沪科版九年级数学上册教案教案
沪科版数学九年级上册《平行线分线段成比例》教学设计1
沪科版数学九年级上册《平行线分线段成比例》教学设计1一. 教材分析《平行线分线段成比例》是沪科版数学九年级上册的一章内容。
本章主要介绍了平行线分线段成比例的定理及其应用。
通过本章的学习,学生能够掌握平行线分线段成比例的证明方法,并能够运用该定理解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对平行线的性质和图形的变换有一定的了解。
但是,对于证明平行线分线段成比例的定理,学生可能存在一定的困难。
因此,在教学过程中,需要引导学生通过观察和操作,发现平行线分线段成比例的规律,并能够运用数学语言进行证明。
三. 教学目标1.了解平行线分线段成比例的定理及其意义。
2.能够运用平行线分线段成比例的定理解决实际问题。
3.培养学生的观察能力、操作能力和逻辑思维能力。
四. 教学重难点1.平行线分线段成比例的定理证明。
2.运用平行线分线段成比例定理解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行线分线段成比例的概念,激发学生的学习兴趣。
2.操作教学法:引导学生通过实际操作,发现平行线分线段成比例的规律。
3.小组合作学习:引导学生分组讨论和探究,培养学生的合作意识和团队精神。
4.引导发现法:教师引导学生发现问题,学生通过思考和探索,得出结论。
六. 教学准备1.教学PPT:制作教学PPT,展示教材中的例题和练习题。
2.教学素材:准备相关的图片和实例,用于导入和解释平行线分线段成比例的概念。
3.练习题:准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计中的平行线分线段成比例的应用,引入平行线分线段成比例的概念。
引导学生观察和思考,激发学生的学习兴趣。
2.呈现(10分钟)展示教材中的例题和练习题,引导学生观察和分析,发现平行线分线段成比例的规律。
通过教师的讲解和引导,让学生理解并掌握平行线分线段成比例的定理。
沪科版数学九年级上册《黄金分割》教学设计
沪科版数学九年级上册《黄金分割》教学设计一. 教材分析沪科版数学九年级上册《黄金分割》是学生在学习几何知识的基础上,进一步了解和掌握黄金分割的概念、性质和应用。
教材从生活实例出发,引出黄金分割的概念,并通过几何图形让学生深入理解黄金分割的性质。
本节课的内容对于学生来说既有趣又具有挑战性,能够激发学生的学习兴趣和探究欲望。
二. 学情分析学生在学习本节课之前,已经掌握了基本的几何知识,如相似三角形、平行线等。
他们对几何图形的观察和分析能力较强,但可能对黄金分割的概念和性质理解不够深入。
因此,在教学过程中,教师需要注重引导学生从生活实例中发现黄金分割,并通过几何图形让学生深入理解黄金分割的性质。
三. 教学目标1.知识与技能:让学生了解黄金分割的概念,掌握黄金分割的性质,并能运用黄金分割解决实际问题。
2.过程与方法:通过观察生活实例和几何图形,培养学生的观察能力、分析能力和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。
四. 教学重难点1.重点:黄金分割的概念和性质。
2.难点:黄金分割在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现黄金分割,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考和探究,培养学生的分析能力和推理能力。
3.合作学习法:分组讨论,让学生在合作中交流、思考,提高学生的团队协作能力。
六. 教学准备1.准备生活实例和几何图形的图片,用于导入和呈现。
2.准备相关的教学PPT,展示黄金分割的概念和性质。
3.准备练习题和拓展题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些生活实例和几何图形的图片,如建筑设计、艺术作品等,引导学生发现这些图形中都存在一种特殊的美感。
提问:这种美感是如何产生的?引出黄金分割的概念。
2.呈现(10分钟)介绍黄金分割的定义:将一条线段分为两部分,使其中一部分与整体的比例等于另一部分与这部分的比例,这个比例约为1:1.618。
沪科版九年级数学上册教案5篇
沪科版九年级数学上册教案5篇沪科版九年级数学上册教案5篇教案是以系统方法为指导。
教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
下面小编给大家带来关于沪科版九年级数学上册教案,方便大家学习沪科版九年级数学上册教案1教学目标1认识扇形统计图的特点和作用;2能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3遇到不理解或不懂的地方,用下划线和?标记出来。
便于交流时提出。
4自己的建议体会方法可以在旁边作好批注。
教学重难点1认识扇形统计图的特点和作用;2能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具课件教学过程一快乐自学你喜欢运动吗?调查本班同学喜欢的运动项目。
根据下面的统计图:六(1)班最喜欢的运动项目统计图1说一说:从这幅统计图中你能获取哪些信息?2我知道这是一幅( )统计图,它的特点是( )。
3我最喜欢的运动项目是( ),它占全班人数的百分比是( )。
要想清楚地知道百分比这样的信息,我们可以选用( )统计图。
4一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?(3)你还能提出什么问题?二合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?1我发现扇形统计图中的( )代表单位“1”,表示( ),各个扇形面积表示( ),扇形的大小说明了( )。
2扇形统计图的特点是( )。
3生活中,你还从()见到过扇形统计图?三学习小结我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。
我们今天又学习了扇形统计图,它的特点是(),四智勇大闯关,我是小擂主1第一关:小练兵。
完成练习二十五的第12题。
2第二关完成练习二十五的第4题。
五学后反思1我的收获:2自我评价:我对我的课堂表现( ),因为()。
沪科版数学九年级上册《二次函数表达式的确定》教学设计1
沪科版数学九年级上册《二次函数表达式的确定》教学设计1一. 教材分析《二次函数表达式的确定》是沪科版数学九年级上册的一章内容,主要介绍了二次函数的标准形式以及如何确定二次函数的表达式。
本节课的内容对于学生理解二次函数的性质和图像具有重要意义。
教材通过引入二次函数的定义和性质,引导学生探究如何从给定的条件中确定二次函数的表达式,从而加深学生对二次函数的理解。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,对于函数的理解有一定的基础。
但是,二次函数的概念和性质较为抽象,学生可能难以理解和掌握。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出二次函数模型,并通过探究活动帮助学生建立二次函数的表达式。
三. 教学目标1.了解二次函数的定义和性质,理解二次函数的表达式。
2.能够从给定的条件中确定二次函数的表达式。
3.培养学生的抽象思维能力和问题解决能力。
四. 教学重难点1.二次函数的定义和性质的理解。
2.如何从给定的条件中确定二次函数的表达式。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出二次函数模型。
2.通过探究活动,帮助学生理解和掌握二次函数的表达式。
3.利用多媒体辅助教学,直观展示二次函数的图像和性质。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次函数的概念,例如:一个抛物线形的风力发电机,其发电量与风速的平方成正比,求该风力发电机的发电量与风速的关系式。
2.呈现(15分钟)呈现二次函数的定义和性质,引导学生从实际问题中抽象出二次函数模型。
通过多媒体展示二次函数的图像,帮助学生直观理解二次函数的性质。
3.操练(20分钟)让学生通过探究活动,从给定的条件中确定二次函数的表达式。
可以设置一些具有代表性的例题,让学生分组讨论和解答,然后进行分享和讨论。
4.巩固(10分钟)针对学生在探究活动中遇到的问题,进行讲解和巩固。
九年级数学上册全一册教案(新版)沪科版
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
沪科版九年级上册数学全册教案【精品】
沪科版数学九年级上册全册教案初级中学电子教案邵庙初级中学电子教案第单元.第课时.总第课课题21.2 二次函数y=ax2的图象和性质教学目标1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。
难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教法教具问题探究法直尺课时安排一课时课前准备复习上节课的内容并预习二次函数的画法,同一次函数的相关内容相联系教学过一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:程x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
沪科版九年级数学上册教学设计:21
-确保作业难度适中,既能巩固课堂所学,又不过于繁重,以免影响学生的学习兴趣。
-强调作业的实践性和应用性,让学生在实际操作中感受数学的魅力。
-鼓励学生自主学习和合作学习,通过小组讨论和探究,提高解决问题的能力。பைடு நூலகம்
-对于作业的完成情况,要及时给予反馈,表扬优秀作业,对存在问题的地方给予指导和建议,帮助学生不断提高。
沪科版九年级数学上册教学设计:21.2二次函数的图象和性质(7)二次函数表达式的确定
一、教学目标
(一)知识与技能
1.理解并掌握二次函数的标准形式及其特点,能准确识别并写出二次函数的一般形式:f(x) = ax^2 + bx + c(a≠0)。
2.能够通过观察、分析、归纳二次函数的图像,总结出二次函数的开口方向、顶点坐标、对称轴等性质,并能够用数学语言进行描述。
2.展示二次函数的图像,引导学生观察开口方向、顶点、对称轴等性质。
3.通过具体例子,讲解配方法、顶点公式等求解二次函数表达式的方法。
4.分析二次函数图像与性质之间的关系,加深学生对知识点的理解。
(三)学生小组讨论
在这一环节中,我将组织学生进行小组讨论,共同探究二次函数的性质和求解方法。
1.分组:将学生分成若干小组,确保每个小组都有不同层次的学生。
3.通过配方法、顶点公式等求解二次函数表达式,让学生掌握数学方法,培养解决问题的策略和技巧。
4.结合实际问题,让学生体验数学建模的过程,培养学生将数学知识应用于实际问题的能力。
(三)情感态度与价值观
1.激发学生对二次函数的兴趣,培养学生主动探究、积极思考的学习态度。
2.通过对二次函数图像和性质的学习,让学生感受到数学的对称美、简洁美,培养学生的审美情趣。
沪科版数学九年级上册《相似形》教学设计1
沪科版数学九年级上册《相似形》教学设计1一. 教材分析《相似形》是沪科版数学九年级上册的一章重要内容。
本章主要介绍了相似形的概念、性质和应用。
通过学习相似形,学生能够理解图形的相似性,掌握相似比的计算方法,并能应用于实际问题中。
教材通过丰富的例题和练习题,帮助学生巩固相似形的相关知识。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认知和推理能力有所提高。
但是,部分学生可能对抽象的几何概念理解不够深入,对相似形的推理论证能力有待提高。
因此,在教学过程中,需要关注学生的个体差异,引导他们通过观察、操作、思考等方式,逐步理解和掌握相似形的知识。
三. 教学目标1.知识与技能:学生能够理解相似形的概念,掌握相似形的性质,能够运用相似形解决实际问题。
2.过程与方法:学生通过观察、操作、推理等过程,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验数学的趣味性和应用性,培养对数学的热爱。
四. 教学重难点1.重点:相似形的概念和性质。
2.难点:相似形的推理论证和应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生主动探究相似形的知识。
2.启发式教学法:通过提问和引导,激发学生的思考,培养学生的推理能力和解决问题的能力。
3.合作学习法:学生进行小组讨论和合作,培养学生的沟通能力和团队合作精神。
六. 教学准备1.教学PPT:制作教学PPT,包括教材内容的展示、例题和练习题的展示等。
2.教学素材:准备相关的图片、实物等教学素材,用于引导学生观察和思考。
3.练习题:准备适量的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生观察和思考,引发学生对相似形的兴趣。
例如,展示两张形状相同但大小不同的图片,让学生比较它们的相似性。
2.呈现(10分钟)教师通过PPT展示教材中关于相似形的概念和性质,引导学生理解和掌握。
沪科版九年级数学上册教案全册教案.pdf
2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数 y=2(x-1)2 与 y=2x2 的图象、开口方向相同、对称轴和顶点坐标不同;函数 y =2(x-1)2 的图象可以看作是函数 y=2x2 的图象向右平移 1 个单位得到的,它的 对称轴是直线 x=1,顶点坐标是(1,0)。
问题 4:你可以由函数 y=2x2 的性质,得到函数 y=2(x-1)2 的性质吗? 教学要点 1.教师引导学生回顾二次函数 y=2x2 的性质,并观察二次函数 y=2(x-1)2 的图象; 2.让学生完成以下填空: 当 x______时,函数值 y 随 x 的增大而减小;当 x______时,函数值 y 随 x 的增大而增大;当 x=______时,函数取得最______值 y=______。 三、做一做 问题 5:你能在同一直角坐标系中画出函数 y=2(x+1)2 与函数 y=2x2 的图象, 并比较它们的联系和区别吗? 教学要点 1.在学生画函数图象的同时,教师巡视、指导; 2.请两位同学上台板演,教师讲评;
学海无涯
图象的这些特点反映了函数的什么性质? 先让学生观察下图,回答以下问题; (1)XA、XB 大小关系如何?是否都小于 0? (2)yA、yB 大小关系如何? (3)XC、XD 大小关系如何?是否都大于 0? (4)yC、yD 大小关系如何? (XA<XB,且 XA<0,XB<0;yA>yB;XC<XD,且 XC>0, XD>0,yC<yD) 其次,让学生填空。 当 X<0 时,函数值 y 随着 x 的增大而______,当 X>O 时,函数值 y 随 X 的增 大而______;当 X=______时,函数值 y=ax2 (a>0)取得最小值,最小值 y=______ 以上结论就是当 a>0 时,函数 y=ax2 的性质。 思考以下问题: 观察函数 y=-x2、y=-2x2 的图象,试作出类似的概括,当 a<O 时,抛物线 y =ax2 有些什么特点?它反映了当 a<O 时,函数 y=ax2 具有哪些性质? 让学生讨论、交流,达成共识,当 a<O 时,抛物线 y=ax2 开口向上,在对称 轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物 线上位置最高的点。图象的这些特点,反映了当 a<O 时,函数 y=ax2 的性质;当 x<0 时,函数值 y 随 x 的增大而增大;与 x>O 时,函数值 y 随 x 的增大而减小, 当 x=0 时,函数值 y=ax2 取得最大值,最大值是 y=0。 五、课堂练习:P6 练习 1、2、3、4。 六、小结: 1.如何画出函数 y=ax2 的图象? 2.函数 y=ax2 具有哪些性质? 六、作业布置 教材P9 习题23.2 1,3,4,5
沪科版九年级数学上册教案全册教案
沪科版九年级数学上册教案全册教案教学目标:(1)能够根据实际问题;熟练地列出二次函数关系式;并求出函数的自变量的取值范围。
(2)注重学生参与;联系实际;丰富学生的感性认识;培养学生的良好的学习习惯重点难点:能够根据实际问题;熟练地列出二次函数关系式;并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm;先取x的一些值;算出矩形的另一边BC的2?3.我们发现;当AB的长(x)确定后;矩形的面积(y)也随之确定; y是x的函数;试写出这个函数的关系式;对于1.;可让学生根据表中给出的AB的长;填出相应的BC的长和面积;然后引导学生观察表格中数据的变化情况;提出问题:(1)从所填表格中;你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见;达成共识:当AB的长为5cm;BC的长为10m时;围成的矩形面积最大;最大面积为50m2。
对于2;可让学生分组讨论、交流;然后各组派代表发表意见。
形成共识;x的值不可以任意取;有限定范围;其范围是0 <x <10。
对于3;教师可提出问题;(1)当AB=xm时;BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售;一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润;经过市场调查;发现这种商品单价每降低0.1元;其销售量可增加10件。
将这种商品的售价降低多少时;能使销售利润最大?在这个问题中;可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价;该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元);(10-8)×100=200(元)]3.若每件商品降价x元;则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取;请求出它的范围;[x的值不能任意取;其范围是0≤x≤2]5.若设该商品每天的利润为y元;求y与x的函数关系式。
沪科版九年级数学上册教案全册
沪科版九年级数学上册教案21.1二次函数1.掌握二次函数的概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型.(难点)一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式不符合二次函数的定义,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式最高次数为2,且函数关系式中二次项系数不等于0.【类型二】根据二次函数的定义求待定字母的值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解.注意易错点为忽视k+2≠0.解:根据题意知⎩⎪⎨⎪⎧k 2-2=2,k +2≠0,⎩⎪⎨⎪⎧k =±2,k ≠-2,∴k =2. 方法总结:紧扣定义中的两个特征:①a ≠0;②自变量最高次数为2的二次三项式ax 2+bx +c .【类型三】 与二次函数系数有关的计算已知一个二次函数,当x =0时,y =0;当x =2时,y =12;当x =-1时,y =18.求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y =ax 2+bx +c (a ≠0).把x =0,y =0;x =2,y =12;x =-1,y =18分别代入函数表达式,得⎩⎪⎨⎪⎧c =0,4a +2b +c =12,a -b +c =18,解得⎩⎪⎨⎪⎧a =18,b =0,c =0.所以这个二次函数的表达式为y =18x 2.所以a +b +c =18+0+0=18,即这个二次函数中各项系数的和为18. 方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y =ax 2+bx +c (a ≠0).解决这类问题要根据x ,y 的对应值,列出关于字母a ,b ,c 的方程(组),然后解方程(组),即可求得a ,b ,c 的值.探究点二:建立二次函数模型某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x 元、每星期售出商品的利润为y 元.(1)请写出y 与x 的函数表达式,并求出自变量x 的取值范围; (2)当每件商品降价15元时,每星期售出商品的利润为多少元?解析:根据题意可以知道:实际每件商品的利润为(60-x -40),每星期售出商品的数量为(300+20x ),则每星期售出商品的利润为y =(60-x -40)(300+20x )元,化简,注意要求出自变量x 的取值范围.解:(1)由题意,得: y =(60-x -40)(300+20x ) =(20-x )(300+20x ) =-20x 2+100x +6000,自变量x的取值范围为0≤x≤20;(2)把x=15代入y=-20x2+100x+6000得y=3000(元),即当每件商品降价15元时,每星期售出商品的利润为3000元.方法总结:销售利润=单件商品利润×销售数量;单件商品利润=售价-进价.三、板书设计二次函数⎩⎪⎪⎨⎪⎪⎧1.概念:一般地,表达式形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做x的二次函数,其中x是自变量2.二次函数的识别3.确定二次函数中待定字母的取值(范围)4.求函数值5.建立二次函数模型6.确定自变量的取值范围教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.第21章二次函数与反比例函数21.1 二次函数21.2二次函数的图象和性质1.二次函数y=ax2的图象和性质1.正确理解抛物线的有关概念;(重点)2.会用描点法画出二次函数y =ax 2的图象,概括出图象的特点;(重点) 3.掌握形如y =ax 2的二次函数图象的性质,并会应用;(难点)4.通过动手操作、合作交流,积累数学活动经验,培养动手能力和观察能力.一、情境导入我们都见过篮球运动员投篮,你知道篮球从出手到落入篮圈内的路线是什么图形吗?它是如何画出来的?我们把篮球从出手到落入篮圈内的曲线叫抛物线,你还能举出一些抛物线的例子吗?二、合作探究探究点一:二次函数y =ax 2的图象 【类型一】 画二次函数y =ax 2的图象在同一平面直角坐标系中,画出下列函数的图象:①y =12x 2;②y =2x 2;③y =-12x 2;④y =-2x 2.根据图象回答下列问题: (1)这些函数的图象都是轴对称图形吗?如果是,对称轴是什么?(2)图象有最高点或最低点吗?如果有,最高点或最低点的坐标是什么?解析:要画出已知四个函数的图象,需先列表,因为在这些函数中,自变量的取值范围是全体实数,故应以原点O 为中心,对称地选取x 的值,列出函数的对应值表.解:列表:描点、连线,函数图象如图所示.x -4 -3 -2 -1 0 1 2 3 4y =12x 2 8 4.5 2 0.5 0 0.5 2 4.5 8y =-12x 2-8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2y =2x 2 8 4.5 2 0.5 0 0.5 2 4.5 8y =-2x 2 -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8(1)这四个函数的图象都是轴对称图形,对称轴都是y 轴;(2)函数y =2x 2和y =12x 2的图象有最低点,函数y =-12x 2和y =-2x 2的图象有最高点,这些最低点和最高点的坐标都是(0,0).方法总结:(1)画形如y =ax 2(a ≠0)的图象时,x 的值应从最低(或最高)点起左右两边对称地选取.(2)连线时,一般按从左到右的顺序将点连接起来,一定注意连线要平滑,不能画成折线.(3)抛物线的概念:二次函数y =ax 2(a ≠0)的图象是抛物线,简称为抛物线y =ax 2. (4)抛物线的特点:①有开口方向;②有对称轴;③有顶点——对称轴与抛物线的交点.抛物线的顶点也是它的最低点或最高点.【类型二】 同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a 、b 的符号来确定.当a >0时,抛物线y =ax 2的开口向上.∵ab >0,∴b >0.∴直线y =ax +b 过第一、二、三象限.当a <0时,抛物线y =ax 2的开口向下.∵ab >0,∴b <0.∴直线y =ax +b 过第二、三、四象限.故选D.方法总结:本例综合考查了一次函数y =ax +b 和二次函数y =ax 2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a 的符号是否一致入手进行分析.探究点二:抛物线y =ax 2的开口方向、大小与系数a 的关系如图,四个二次函数图象中,分别对应:①y =ax 2;②y =bx 2;③y =cx 2;④y =dx 2,则a 、b 、c 、d 的大小关系为( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .b >a >d >c 答案:A方法总结:抛物线y =ax 2的开口大小由|a |确定,|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大.探究点三:二次函数的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求: (1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标; (3)△AMB 的面积.解析:直线与二次函数y =ax 2的图象交点坐标可利用方程求解,而求△AMB 的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1; (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0).由-x 2=2x -3,解得x 1=1,x 2=-3,∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如图所示,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题.探究点四:二次函数y =ax 2的性质【类型一】 二次函数y =ax 2的增减性作出函数y =-x 2的图象,观察图象,并利用图象回答下列问题:(1)在y 轴左侧图象上任取两点A (x 1,y 1),B (x 2,y 2),使x 2<x 1<0,试比较y 1与y 2的大小; (2)在y 轴右侧图象上任取两点C (x 3,y 3),D (x 4,y 4),使x 3>x 4>0,试比较y 3与y 4的大小.解析:根据画出的函数图象来确定有关数值大小比较,是一种比较常用的方法. 解:(1)图象如图所示,由图象可知y 1>y 2; (2)由图象可知y 3<y 4.方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图,进行观察和分析以免解题时产生错误.【类型二】 二次函数y =ax 2的最值已知函数y =(1-n )xn 2+n -4是关于x 的二次函数,当n 为何值时,抛物线有最低点?并求出这个最低点的坐标.这时当x 为何值时,y 随x 的增大而增大?解:∵函数y =(1-n )xn 2+n -4是关于x 的二次函数,∴⎩⎪⎨⎪⎧n 2+n -4=2,1-n ≠0.解得n =2或n=-3.∵抛物线有最低点,∴1-n >0,即n <1.∴n =-3.∴当x >0时,y 随x 的增大而增大.方法总结:抛物线有最低点或最高点是由抛物线y =ax 2(a ≠0)的二次项系数a 的符号决定的;当a >0时,抛物线有最低点;当a <0时,抛物线有最高点.而此题常错误地认为n >0时,抛物线有最低点.正确的答案应为1-n >0,即n <1时,抛物线有最低点,因为二次项系数是(1-n ).探究点五:利用二次函数y =ax 2的图象和性质解题 【类型一】 利用二次函数y =ax 2的性质解题当m 为何值时,函数y =mxm 2-m 的图象是开口向下的抛物线?当x 为何值时,y随x 的增大而增大?这个函数有最大值还是最小值?这个值是多少?解:由题意,得m 应满足⎩⎪⎨⎪⎧m <0,m 2-m =2,解得m =-1.当x <0时,y 随x 的增大而增大.这个函数有最大值,最大值是0.方法总结:本题主要考查函数y =ax 2(a ≠0)的有关性质.当a >0时,图象开口向上,函数有最小值0;当a <0时,图象开口向下,函数有最大值0.当a <0且x <0时,y 随x 的增大而增大.【类型二】 二次函数y =ax 2的图象和性质的实际应用如图,是一座抛物线形拱桥的示意图,在正常水位时,水面AB 的宽为20m ,如果水位上升3m ,水面CD 的宽为10m.(1)建立如图所示的坐标系,求此抛物线的函数表达式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶了1h 时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时,水位在CD 处,当水位涨到桥拱最高点O 时,禁止车辆通行).问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)设抛物线的函数表达式为y =ax 2(a ≠0),拱桥最高点O 到水面CD 的距离为h m ,则D (5,-h ),B (10,-h -3).∴⎩⎪⎨⎪⎧25a =-h ,100a =-h -3,解得⎩⎪⎨⎪⎧a =-125,h =1.∴抛物线的函数表达式为y =-125x 2;(2)水位由CD 处涨到最高点O 的时间为h ÷0.25=1÷0.25=4(h),货车按原来速度行驶的路程为40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到x km/h ,即当4x +40×1=280时,x =60.∴要使货车安全通过此桥,货车的速度应超过60km/h.方法总结:一般地,求二次函数y =ax 2的表达式时,只需一个已知点(坐标原点除外)的坐标即可.而此题由于点B ,D 的纵坐标未知,故需设出CD 到桥顶的距离h 作为辅助未知数.三、板书设计二次函数y =ax 2的图象和性质⎩⎪⎪⎪⎨⎪⎪⎪⎧图象⎩⎪⎨⎪⎧画y =ax 2图象y =ax 2图象的形状、特点性质⎩⎪⎪⎨⎪⎪⎧a >0⎩⎪⎨⎪⎧当x <0时,函数y 随x 的增大而减小当x >0时,函数y 随x 的增大而增大当x =0时,函数取得最小值,y 最小值=0,且y 没有最大值,即y ≥0a <0⎩⎪⎨⎪⎧当x <0时,函数y 随x 的增大而增大当x >0时,函数y 随x 的增大而减小当x =0时,函数取得最大值,y 最大值=0,且y 没有最小值,即y ≤0教学过程中,强调学生的自主探索和合作交流,在操作中探究二次函数的图象和性质,体会数学建模的数形结合的思想方法.21.2 二次函数的图象和性质1.二次函数y=ax2的图象和性质教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.教学过程一、问题引入1.一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线.)2.画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).3.二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)二、新课教授【例1】画出二次函数y=x2的图象.(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.【例2】在同一直角坐标系中,画出函数y=x2及y=2x2的图象.x…-4-3-2-101234…y=x2…8 4.520.500.52 4.58…x…-2-1.5-1-0.500.51 1.52…y=2x2…8 4.520.500.52 4.58…思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。
沪科版数学九年级上册《相似三角形的综合应用》教学设计1
沪科版数学九年级上册《相似三角形的综合应用》教学设计1一. 教材分析《相似三角形的综合应用》是沪科版数学九年级上册的一章内容。
本章主要介绍了相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。
相似三角形是中学数学中的一个重要概念,它在几何学和其他学科中都有广泛的应用。
通过本章的学习,学生可以加深对相似三角形的理解,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了三角形的基本性质,对三角形的内角和、边长关系等有一定的了解。
然而,学生对于相似三角形的概念和相关性质可能还不够熟悉,需要通过本章的学习来进一步掌握。
此外,学生可能对于将相似三角形应用于实际问题中还存在一定的困难,需要通过实例分析和练习来提高。
三. 说教学目标1.知识与技能目标:学生能够掌握相似三角形的性质和判定方法,并能够应用于实际问题中。
2.过程与方法目标:学生能够通过观察、分析和推理等方法,探索相似三角形的性质,培养解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,与同伴合作解决问题,培养团队合作精神。
四. 说教学重难点1.教学重点:相似三角形的性质和判定方法。
2.教学难点:相似三角形在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过引导学生观察、分析和推理等思维活动,探索相似三角形的性质。
2.教学手段:利用多媒体课件和实物模型等辅助教学,帮助学生直观地理解相似三角形的概念和性质。
六. 说教学过程1.引入新课:通过展示一些实际问题,引发学生对相似三角形的思考,激发学生的学习兴趣。
2.探究相似三角形的性质:引导学生观察和分析一些几何图形,引导学生通过推理得出相似三角形的性质。
3.应用相似三角形的性质:通过一些实际问题,让学生运用相似三角形的性质解决问题,巩固所学知识。
4.总结与拓展:引导学生总结本节课所学的知识,并给出一些拓展问题,激发学生的进一步学习兴趣。
七. 说板书设计板书设计要简洁明了,突出相似三角形的性质和判定方法。
沪科版数学九年级上册《正切》教学设计2
沪科版数学九年级上册《正切》教学设计2一. 教材分析《正切》是沪科版数学九年级上册的一章内容,主要介绍了正切函数的定义、性质和应用。
本章内容在数学知识体系中具有重要地位,为高中阶段学习更高级的数学知识打下基础。
教材从实际问题出发,引入正切概念,通过探究正切函数的性质,使学生了解正切函数在实际生活中的应用。
二. 学情分析九年级的学生已具备一定的数学基础,能理解和掌握一些基本的数学概念和运算方法。
但学生在学习正切函数时,可能会觉得抽象难以理解,特别是正切函数的图像和性质。
因此,在教学过程中,要关注学生的学习兴趣,激发学生的探究欲望,帮助学生克服学习难点。
三. 教学目标1.知识与技能:使学生了解正切函数的定义,掌握正切函数的性质,能运用正切函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生探究数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:正切函数的定义,正切函数的性质。
2.难点:正切函数图像的理解,正切函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过实际问题引入正切概念,激发学生的学习兴趣。
2.探究教学法:引导学生观察、分析正切函数的性质,培养学生的探究能力。
3.案例教学法:通过典型例题,讲解正切函数在实际问题中的应用,提高学生的解决问题的能力。
六. 教学准备1.课件:制作正切函数的图像、性质和应用的课件。
2.例题:挑选具有代表性的正切函数实际问题作为例题。
3.作业:设计具有层次性的作业,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入正切概念,激发学生的学习兴趣。
例如:在直角三角形中,已知一条直角边长为1,斜边长为2,求另一条直角边的长度。
2.呈现(10分钟)讲解正切函数的定义,引导学生观察正切函数的图像,分析正切函数的性质。
3.操练(10分钟)让学生通过自主探究或小组合作,解决一些与正切函数相关的问题。
沪科版数学九年级上册全册教案及单元知识点总结
第21章二次函数与反比例函数21.1 二次函数【知识与技能】认识二次函数,知道二次函数自变量的取值范围,并能熟练地列出二次函数关系式.【过程与方法】通过对实际问题的探索,熟练地掌握列二次函数关系式和求自变量的取值范围.【情感态度】培养学生探索新知的能力,鼓励学生通过观察、猜想、验证,主动地获取知识.【教学重点】能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.【教学难点】熟练地列出二次函数关系式.一、情景导入,初步认知1.什么叫函数?它有几种表示方法?2.什么叫一次函数?(y=kx+b)自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件?k值对函数性质有什么影响?【教学说明】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以便与二次函数中的a进行比较.二、思考探究,获取新知1.函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数.看下面两个例子中两个变量之间存在怎样的关系.问题1 某水产养殖户用长40米的围网,在水库中围一块矩形的水面,投放鱼苗,要使围成的水面的面积最大,则它的边长应是多少米?设:围成的矩形的一边长为x米,那么,矩形水面的另一边长为(20-x)米,若面积是Sm2,则有:S=x(20-x)问题2 有一玩具厂,如果安排装配工15人,那么每人每天可装配玩具190个,如果增加人数,那么每增加1人,可使每人每天少装配玩具10个,问增加多少人才能使每天装配玩具总数最多?玩具总数最多是多少?设:增加x人,这时,共有(15+x)人,每人每天可少装配10x个玩具,因此,每人每天只装配(190-10x)个,所以,增加人数后,每天装配玩具总数y可表示为:y=(190-10x)(15+x)在问题1中函数的表达式可化简为:S=-x2+20x在问题2中函数的表达式可化简为:y=-10x2+40x+28502.教师引导学生观察问题1.问题1中的函数关系式,提出以下问题让学生思考回答;(1)这两个函数关系式的自变量各有几个?(2)多项式-2x2+20x和-10x2+40x+2850分别是几次多项式?(3)这两个函数关系式有什么共同特点?(4)你能结合一次函数的概念,给这种函数下个概念吗?【归纳结论】表达式形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x 的二次函数,其中x是自变量.a叫做二次函数的系数,b叫做一次项的系数,c 叫做常数项.3.想一想,在二次函数中自变量的取值范围有什么要求呢?说出问题1、问题2中自变量的取值范围.【归纳结论】二次函数自变量的取值范围一般都是全体实数,但是在实际问题中,自变量的取值范围应使实际问题有意义.如问题1中,自变量x的取值范围为0<x<20.【教学说明】学生通过实际问题的分析,列出关系式,并观察、利用类比的思想总结出二次函数的概念.三、运用新知,深化理解1.下列关系式中,属于二次函数的是(x 为自变量)( A )【分析】紧抓二次函数的概念.2.m 取哪些值时,函数y=(m 2-m)x 2+mx+(m+1)是以x 为自变量的二次函数?【分析】若函数y=(m 2-m)x 2+mx+(m+1)是二次函数,须满足的条件是:m 2-m≠0. 解:若函数y=(m 2-m)x 2+mx+(m+1)是二次函数,则m 2-m≠0.解得m≠0且m≠1.因此,当m≠0且m≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.3.(1)写出正方体的表面积S (cm 2)与正方体棱长a (cm )之间的函数关系;(2)写出圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;【分析】(1)根据正方体表面积公式可得.(2)面积与半径有关,所以根据周长表示出半径就可求出面积.解:(1)S=6a 2(a >0).(2)y=42x (x >0). 4.正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.解:(1)S 2=152-4x 2=225-4x 2(0<x <215); (2)当x=3cm 时,S=225-4×32=189(cm2).5.已知二次函数y=x 2+px+q,当x=1时,函数值是4;当x=2时,函数值是-5.求这个二次函数的解析式.解:把x=1,y=4;x=2,y=-5分别代入y=x 2+px+q ,得方程组所以这个二次函数的表达式为y=x2-12x+15【教学说明】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题21.1”中第1、2、5题.本节课通过简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数.通过复习类比,大部分同学对于二次函数的理解都比较好,会找自变量,会列简单的函数关系式,总体效果良好!*3.二次函数表达式的确定【知识与技能】经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.【过程与方法】会用待定系数法求二次函数的表达式.【情感态度】逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】求二次函数的解析式.【教学难点】求二次函数的解析式.一、情景导入,初步认知问题1:如何求一次函数的解析式?至少需要几个点的坐标?问题2:你能求二次函数的解析式吗?如果要求二次函数的解析式需要几个点的坐标?【教学说明】通过类比的思想猜想求二次函数的解析式需要坐标点的个数.二、思考探究,获取新知问题:1.已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2),求函数的解析式.【分析】可设函数关系式为y=ax2+bx+c,根据二次函数的图象经过三个已知点,可得出一个关于a,b,c的三元一次方程组,从而可以求出a,b,c的值。
沪科版九年级上册数学教案全集
23.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进2.x3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10) (1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2) (2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
沪科版九年级上册数学全册教案
学期:2014至2015学年度第一学期学科:初中数学年级:九年级(上册)授课班级:九(1)授课教师:刘林2012年9月邵庙初级中学电子教案邵庙初级中学电子教案课前准备复习上节课的内容并预习二次函数的画法,同一次函数的相关内容相联系教学过程一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。
解:(1)列表:在x的取值范围内列出函数对应值表:x …-3 -2 -1 0 1 2 3 …y …9 4 1 0 1 4 9 …(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。
两个函数图象的共同点以及它们的区别,可分组讨论。
交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
沪科版九年级上册数学_全册教案
学期:2014至2015学年度第一学期学科:初中数学年级:九年级(上册)授课班级:九(1)授课教师:刘林2012年9月邵庙初级中学电子教案第 1 单元.第 1 课时.总第课课题21.1 二次函数教学目标(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围教法教具问题引导法课时安排一课时课前准备复习初二一次函数的相关内容,作为二次函数的铺垫教学过程一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m) 1 2 3 4 5 6 7 8 9BC长(m) 12面积y(m2) 482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC 的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上面我们应用一元二次方程解决了求黄金比的问题,其 实,很多实际问题都可以应用一元二次方程来解决。 2、例题讲析: 例 1:P64 题略(幻灯片) (1)小岛 D 和小岛 F 相距多少海里? (2)已知军舰的速度是补给船的 2 倍,军舰在由 B 到 C
的途中与补给船相遇于 E 处,那么相遇时补给船航行了多少海里?(结果精确到 0.1 海 里) 解: (1)连接 DF,则 DF⊥BC, ∵AB⊥BC,AB=BC=200 海里 ∴AC= 2 AB=200 2 海里,∠C=45° 1 ∴CD= AC=100 2 海里 2 ∴DF=CF= DF=CF, 2 DF=CD
配方法(第一课时) 教学目标: 1、会用开平方法解形如(x+m)2=n (n≥0)的方程; 2、理解配方法,会用配方法解简单的数字系数的一元二次方程; 3、体会转化的数学思想,用配方法解一元二次方程的过程。 教学程序: 一、复习: 1、解下列方程: (1)x2=9 (2)(x+2)2=16 2、什么是完全平方式? 利用公式计算: (1)(x+6)2 1 (2)(x- )2 2
如图所示: (1)设花园四周小路的宽度均为 x m,可列怎样的一元二次方程? (16-2x) (12-2x)= 1 ³16³12 2
(2)一元二次方程的解是什么? x1=2 x2=12 (3)这两个解都合要求吗?为什么?
x1=2 合要求, x2=12 不合要求,因荒地的宽为 12m,小路的宽不可能为 12m, 它必须小于荒地宽的一半。 2、设花园四角的扇形半径均 为 x m,可列怎样的一元二次 方程? 1 x2π = ³12³16 2 (2)一元二次方程的解是什 么? X1= 96 ≈5.5 π
配方法(二) 教学目标: 1、利用配方法解数字系数的一般一元二次方程。 2、进一步理解配方法的解题思路。 教学重点、难点:用配方法解一元二次方程的思路;给方程配方。 教学程序: 一、复习: 1、什么叫配方法? 2、怎样配方?方程两边同加上一次项系数一半的平方。 3、解方程: (1)x2+4x+3=0 (2)x2―4x+2=0 二、新授: 1、例题讲析: 例 3:解方程:3x2+8x―3=0 分析:将二次项系数化为 1 后,用配方法解此方程。 8 解:两边都除以 3,得: x2+ x―1=0 3 8 移项,得:x2+ x = 1 3 8 4 4 配方,得:x2+ x+( )2= 1+( )2 3 3 3 4 5 (x+ )2=( )2 3 3 4 5 即:x+ =± 3 3 1 所以 x1= ,x2=―3 3 (方程两边都加上一次项系数一半的平方)
配方,得:x2+8x+42=9+42 即:(x+4)2=25 开平方,得:x+4=±5 即:x+4=5 ,或 x+4=―5 所以:x1=1,x2=―9
(两边同时加上一次项系数一半的平方)
5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二闪方 程的方法称为配方法。 三、巩固练习: P50,随堂练习:1 四、小结:)怎样配方? 五、作业:P50 习题 2.3 1、2 六、教学后记
证明:作出 Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则 A’B’2+A’C’2=B’C’2 (勾股定理) ∵AB2+AC2=BC2 ,A’B’=AB,A’C’=AC, ∴BC2= B’C’2 ∴BC=B’C’ ∴△ABC≌△A’B’C’ (SSS) ∴∠A=∠A’=90°(全等三角形的对应角相等) 因此,△ABC 是直角三角形。 定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两 个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。 一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是 真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定 理的逆定理。 练习题:随堂作业 作业:P20:1、2、3
三、巩固: 练习:P51,随堂练习:1 四、小结: 1、用配方法解一元二次方程的步骤。 (1)化二次项系数为 1; (2)移项; (3)配方: (4)求根。 五、作业:P33,习题 2.4 1、2 六、教学后记
配方法(三)
教学目标:1、经历到方程解决实际,问题的过程,体会一元二次方程是刻画现实世界 中数量关系的一个有效数学模型,培养学生数学应用的意识和能力; 2、进一步掌握用配方法解题的技能 教学重点、难点:列一元二次方程解方程。 教学程序: 一、复习: 1、配方: (1)x2―3x+ =(x― )2 (2)x2―5x+ =(x― )2 2、用配方法解一元二次方程的步骤是什么? 3、用配方法解下列一元二次方程? (1)3x2―1=2x (2)x2―5x+4=0 二、引入课题: 我们已经学习了用配方法解一元二次方程,在生产生活中常遇到一些问题,需要用 一元二次方程来解答,请同学们将课本翻到 54 页,阅读课本,并思考: 三、出示思考题: 1、
证明:Rt△ABC 和 Rt△A’B’C’中, ∵AB=A’B’,BC=B’C’,AC2=BC2-AB2 , A’C’2=B’C’2-A’B’2 ∵AC2=A’C’2 ∴AC=A’C’ ∴△ABC ≌A’B’C’(SSS) 做一做: 用三角尺可以作角平线,如图,在已知∠AOB 的两边上分别取点 M、N,使 OM=ON, 再过点 M 作 OA 的垂线,过点 N 作 OB 的垂线,两垂线交于点 P,那么射线 OP 就是∠ AOB 的平分线 请证明:
由
AC CB = ,得 AC2=AB²CB AB AC
设 AB=1, AC=x ,则 CB=1-x ∴x2=1³(1-x) 即:x2+x-1=0 解这个方程,得 ―1+ 5 x1= 2 ― 1― 5 , x2= (不合题意,舍去) 2
AC ―1+ 5 所以:黄金比 = ≈0.618 AB 2 注意:黄金比的准确数为 5 ―1 ,近似数为 0.618. 2
2、用配方法解一元二次方程的步骤: (1)把二次项系数化为 1; (2)移项,方程的一边为二次项和一次项,另一边为常数项。 (3)方程两边同时加上一次项系数一半的平方。 (4)用直接开平方法求出方程的根。 3、做一做: 一小球以 15m/s 的初速度竖直向上弹出,它在空中的高度 h(m)与时间 t(s)满足 关系: h=15 t―5t2 小球何时能达到 10m 高?
证明: ∵MC=NC PC=PC ∴Rt△MCP≌Rt△NCP(HL) ∴∠MCP=∠NCP(全等三角形对应角相等) 议一议:如图,已知∠ACB=BDA=90°,要使△ACB≌△BDA,还需要什么条件?把 它们分别写出来。
随堂练习 判断下列命题的真假,并说明理由。 (1)两个锐角对应相等的两个直角三角形全等。 (2)斜边及一锐角对应相等的两个直角三角形全等。 (3)两条直角边对应相等的两个直角三角形全等。 (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等。 作业:P23 1、2
∵S 梯形 ACDE = S△ABE +S△ABC+ S△BED ,
∴
1 1 1 1 (a+b)2= c2+ ab+ ab 2 2 2 2
1 1 1 1 1 即 a2+ab+ b2= c2+ ab+ ab 2 2 2 2 2
∴a2+b2=c2 反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法 得出“这个三角形是直角三角形”的结论,你能证明这个结论吗? 已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC 是直角三角形。
延长 CB 至点 D,使 BD=b,作∠EBD=∠A,并取 BE=c,连接 ED、AE,则△ABC≌ △BED。 ∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等) 。 ∴四边形 ACDE 是直角梯形。 ∴S 梯形 ACDE = 1 1 (a+b)(a-b)= (a+b)2 2 2
∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90° AB=BE ∴S△ABC = 1 2 c 2
X2≈-5.5 (3)合符条件的解是多少? X1=5.5 3、你还有其他设计方案吗?请设计出来与同伴交流。 (1)花园为菱形? (2)花园为圆形 (3)花园为三角形? (4)花园为梯形
四、练习:P56 随堂练习 五、小结: 1、本节内容的设计方案不只一种,只要合符条件即可。 2、设计方案时,关键是列一元二次方程。 3、一元二次方程的解一般有两个,要根据实际情况舍去不合题意的解。 六、作业: P56,习题 2.5,1、2 七、教学后记:
为什么是 0.618(第一课时)
知识目标:1、掌握黄金分割中黄金比的来历; 2、经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识 方程模型的重要性。 教学重点难点:列一元一次方程解应用题,依题意列一元二次方程 教学程序: 一、复习 1、解方程: (1)x2+2x+1=0 (2)x2+x-1=0 2、什么叫黄金分割?黄金比是多少?(0.618) 3、哪些一元二次方程可用分解因式法来求解? (方程一边为零,另一边可分解为两个一次因式) 二、新授 1、黄金比的来历 AC CB 如图,如果 = ,那么点 C 叫做线段 AB 的黄金分割点。 AB AC