第一章 随机事件与概率
概率论第一章随机事件及其概率
B
和事件 A∪B={| ∈ A或B } A = { HHH },B = { TTT } ; A∪B = { HHH,TTT } 三次都是同一面
特别的,对任意的随机事件 A , A∪A = A, A∪ = A, A∪S = S 当 A、B 不相容时,记成 A∪B = A+B
S
(3).事件的积运算 得到一个新事件,它的发生表示 这些事件中每一个都要发生,
解. 由减法公式, P (B – A ) = P (B ) – P (AB ) 只需要计算出概率 P (AB ) 。 (1) A、B互不相容即 AB = ,则 P (B – A ) = 0.5; (2) A B 等价于 AB = A,得到 P (B – A ) = 0.2; (3) 利用加法公式的另一形式: P (A∪B ) = P (A ) + P (B – A ), 得到P (B – A ) = 0.4。
性质5 设A,B是两个事件,若 A B, 则 P (A ) ≤ P (B ) 性质6 对任意的事件A ,有P (A ) ≤1。 证明思路 利用概率定义中的无穷可加以及非负性等。
思考
性质4中如何推广到n个事件的加法公式
例1.11 假定 P (A ) = 0.3,P (B ) = 0.5 , 分别计算 (1) A、B 不相容;(2) A B; (3) P (A∪B) = 0.7 时概率P (B – A) 的值。
例如从 26 个英文字母中任取2 个排列, 所有不同方式一共有 P262 = 26×25 = 650。
(2) 可以重复的排列
从 n 个不同元素中允许放回任意取 m 个 出来排成有顺序的一列( 即取出的这些元素 可以相同 )。所有不同的排列方式一共有 n×n×…×n = nm
(完整版)概率论第一章随机事件与概率
解题思路
1、将事件定义为某个参数,如A,B,C; 2、确定总样本空间样本数与事件对应的样本数 技巧:可以采用概率的性质和事件的运算关系灵 活变换。
2. 样本点 ω—— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
1.1.3 随机事件
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示.
• 重复排列:nr
•
选排列: Pnr
n! n(n 1)......(n r 1) (n r)!
组合
•
组合:
Cnr
n r
n! r!(n r)!
Pnr r!
注意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
§1.1 随机事件及其运算 §1.2 概率的定义及其确定方法 §1.3 概率的性质 §1.4 条件概率 §1.5 独立性
§1.1 随机事件及其运算
1.1.1 随机现象:自然界中的有两类现象 1. 必然现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
乘法原理
概率第一章
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
概率论与数理统计教程(茆诗松)第1章
SA ∫0 P( A) = = SΩ
27 July 2011
π
l sinϕdϕ 2l 2 = d(π / 2) dπ
华东师范大学
第一章 随机事件与概率
第9页
§1.3 概率的性质
= (3/10)×(2/9)+(7/10)×(3/9) = 3/10
27 July 2011
华东师范大学
第一章 随机事件与概率
第24页 24页
1.4.4
贝叶斯公式
乘法公式是求“几个事件同时发生”的概率; 全概率公式是求“最后结果”的概率; 贝叶斯公式是已知“最后结果” ,求“原因” 的概率.
27 July 2011
第一章 随机事件与概率
第19页 19页
条件概率的三大公式
乘法公式; 全概率公式; 贝叶斯公式.
27 July 2011
华东师范大学
第一章 随机事件与概率
第20页 20页
1.4.2
性质1.4.2
乘法公式
(1) 若 P(B)>0,则 P(AB) = P(B)P(A|B); 若 P(A)>0,则 P(AB) = P(A)P(B|A). (2) 若 P(A1A2 ······An−1)>0,则 P(A1A2 ······An) = P(A1)P(A2|A1) ······ P(An|A1A2 ······An−1)
古典方法 设 Ω 为样本空间,若
① Ω只含有限个样本点; ② 每个样本点出现的可能性相等, 则事件A的概率为: P(A) = A中样本点的个数 / 样本点总数
概率论与数理统计(经管类)复习要点 第1章 随机事件与概率
第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。
随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。
统计规律性:在大量重复试验或观察中所呈现的固有规律性。
概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。
(1)概率论:从数量上研究随机现象的统计规律性的科学。
(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。
2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。
在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。
样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。
样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。
3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。
事件发生:在一次试验中,当这一子集中的一个样本点出现时。
基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。
两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。
空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。
4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。
①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。
事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。
(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。
第1章 概率论的基本概念
确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .
概率论-第一章-随机事件与概率
第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。
这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。
这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。
随机现象所呈现出的这种规律性,称为随机现象的统计规律性。
概率论与数理统计就是研究随机现象统计规律性的一门数学学科。
§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。
举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。
随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。
随机试验£的所有可能结果的集合称为£的样本空间,记作0。
样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。
上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。
二、随机事件试验£样本空间。
第1章随机事件与概率
§2 样本空间、随机事件
§2 样本空间、随机事件
z 把随机试验的所有可能结果组成的集合称为该试 验的样本空间,记为 S .
z 样本空间的元素,即随机试验每一个可能发生的 结果,称为样本点,常用 e 表示.
试验的目的
S e1
随机试验
e2
分别记作e1和e2
于是 S = {e1, e2}
备注
将一枚硬币连抛三次,试验的目的分别是: z 观察正面H,反面T出现的情况,则
5
1
0.2
24 0.48 251 0.502
6
2
0.4
18 0.36 262 0.524
7
4
0.8
27 0.54 258 0.516
波动较大
n=5 n=50 n=500
0.5
f5(A)
波动最小 f50(A)
f500(A)
表明:随着n的增加,事件的频率将呈现出稳定性,稳定于0.5
历史上的掷硬币试验
试验者
推论3:若 A ⊂ B ,则必有 P(B − A) = P(B) − P( A) ,且 P( A) ≤ P(B) .
概率的性质
性质1:非负性 对任意事件 A,必有 P( A) ≥ 0. 性质2:规范性 对必然事件 S,必有 P(S ) = 1. 性质3:可列可加性 若 A1, A2 ,L 是两两互不相容的事件, 则有 P( A1 U A2 UL) = P( A1 ) + P( A2 ) + L
1977 1978 1979 1980 1981 1982
6年总计
3670 4250 4055 5844 6344 7231 31394
新生儿分类数
男孩数 m1
第一章 随机事件与概率
1.2.1 事件域( σ - 域)
一个以集合为元素的集合称为集合类或集类,常用符号 A , B , C , D , F 等表示。特别 地,用 P (Ω ) 表示由 Ω 的全体子集组成的集类。集类的概念在概率论中也常用。 所谓“事件域”从直观上讲就是一个样本空间中某些子集组成的集合类,记为 F . 当样本空间是实数轴上的一个区间时, 可以人为的构造出无法测量其长度的子集, 这样 的子集被称为不可测集,如果将这些不可测集也看成是事件,那么这些事件将无概率可言, 为了避免这种现象,我们没必要将连续样本空间的所有子集都看成事件。
1.1.3 随机事件
随机现象的某些样本点组成的集合称为随机事件 ,简称事件 ,常用 A, B, C ,… 表示. 事件既可以用集合表示,也可以用明白无误地语言描述。任一事件是相应样本空间的一 个子集。在概率论中常用一个长方形来表示样本空间 Ω ,用其他几何图形来表示事件 A , 这类图形称为 venn 图。 例 1.1.2 掷一颗骰子的样本空间为 Ω = {1, 2,3, 4, 5, 6} 出现 1 点, 事件 A = , “出现偶数点” 事件 B = “出现不大于 3 的偶数点” ,则 A = {2, 4, 6}, B = {2}. 今后,我们都是把事件当作样本空间 Ω 的子集来考虑,由样本空间 Ω 中的单个元素组 成的子集称为基本事件, 而样本空间 Ω 的最大子集 (即 Ω 本身) 称为必然事件, 样本空间 Ω 的最小子集(即空集 ∅ )称为不可能事件。
3
ω i 表示出现 i 点。
(3)电视机寿命的样本空间为: Ω3 = {t , t ≥ 0}. (4)测量误差的样本空间为: Ω 4 = {x, −∞ < x < +∞}. 样本空间的元素可以是数也可以不是数。 此外样本空间可分为有限和无限两类, 在数学 处理上,将样本点的个数为有限个或可列个的情况归为一类,称为离散样本空间。将样本点 的个数为不可列无限个的情况归为另一类,称为连续样本空间。
第一章事件与概率
1
古典概型的定义
定义
称满足以下两个特点的随机现象的 数学模型为古典概型,如果 (1) 有限性:试验的样本空间只有有 限个样本点; (2) 等可能性:每个样本点作为基本 事件出现的可能性相同.
利用排列、组合知识来求概率的 模型通常都属于古典概型. 那么, 古典 概型为什么要通过数数来求概率呢?
Department of Mathematics, Tianjin University
内 容 提 要
1 2 3 4
随机事件的定义 事件之间的关系 事件的运算律 例 题
Department of Mathematics, Tianjin University
3
事件的运算律
以下设A,B,C…等都是同一随机试验中的随机事件. 交换律: AB=BA,A B=B A. 结合律: ABC=A(BC),A B C=A (B C).
2
事件之间的关系
以下设A,B,C…等都是同一随机试验中 的随机事件. 包含(于):若A发生,则B一定发生, 则称A包含于B,记为A B. 相等:若A与B相互包含,则称A与B相 等,记为A=B.
Department of Mathematics, Tianjin University
事件的交(积):若事件C发生,当且 仅当A与B同时发生,则称C为A与B的交 (积)事件,记为C=A B,或简记为C=AB.
注:符号“ ”等同于“至少”.
事件的逆(对立):由样本空间中所有 不属于A的样本点构成的集合表示的 事件称为A的逆(对立)事件,记为 A . 注:若A与B对立,则A与B互不相 容,反之不然.即A、B对立,则AB= , 且A B= .
Department of Mathematics, Tianjin University
概率论
第一章随机事件与概率§1.1 随机事件一、基本概念1.随机现象:预先不能断定结果的现象(有多种结果)投掷硬币、抽取牌张、观察天气、测量潮位、射击目标、顾客到来、考试排座、交通事故2.随机试验:对随机事件进行实验或观察,简称试验。
有的是人为设置,有的是必须经历。
通常所指的试验具有以下2个特征:(1)可以重复进行;(2)事先明确所有基本结果3.随机事件:试验的某种结果,事前不能确定,事后可观察到是否发生,简称事件(是个判断句)以、、,…等表示。
例1教师任取一个学号(随机),请对应的学生回答问题,站起来的可能“是男生”,“是女生”,“是戴眼镜的学生”,“是穿红衣服的学生”,“是高个子”,“是体重在60公斤以上的”“是叫张华的学生”——这些都是随机事件。
4.基本事件:不能再分解的“最简单”的事件,试验中各种最基本的可能结果。
例2在52张扑克牌中,任取一张,=“抽到◇”,=“抽到K”都是事件,其中可分解为13个最基本的结果,可分解为4个。
5.样本点:即基本事件,记为。
随机事件是某些基本事件(样本点)构成的集合。
6.样本空间:样本点的全体,即全集,记为Ω。
如投币:Ω={正,反} 抽牌:Ω=随机事件都是样本空间的子集。
例1中抽到任何一张◇,都认为已发生,类似地,抽到任何一张牌,都认为Ω已发生。
7.必然事件:试验中必然发生的事件,即Ω。
如投币:Ω=“正面朝上或反面朝上”。
抽牌:Ω=“抽到一张牌”。
8.不可能事件:试验中不可能发生的事件,是一个空集,记为。
如投币:=“正面朝上且反面朝上”。
抽牌:=“抽到一张电影票”。
例3在一批灯泡里,任取一只测试它的寿命(1000~3000小时):(1)试述一个事件;(2)指出一个样本点;(3)指出样本空间。
二、事件的关系与运算事件是集合,可以进行集合的运算,要求除了会用集合的语言表述外,还要会用事件的语言表述,并且着重于后者。
1.包含关系(或)集合语言:A中的样本点,全在内。
随机事件与概率
如:抛一颗骰子, A “出现点数不超过3”, B “出现点数大于4”,则:
A {1,2,3} B {5,6} A {4,5,6} 显然:A 与 A 互为对立事件,同时也是互斥事
件;A 与B 互为互斥事件,但不是对立事件.
【例】随机将一枚硬币抛三次,用H表示正面, T表示反面,求:
数点”,请思考:
1、事件 A 发生会导致事件B 的发生吗? 会 2、事件 B 发生会导致事件 A的发生吗? 不会
事件的包含关系:若事件 A 发生必然导致事件 B 发 生,则称事件 B 包含事件 A,也称事件 A 包含 于事件 B. 记为 A B(或 B A ).
维恩图表示:
AB
注:⑴事件 A 是事件 B 的子事件即 A B ,换一说 法:如果事件 B 不发生必然导致事件 A 不发生;
例3:某人连续三次购买体育彩票,每次一张,令 A, B,C 分别表示其第一、二、三次所买彩票 中奖的事件. 试用A, B,C及运算写出下列事件.
A
B
C
⑴第三次未中奖; ⑵只有第三次中了奖;
C
A BC
⑶恰有一次中奖; AB C U ABC U A BC A B C ⑷至少有一次中奖;
⑸不止一次中奖; AB U BC U AC
如:包含两个样本点的样本空间
{H, T}
它既可以作为抛掷硬币出现正面或出现反面的模 型,也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型 …………
⑵样本空间的元素是由试验的目的所确定的.
如:将一枚硬币连续抛掷两次,观察正面H、反面 T出现的情况. 则样本空间为:
A B A发生或B发生 A, B中至少有一个发生
维恩图表示:
概率论与数理统计 第一章 随机事件与概率
推广:
(1)n个事件A1,A2, An至少有一个发生
所构成的事件,称为 A1, A2, An的和或并,
记为
n
A1 A2 An Ai
i1
当A1, A2, An互斥时
n
n
Ai Ai
i1
i1
(2)可列无限多个事件 A1, A2, 至少有一个
(1kn)的不同排列总数为:
n n n nk
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张 第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个
(1kn)的不同组合总数为:
C
k n
Ank k!
n! (n k)!k!
Ai
i1
三.互不相容事件(互斥事件)
若A与B不能同时发生,即 AB 则称A与B
互不相容(或互斥)。S与 互斥。
S
A
B
推广:n个事件 A1,A2, An互斥
A1, A2, An 中任两个互斥,即,
i≠j, i, j=1,2,3 ,……n.
四.事件的和(并) 事件A与B至少有一个发生所构成的事件, 称为A与B的和(并)记为A∪B。当A与B 互斥时,A∪B =A+B。
六. 对立事件(逆事件) 由A不发生所构成的事件,称为A的对立事件
(逆事件)。记为 A
A
A
AA ,A A S,A A.
例1.掷一质地均匀的骰子,A=“出现奇数点”= {1,3,5},B=“出现偶数点”= {2,4,6},C=“出现4或6”={4,6}, D=“出现3或5”={3,5},E=“出现的点 数大于2”={3,4,5,6}, 求 A B,C D,AE,E.
概率论第一章随机事件与概率
n n P Ai P( Ai ) P( Ai Aj ) P( Ai Aj Ak ) i 1 i 1 n 1 ...... ( 1) P( A1 A2 ...... An )
配对模型(续)
P(Ai) =1/n, P(AiAj) =1/n(n1), P(AiAjAk) =1/n(n1)(n2), …… P(A1A2……An) =1/n! P(A1A2……An)=
从中有返回地任取n 个. 则此 n 个中有 m 个不合格品的概率为:
n M (N M ) m n N
m
n m
n M N M m N N
m
n m
条件: m n ,
即 m = 0, 1, 2, ……, n. NhomakorabeaA
事件运算的图示
AB
AB
AB
德莫根公式
A B A B;
n i 1
A B A B
n
Ai
n i 1
Ai ;
i 1
Ai
n i 1
Ai
记号
Ω φ AB AB=φ AB AB AB
概率论
样本空间, 必然事件 不可能事件 样本点 A发生必然导致B发生 A与B互不相容 A与B至少有一发生 A与B同时发生 A发生且B不发生 A不发生、对立事件
概率论
第一章 随机事件与概率
概率论起源: 合理分配赌金问题
有一笔赌金, 甲乙两个人竞赌, 输赢的 概率都一样,都是1/2, 谁先能够赢累计达到6 盘,就获得这笔赌金。 但是一个特别的原因, 赌博突然终止了, 那个时候甲赢了5局, 乙赢 了2局, 问这笔赌金应该如何分配?
第一章随机事件及其概率
第一章 随机事件与概率§1.1 随机事件及其运算1.1.1 随机现象在一定条件下必然出现的现象叫做确定性现象。
在相同的条件下可能出现也可能不出现,但在进行了大量重复地观测之后,其结果往往会表现出某种规律性的现象叫做随机现象。
(举例)为了研究和揭示随机现象的统计规律性,我们需要在相同条件下对随机现象进行大量重复地观测、测量或试验,统称为随机试验。
也有很多随机试验是不能重复的,比如某些经济现象、比赛等。
概率论与数理统计主要研究能够大量重复的随机现象,但也十分注意不能重复的随机现象的研究。
1.1.2 样本空间用{}ωΩ=表示随机现象的一切可能基本结果组成的集合,称为样本空间。
样本空间的元素,即每个基本结果ω,称为样本点。
例1 抛掷一枚硬币,观察正面和背面出现(这两个基本结果依次记为1ω和2ω)的情况,则该试验的样本空间为12{,}ωωΩ=例2 一枚骰子,观察出现的点数,则基本结果是“出现i 点”,分别记为iω(i =1,2,3,4,5,6),则该试验的样本空间为123456{,,,,,}ωωωωωωΩ= 例3 在一只罐子中装有大小和形状完全一样的2个白球和3个黑球,依次在2个白球上标以数字1和2,在3个黑球上标以数字3,4和5,从罐子中任取一个球,用i ω表示“取出的是标有i 的球”(i =1,2,3,4,5),则试验的样本空间为12345{,,,,}ωωωωωΩ=例4 在一个箱子中装有10个同型号的某种零件,其中有3件次品和7件合格品,从此箱子中任取3个零件,其中的次品个数可能是0,1,2,3,试验的样本空间为{0,1,2,3}Ω=例5 某机场问讯电话在一天内收到的电话次数可能是0,1,2,…,则试验的样本空间为{0,1,2,}Ω=L例6 考察某一大批同型电子元件的使用寿命(单位:h ),则使用的样本空间为[0,)Ω=+∞ 注意:1样本空间中的元素可以是数也不是数;2样本空间至少有两个样本点,仅含两个样本点的样本空间是最简单的样本空间;3从样本空间中所含的样本点个数来区分,样本空间可分为有限与无限两类,有限样本空间比如例1、2、3、4,无限比如例5、6,例5中样本点的个数是可列的,但例6中样本点的个数是不可列无限的。
概率论知识点
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
,
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
东华大学《概率论与数理统计》课件 第一章 随机事件与概率
(3) 设A1,A何2,…时,P是(A一|列B两)两<互P不(A相)容? 的事件,即AiAj=
,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+….
则称P(A)为事件A的概率。
例 一盒中混有100只新 ,旧乒乓球,各有红、白两 色,分 类如下表。从盒中随机取出一球,若取得的 是一只红球,试求该红球是新球的概率。
1.定义 若对随机试验E所对应的样本空间中的 每一事件A,均赋予一实数P(A),集合函数P(A)满足 条件:
(1) 非负性: P(A) ≥0;
(2) 规范性: P(S)=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有
概率论与数理统计
第一章 随机事件与概率
教材:
《概率论与数理统计》
魏宗舒编
高等教育出版社
本章主要内容:
1. 概率的概念与性质 2. 事件的关系与运算性质 3. 古典概型概率的计算 4. 加法公式、条件概率、乘法公式 5. 事件的独立性、伯努利概型
重点:古典概型、概率的计算 难点:事件的关系和运算
条件概率、伯努利概型
(2) 单调不减性:若事件AB,则 P(A)≥P(B)
(3) 事件差: A、B是两个事件,
则
P(A-B)=P(A)-P(AB)
(4) 加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形 ;
(5) 互补性:P(A)=1- P(A); (6) 可分性:对任意两事件A、B,有
概率论与数理统计第一章——随机事件及概率
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证 由题知
1 d 1
A
1
d
d
1
… … …
1 d 1
故 d为A的特征值
由于A可逆,知d 0, 故(*)式可变形为
第10页
2 设 A为 n 阶可逆矩阵,且每一行元素之和皆等于d,
试证(1)d 是 A 的特征值;
(2)A 的逆也是各行元素之和皆相等的矩阵。
1 1 1 d
1. 行列式的性质与计算; 2. 矩阵可逆的各种等价条件;
3. 矩阵秩与向量组的秩的讨论; 4. 向量组的相关性讨论;
5. 线性方程组的解的讨论; 6. 二次型化简(或对称阵化
为对角பைடு நூலகம்)。
第5页
2) *,* 1, * 2 , , * nr 线性无关。
故知 * ,1 ,2 , ,nr 线性无关。
第4页
线性代数中的 “一、二、三、四、五、六”
一种基本运算: 矩阵的初等变换。
两大主线:
向量与矩阵。
三种矩阵关系: 等价、相似、合同。
四个难点: 1. 矩阵和向量组的秩; 2. 伴随矩阵;
3. 相似变换; 4. 特征值和特征向量的讨论.
五大板块: 行列式、矩阵、向量、方程组、二次型 。
六个重要知识点:
1 1 4 4 行 1 0 3 0 当λ= 4时, B 1 4 1 16 ~ 0 1 1 4
2)不妨设为列向量情形
B (*, * 1, * 2 , , * nr ) 列(*, 1, 2 , ,nr ) A
故 R(B) R( A)
由(1)知 * ,1 ,2 , ,nr 线性无关, R( A) n r 1
R(B) R(*, * 1, * 2,, * nr ) n r 1 所以 *,* 1, * 2 , , * nr 线性无关。
2)设有
k0* k1(* 1 ) k2( * 2 ) knr ( * nr ) 0
(k0 k1 knr ) * k11 k22 knr nr 0
k0 k1 knr 0
由(1)知:
k1
0
k0 k1 knr 0
knr 0
求矩阵的秩、求逆矩阵等); 第三章 向量的线性相关性讨论、矩阵及向量组的秩的
讨论;用初等变换求向量组的秩和最大无关组; 第四章 带参数的非齐次线性方程组解的讨论、齐次或
非齐次解的结构的讨论; 第五章 方阵的特征值及特征向量的讨论、用正交矩阵
化实对称阵为对角阵(或用正交变换化二次型 为标准形)、正定性判别。
证 证: 1)反证。若 *,1 ,2 , ,nr 线性相关,
法
由于 1 ,2 , ,nr 线性无关,则 * 可由
二
1 ,2 , ,nr 线性表出
* k11 k22 knr nr
从而, *是齐次方程组的解,与题设矛盾。
第3页
复习要点
第一章 行列式的性质及计算; 第二章 伴随矩阵的性质、用矩阵的初等变换解题(如
设 *是非齐次线性方程组 AX b 的一个解,
1 ,2 , ,nr 是对应齐次线性方程组的一个基础
解系,证明:
练习册P29 第5题
1) *,1 ,2 , ,nr 线性无关;
2) *,* 1, * 2 , , * nr 线性无关。
证 证 1)设有 k0* k11 k22 knr nr O (*)
故有
A1
1
1 d
1
1 d
… … …
1
1
1
d
1 这表明A1的各行元素之和相等,皆为 d .
证毕
第11页
3
设有方程组
x1 x1
x2 λ λ x2
x3 x3
4 λ
2
x1 x2 2x3
4
问λ为何值时,该方程组有唯一解,无解,无穷多
解?并在有无穷多解时求其通解。
解 增广矩阵
法
两边用A左乘,得 k0 A* O, 即 k0b O
一
因为 b O, 故 k0 0. 将此代入(*)中,得
k11 k22 knr nr O
由 1 ,2 , ,nr 线性无关 k1 knr 0
第1页
2) *,* 1, * 2 , , * nr 线性无关。
故知 * ,1 ,2 , ,nr 线性无关。
第8页
7、若二次型 f ( x1 , x2 , x3 ) 2x12 x22 x32 2x1 x2 tx2 x3
是正定的,则 t 的取值范围是 2 t 2 。
8、设 A 是3阶矩阵,其特征值为1,-1,2,则
A2+3A-2E 的特征值为 2,- 4,8 。
第9页
2 设 A为 n 阶可逆矩阵,且每一行元素之和皆等于d, 试证(1)d 是 A 的特征值; (2)A 的逆也是各行元素之和皆相等的矩阵。
。
第7页
4、设
A
a c
b d
且ad
bc
0,
则A
1
=
ad
1
bc
d c
b a
。
5、设向量组 1 ,2 , ,r与1 , 2 , , t 等价,且 1 , 2 , , t 线性无关,则 r 与 t 间满足 r t 。
6.
设方阵A
1 2
2 x
4 2
与
5
y
相似,
4 2 1
4
则x, y的值 x 4, y 5 。
即 *,* 1 , * 2 , , * nr 线性无关。 第2页
设 *是非齐次线性方程组 AX b 的一个解,
1 ,2 , ,nr 是对应齐次线性方程组的一个基础
解系,证明:
练习册P29 第5题
1) *,1 ,2 , ,nr 线性无关; 2) *,* 1, * 2 , , * nr 线性无关。
第6页
一、填空
1、6 阶行列式中项 a23a41a35a16a52a64 的符号为 + 。
2、已知向量组 a1 1 2 1 1, a2 2 0 t 0 a3 0 4 5 2 线性相关。则 t= 3 。
3、设 A,B 同为 n 阶矩阵,A 2, B 3,
则 2A* B 1
1 2 2n1 3
1 B 1
1 λ
λ 1
4
λ
2
行 1 ~0
1 λ 1
λ 4
λ
1 λ2 4
1
1
2
4
0
2
2 λ
-8
行 1 1
λ
4
~0 2
2 λ
8
0
0
(λ
1)(4 λ )
2λ (λ
- 4)
第12页
x1 x1
x2 λ λ x2
x3 x3
4 λ2
x1 x2 2x3
4
故当λ≠4且λ≠-1时,方程组有唯一解。