讨论:①当为对角线时,如图(),图易知点与点关于直线对称.∴,,∴,又∵,∴,②当为对角线时,如图(),,,图∴,又∵,∴,③当为对角线时,∵,易知点的纵坐标为,将代入中,得,解得,,当时,点的位置如图()所示,图则,分别过点,作轴的垂线,垂足分别为点,,易证≌,∵,∴,又∵,∴,当时,点的位置如图()所示,图则,同理易得点的坐标为,综上所述,点的坐标为,,,.。
2020年甘肃省天水市中考数学试卷答案版
的市民为“一男一女”的概率.
21. 如图所示,一次函数 y=mx+n(m≠0)的图象与反比例函数 y= (k≠0)的图象交于
第二、四象限的点 A(-2,a)和点 B(b,-1),过 A 点作 x 轴的垂线,垂足为点 C ,△AOC 的面积为 4. 1 分别求出 a 和 b 的值;
2 结合图象直接写出 mx+n> 中 x 的取值范围;
法表示为( )
A. 3.41×105
B. 3.41×106
C. 341×103
D. 0.341×106
3. 某正方体的每个面上都有一个汉字,如图是它的一种表 面展开图,那么在原正方体中,与“伏”字所在面相对
面上的汉字是( )
A. 文
B. 羲
C. 弘
D. 化
4. 某小组 8 名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组 数 据的众数、中位数分别为( )
A.
B.
C.
D.
7. 若函数 y=ax2+bx+c(a≠0)的图象如图所示,则函数 y=ax+b 和 y= 在同一平面直角坐标系中的图象大致是( )
第 1 页,共 21 页
A.
B.
C.
D.
8. 如图所示,某校数学兴趣小组利用标杆 BE 测量建筑物的 高度,已知标杆 BE 高 1.5m,测得 AB=1.2m,BC=12.8m,则
23. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于点 D,点 O 在 AB 上,以点 O 为圆心,OA 为半径的圆恰好经过点 D,分别交 AC、AB 于点 E、F. 1 试判断直线 BC 与⊙O 的位置关系,并说明理由; 2 若 BD=2 ,AB=6,求阴影部分的面积(结果保留 π).
甘肃省天水市2020年中考数学试题(含答案)
即为所求 P点
设直线 A′B的解析式为 y=cx+d
{ { 2c+d=4,
c=- 56,
则
解得
8c+d=-1.
d=137
∴ 直线 A′B的解析式为 y=-56x+137
∴ 直线 A′B与 y轴的交点为(0,17) 3
即点 P的坐标为 P(0,137) 10分
又
∵
反比例函数图象经过第二、四象限
∴k=-8,y=
-8 x
当 x=-2时,a= - -82=4;当 y=-1时,-b8=-1,解得 b=8 3分
(2)x<-2或 0<x<8 6分
(3)∵A(-2,4)关于 y轴的对称点为 A′(2,4),又 B(8,-1),则直线 A′B与 y轴的交点
在 Rt△APH中,tan30°=PAHH ∴ 20x+x=槡33 5分
解得:x=10槡3+10≈ 2732>25 6分 ∴ 海监船继续向正东方向航行安全 7分
数学答案第2页(共6页)
23(第(1)小题 5分,第(2)小题 5分,共 10分)
15槡22
1683
17(-1,5)
三、解答题
19(第(1)小题 4分,第(2)小题 4分,共 8分)
182
解:(1)解:原式 =4×槡23-(2-槡3)+1-2槡3+4
=2槡3-2+槡3+1-2槡3+4
=槡3+3 4分 (2)解:原式 =a1-1-(aa+-11)2 ×aa+-11
解:(1)设 A种商品每件的进价为 x元,B种商品每件的进价为(x-20)元 依题意得 20x00=x12-0200,解得 x=50,经检验 x=50是原方程的解且符合题意
∴△EFH为顶角为 120°的等腰三角形
2020年甘肃省天水市中考数学试卷及答案
2020年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√52.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106 3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,415.(4分)(2020•天水)如图所示,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.(4分)(2020•天水)若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4 10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=.12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB 的值是.16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.(4分)(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.(4分)(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC 于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a+2a+1÷a−1a+1,其中a=√3.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为 ;(2)如图(2),在四边形EFGH 中,EF =EG =EH ,在边FG ,GH 上分别取中点M ,N ,连接MN .若∠FGH =120°,EF =20,求线段MN 的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为 .(用含α的式子表示)25.(10分)(2020•天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.2020年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√5【解答】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.−√5是负数,符合题意;故选:D.2.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【解答】解:341000=3.41×105,故选:A.3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【解答】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,41【解答】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=42,故选:C .5.(4分)(2020•天水)如图所示,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,若∠P =70°,则∠ACB 的度数为( )A .50°B .55°C .60°D .65°【解答】解:连接OA 、OB ,如图,∵P A 、PB 分别与⊙O 相切于A 、B 两点,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∴∠AOB +∠P =180°,∵∠P =70°,∴∠AOB =110°,∴∠ACB =12∠AOB =55°.故选:B .6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项不合题意;C 、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=cx的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【解答】解:∵EB⊥AC,DC⊥AC,∴EB ∥DC , ∴△ABE ∽△ACD , ∴AB AC=BE CD,∵BE =1.5m ,AB =1.2m ,BC =12.8m , ∴AC =AB +BC =14m , ∴1.214=1.5DC,解得,DC =17.5,即建筑物CD 的高是17.5m , 故选:A .9.(4分)(2020•天水)若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( ) A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣4【解答】解:∵3x +a ≤2, ∴3x ≤2﹣a , 则x ≤2−a3, ∵不等式只有2个正整数解, ∴不等式的正整数解为1、2, 则2≤2−a3<3, 解得:﹣7<a ≤﹣4, 故选:D .10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2【解答】解:∵2100=S , ∴2100+2101+2102+…+2199+2200 =S +2S +22S +…+299S +2100S =S (1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=mn(m﹣1)(m+1).【解答】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为13.【解答】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是x≥﹣2且x≠3.【解答】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为1.【解答】解:a+2b=103①,3a+4b=163②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是√22.【解答】解:如图,连接AB .∵OA =AB =√10,OB =2√5, ∴OB 2=OA 2+AB 2, ∴∠OAB =90°,∴△AOB 是等腰直角三角形, ∴∠AOB =45°, ∴sin ∠AOB =√22,故答案为√22. 16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是83.【解答】解:设圆锥的底面半径为r , 由题意得,120π×8180=2πr ,解得,r =83, 故答案为:83.17.(4分)(2020•天水)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 (﹣1,5) .【解答】解:如图,过点E 作x 轴的垂线EH ,垂足为H .过点G 作x 轴的垂线GM ,垂足为M ,连接GE 、FO 交于点O ′. ∵四边形OEFG 是正方形,∴OG =EO ,∠GOM =∠OEH ,∠OGM =∠EOH , 在△OGM 与△EOH 中, {∠OGM =∠EOHOG =EO ∠GOM =∠OEH∴△OGM ≌△EOH (ASA ) ∴GM =OH =2,OM =EH =3, ∴G (﹣3,2). ∴O ′(−12,52).∵点F 与点O 关于点O ′对称, ∴点F 的坐标为 (﹣1,5). 故答案是:(﹣1,5).18.(4分)(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 2 .【解答】解: 法一:由题意可得, △ADF ≌△ABG ,∴DF =BG ,∠DAF =∠BAG , ∵∠DAB =90°,∠EAF =45°, ∴∠DAF +∠EAB =45°, ∴∠BAG +∠EAB =45°, ∴∠EAF =∠EAG , 在△EAG 和△EAF 中, {AG =AF∠EAG =∠EAF AE =AE, ∴△EAG ≌△EAF (SAS ), ∴GE =FE ,设BE =x ,则GE =BG +BE =3+x ,CE =6﹣x , ∴EF =3+x , ∵CD =6,DF =3, ∴CF =3, ∵∠C =90°,∴(6﹣x )2+32=(3+x )2, 解得,x =2, 即BE =2,法二:设BE =x ,连接GF ,如下图所示,∵四边形ABCD 为正方形, ∴∠ABE =∠GCF =90°,∵△ADF 绕点A 顺时针旋转90°得到△ABG , ∴∠CAF =90°,GA =F A , ∴△GAF 为等腰直角三角形, ∵∠EAF =45°, ∴AE 垂直平分GF , ∴∠AEB +∠CGF =90°,∵在Rt △AEB 中,∠AEB +∠BAE =90°, ∴∠BAE =∠CGF , ∴△BAE ~△CGF , ∴BE CF=AB GC,∵CF =CD ﹣DF =6﹣3=3,GC =BC +BG =BC +DF =6+3=9, ∴x3=69,∴x =2, 即BE =2, 故答案为:2.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程) 19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a +2a+1÷a−1a+1,其中a =√3.【解答】解:(1)原式=4×√32−(2−√3)+1﹣2√3+4 =2√3−2+√3+1﹣2√3+4 =3+√3;(2)原式=1a−1−a−1(a+1)2•a+1a−1=1a−1−1a+1=a+1 (a+1)(a−1)−a−1 (a+1)(a−1)=2(a+1)(a−1)=2a2−1,当a=√3时,原式=(√3)2−1=23−1=22=1.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为50人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为144度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.【解答】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×2050=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:812=2 3.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.【解答】解:(1)∵△AOC 的面积为4, ∴12|k |=4,解得,k =﹣8,或k =8(不符合题意舍去), ∴反比例函数的关系式为y =−8x,把点A (﹣2,a )和点B (b ,﹣1)代入y =−8x得, a =4,b =8; 答:a =4,b =8;(2)根据一次函数与反比例函数的图象可知,不等式mx +n >kx 的解集为x <﹣2或0<x <8;(3)∵点A (﹣2,4)关于y 轴的对称点A ′(2,4), 又B (8,﹣1),则直线A ′B 与y 轴的交点即为所求的点P , 设直线A ′B 的关系式为y =cx +d , 则有{2c +d =48c +d =−1,解得,{c =−56d =173, ∴直线A ′B 的关系式为y =−56x +173,∴直线y =−56x +173与y 轴的交点坐标为(0,173),即点P 的坐标为(0,173).四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行30分钟后到达B 处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)【解答】解:(1)由题意得,∠P AB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠P AB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×3060=20(海里),在Rt△APH中,tan∠P AB=tan30°=PHAH=√33,即x20+x =√33,解得:x=10√3+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).【解答】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2√3)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD=√OB2−BD2=√42−(2√3)2=2,∴OD=12OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=12×2 √3×2−60π×22360=2√3−2π3.24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为√3:1.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为√3;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα:1.(用含α的式子表示)【解答】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=√3AC,∴AB:AC=√3:1.故答案为√3:1.理解运用:(1)设CA=CB=m,则AB=√3m,由题意2m+√3m=4+2√3,∴m=2,∴AC=CB=2,AB=2√3,∴AD=DB=√3,CD=AC•sin30°=1,∴S△ABC=12•AB•CD=√3.故答案为√3.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=√3EF=20√3,∵FM=MG.GN=GH,∴MN=12FH=10√3.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB :AC =2sin α:1. 故答案为2sin α:1.25.(10分)(2020•天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元. (1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【解答】解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x ﹣20)元, 由题意得:2000x=1200x−20,解得:x =50,经检验,x =50是原方程的解,且符合题意, 50﹣20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40﹣a )件, 由题意得:{50a +30(40−a)≤1560a ≥12(40−a), 解得403≤a ≤18,∵a 为正整数,∴a =14、15、16、17、18, ∴商店共有5种进货方案;(3)设销售A 、B 两种商品共获利y 元,由题意得:y =(80﹣50﹣m )a +(45﹣30)(40﹣a )=(15﹣m )a +600, ①当10<m <15时,15﹣m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品, ②当m =15时,15﹣m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同, ③当15<m <20时,15﹣m <0,y 随a 的增大而减小, ∴当a =14时,获利最大,即买14件A 商品,26件B 商品.26.(13分)(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:{−b2a =14a −2b +c =0c =6,解得:{ a =−34b =32c =6,∴抛物线的函数表达式为:y =−34x 2+32x +6;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示:∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6), ∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6, ∴S △BCD =34S △AOC =34×6=92, 当y =0时,−34x 2+32x +6=0, 解得:x 1=﹣2,x 2=4, ∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n , 则{0=4k +n6=n , 解得:{k =−32n =6,∴直线BC 的函数表达式为:y =−32x +6, ∵点D 的横坐标为m (1<m <4), ∴点D 的坐标为:(m ,−34m 2+32m +6), 点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m ,∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m , ∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3, ∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154, ∴点D 的坐标为:(3,154),分三种情况讨论:①当DB 为对角线时,如图2所示: ∵四边形BNDM 是平行四边形, ∴DN ∥BM , ∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称, ∴N (﹣1,154),∴DN =3﹣(﹣1)=4, ∴BM =4, ∵B (4,0), ∴M (8,0);②当DM 为对角线时,如图3所示: 由①得:N (﹣1,154),DN =4,∵四边形BNDM 是平行四边形, ∴DN =BM =4, ∵B (4,0), ∴M (0,0); ③当DN 为对角线时,∵四边形BNDM 是平行四边形, ∴DM =BN ,DM ∥BN , ∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标相等, ∵点D (3,154),∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154, 解得:x 1=1+√14,x 2=1−√14, 当x =1+√14时,如图4所示: 则N (1+√14,−154),分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q , 在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ ,∴Rt △DEM ≌Rt △NQB (HL ),∴BQ=EM,∵BQ=1+√14−4=√14−3,∴EM=√14−3,∵E(3,0),∴M(√14,0);当x=1−√14时,如图5所示:则N(1−√14,−15 4),同理得点M(−√14,0);综上所述,点M的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).。
2020年甘肃省天水市中考数学试题及参考答案(word解析版)
2020年天水市初中毕业与升学学业考试(中考)试卷数学(全卷满分150分,考试时间为120分钟)A卷(100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4| D.﹣2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103 D.0.341×1063.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42 B.42,43 C.42,42 D.42,415.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4 B.﹣7≤a≤﹣4C.﹣7≤a<﹣4 D.﹣7<a≤﹣410.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:m3n﹣mn=.12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.已知函数y=,则自变量x的取值范围是.14.已知a+2b=,3a+4b=,则a+b的值为.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.20.(10分)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.B卷(50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)23.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).24.(10分)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)25.(10分)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.答案与解析A卷(100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4| D.﹣【知识考点】实数.【思路分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得.【解答过程】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.﹣是负数,符合题意;故选:D.【总结归纳】本题主要考查实数,解题的关键是掌握相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念.2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:341000=3.41×105,故选:A.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【知识考点】正方体相对两个面上的文字.【思路分析】根据正方体的展开图的特点,得出相对的面,进而得出答案.【解答过程】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.【总结归纳】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是正确选择的前提.4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42 B.42,43 C.42,42 D.42,41【知识考点】中位数;众数.【思路分析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.【解答过程】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为=42,故选:C.【总结归纳】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P =70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°【知识考点】圆周角定理;切线的性质.【思路分析】连接OA、OB,如图,根据切线的性质得OA⊥PA,OB⊥PB,则利用四边形内角和计算出∠AOB=110°,然后根据圆周角定理得到∠ACB的度数.【解答过程】解:连接OA、OB,如图,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=∠AOB=55°.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆心角定理.6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答过程】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象;二次函数的图象.【思路分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧可知b<0,再由函数图象交y轴的正坐标可知c>0,利用排除法即可得出正确答案.【解答过程】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.【总结归纳】本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB =1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【知识考点】相似三角形的应用.【思路分析】根据题意和图形,利用三角形相似,可以计算出CD的长,从而可以解答本题.【解答过程】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.【总结归纳】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4 B.﹣7≤a≤﹣4 C.﹣7≤a<﹣4 D.﹣7<a≤﹣4【知识考点】一元一次不等式的整数解.【思路分析】先解不等式得出x≤,根据不等式只有2个正整数解知其正整数解为1和2,据此得出2≤<3,解之可得答案.【解答过程】解:∵3x+a≤2,∴3x≤2﹣a,则x≤,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤<3,解得:﹣7<a≤﹣4,故选:D.【总结归纳】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解不等式的基本步骤和依据,并根据不等式的整数解的情况得出某一字母的不等式组.10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【知识考点】列代数式;规律型:数字的变化类.【思路分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102, (2199)2200,求和,即可用含S的式子表示这组数据的和.【解答过程】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.【总结归纳】本题考查了规律型﹣数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:m3n﹣mn=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提出公因式mn,再利用平方差公式即可解答.【解答过程】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).【总结归纳】本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公式法.12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.【知识考点】解一元二次方程﹣因式分解法;三角形三边关系.【思路分析】先利用因式分解法解方程x2﹣8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【解答过程】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.【总结归纳】本题考查了解一元二次方程的因式分解法及三角形的三边关系,熟练掌握相关性质及定理是解题的关键.13.已知函数y=,则自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答过程】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.【总结归纳】本题考查了函数自变量的取值范围问题,当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,考虑被开方数为非负数.14.已知a+2b=,3a+4b=,则a+b的值为.【知识考点】整式的加减;解二元一次方程组.【思路分析】用方程3a+4b=减去a+2b=,即可得出2a+2b=2,进而得出a+b=1.【解答过程】解:a+2b=①,3a+4b=②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.【总结归纳】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.【知识考点】解直角三角形.【思路分析】如图,连接AB.证明△OAB是等腰直角三角形即可解决问题.【解答过程】解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为.【总结归纳】本题考查解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.【知识考点】圆锥的计算.【思路分析】根据半径为8,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可.【解答过程】解:设圆锥的底面半径为r,由题意得,=2πr,解得,r=,故答案为:.【总结归纳】本题考查弧长的计算方法,明确扇形的弧长与圆锥底面周长的关系是正确解答的关键.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F 的坐标为.【知识考点】坐标与图形性质;全等三角形的判定与性质;正方形的性质.【思路分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答过程】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).【总结归纳】考查了正方形的性质,坐标与图形性质,全等三角形的判定与性质,根据题意求得点G的坐标是解题的难点.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.【知识考点】全等三角形的判定与性质;正方形的性质;旋转的性质.【思路分析】根据旋转的性质可知,△ADF≌△ABG,然后即可得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以求出BE的长,本题得以解决.【解答过程】解:法一:由题意可得,△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,法二:设BE=x,连接GF,如下图所示,∵四边形ABCD为正方形,∴∠ABE=∠GCF=90°,∵△ADF绕点A顺时针旋转90°得到△ABG,∴∠CAF=90°,GA=FA,∴△GAF为等腰直角三角形,∵∠EAF=45°,∴AE垂直平分GF,∴∠AEB+∠CGF=90°,∵在Rt△AEB中,∠AEB+∠BAE=90°,∴∠BAE=∠CGF,∴△BAE~△CGF,∴,∵CF=CD﹣DF=6﹣3=3,GC=BC+BG=BC+DF=6+3=9,∴,∴x=2,即BE=2,故答案为:2.【总结归纳】本题考查旋转的性质、全等三角形的判定和性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.【知识考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答过程】解:(1)原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=3+;(2)原式=﹣•=﹣=﹣==,当a=时,原式====1.【总结归纳】本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.(10分)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.【知识考点】扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)由非常满意的有18人,占36%,即可求得此次调查中接受调查的人数;(2)用总人数减去其他满意程度的人数,求出满意的人数,从而补全统计图;(3)用360°乘以满意的人数所占的百分比即可得出答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择回访市民为“一男一女”的情况,再利用概率公式即可求得答案.【解答过程】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:=.【总结归纳】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC 的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)根据△AOC的面积为4和反比例函数图象的位置,可以确定k的值,进而确定反比例函数的关系式,代入可求出点A、B的坐标,求出a、b的值;(2)根据图象直接写出mx+n>的解集;(3)求出点A(﹣2,4)关于y轴的对称点A′(2,4),根据题意直线A′B与y轴的交点即为所求的点P,求出直线A′B的关系式,进而求出与y轴的交点坐标即可.【解答过程】解:(1)∵△AOC的面积为4,∴|k|=4,解得,k=﹣8,或k=8(不符合题意舍去),∴反比例函数的关系式为y=﹣,把点A(﹣2,a)和点B(b,﹣1)代入y=﹣得,a=4,b=8;答:a=4,b=8;(2)根据一次函数与反比例函数的图象可知,不等式mx+n>的解集为x<﹣2或0<x<8;(3)∵点A(﹣2,4)关于y轴的对称点A′(2,4),又B(8,﹣1),则直线A′B与y轴的交点即为所求的点P,设直线A′B的关系式为y=cx+d,则有,解得,,∴直线A′B的关系式为y=﹣x+,∴直线y=﹣x+与y轴的交点坐标为(0,),即点P的坐标为(0,).【总结归纳】本题考查一次函数、反比例函数的图象和性质,轴对称的性质和应用,把点的坐标代入是求函数关系式常用方法,作对称点是求线段和或差最小值的常用方法.B卷(50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)由题意得,∠PAB=30°,∠APB=135°由三角形内角和定理即可得出答案;(2)作PH⊥AB于H,则△PBH是等腰直角三角形,BH=PH,设BH=PH=x海里,求出AB =20海里,在Rt△APH中,由三角函数定义得出方程,解方程即可.【解答过程】解:(1)由题意得,∠PAB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠PAB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×=20(海里),在Rt△APH中,tan∠PAB=tan30°==,即=,解得:x=10+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题以及等腰直角三角形的判定与性质,熟练掌握锐角三角函数的概念是解题的关键.23.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).【知识考点】角平分线的性质;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OD,求出OD∥AC,求出OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理求出OD=2,求出OB=4,得出∠B=30°,再分别求出△ODB和扇形DOF 的面积即可.【解答过程】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD===2,∴OD=OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=×2 ×2﹣=2﹣.【总结归纳】本题考查了切线的判定,平行线的性质和判定,等腰三角形的性质,扇形的面积计算、含30°角的直角三角形的性质,勾股定理等知识点;熟练掌握切线的判定与性质和勾股定理是解此题的关键.24.(10分)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)【知识考点】三角形综合题.【思路分析】性质探究:如图1中,过点C作CD⊥AB于D.解直角三角形求出AB(用AC表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA=CB=m,则AB=m,构建方程求出m即可解决问题.②如图2中,连接FH.求出FH,利用三角形中位线定理解决问题即可.类比拓展:利用等腰三角形的性质求出AB与AC的关系即可.【解答过程】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=AC,∴AB:AC=:1.故答案为:1.理解运用:(1)设CA=CB=m,则AB=m,由题意2m+m=4+2,∴m=2,∴AC=CB=2,AB=2,∴AD=DB=,CD=AC•sin30°=1,∴S△ABC=•AB•CD=.故答案为.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【总结归纳】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.25.(10分)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【知识考点】分式方程的应用;一元一次不等式组的应用;一次函数的应用.【思路分析】(1)设A种商品每件的进价是x元,根据用2000元购进A种商品和用1200元购进B种商品的数量相同,列分式方程,解出可得结论;。
2020年甘肃省天水市中考数学试卷 (解析版)
2020年甘肃省天水市中考数学试卷一、选择题(共10小题).1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.﹣2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×1063.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,415.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4 10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:m3n﹣mn=.12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.已知函数y=,则自变量x的取值范围是.14.已知a+2b=,3a+4b=,则a+b的值为.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD 于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)23.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).24.性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)25.天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m <20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.﹣【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得.解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.﹣是负数,符合题意;故选:D.2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:341000=3.41×105,故选:A.3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【分析】根据正方体的展开图的特点,得出相对的面,进而得出答案.解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,41【分析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为=42,故选:C.5.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°【分析】连接OA、OB,如图,根据切线的性质得OA⊥PA,OB⊥PB,则利用四边形内角和计算出∠AOB=110°,然后根据圆周角定理得到∠ACB的度数.解:连接OA、OB,如图,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧可知b<0,再由函数图象交y轴的正坐标可知c>0,利用排除法即可得出正确答案.解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【分析】根据题意和图形,利用三角形相似,可以计算出CD的长,从而可以解答本题.解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4【分析】先解不等式得出x≤,根据不等式只有2个正整数解知其正整数解为1和2,据此得出2≤<3,解之可得答案.解:∵3x+a≤2,∴3x≤2﹣a,则x≤,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤<3,解得:﹣7<a≤﹣4,故选:D.10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:m3n﹣mn=mn(m﹣1)(m+1).【分析】先提出公因式mn,再利用平方差公式即可解答.解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为13.【分析】先利用因式分解法解方程x2﹣8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.13.已知函数y=,则自变量x的取值范围是x≥﹣2且x≠3.【分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.14.已知a+2b=,3a+4b=,则a+b的值为1.【分析】用方程3a+4b=减去a+2b=,即可得出2a+2b=2,进而得出a+b=1.解:a+2b=①,3a+4b=②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.【分析】如图,连接AB.证明△OAB是等腰直角三角形即可解决问题.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.【分析】根据半径为8,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可.解:设圆锥的底面半径为r,由题意得,=2πr,解得,r=,故答案为:.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD 于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为2.【分析】根据旋转的性质可知,△ADF≌△ABG,然后即可得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以得到DE的长,本题得以解决.解:由题意可得,△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即CE=2,故答案为:2.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.【分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:(1)原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=3+;(2)原式=﹣•=﹣=﹣==,当a=时,原式====1.20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为50人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为144度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.【分析】(1)由非常满意的有18人,占36%,即可求得此次调查中接受调查的人数;(2)用总人数减去其他满意程度的人数,求出满意的人数,从而补全统计图;(3)用360°乘以满意的人数所占的百分比即可得出答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择回访市民为“一男一女”的情况,再利用概率公式即可求得答案.解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:=.21.如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.【分析】(1)根据△AOC的面积为4和反比例函数图象的位置,可以确定k的值,进而确定反比例函数的关系式,代入可求出点A、B的坐标,求出a、b的值;(2)根据图象直接写出mx+n>的解集;(3)求出点A(﹣2,4)关于y轴的对称点A′(2,4),根据题意直线A′B与y轴的交点即为所求的点P,求出直线A′B的关系式,进而求出与y轴的交点坐标即可.解:(1)∵△AOC的面积为4,∴|k|=4,解得,k=﹣8,或k=8(不符合题意舍去),∴反比例函数的关系式为y=﹣,把点A(﹣2,a)和点B(b,﹣1)代入y=﹣得,a=4,b=8;答:a=4,b=8;(2)根据一次函数与反比例函数的图象可知,不等式mx+n>的解集为x<﹣2或0<x<8;(3)∵点A(﹣2,4)关于y轴的对称点A′(2,4),又B(8,﹣1),则直线A′B与y轴的交点即为所求的点P,设直线A′B的关系式为y=cx+d,则有,解得,,∴直线A′B的关系式为y=﹣x+,∴直线y=﹣x+与y轴的交点坐标为(0,),即点P的坐标为(0,).四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)【分析】(1)由题意得,∠PAB=30°,∠APB=135°由三角形内角和定理即可得出答案;(2)作PH⊥AB于H,则△PBH是等腰直角三角形,BH=PH,设BH=PH=x海里,求出AB=20海里,在Rt△APH中,由三角函数定义得出方程,解方程即可.解:(1)由题意得,∠PAB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠PAB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×=20(海里),在Rt△APH中,tan∠PAB=tan30°==,即=,解得:x=10+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.23.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).【分析】(1)连接OD,求出OD∥AC,求出OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理求出OD=2,求出OB=4,得出∠B=30°,再分别求出△ODB和扇形DOF的面积即可.【解答】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD===2,∴OD=OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=×2 ×2﹣=2﹣.24.性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为:1.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα:1.(用含α的式子表示)【分析】性质探究:如图1中,过点C作CD⊥AB于D.解直角三角形求出AB(用AC 表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA=CB=m,则AB=m,构建方程求出m 即可解决问题.②如图2中,连接FH.求出FH,利用三角形中位线定理解决问题即可.类比拓展:利用等腰三角形的性质求出AB与AC的关系即可.解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=AC,∴AB:AC=:1.故答案为:1.理解运用:(1)设CA=CB=m,则AB=m,由题意2m+m=4+2,∴m=2,∴AC=CB=2,AB=2,∴AD=DB=,CD=AC•sin30°=1,∴S△ABC=•AB•CD=.故答案为.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.25.天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m <20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【分析】(1)设A种商品每件的进价是x元,根据用2000元购进A种商品和用1200元购进B种商品的数量相同,列分式方程,解出可得结论;(2)设购买A种商品a件,根据用不超过1560元的资金购进A、B两种商品共40件,A种商品的数量不低于B种商品数量的一半,列不等式组,解出取正整数可得结论;(3)设销售A、B两种商品共获利y元,根据y=A商品的利润+B商品的利润,根据m 的值及一次函数的增减性可得结论.解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣20)元,由题意得:,解得:x=50,经检验,x=50是原方程的解,且符合题意,50﹣20=30,答:A种商品每件的进价是50元,B种商品每件的进价是30元;(2)设购买A种商品a件,则购买B商品(40﹣a)件,由题意得:,解得,∵a为正整数,∴a=14、15、16、17、18,∴商店共有5种进货方案;(3)设销售A、B两种商品共获利y元,由题意得:y=(80﹣50﹣m)a+(45﹣30)(40﹣a)=(15﹣m)a+600,①当10<m<15时,15﹣m>0,y随a的增大而增大,∴当a=18时,获利最大,即买18件A商品,22件B商品,②当m=15时,15﹣m=0,y与a的值无关,即(2)问中所有进货方案获利相同,③当15<m<20时,15﹣m<0,y随a的增大而减小,∴当a=14时,获利最大,即买14件A商品,26件B商品.26.如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)由题意得出方程组,解方程组即可;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,求出点B的坐标为(4,0),由待定系数法求出直线BC的函数表达式为y=﹣x+6,则点D的坐标为(m,﹣m2+m+6),点G的坐标为(m,﹣m+6),求出S△BCD =﹣m2+6m=,解方程即可;(3)求出点D的坐标为(3,),分三种情况,①当DB为对角线时,证出DN∥x 轴,则点D与点N关于直线x=1对称,得出N(﹣1,)求出BM=4,即可得出答案;②当DM为对角线时,由①得N(﹣1,),DN=4,由平行四边形的性质得出DN =BM=4,进而得出答案;③当DN为对角线时,点D与点N的纵坐标相等,N(1+,﹣)或N(1﹣,﹣),再分两种情况解答即可.解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:∵点A的坐标为(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴S△AOC=OA•OC=×2×6=6,∴S△BCD=S△AOC=×6=,当y=0时,﹣x2+x+6=0,解得:x1=﹣2,x2=4,∴点B的坐标为(4,0),设直线BC的函数表达式为:y=kx+n,则,解得:,∴直线BC的函数表达式为:y=﹣x+6,∵点D的横坐标为m(1<m<4),∴点D的坐标为:(m,﹣m2+m+6),点G的坐标为:(m,﹣m+6),∴DG=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,CF=m,BE=4﹣m,∴S△BCD=S△CDG+S△BDG=DG•CF+DG•BE=DG×(CF+BE)=×(﹣m2+3m)×(m+4﹣m)=﹣m2+6m,∴﹣m2+6m=,解得:m1=1(不合题意舍去),m2=3,∴m的值为3;(3)由(2)得:m=3,﹣m2+m+6=﹣×32+×3+6=,∴点D的坐标为:(3,),分三种情况讨论:①当DB为对角线时,如图2所示:∵四边形BNDM是平行四边形,∴DN∥BM,∴DN∥x轴,∴点D与点N关于直线x=1对称,∴N(﹣1,),∴DN=3﹣(﹣1)=4,∴BM=4,∵B(4,0),∴M(8,0);②当DM为对角线时,如图3所示:由①得:N(﹣1,),DN=4,∵四边形BNDM是平行四边形,∴DN=BM=4,∵B(4,0),∴M(0,0);③当DN为对角线时,∵四边形BNDM是平行四边形,∴DM=BN,DM∥BN,∴∠DMB=∠MBN,∴点D与点N的纵坐标相等,∵点D(3,),∴点N的纵坐标为:﹣,将y=﹣代入y=﹣x2+x+6中,得:﹣x2+x+6=﹣,解得:x1=1+,x2=1﹣,当x=1+时,如图4所示:则N(1+,﹣),分别过点D、N作x轴的垂线,垂足分别为E、Q,在Rt△DEM和Rt△NQB中,,∴Rt△DEM≌Rt△NQB(HL),∴BQ=EM,∵BQ=1+﹣4=﹣3,∴EM=﹣3,∵E(3,0),∴M(,0);当x=1﹣时,如图5所示:则N(1﹣,﹣),同理得点M(﹣,0);综上所述,点M的坐标为(8,0)或(0,0)或(,0)或(﹣,0).。
2020年甘肃省天水市中考数学试题(解析版)
2020年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√5【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得.【解答】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.−√5是负数,符合题意;故选:D.【点评】本题主要考查实数,解题的关键是掌握相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念.2.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:341000=3.41×105,故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A .文B .羲C .弘D .化【分析】根据正方体的展开图的特点,得出相对的面,进而得出答案.【解答】解:根据正方体表面展开图可知,“相间、Z 端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D .【点评】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是正确选择的前提.4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( )A .40,42B .42,43C .42,42D .42,41【分析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.【解答】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=42,故选:C .【点评】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)(2020•天水)如图所示,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,若∠P =70°,则∠ACB 的度数为( )A .50°B .55°C .60°D .65°【分析】连接OA、OB,如图,根据切线的性质得OA⊥P A,OB⊥PB,则利用四边形内角和计算出∠AOB=110°,然后根据圆周角定理得到∠ACB的度数.【解答】解:连接OA、OB,如图,∵P A、PB分别与⊙O相切于A、B两点,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=12∠AOB=55°.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆心角定理.6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧可知b<0,再由函数图象交y轴的正坐标可知c>0,利用排除法即可得出正确答案.【解答】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=cx的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.【点评】本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A .17.5mB .17mC .16.5mD .18m【分析】根据题意和图形,利用三角形相似,可以计算出CD 的长,从而可以解答本题.【解答】解:∵EB ⊥AC ,DC ⊥AC ,∴EB ∥DC ,∴△ABE ∽△ACD ,∴AB AC =BE CD ,∵BE =1.5m ,AB =1.2m ,BC =12.8m ,∴AC =AB +BC =14m ,∴1.214=1.5DC ,解得,DC =17.5,即建筑物CD 的高是17.5m ,故选:A .【点评】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.(4分)(2020•天水)若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣4 【分析】先解不等式得出x ≤2−a 3,根据不等式只有2个正整数解知其正整数解为1和2,据此得出2≤2−a 3<3,解之可得答案.【解答】解:∵3x +a ≤2,∴3x ≤2﹣a ,则x ≤2−a 3,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤2−a 3<3,解得:﹣7<a ≤﹣4,故选:D .【点评】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解不等式的基本步骤和依据,并根据不等式的整数解的情况得出某一字母的不等式组.10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.【点评】本题考查了规律型﹣数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=mn(m﹣1)(m+1).【分析】先提出公因式mn,再利用平方差公式即可解答.【解答】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).【点评】本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公式法.12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为13.【分析】先利用因式分解法解方程x2﹣8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【解答】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.【点评】本题考查了解一元二次方程的因式分解法及三角形的三边关系,熟练掌握相关性质及定理是解题的关键.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是x≥﹣2且x≠3.【分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.【点评】本题考查了函数自变量的取值范围问题,当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,考虑被开方数为非负数.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为1.【分析】用方程3a+4b=163减去a+2b=103,即可得出2a+2b=2,进而得出a+b=1.【解答】解:a+2b=103①,3a+4b=163②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是√22.【分析】如图,连接AB.证明△OAB是等腰直角三角形即可解决问题.【解答】解:如图,连接AB .∵OA =AB =√10,OB =2√5,∴OB 2=OA 2+AB 2,∴∠OAB =90°,∴△AOB 是等腰直角三角形,∴∠AOB =45°,∴sin ∠AOB =√22, 故答案为√22. 【点评】本题考查解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是 83 .【分析】根据半径为8,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可.【解答】解:设圆锥的底面半径为r ,由题意得,120π×8180=2πr , 解得,r =83,故答案为:83. 【点评】本题考查弧长的计算方法,明确扇形的弧长与圆锥底面周长的关系是正确解答的关键.17.(4分)(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,{∠OGM=∠EOH OG=EO∠GOM=∠OEH∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(−12,52).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).【点评】考查了正方形的性质,坐标与图形性质,全等三角形的判定与性质,根据题意求得点G 的坐标是解题的难点.18.(4分)(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 2 .【分析】根据旋转的性质可知,△ADF ≌△ABG ,然后即可得到DF =BG ,∠DAF =∠BAG ,然后根据题目中的条件,可以得到△EAG ≌△EAF ,再根据DF =3,AB =6和勾股定理,可以得到DE 的长,本题得以解决.【解答】解:由题意可得,△ADF ≌△ABG ,∴DF =BG ,∠DAF =∠BAG ,∵∠DAB =90°,∠EAF =45°,∴∠DAF +∠EAB =45°,∴∠BAG +∠EAB =45°,∴∠EAF =∠EAG ,在△EAG 和△EAF 中,{AG =AF ∠EAG =∠EAF AE =AE,∴△EAG ≌△EAF (SAS ),∴GE =FE ,设BE =x ,则GE =BG +BE =3+x ,CE =6﹣x ,∴EF =3+x ,∵CD =6,DF =3,∴CF =3,∵∠C =90°,∴(6﹣x )2+32=(3+x )2,解得,x =2,即CE=2,故答案为:2.【点评】本题考查旋转的性质、全等三角形的判定和性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a2+2a+1÷a−1a+1,其中a=√3.【分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)原式=4×√32−(2−√3)+1﹣2√3+4=2√3−2+√3+1﹣2√3+4=3+√3;(2)原式=1a−1−a−1(a+1)2•a+1a−1=1a−1−1a+1=a+1(a+1)(a−1)−a−1(a+1)(a−1)=2(a+1)(a−1)=2a2−1,当a=√3时,原式=(√3)2−1=2 3−1=2 2=1.【点评】本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为50人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为144度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.【分析】(1)由非常满意的有18人,占36%,即可求得此次调查中接受调查的人数;(2)用总人数减去其他满意程度的人数,求出满意的人数,从而补全统计图;(3)用360°乘以满意的人数所占的百分比即可得出答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择回访市民为“一男一女”的情况,再利用概率公式即可求得答案.【解答】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×2050=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:812=2 3.【点评】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.【分析】(1)根据△AOC 的面积为4和反比例函数图象的位置,可以确定k 的值,进而确定反比例函数的关系式,代入可求出点A 、B 的坐标,求出a 、b 的值; (2)根据图象直接写出mx +n >kx的解集;(3)求出点A (﹣2,4)关于y 轴的对称点A ′(2,4),根据题意直线A ′B 与y 轴的交点即为所求的点P ,求出直线A ′B 的关系式,进而求出与y 轴的交点坐标即可. 【解答】解:(1)∵△AOC 的面积为4, ∴12|k |=4,解得,k =﹣8,或k =8(不符合题意舍去), ∴反比例函数的关系式为y =−8x ,把点A (﹣2,a )和点B (b ,﹣1)代入y =−8x得, a =4,b =8; 答:a =4,b =8;(2)根据一次函数与反比例函数的图象可知,不等式mx +n >k x的解集为x <﹣2或0<x <8;(3)∵点A (﹣2,4)关于y 轴的对称点A ′(2,4), 又B (8,﹣1),则直线A ′B 与y 轴的交点即为所求的点P , 设直线A ′B 的关系式为y =cx +d , 则有{2c +d =48c +d =−1,解得,{c =−56d =173,∴直线A ′B 的关系式为y =−56x +173,∴直线y =−56x +173与y 轴的交点坐标为(0,173), 即点P 的坐标为(0,173).【点评】本题考查一次函数、反比例函数的图象和性质,轴对称的性质和应用,把点的坐标代入是求函数关系式常用方法,作对称点是求线段和或差最小值的常用方法. 四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行30分钟后到达B 处,此时测得灯塔P 在北偏东45°方向上. (1)求∠APB 的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)【分析】(1)由题意得,∠P AB =30°,∠APB =135°由三角形内角和定理即可得出答案;(2)作PH ⊥AB 于H ,则△PBH 是等腰直角三角形,BH =PH ,设BH =PH =x 海里,求出AB =20海里,在Rt △APH 中,由三角函数定义得出方程,解方程即可.【解答】解:(1)由题意得,∠P AB =90°﹣60°=30°,∠APB =90°+45°=135°, ∴∠APB =180°﹣∠P AB ﹣∠APB =180°﹣30°﹣135°=15°; (2)作PH ⊥AB 于H ,如图: 则△PBH 是等腰直角三角形, ∴BH =PH , 设BH =PH =x 海里,由题意得:AB =40×3060=20(海里),在Rt △APH 中,tan ∠P AB =tan30°=PHAH =√33,即x20+x =√33,解得:x=10√3+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.【点评】本题考查的是解直角三角形的应用﹣方向角问题以及等腰直角三角形的判定与性质,熟练掌握锐角三角函数的概念是解题的关键.23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).【分析】(1)连接OD,求出OD∥AC,求出OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理求出OD=2,求出OB=4,得出∠B=30°,再分别求出△ODB和扇形DOF的面积即可.【解答】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2√3)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD=√OB2−BD2=√42−(2√3)2=2,∴OD=12OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=12×2 √3×2−60π×22360=2√3−2π3.【点评】本题考查了切线的判定,平行线的性质和判定,等腰三角形的性质,扇形的面积计算、含30°角的直角三角形的性质,勾股定理等知识点;熟练掌握切线的判定与性质和勾股定理是解此题的关键.24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为√3:1.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为√3;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα:1.(用含α的式子表示)【分析】性质探究:如图1中,过点C作CD⊥AB于D.解直角三角形求出AB(用AC 表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA=CB=m,则AB=√3m,构建方程求出m 即可解决问题.②如图2中,连接FH.求出FH,利用三角形中位线定理解决问题即可.类比拓展:利用等腰三角形的性质求出AB与AC的关系即可.【解答】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=√3AC,∴AB:AC=√3:1.故答案为√3:1.理解运用:(1)设CA=CB=m,则AB=√3m,由题意2m+√3m=4+2√3,∴m=2,∴AC=CB=2,AB=2√3,∴AD=DB=√3,CD=AC•sin30°=1,∴S△ABC=12•AB•CD=√3.故答案为√3.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=√3EF=20√3,∵FM=MG.GN=GH,∴MN=12FH=10√3.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.25.(10分)(2020•天水)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元. (1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【分析】(1)设A 种商品每件的进价是x 元,根据用2000元购进A 种商品和用1200元购进B 种商品的数量相同,列分式方程,解出可得结论;(2)设购买A 种商品a 件,根据用不超过1560元的资金购进A 、B 两种商品共40件,A 种商品的数量不低于B 种商品数量的一半,列不等式组,解出取正整数可得结论; (3)设销售A 、B 两种商品共获利y 元,根据y =A 商品的利润+B 商品的利润,根据m 的值及一次函数的增减性可得结论.【解答】解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x ﹣20)元, 由题意得:2000x=1200x−20,解得:x =50,经检验,x =50是原方程的解,且符合题意, 50﹣20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40﹣a )件, 由题意得:{50a +30(40−a)≤1560a ≥12(40−a), 解得403≤a ≤18,∵a 为正整数,∴a =14、15、16、17、18, ∴商店共有5种进货方案;(3)设销售A 、B 两种商品共获利y 元,由题意得:y =(80﹣50﹣m )a +(45﹣30)(40﹣a )=(15﹣m )a +600,①当10<m <15时,15﹣m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品,②当m =15时,15﹣m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当15<m <20时,15﹣m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品.【点评】本题考查了分式方程和一元一次不等式组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程可不等式组求解,分式方程要注意检验.26.(13分)(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【分析】(1)由题意得出方程组,解方程组即可;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,求出点B 的坐标为(4,0),由待定系数法求出直线BC 的函数表达式为y =−32x +6,则点D 的坐标为(m ,−34m 2+32m +6),点G 的坐标为(m ,−32m +6),求出S △BCD =−32m 2+6m =92,解方程即可; (3)求出点D 的坐标为(3,154),分三种情况,①当DB 为对角线时,证出DN ∥x 轴,则点D 与点N 关于直线x =1对称,得出N (﹣1,154)求出BM =4,即可得出答案; ②当DM 为对角线时,由①得N (﹣1,154),DN =4,由平行四边形的性质得出DN =BM =4,进而得出答案; ③当DN 为对角线时,点D 与点N 的纵坐标相等,N (1+√14,−154)或N (1−√14,−154),再分两种情况解答即可.【解答】解:(1)由题意得:{−b 2a =14a −2b +c =0c =6, 解得:{ a =−34b =32c =6, ∴抛物线的函数表达式为:y =−34x 2+32x +6;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示:∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6),∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6, ∴S △BCD =34S △AOC =34×6=92,当y =0时,−34x 2+32x +6=0,解得:x 1=﹣2,x 2=4,∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n ,则{0=4k +n 6=n, 解得:{k =−32n =6, ∴直线BC 的函数表达式为:y =−32x +6,∵点D 的横坐标为m (1<m <4),∴点D 的坐标为:(m ,−34m 2+32m +6),点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m ,∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m ,∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3,∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154,∴点D 的坐标为:(3,154),分三种情况讨论:①当DB 为对角线时,如图2所示:∵四边形BNDM 是平行四边形,∴DN ∥BM ,∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称,∴N (﹣1,154),∴DN =3﹣(﹣1)=4,∴BM =4,∵B (4,0),∴M (8,0);②当DM 为对角线时,如图3所示:由①得:N (﹣1,154),DN =4,∵四边形BNDM 是平行四边形,∴DN =BM =4,∵B (4,0),∴M (0,0);③当DN 为对角线时,∵四边形BNDM 是平行四边形,∴DM =BN ,DM ∥BN ,∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标相等,∵点D (3,154),∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154,解得:x 1=1+√14,x 2=1−√14,当x =1+√14时,如图4所示:则N (1+√14,−154),分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q ,在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ, ∴Rt △DEM ≌Rt △NQB (HL ),∴BQ =EM ,∵BQ =1+√14−4=√14−3,∴EM =√14−3,∵E (3,0),∴M (√14,0);当x =1−√14时,如图5所示:则N (1−√14,−154),同理得点M (−√14,0);综上所述,点M 的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).【点评】本题是二次函数综合题目,考查了待定系数法求函数的解析式、坐标与图形性质、平行四边形的性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度.。
甘肃省天水市2020年数学中考试题及答案
(3)设销售 、 两种商品总获利 元,
则 .
①当 时, , 与 的取值无关,即(2)中的五种方案都获利600元;
②当 时, , 随 的增大而增大,
∴当 时,获利最大,即在(2)的条件下,购进 种商品18件,购进 种商品22件,获利最大;
③当 时, , 随 的增大而减小,
∴当 时,获利最大,
2020年天水市数学中考试题
一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)
1.下列四个实数中,是负数的是()
A. B. C. D.
2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()
∵ 关于 轴的对称点为 ,
又 ,则直线 与 轴的交点即为所求 点.
设直线 的解析式为
则 解得
∴直线 的解析式为
∴直线 与 轴的交点为 .
即点 的坐标为 .
22.解:(1)作 交 的延长线于点
∵ ,
∴ ;
(2)设 海里,则 海里, 海里
∵在 中,
∴
解得: .
∴海监船继续向正东方向航行安全.
23.接 .
A. B. C. D.
3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()
A.文B.羲C.弘D.化
4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()
A.40,42B.42,43C.42,42D.42,41
∴在(2)的条件下,购进 种商品14件,购进 种商品26件,获利最大.
2020年甘肃天水初中中考数学试卷习题及答案
2020甘肃天水中考数学试卷及答案(本大题共10小题,每题4分,共40分)若x与3互为相反数,则|x+3|等于()【考点】15:绝对值;14:相反数.【解析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,|x+3|=|﹣3+3|=0.应选A.以下列图的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【解析】找到从上面看所获取的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:从上面看易得横着的“”字,应选C.以下运算正确的选项是()÷﹣5x=﹣1【考点】4H:整式的除法;35:合并同类项;49:单项式乘单项式.【解析】直接利用合并同类项法规和整式的乘除运算法规分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x?2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;应选:B.以下说法正确的选项是()A.不能能事件发生的概率为0随机事件发生的概率为C.概率很小的事件不能能发生D.扔掷一枚质地平均的硬币1000次,正面向上的次数必然是次【考点】X3:概率的意义.【解析】依照不能能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机遇大于0并且小于1,进行判断.【解答】解:A、不能能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0C、概率很小的事件,不是不发生,而是发生的机遇少,故本选项错误;D、扔掷一枚质地平均的硬币1000次,是随机事件,正面向上的次数不确定是多少次,故本选项错误;应选A.我国平均每平方千米的土地一年从太阳获取的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()××××108kg【考点】1I:科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点搬动了多少位,n的绝对值与小数点搬动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:×108kg.应选:D.6.在正方形网格中,△ABC的地址以下列图,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义 .【解析】先设小正方形的边长为1,尔后找个与∠B相关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.应选B.关于的表达不正确的选项是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上能够找到表示的点【考点】27:实数.【解析】=2,是无理数,能够在数轴上表示,还可以够表示面积是8的正方形的边长,由此作判断.【解答】解:A、=2,所以此选项表达正确;B、面积是8的正方形的边长是,所以此选项表达正确 ;C、=2,它是无理数,所以此选项表达不正确 ;D、数轴既能够表示有理数,也能够表示无理数,所以在数轴上能够找到表示的点;所以此选项表达正确;本题选择表达不正确的,应选C.以下给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是【考点】G2:反比率函数的图象;F4:正比率函数的图象;H2:二次函数的图象;R5:中心对称图形.【解析】函数①③是中心对称图形,对称中心是原点.【解答】解:依照中心对称图形的定义可知函数①③是中心对称图形.应选C如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()πB.πC.πD.π【考点】M5:圆周角定理;M2:垂径定理;MO:扇形面积的计算.【解析】依照垂径定理求得CE=ED=2,尔后由圆周角定理知∠DOE=60°,尔后经过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE?cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE?CE=﹣2+2=.应选B.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则以下最能反响y与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【解析】作AH⊥BC于H,依照等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,尔后分类谈论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式获取y=x2;当4【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=?x?x=x2,当4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=?(8﹣x)?4=﹣x+8,综上所述,y=.应选D.(本大题共8小题,每题4分,共32分)若式子有意义,则x的取值范围是x≥﹣2且x≠0.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【解析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:依照题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【解析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【考点】1G:有理数的混杂运算.【解析】原式利用题中的新定义计算即可获取结果.【解答】解:依照题中的新定义得:(2*3)*2=()*2=4*2==2 ,故答案为:2以下列图,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【解析】依照直角三角形两锐角互余求出∠ACD,再依照翻折变换的性质判断出四边形BCEC′是正方形,依照正方形的性质可得∠BEC=45°,尔后依照三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再依照翻折变换的性质可得∠BFC′=∠BFC,然后依照平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.观察以下的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【考点】38:规律型:图形的变化类.【解析】依照题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1如图,路灯距离地面8米,身高米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM 长为5米.【考点】SA:相似三角形的应用.【解析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:依照题意,易得△MBA∽△MCO,依照相似三角形的性质可知=,即=,解得AM=5m则.小明的影长为5米.以下列图,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【解析】依照两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的极点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,以下结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【解析】依照二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.依照对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.(共78分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0先化简,再求值:(1﹣)÷,其中x=﹣1.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特别角的三角函数值.【解析】(1)依照实数的运算法规计算即可;原式利用除法法规变形,约分获取最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船连续沿正东方向航行,求轮船航行途中与灯塔P 的最短距离.(结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【解析】利用题意获取AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形获取BC=PC=10,尔后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20?cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.八年级一班睁开了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷检查,问卷设置了“小说”“戏剧”“散文”“其他”四个种类,每位同学仅选一项,依照检查结果绘制了不完满的频数分布表和扇形统计图.种类频数(人数)频率小说戏剧4散文其他6合计1依照图表供应的信息,解答以下问题:(1)八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在检查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求采用的2人恰好是乙和丙的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【解析】(1)用散文的频数除以其频率即可求得样本总数;依照其他类的频数和总人数求得其百分比即可;画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;画树状图,以下列图:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)以下列图,一次函数y=kx+b与反比率函数y=的图象交于A(2,,B(﹣4,n)两点.分别求出一次函数与反比率函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【考点】G8:反比率函数与一次函数的交点问题.【解析】(1)将点A坐标代入y=可得反比率函数解析式,据此求得点B坐标,依照A、B两点坐标可得直线解析式;依照点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比率函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;由题意知BC=2,则△ACB的面积=×2×6=6.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆订交于点F,与BC订交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判断.【解析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,以下列图:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC?BE=OB?BC,∴,∴,即弦BD的长为9.6.天水某公交公司将裁汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总花销不高出1220万元,且保证这10辆公交车在该线路的年均载客量总和很多于650万人次,则该公司有哪几种购车方案?哪一种购车方案总花销最少?最少总花销是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,依照“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总花销不高出1220万元”和“10辆公交车在该线路的年均载客总和很多于650万人次”列出不等式组商议得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需万元.设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆花销最少,最少总花销为1100万元.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的极点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB订交于点P,线段EF与射线CA订交于点Q.如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【考点】S9:相似三角形的判断与性质;KD:全等三角形的判断与性质;KW:等腰直角三角形;R2:旋转的性质.【解析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,尔后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;依照相似三角形的对应边成比率,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.﹣以下列图,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.求A、B两点的坐标及抛物线的对称轴;求直线l的函数表达式(其中k、b用含a的式子表示);点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为极点的四边形能否成为矩形?若能,求出点P的坐标;若不能够,请说明原由.【考点】HF:二次函数综合题.【解析】(1)解方程即可获取结论;依照直线l:y=kx+b过A(﹣1,0),获取直线l:y=kx+k,解方程获取点D的横坐标为4,求得k=a,获取直线l的函数表达式为y=ax+a;过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),获取F(x,ax+a),求出EF=ax2﹣3ax﹣4a,依照三角形的面积公式列方程即可获取结论;令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,获取D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可获取结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;以点A、D、P、Q为极点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为极点的四边形能成为矩形,点P(1,)或(1,﹣4).猜你喜欢:。
2020年甘肃省天水市中考数学试卷
2020年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√52.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106 3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,415.(4分)(2020•天水)如图所示,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.(4分)(2020•天水)若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣4 10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=.12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB 的值是.16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.(4分)(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.(4分)(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC 于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a+2a+1÷a−1a+1,其中a=√3.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为 ;(2)如图(2),在四边形EFGH 中,EF =EG =EH ,在边FG ,GH 上分别取中点M ,N ,连接MN .若∠FGH =120°,EF =20,求线段MN 的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为 .(用含α的式子表示)25.(10分)(2020•天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√5【解答】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.−√5是负数,符合题意;故选:D.2.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【解答】解:341000=3.41×105,故选:A.3.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【解答】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,41【解答】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=42,故选:C . 5.(4分)(2020•天水)如图所示,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,若∠P =70°,则∠ACB 的度数为( )A .50°B .55°C .60°D .65°【解答】解:连接OA 、OB ,如图,∵P A 、PB 分别与⊙O 相切于A 、B 两点,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∴∠AOB +∠P =180°,∵∠P =70°,∴∠AOB =110°,∴∠ACB =12∠AOB =55°.故选:B .6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项不合题意;C 、是中心对称图形但不是轴对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=cx的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE ∽△ACD , ∴AB AC=BE CD,∵BE =1.5m ,AB =1.2m ,BC =12.8m , ∴AC =AB +BC =14m , ∴1.214=1.5DC,解得,DC =17.5,即建筑物CD 的高是17.5m , 故选:A .9.(4分)(2020•天水)若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( ) A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣4【解答】解:∵3x +a ≤2, ∴3x ≤2﹣a , 则x ≤2−a3, ∵不等式只有2个正整数解, ∴不等式的正整数解为1、2, 则2≤2−a3<3, 解得:﹣7<a ≤﹣4, 故选:D .10.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2【解答】解:∵2100=S , ∴2100+2101+2102+…+2199+2200 =S +2S +22S +…+299S +2100S =S (1+2+22+…+299+2100) =S (1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=mn(m﹣1)(m+1).【解答】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为13.【解答】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是x≥﹣2且x≠3.【解答】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为1.【解答】解:a+2b=103①,3a+4b=163②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是√22.【解答】解:如图,连接AB .∵OA =AB =√10,OB =2√5, ∴OB 2=OA 2+AB 2, ∴∠OAB =90°,∴△AOB 是等腰直角三角形, ∴∠AOB =45°, ∴sin ∠AOB =√22,故答案为√22. 16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是83.【解答】解:设圆锥的底面半径为r , 由题意得,120π×8180=2πr ,解得,r =83, 故答案为:83.17.(4分)(2020•天水)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 (﹣1,5) .【解答】解:如图,过点E 作x 轴的垂线EH ,垂足为H .过点G 作x 轴的垂线GM ,垂足为M ,连接GE 、FO 交于点O ′. ∵四边形OEFG 是正方形,∴OG =EO ,∠GOM =∠OEH ,∠OGM =∠EOH , 在△OGM 与△EOH 中, {∠OGM =∠EOHOG =EO ∠GOM =∠OEH∴△OGM ≌△EOH (ASA ) ∴GM =OH =2,OM =EH =3, ∴G (﹣3,2). ∴O ′(−12,52).∵点F 与点O 关于点O ′对称, ∴点F 的坐标为 (﹣1,5). 故答案是:(﹣1,5).18.(4分)(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 2 .【解答】解: 法一:由题意可得, △ADF ≌△ABG ,∴DF =BG ,∠DAF =∠BAG , ∵∠DAB =90°,∠EAF =45°, ∴∠DAF +∠EAB =45°, ∴∠BAG +∠EAB =45°, ∴∠EAF =∠EAG , 在△EAG 和△EAF 中, {AG =AF∠EAG =∠EAF AE =AE, ∴△EAG ≌△EAF (SAS ), ∴GE =FE ,设BE =x ,则GE =BG +BE =3+x ,CE =6﹣x , ∴EF =3+x , ∵CD =6,DF =3, ∴CF =3, ∵∠C =90°,∴(6﹣x )2+32=(3+x )2, 解得,x =2, 即BE =2,法二:设BE =x ,连接GF ,如下图所示,∵四边形ABCD 为正方形, ∴∠ABE =∠GCF =90°,∵△ADF 绕点A 顺时针旋转90°得到△ABG , ∴∠CAF =90°,GA =F A , ∴△GAF 为等腰直角三角形, ∵∠EAF =45°, ∴AE 垂直平分GF , ∴∠AEB +∠CGF =90°,∵在Rt △AEB 中,∠AEB +∠BAE =90°, ∴∠BAE =∠CGF , ∴△BAE ~△CGF , ∴BE CF=AB GC,∵CF =CD ﹣DF =6﹣3=3,GC =BC +BG =BC +DF =6+3=9, ∴x3=69,∴x =2, 即BE =2, 故答案为:2.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程) 19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a +2a+1÷a−1a+1,其中a =√3.【解答】解:(1)原式=4×√32−(2−√3)+1﹣2√3+4 =2√3−2+√3+1﹣2√3+4 =3+√3;(2)原式=1a−1−a−1(a+1)2•a+1a−1=1a−1−1a+1=a+1 (a+1)(a−1)−a−1 (a+1)(a−1)=2(a+1)(a−1)=2a2−1,当a=√3时,原式=(√3)2−1=23−1=22=1.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为50人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为144度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.【解答】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×2050=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:812=2 3.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.【解答】解:(1)∵△AOC 的面积为4, ∴12|k |=4,解得,k =﹣8,或k =8(不符合题意舍去), ∴反比例函数的关系式为y =−8x,把点A (﹣2,a )和点B (b ,﹣1)代入y =−8x得, a =4,b =8; 答:a =4,b =8;(2)根据一次函数与反比例函数的图象可知,不等式mx +n >kx 的解集为x <﹣2或0<x <8;(3)∵点A (﹣2,4)关于y 轴的对称点A ′(2,4), 又B (8,﹣1),则直线A ′B 与y 轴的交点即为所求的点P , 设直线A ′B 的关系式为y =cx +d , 则有{2c +d =48c +d =−1,解得,{c =−56d =173, ∴直线A ′B 的关系式为y =−56x +173,∴直线y =−56x +173与y 轴的交点坐标为(0,173),即点P 的坐标为(0,173).四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行30分钟后到达B 处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)【解答】解:(1)由题意得,∠P AB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠P AB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×3060=20(海里),在Rt△APH中,tan∠P AB=tan30°=PHAH=√33,即x20+x =√33,解得:x=10√3+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).【解答】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2√3)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD=√OB2−BD2=√42−(2√3)2=2,∴OD=12OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=12×2 √3×2−60π×22360=2√3−2π3.24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为√3:1.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为√3;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为2sinα:1.(用含α的式子表示)【解答】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=√3AC,∴AB:AC=√3:1.故答案为√3:1.理解运用:(1)设CA=CB=m,则AB=√3m,由题意2m+√3m=4+2√3,∴m=2,∴AC=CB=2,AB=2√3,∴AD=DB=√3,CD=AC•sin30°=1,∴S△ABC=12•AB•CD=√3.故答案为√3.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=√3EF=20√3,∵FM=MG.GN=GH,∴MN=12FH=10√3.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB :AC =2sin α:1.故答案为2sin α:1.25.(10分)(2020•天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【解答】解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x ﹣20)元, 由题意得:2000x =1200x−20,解得:x =50,经检验,x =50是原方程的解,且符合题意,50﹣20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40﹣a )件,由题意得:{50a +30(40−a)≤1560a ≥12(40−a), 解得403≤a ≤18,∵a 为正整数,∴a =14、15、16、17、18,∴商店共有5种进货方案;(3)设销售A 、B 两种商品共获利y 元,由题意得:y =(80﹣50﹣m )a +(45﹣30)(40﹣a )=(15﹣m )a +600,①当10<m <15时,15﹣m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品,②当m =15时,15﹣m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当15<m <20时,15﹣m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品.26.(13分)(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:{−b 2a =14a −2b +c =0c =6, 解得:{ a =−34b =32c =6, ∴抛物线的函数表达式为:y =−34x 2+32x +6;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示:∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6),∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6, ∴S △BCD =34S △AOC =34×6=92, 当y =0时,−34x 2+32x +6=0,解得:x 1=﹣2,x 2=4,∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n ,则{0=4k +n 6=n, 解得:{k =−32n =6, ∴直线BC 的函数表达式为:y =−32x +6,∵点D 的横坐标为m (1<m <4),∴点D 的坐标为:(m ,−34m 2+32m +6),点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m , ∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m ,∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3,∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154, ∴点D 的坐标为:(3,154),分三种情况讨论:①当DB 为对角线时,如图2所示:∵四边形BNDM 是平行四边形,∴DN ∥BM ,∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称,∴N (﹣1,154),∴DN =3﹣(﹣1)=4,∴BM =4,∵B (4,0),∴M (8,0);②当DM 为对角线时,如图3所示:由①得:N (﹣1,154),DN =4,∵四边形BNDM 是平行四边形,∴DN =BM =4,∵B (4,0),∴M (0,0);③当DN 为对角线时,∵四边形BNDM 是平行四边形,∴DM =BN ,DM ∥BN ,∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标相等,∵点D (3,154),∴点N 的纵坐标为:−154,将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154, 解得:x 1=1+√14,x 2=1−√14,当x =1+√14时,如图4所示:则N (1+√14,−154),分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q ,在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ, ∴Rt △DEM ≌Rt △NQB (HL ),∴BQ=EM,∵BQ=1+√14−4=√14−3,∴EM=√14−3,∵E(3,0),∴M(√14,0);当x=1−√14时,如图5所示:则N(1−√14,−15 4),同理得点M(−√14,0);综上所述,点M的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).。
2020年甘肃省天水市中考数学试卷
2020年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.(4分)(2020•天水)下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4|D.−√52.(4分)(2020•天水)天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×1063.(4分)(2020•天水)某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.(4分)(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,415.(4分)(2020•天水)如图所示,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.(4分)(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.(4分)(2020•天水)若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.8.(4分)(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.(4分)(2020•天水)若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4B.﹣7≤a≤﹣4C.﹣7≤a<﹣4D.﹣7<a≤﹣410.(4分)(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.(4分)(2020•天水)分解因式:m3n﹣mn=.12.(4分)(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.(4分)(2020•天水)已知函数y=√x+2x−3,则自变量x的取值范围是.14.(4分)(2020•天水)已知a+2b=103,3a+4b=163,则a+b的值为.15.(4分)(2020•天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.(4分)(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.(4分)(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.(4分)(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(2020•天水)(1)计算:4sin60°﹣|√3−2|+20200−√12+(14)﹣1.(2)先化简,再求值:1a−1−a−1a2+2a+1÷a−1a+1,其中a=√3.20.(10分)(2020•天水)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)(2020•天水)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)23.(10分)(2020•天水)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).24.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH =120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)25.(10分)(2020•天水)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年甘肃省天水市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.下列四个实数中,是负数的是()A. −(−3)B. (−2)2C. |−4|D. −√52.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A. 3.41×105B. 3.41×106C. 341×103D. 0.341×1063.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A. 文B. 羲C. 弘D. 化4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A. 40,42B. 42,43C. 42,42D. 42,415.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A. 50°B. 55°C. 60°D. 65°6.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c在同一平面直角坐标系中的图象大致是()xA.B.C.D.8. 如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高1.5m ,测得AB =1.2m ,BC =12.8m ,则建筑物CD 的高是( )A. 17.5mB. 17mC. 16.5mD. 18m 9. 若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A. −7<a <−4B. −7≤a ≤−4C. −7≤a <−4D. −7<a ≤−4 10. 观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( )A. 2S 2−SB. 2S 2+SC. 2S 2−2SD. 2S 2−2S −2二、填空题(本大题共8小题,共32.0分) 11. 分解因式:m 3n −mn =______.12. 一个三角形的两边长分别为2和5,第三边长是方程x 2−8x +12=0的根,则该三角形的周长为______.13. 已知函数y =√x+2x−3,则自变量x 的取值范围是______.14. 已知a +2b =103,3a +4b =163,则a +b 的值为______.15. 如图所示,∠AOB 是放置在正方形网格中的一个角,则sin∠AOB的值是______.16. 如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是______.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为______.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为______.三、解答题(本大题共8小题,共78.0分)19.(1)计算:4sin60°−|√3−2|+20200−√12+(14)−1.(2)先化简,再求值:1a−1−a−1a2+2a+1÷a−1a+1,其中a=√3.20.为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为______人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为______度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.(k≠0)的图象21.如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx交于第二、四象限的点A(−2,a)和点B(b,−1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>k中x的取值范围;x(3)在y轴上取点P,使PB−PA取得最大值时,求出点P的坐标.22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A 处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P 在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.414,√3≈1.732)23.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2√3,AB=6,求阴影部分的面积(结果保留π).24.性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为______.理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为______;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为______.(用含α的式子表示)25.天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(−2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的3时,求m的4值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:A.−(−3)=3,是正数,不符合题意;B.(−2)2=4,是正数,不符合题意;C.|−4|=4,是正数,不符合题意;D.−√5是负数,符合题意;故选:D.根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得.本题主要考查实数,解题的关键是掌握相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念.2.【答案】A【解析】解:341000=3.41×105,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.根据正方体的展开图的特点,得出相对的面,进而得出答案.本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是正确选择的前提.4.【答案】C【解析】解:将这组数据重新排列为39,40,40,42,42,42,43,44,=42,所以这组数据的众数为42,中位数为42+422故选:C.先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】B【解析】解:连接OA、OB,如图,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=12∠AOB=55°.故选:B.连接OA、OB,如图,根据切线的性质得OA⊥PA,OB⊥PB,则利用四边形内角和计算出∠AOB=110°,然后根据圆周角定理得到∠ACB的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆心角定理.6.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】B【解析】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=cx的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.故选:B.先根据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧可知b<0,再由函数图象交y轴的正坐标可知c>0,利用排除法即可得出正确答案.本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.8.【答案】A【解析】解:∵EB⊥AC,DC⊥AC,∴EB//DC,∴△ABE∽△ACD,∴ABAC =BECD,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴1.214=1.5DC,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.根据题意和图形,利用三角形相似,可以计算出CD的长,从而可以解答本题.本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】D【解析】解:∵3x+a≤2,∴3x≤2−a,,则x≤2−a3∵不等式只有2个正整数解,∴不等式的正整数解为1、2,<3,则2≤2−a3解得:−7<a≤−4,故选:D.先解不等式得出x≤2−a,根据不等式只有2个正整数解知其正整数解为1和2,据此得3<3,解之可得答案.出2≤2−a3本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解不等式的基本步骤和依据,并根据不等式的整数解的情况得出某一字母的不等式组.10.【答案】A【解析】解:∵2100=S,∴2100+2101+2102+⋯+2199+2200=S+2S+22S+⋯+299S+2100S=S(1+2+22+⋯+299+2100)=S(1+2100−2+2100)=S(2S−1)=2S2−S.故选:A.根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102, (2199)2200,求和,即可用含S的式子表示这组数据的和.本题考查了规律型−数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.11.【答案】mn(m−1)(m+1)【解析】解:m3n−mn=mn(m2−1)=mn(m−1)(m+1),故答案为:mn(m−1)(m+1).先提出公因式mn,再利用平方差公式即可解答.本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公式法.12.【答案】13【解析】解:∵x2−8x+12=0,∴(x−2)(x−6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2−8x+12=0的根,2+2<5,2+ 5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.先利用因式分解法解方程x2−8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.本题考查了解一元二次方程的因式分解法及三角形的三边关系,熟练掌握相关性质及定理是解题的关键.13.【答案】x ≥−2且x ≠3【解析】解:根据题意得:x +2≥0且x −3≠0, 解得:x ≥−2且x ≠3. 故答案为:x ≥−2且x ≠3.根据被开方数大于或等于0,分母不等于0,可以求出x 的范围.本题考查了函数自变量的取值范围问题,当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,考虑被开方数为非负数. 14.【答案】1【解析】解:a +2b =103①,3a +4b =163②,②−①得2a +2b =2, 解得a +b =1. 故答案为:1. 用方程3a +4b =163减去a +2b =103,即可得出2a +2b =2,进而得出a +b =1.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】√22【解析】解:如图,连接AB .∵OA =AB =√10,OB =2√5, ∴OB 2=OA 2+AB 2, ∴∠OAB =90°,∴△AOB 是等腰直角三角形, ∴∠AOB =45°, ∴sin∠AOB =√22, 故答案为√22.如图,连接AB.证明△OAB 是等腰直角三角形即可解决问题.本题考查解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】83【解析】解:设圆锥的底面半径为r , 由题意得,120π×8180=2πr ,解得,r =83,故答案为:83.根据半径为8,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可. 本题考查弧长的计算方法,明确扇形的弧长与圆锥底面周长的关系是正确解答的关键. 17.【答案】(−1,5)【解析】解:如图,过点E 作x 轴的垂线EH ,垂足为H.过点G作x 轴的垂线EG ,垂足为G ,连接GE 、FO 交于点O′.∵四边形OEFG 是正方形,∴OG =EO ,∠GOM =∠OEH ,∠OGM =∠EOH ,在△OGM 与△EOH 中,{∠OGM =∠EOH OG =EO ∠GOM =∠OEH∴△OGM≌△EOH(ASA)∴GM =OH =2,OM =EH =3,∴G(−3,2).∴O′(−12,52). ∵点F 与点O 关于点O′对称,∴点F 的坐标为(−1,5).故答案是:(−1,5).结合全等三角形的性质可以求得点G 的坐标,再由正方形的中心对称的性质求得点F 的坐标.考查了正方形的性质,坐标与图形性质,全等三角形的判定与性质,根据题意求得点G 的坐标是解题的难点.18.【答案】2【解析】解:由题意可得,△ADF≌△ABG ,∴DF =BG ,∠DAF =∠BAG ,∵∠DAB =90°,∠EAF =45°,∴∠DAF +∠EAB =45°,∴∠BAG +∠EAB =45°,∴∠EAF =∠EAG ,在△EAG 和△EAF 中,{AG =AF ∠EAG =∠EAF AE =AE,∴△EAG≌△EAF(SAS),∴GE =FE ,设BE =x ,则GE =BG +BE =3+x ,CE =6−x ,∴EF =3+x ,∵CD =6,DF =3,∴CF =3,∵∠C =90°,∴(6−x)2+32=(3+x)2,解得,x=2,即CE=2,故答案为:2.根据旋转的性质可知,△ADF≌△ABG,然后即可得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以得到DE的长,本题得以解决.本题考查旋转的性质、全等三角形的判定和性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.19.【答案】解:(1)原式=4×√32−(2−√3)+1−2√3+4=2√3−2+√3+1−2√3+4=3+√3;(2)原式=1a−1−a−1(a+1)2⋅a+1a−1=1a−1−1a+1=a+1(a+1)(a−1)−a−1(a+1)(a−1)=2(a+1)(a−1)=2a2−1,当a=√3时,原式=(3)2−1=2 3−1=2 2=1.【解析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【答案】50 144【解析】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50−4−8−18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×2050=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况, ∴选择回访的市民为“一男一女”的概率为:812=23.(1)由非常满意的有18人,占36%,即可求得此次调查中接受调查的人数;(2)用总人数减去其他满意程度的人数,求出满意的人数,从而补全统计图;(3)用360°乘以满意的人数所占的百分比即可得出答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择回访市民为“一男一女”的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)∵△AOC 的面积为4,∴12|k|=4,解得,k =−8,或k =8(不符合题意舍去),∴反比例函数的关系式为y =−8x ,把点A(−2,a)和点B(b,−1)代入y =−8x 得,a =4,b =8;答:a =4,b =8;(2)根据一次函数与反比例函数的图象可知,不等式mx +n >k x 的解集为x <−2或0<x <8;(3)∵点A(−2,4)关于y 轴的对称点A′(2,4),又B(8,−1),则直线A′B 与y 轴的交点即为所求的点P ,设直线A′B 的关系式为y =cx +d ,则有{2c +d =48c +d =−1,解得,{c =−56d =173, ∴直线A′B 的关系式为y =−56x +173, ∴直线y =−56x +173与y 轴的交点坐标为(0,173), 即点P 的坐标为(0,173).【解析】(1)根据△AOC 的面积为4和反比例函数图象的位置,可以确定k 的值,进而确定反比例函数的关系式,代入可求出点A 、B 的坐标,求出a 、b 的值;(2)根据图象直接写出mx +n >k x 的解集;(3)求出点A(−2,4)关于y 轴的对称点A′(2,4),根据题意直线A′B 与y 轴的交点即为所求的点P ,求出直线A′B 的关系式,进而求出与y 轴的交点坐标即可.本题考查一次函数、反比例函数的图象和性质,轴对称的性质和应用,把点的坐标代入是求函数关系式常用方法,作对称点是求线段和或差最小值的常用方法.22.【答案】解:(1)由题意得,∠PAB =90°−60°=30°,∠APB =90°+45°=135°,∴∠APB =180°−∠PAB −∠APB =180°−30°−135°=15°;(2)作PH ⊥AB 于H ,如图:则△PBH 是等腰直角三角形,∴BH =PH ,设BH =PH =x 海里,由题意得:AB =40×3060=20(海里),在Rt △APH 中,tan∠PAB =tan30°=PH AH =√33, 即x 20+x =√33, 解得:x =10√3+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.【解析】(1)由题意得,∠PAB =30°,∠APB =135°由三角形内角和定理即可得出答案; (2)作PH ⊥AB 于H ,则△PBH 是等腰直角三角形,BH =PH ,设BH =PH =x 海里,求出AB =20海里,在Rt △APH 中,由三角函数定义得出方程,解方程即可.本题考查的是解直角三角形的应用−方向角问题以及等腰直角三角形的判定与性质,熟练掌握锐角三角函数的概念是解题的关键.23.【答案】(1)证明:连接OD ,如图:∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠CAB ,∴∠OAD =∠CAD ,∴∠CAD =∠ODA ,∴AC//OD ,∴∠ODB =∠C =90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6−r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2√3)2=(6−r)2,解得:r=2,∴OB=4,∴OD=√OB2−BD2=√42−(2√3)2=2,∴OD=12OB,∴∠B=30°,∴∠DOB=180°−∠B−∠ODB=60°,∴阴影部分的面积S=S△ODB−S扇形DOF =12×2√3×2−60π×22360=2√3−2π3.【解析】(1)连接OD,求出OD//AC,求出OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理求出OD=2,求出OB=4,得出∠B=30°,再分别求出△ODB和扇形DOF的面积即可.本题考查了切线的判定,平行线的性质和判定,等腰三角形的性质,扇形的面积计算、含30°角的直角三角形的性质,勾股定理等知识点;熟练掌握切线的判定与性质和勾股定理是解此题的关键.24.【答案】√3:1 √32sinα:1【解析】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC⋅cos30°=√3AC,∴AB:AC=√3:1.故答案为√3:1.理解运用:(1)设CA=CB=m,则AB=√3m,由题意2m+√3m=4+2√3,∴m=2,∴AC=CB=2,AB=2√3,∴AD=DB=√3,CD=AC⋅sin30°=1,∴S△ABC=12⋅AB⋅CD=√3.故答案为√3.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°−120°−120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=√3EF=20√3,∵FM=MG.GN=GH,∴MN=12FH=10√3.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC⋅sinα∴AB:AC=2sinα:1.故答案为2sinα:1.性质探究:如图1中,过点C作CD⊥AB于D.解直角三角形求出AB(用AC表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA=CB=m,则AB=√3m,构建方程求出m即可解决问题.②如图2中,连接FH.求出FH,利用三角形中位线定理解决问题即可.类比拓展:利用等腰三角形的性质求出AB与AC的关系即可.本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.25.【答案】解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x−20)元,由题意得:2000x =1200x−20,解得:x=50,经检验,x=50是原方程的解,且符合题意,50−20=30,答:A种商品每件的进价是50元,B种商品每件的进价是30元;(2)设购买A种商品a件,则购买B商品(40−a)件,由题意得:{50a +30(40−a)≤1560a ≥12(40−a), 解得403≤a ≤18,∵a 为正整数,∴a =14、15、16、17、18,∴商店共有5种进货方案;(3)设销售A 、B 两种商品共获利y 元,由题意得:y =(80−50−m)a +(45−30)(40−a)=(15−m)a +600, ①当10<m <15时,15−m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品,②当m =15时,15−m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当15<m <20时,15−m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品.【解析】(1)设A 种商品每件的进价是x 元,根据用2000元购进A 种商品和用1200元购进B 种商品的数量相同,列分式方程,解出可得结论;(2)设购买A 种商品a 件,根据用不超过1560元的资金购进A 、B 两种商品共40件,A 种商品的数量不低于B 种商品数量的一半,列不等式组,解出取正整数可得结论;(3)设销售A 、B 两种商品共获利y 元,根据y =A 商品的利润+B 商品的利润,根据m 的值及一次函数的增减性可得结论.本题考查了分式方程和一元一次不等式组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程可不等式组求解,分式方程要注意检验.26.【答案】解:(1)由题意得:{−b 2a =14a −2b +c =0c =6,解得:{a =−34b =32c =6,∴抛物线的函数表达式为:y =−34x 2+32x +6;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示:∵点A 的坐标为(−2,0),点C 的坐标为(0,6),∴OA =2,OC =6,∴S △AOC =12OA ⋅OC =12×2×6=6,∴S △BCD =34S △AOC =34×6=92,当y =0时,−34x 2+32x +6=0,解得:x 1=−2,x 2=4,∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n ,则{0=4k +n 6=n, 解得:{k =−32n =6, ∴直线BC 的函数表达式为:y =−32x +6, ∵点D 的横坐标为m(1<m <4),∴点D 的坐标为:(m,−34m 2+32m +6),点G 的坐标为:(m,−32m +6),∴DG =−34m 2+32m +6−(−32m +6)=−34m 2+3m ,CF =m ,BE =4−m , ∴S △BCD =S △CDG +S △BDG =12DG ⋅CF +12DG ⋅BE =12DG ×(CF +BE)=12×(−34m 2+3m)×(m +4−m)=−32m 2+6m , ∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3,∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154,∴点D 的坐标为:(3,154),分三种情况讨论:①当DB 为对角线时,如图2所示:∵四边形BNDM 是平行四边形,∴DN//BM ,∴DN//x 轴,∴点D 与点N 关于直线x =1对称,∴N(−1,154), ∴DN =3−(−1)=4,∴BM =4,∵B(4,0),∴M(8,0);②当DM 为对角线时,如图3所示:由①得:N(−1,154),DN =4,∵四边形BNDM 是平行四边形,∴DN =BM =4,∵B(4,0),∴M(0,0);③当DN 为对角线时,∵四边形BNDM 是平行四边形,∴DM =BN ,DM//BN ,∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标相等,∵点D(3,154), ∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中,得:−34x 2+32x +6=−154,解得:x 1=1+√14,x 2=1−√14,当x =1+√14时,如图4所示:则N(1+√14,−154),分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q ,在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ, ∴Rt △DEM≌Rt △NQB(HL),∴BQ =EM ,∵BQ =1+√14−4=√14−3,∴EM =√14−3,∵E(3,0),∴M(√14,0);当x =1−√14时,如图5所示:则N(1−√14,−154),同理得点M(−√14,0);综上所述,点M 的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).【解析】(1)由题意得出方程组,解方程组即可;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,求出点B 的坐标为(4,0),由待定系数法求出直线BC 的函数表达式为y =−32x +6,则点D 的坐标为(m,−34m 2+32m +6),点G 的坐标为(m,−32m +6),求出S △BCD =−32m 2+6m =92,解方程即可; (3)求出点D 的坐标为(3,154),分三种情况,①当DB 为对角线时,证出DN//x 轴,则点D 与点N 关于直线x =1对称,得出N(−1,154)求出BM =4,即可得出答案; ②当DM 为对角线时,由①得N(−1,154),DN =4,由平行四边形的性质得出DN =BM =4,进而得出答案;③当DN 为对角线时,点D 与点N 的纵坐标相等,N(1+√14,−154)或N(1−√14,−154),再分两种情况解答即可.本题是二次函数综合题目,考查了待定系数法求函数的解析式、坐标与图形性质、平行四边形的性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度.。