Review of Organic Substance Nomenclature
HS SPME GC MS O联用分析酱油中的香气活性化合物
1.1 原料
凝。GC-O 实验由三个有经验的感官评价人员完成, 每名评价人员对每个样品至少嗅闻 3 次。感官评价人
市售日式酱油(龟甲万浓口大豆酱油)购于广州 员在嗅闻过程中描述香气化合物的气味特征及强度
超市,储藏于 4 ℃待测。
(1=微弱的,可识别的味道;2=清晰,但不强烈的味
1.2 仪器
道;3=强烈的味道),只有被两名以上的评价人员嗅 闻到的化合物才能被确定为风味活性物质。
现代食品科技
Modern Food S cience and Technology
2014, Vol.30, No.11
法,分别鉴定出多种酱油的香气活性物质,包括 3-甲 1.4.1 挥发性化合物的萃取
基丁醛,3-羟基-4, 5-二甲基-2(5H)-呋喃酮(sotolone),
将 8 mL 酱油样品,20 μL 内标(1.724 mg/L 的 2-
HS-SPME-GC-MS/O
ZHAO Mou-ming, CAI Yu, FENGYun-zi, CUI Chun, ZHAO Hai-feng (College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China)
Key words: soy sauce; headspace-solid-phase microextraction; gas chromatography-mass spectrometry; olfactometry; aroma-active compounds; odor activity value
酸乙酯、异戊酸乙酯、苯甲酸乙酯、苯乙酸乙酯、4- 算。气相色谱-质谱数据使用 Xcalibur 软件(版本 2.0)
有机化学高档次杂志投稿之我见
有机化学高档次杂志投稿之我见(JACS, ORG LETT等)认识一个朋友,他对有机化学投稿十分有经验,最近有幸邀请到他谈了谈对有机化学高档次期刊投稿过程中的一些看法和意见,十分的给力,希望能对小木虫上学有机化学乃至化学的同仁们起到一定帮助。
再次感谢这位友人的热情应邀。
在小木虫潜水多年,也获益非浅。
抽空写了如下的个人感受,希望对大家有所帮助。
曾经见过的JACS和ANGEW CHEM投稿不下50 篇.其他化学2区的文章投稿可能就更多了.总而言之,看过的审稿意见不下100 篇。
下面就我的所见,总结一下我对有机化学投稿的一些个人看法。
主要是JACS, ORG LETT。
只是个人的感受,如有失偏颇,敬请原谅。
其次文章写的比较流水,大家轻拍。
虽然主题是有机化学杂志投稿,但我认为对其他专业的期刊投稿也都很有借鉴意义。
1. JACS和ANGEW CHEM比较许多人可能都知道,JACS (IF=8.7)是纯化学期刊中的老大(CNS除外).虽然影响因子(IF)没有ANGEW CHEM (IF=12)高,但由于ANGEW CHEM只有通讯无全文(一般通讯的引用次数会比全文的期刊高:如ORG LETT比JOC高; ANGEW CHEM 比其全文的CHEM. EUR. J.高,等等),还有ANGEW CHEM有REVIEW ARTICL (REVIEW的引用次数一般都很高,如CHEM. REVIEW, ACC. CHEM. RES., CHEM. SOC. REV. ), 还有ANGEW CHEM有德文版本(会有双重引用).可能很多人认为JACS比ANGEW CHEM难中.但我不完全这么认为.毕竟文章能否接收和很多因素有关.虽然的确有一些JACS拒掉的文章改投ANGEW CHEM 却接受了(我见过4篇左右).但我也有见过很多投JACS没有中的,投ANGEW CHEM也没有中.而一些投ANGEW CHEM没有中的,改投JACS却反而被接收了(我见过的3篇).但总体来说,可能ANGEW CHEM中的发表的有机化学的文章比例比JACS中的比例高,所以可能ANGEW CHEM接收可能还是会比JACS简单一点.2. JACS很难投中JACS很难投中,他对工作的新颖性要求很高.最近几年由于JACS偏重材料和生物化学,所以有机的想发JACS, 难度就更大了. 现在JACS每年收到的稿件太多,且逐年增长,所以他们肯定会尽量来拒你的稿子,拒稿率高于80%.很多很优秀的有机合成工作最后只能在ORG LETT, CHEM COMMUN, CHEM EUR J, JOC, ADV. SYNTH. CATAL.等杂志上发表. 我有一个朋友,他是负责HIGHLIGHT化学期刊上的优秀的研究工作的.有一次他就说:ORG LETT上有些工作很好,但由于有些审稿人员太STUPID,所以JACS被拒了,最后只能无奈改投并发表在ORG LETT.一般我们看到发在JACS上的有机合成工作,大部分都集中于不对称催化和过渡金属催化的有机反应两个领域. 所有如果能向这两个方向靠的话,JACS可能会容易发一些.3. 投稿与稿件接收过程投稿后,稿件首先会到主编P J Stang手上;过几天后,他们会对稿件进行第一轮的初步筛选,可能有10%的稿件会在他手上拒掉.但P J Stang不是有机方面的专家,所以在他手上拒的稿件一般不多.到现在我只看到有2-3篇投稿直接在他手上没有通过的. 然后可能在5-7天左右他会把稿件分配到几个副主编的手上(稿件现在实在太多,所以处理速度有点慢). 有机副主编包括: Gregory C. Fu, William R. Roush, Eiichi Nakamura (其实还有Louis S. Hegedus ,但今天去JACS网站去查他好像已经不是副主编了.是不是他人太好了,一些水文章都有让放过,所以被主编给干了---纯属个人猜测.). 其中William R. Roush比较严格; Eiichi Nakamur,日本东大教授,是最近两年刚刚做上副主编的. :Gregory C. Fu, MIT教授,可能是个美国出生的华人。
【有机】多伦多大学MarkLau...
【有机】多伦多大学MarkLau...导读:近日,多伦多大学Mark Lautens课题组报道了一种温和的铑和酸催化体系,通过环丙烯开环实现2-萘酚衍生物的环丙烷化反应。
同时,合成的乙烯基环丙烷分子具有高度化学选择性和可扩展性,并可在不同位点进行进一步的功能化。
此外,作者还通过相关的计算和实验进一步阐明了反应的机理。
相关研究成果发表在Angew. Chem. Int. Ed.上(DOI: 10.1002/anie.202116171)。
(图片来源:Angew. Chem. Int. Ed.)正文:萘酚是合成功能化苯或萘衍生物极具吸引力的底物,在制药或农业化学工业中具有重要的价值。
去芳构化反应是将平面萘酚转化为复杂3D骨架的一种有效策略。
目前,大多数2-萘酚的去芳构化反应主要集中于1-位的官能团化,形成具有叔碳中心的α,β-不饱和酮的产物(Scheme 1a, right)。
2018年,游书力课题组开发了一种铑催化体系,实现了2-萘酚的1-位去芳构化胺化反应(Scheme 1b)。
相比之下,2-萘酚的3-/4-位官能团化仍未得到充分地探索(Scheme 1a, left)。
此外,Harada, Nemoto课题组报道了一种金催化2-萘酚和α-芳基重氮酯合成萘并稠合内酯的策略(Scheme 1c)。
该催化剂决定了O-H与原位生成金属卡宾的ortho-C-H插入的选择性,从而使产物保持芳香性。
在此,Mark Lautens课题组报道了一种温和的双重催化体系,通过环丙烯开环实现2-萘酚衍生物的去芳构化环丙烷化反应(Scheme 1d),该反应使用环丙烯作为卡宾前体。
(图片来源:Angew. Chem. Int. Ed.)首先,作者以1a与2a作为模型底物,对反应条件进行了大量的筛选(Table 1)。
筛选结果表明,以Rh2(OAc)4为催化剂,CSA为酸,MgSO4为添加剂,底物在CH2Cl2溶剂中室温下反应,获得81%收率的产物3a,E/Z为4:1。
紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.鄄Chim.Sin .,2007,23(8):1219-1223August Received:January 9,2007;Revised:April 6,2007;Published on Web:June 13,2007.∗Corresponding author.Email:qhli@;Tel:+8621⁃50217337.国家自然科学基金青年基金(50503011),上海“浦江人才”计划(05PG14051),上海市教委重点项目(06zz95)及上海市重点学科项目(P1701)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinica紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用袁昊1李庆华1,∗沙菲2解丽丽1田震1王利军1(1上海第二工业大学环境工程系,上海201209;2上海纳米材料检测中心,上海200237)摘要:以正硅酸乙酯为硅源,四丙基氢氧化铵(TPAOH)为模板剂和碱源,采取水热晶化技术,通过原位法在硅晶片表面制备出纯二氧化硅透明分子筛薄膜;采用紫外光解法代替传统高温焙烧法脱除分子筛薄膜孔道内的模板剂,制备出具有低介电常数的氧化硅分子筛薄膜.使用FTIR 、XRD 和SEM 对样品进行了结构表征,并采用阻抗分析仪测量了薄膜的介电常数,纳米硬度计测量薄膜的杨氏模量和硬度.与传统的高温焙烧方法相比,紫外光解法处理条件温和,同时省时、省能、操作简易.关键词:紫外光解法;高温焙烧法;氧化硅分子筛薄膜;低介电常数中图分类号:O649Application of Ultraviolet Treatment in the Synthesis of Pure 鄄silicaZeolite Thin Films with Low Dielectric ConstantYUAN Hao 1LI Qing ⁃Hua 1,∗SHA Fei 2XIE Li ⁃Li 1TIAN Zhen 1WANG Li ⁃Jun 1(1Department of Environmental Engineering,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China ;2Shanghai Testing Center of Nanometer Materials,Shanghai 200237,P.R.China )Abstract :Transparent pure ⁃silica zeolite (PSZ)films were synthesized on silicon wafers through hydrothermal reaction ,in which tetraethyl orthosilicate (TEOS)was used as silica source ,tetrapropyl ammonium hydroxide (TPAOH)as template and alkaline source.An ultraviolet treatment was subsequently applied to remove the organic templates within the pores/channels of zeolite films.The thin films were characterized by using FTIR,XRD,and SEM techniques before and after the ultraviolet treatment.FTIR results showed that the organic templates were effectively removed via ultraviolet treatment,which was the same as the results from the calcinations treatment.In comparison with the calcined films,XRD and SEM results indicated that the crystallinity and the surface as well as the thickness of the films had no significant changes after ultraviolet treatment.Dielectric constant (ε)values of the thin films were measured by means of impedance analyzer.Elastic modulus and hardness of the thin films were measured by the nano ⁃indentation technique.All results showed that the films after ultraviolet treatment had a lower εvalue and higher mechanical strength.Therefore,it could be concluded that ultraviolet treatment was a faster,more energy ⁃conservative method to remove template from zeolite films,in comparison with conventional calcination.Key Words :Ultraviolet treatment;Calcination;Silica zeolite thin film;Low dielectric constant随着超大规模集成电路(ULSI)技术的发展,电子器件特征尺寸不断缩小,而电路的互连延迟逐渐增大[1,2],成为制约集成电路速度进一步提高的瓶颈.采用低介电常数(low ε)介质薄膜作金属线间和层间介质以代替传统SiO 2介质(ε≈4)是降低互连延迟、串扰和能耗的有效方法[2,3].通常采取以下两类方法降低材料的介电常数:第一类是利用有机化合物本身的低介电常数特性,但由于其机械性能差又不耐高温等缺陷限制了它们的应用;第二类是降低材料的有效介电常数,即在材1219Acta Phys.鄄Chim.Sin.,2007Vol.23料中增加孔隙,制备成多孔薄膜的方法.由于孔隙的增多致使平均介电常数降低.目前有可能在集成电路中应用的低介电常数介质主要有多孔氧化硅、含氟氧化硅、含氟碳膜、聚酰亚胺等[4-7].其中多孔SiO2不仅有较低的介电常数,且能与已有的单晶SiO2工艺很好地兼容,在热稳定性、对无机物的粘附性等方面明显优于有机介质,是传统SiO2理想的替代物.纳米多孔SiO2材料的制备目前多采用溶胶⁃凝胶(sol⁃gel)工艺[7,8],采用这种方法可获得较大孔隙度,但孔的结构不易控制,孔径尺寸随机分布,不适于用在集成电路中作为互连介质.另一类是与溶胶⁃凝胶技术相结合的模板法,以表面活性剂为模板,结合溶胶⁃凝胶或旋涂技术,可以得到孔径分布均匀的纳米介孔SiO2材料[9,10].与单纯的溶胶⁃凝胶方法相比,这种模板合成法可合理地控制孔隙度、孔尺寸以及膜的结构和厚度,但该类介孔薄膜材料易吸附空气中的水,从而导致薄膜的介电常数增大;同时,其薄膜材料较大的孔道和疏松的无机孔壁结构导致膜的机械性能下降,限制了介孔SiO2材料的进一步应用.近年来,一种新型基于微孔二氧化硅晶体———纯二氧化硅分子筛薄膜材料开始引起人们的关注.同具有低介电常数的有机硅酸盐、氟化硅玻璃或介孔二氧化硅薄膜相比,氧化硅分子筛薄膜具有均一的孔道结构,高热稳定性,高机械强度和高疏水性等特性[11,12],并且具有较低的理论介电常数[13].美国加州大学Yan课题组最先合成的MFI分子筛薄膜的ε值可达到2.7[14].通过选用较低骨架密度的MFI型分子筛或添加造孔剂等方法,将ε值进一步降低到2.2以下[15,16].最引人注目的是这种新型材料的机械强度(杨氏模量E)远大于其它材料[17],因此氧化硅分子筛薄膜有望代替传统二氧化硅薄膜而应用在未来超低ε材料领域.然而,尽管纯硅沸石分子筛(PSZ)薄膜材料显示出比纳米多孔SiO2材料更优异的机械强度和疏水性能,但在制备后期需要采用高温焙烧(>500℃)的方法脱除阻塞孔道的模板剂,并且加热处理过程比较缓慢.我们知道,低介电常数薄膜在实际制备中使用的温度一般不高于400℃.因此,如何解决在低温下快速有效地脱除有机模板剂成为氧化硅分子筛薄膜可以在低ε材料领域得到实际应用的关键问题.目前报道的脱除有机模板剂常用的方法除传统的高温焙烧外,还有酸萃取法和微波消解法等.但温和的酸萃取剂不能彻底脱除模板剂,而微波消解法在结合以廉价氧化性无机酸等为溶剂,利用体系中自身的压力脱除模板剂的同时对薄膜的骨架会有一定的副作用.Li等[18,19]将紫外光解技术应用在微孔分子筛领域,制备出一系列性能良好的分子筛纳米颗粒和薄膜.区别于传统的高温焙烧法,紫外光解技术是在近室温条件下将有机模板剂进行光化学分解,不仅避免高温对低介电常数材料制备影响的限制,同时也避免高温导致的薄膜材料和薄膜基底热膨胀系数不同产生的薄膜开裂.本研究是在原有工作基础上,继续探索紫外光解技术在制备低介电常数氧化硅分子筛薄膜方面的优越性.通过水热晶化方法,以四丙基氢氧化铵(TPAOH)为模板剂,在硅晶片上原位制备高质量的氧化硅分子筛薄膜.比较了传统高温焙烧法和紫外光解法对薄膜结构、组成和介电常数等的影响.1实验过程1.1原位晶化制备氧化硅分子筛薄膜将2cm×2cm双面抛光的硅晶片严格按标准的硅芯片清洗步骤清洗后,固定在自制的特富龙支架上,置于TPAOH/TEOS/H2O/EtOH的摩尔比为0.12/1/85/4的澄清溶液中,于100℃油浴中静置,2天后取出硅晶片,用0.1mol·L-1的氨水溶液洗涤后,室温下真空干燥.形成薄膜后,将其中一个薄膜基片放置在184-257nm、10-20mW·cm-2下的中压汞灯下照射3-8 h(在184-257nm波长范围内的紫外光),基片中心离紫外灯下端距离为2cm,控制实验温度<50℃.作为参比,采用传统的高温焙烧脱除模板剂的处理方法,将相同样品在氮气保护下以1℃·min-1的线性升温速率升到550℃,在550℃下焙烧6h,再以1℃·min-1降温速率降到室温,得到参比样品.整个高温焙烧的处理时间长达48h.1.2性能表征采用德国布鲁克AXS公司的D8ADVANCE X⁃ray Diffractometer确定微孔薄膜的晶态结构,使用Cu Kα为射线源,管电压40kV,管电流40mA,扫描区间5°-40°;采用德国布鲁克V70傅立叶变换红外分光光谱仪测定薄膜的红外光谱;用日本日立S⁃4800型冷场扫描电子显微镜观察薄膜的表面形貌和薄膜的厚度;介电常数的测量采用平行电容法,电容由HP4284阻抗分析仪测定;杨氏模量和硬度采用美国MTS公司的纳米压痕仪Nano⁃indenter1220No.8袁昊等:紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用DCM组件测定.2结果与讨论2.1FTIR图谱分析图1为原位晶化得到的氧化硅分子筛薄膜及其紫外光照处理/高温焙烧后产物的红外光谱图.对处理前的薄膜,图1的插图可直接表明有机分子的存在.模板剂中甲基(CH3)和亚甲基(CH2)的C—H伸缩振动峰在2700-3100cm-1区域之间,甲基(CH3)的C—H弯曲振动在1300-1600cm-1区域之间.图1高波数段(3100-2700cm-1)显示在2883、2943、2981 cm-1处有三个吸收峰,这些分别归属于亚甲基(CH2)和甲基(CH3)的C—H伸缩振动,而在低波数段(1800-500cm-1)的1460、1474cm-1处的两个吸收峰则归属于模板剂亚甲基(CH2)和甲基(CH3)的C—H 弯曲振动[20].经过高温焙烧和紫外光照处理后FTIR图谱发生了一些明显的变化.表征有机模板剂的甲基(CH3)和亚甲基(CH2)的C—H伸缩振动和弯曲振动的特征谱峰全部消失,表明两种处理方式都能有效地脱去孔道内的模板剂(低于仪器的检测下限,残留有机物低于1%的原始含量).目前对UV/ozone空气环境下降解有机物的机理学术界还存在争论,但普遍认为UV光照过程可能包括下面的反应:低于245.4nm(最佳λ=184nm)的紫外光照促进了氧气(空气中的)分裂成臭氧和氧原子;且253.7nm波长的光线可激活和/或分裂有机基体,从而产生有活性的核素(如离子、自由基和受激分子);有活性的有机核素随时受到氧原子和臭氧的协同攻击容易形成简单的易挥发的(或可除去的)产物,如一些可从样品内部逸出的CO2、H2O和N2.同时,UV光源发出的光子表现的热效应[21],促使薄膜内部的有机成分分解挥发,且在较短的时间内使得薄膜的性能达到甚至超过传统的热处理效果.需要指出的是,脱除模板剂及其分解产物所需的紫外照射时间与使用的汞灯的功率、灯管清洁程度、薄膜离灯的距离以及薄膜自身的厚度等因素有关.红外测量结果表明,4h的照射时间足够完全除去分子筛薄膜孔道内的有机物,并且能保持样品表面的温度低于50℃,而高温焙烧法不仅需要高达550℃的高温,而且加热时间需要至少48h.所以,紫外光照技术应用在薄膜领域具有低温、快速、简易的特点,在保障低温脱除模板剂前提下,又大大缩短了模板剂脱除所需的时间.2.2XRD图谱分析图2是原位晶化后的分子筛薄膜和经紫外光照或高温焙烧处理后的XRD图谱.薄膜未经处理前的XRD图谱是MFI分子筛薄膜典型的特征衍射峰[22],表明薄膜材料具有均一有序的孔洞结构.样品经过紫外光照或高温焙烧处理后,峰位保持不变,峰的相对强度发生了明显的变化.前两个峰7.96°和8.88°的峰强度变强,11.92°和12.50°两个峰强度有所下降,这主要是由于在模板剂脱除过程中无机组分进入到骨架结构的空穴中[23].我们知道,分子筛薄膜在高温焙烧脱除有机模板剂过程中常会引起薄膜结晶度的下降,这将导致孔隙率降低,介电常数ε值增大.为避免破坏薄膜结构,通常采用氧气/氮气气氛下非常缓慢的程序控制升温过程.整个实验过程耗时、耗能,同时高温可能引起薄膜因与基底热膨胀系数不同而产生裂纹,大图1MFI薄膜原样、UV光照或焙烧处理后的FTIR图谱Fig.1FTIR absorption spectra of silica MFI films ofas⁃synthesized and treated by UV and calcinationMFI:a kind of silicazeolites图2MFI薄膜原样、UV光照/高温焙烧处理后的XRD图Fig.2XRD patterns of silica MFI films of as⁃synthesized and treated by UV and calcination1221Acta Phys.⁃Chim.Sin.,2007Vol.23大影响膜的性能.而紫外光照处理后的XRD 谱图证实紫外光照技术在高效除去模板剂的同时,在保持薄膜结晶度和完整性方面具有比传统高温焙烧法更优异的性能.2.3SEM 形貌厚度分析图3是原位晶化后的微孔分子筛薄膜和经紫外光照或高温焙烧处理后的扫描电镜照片.照片显示,无论是紫外光照处理还是高温焙烧,薄膜表面同未处理前的表面形貌没有明显差异.薄膜表面致密、连续、平整.从SEM 的截面图象中观察到三种薄膜的厚度非常接近,平均为500nm.说明紫外光照处理同高温焙烧处理一样,对薄膜厚度没有影响.2.4薄膜介电常数分析FTIR 和XRD 谱图分析表明紫外光解法比传统高温焙烧法在脱除薄膜孔道内的有机物过程中不仅保证整个过程是低温、快速进行,同时在保持薄膜结晶度完整方面紫外光解法具有更大的优势.我们进一步用平行电容法测量了两种薄膜的介电常数值,研究不同处理方法对介电常数值的影响.为了测量薄膜的介电常数,在制备好的薄膜表面通过孔状隔板真空蒸发上直径为1.5mm 、厚度为1μm 的6个圆形铝点作为上层电极,在硅片的另一面先用缓冲的HF 溶液清洗后真空蒸发沉积一层铝膜,这样它连同中间层的氧化硅介质及上层的铝点构成平板电容器.微孔薄膜的相对介电常数通过公式ε=Cd /(A ε0)算出,其中A 是圆形铝电极的面积,ε0是真空介电常数,d 是薄膜厚度,电容C 由HP4284阻抗分析仪测定.为了避免水吸附的影响,待测薄膜先在120℃下干燥12h,然后保存在干燥器中.电容测量过程在N 2保护下进行.处理前薄膜的介电常数值为ε=3.6,经紫外光照处理后ε=2.4,而经高温焙烧处理后的ε=2.6.这是由于原位晶化制备的分子筛薄膜因孔道中的模板剂占据了一定的空间,导致孔隙率降低,所以介电常数ε值较高为3.6,但经紫外光照处理和高温焙烧脱除模板剂后,ε值因孔隙的增大而分别降低到2.4和2.6,大大低于目前普遍使用的SiO 2介电材料(ε≈4).紫外光照处理比高温焙烧后的ε值低的实验结果也进一步证实了XRD 图谱分析的预测,即由紫外光照处理的样品比高温处理的样品结构更加有序、结晶度更高、缺陷更少.由此,分子筛薄膜的孔隙率增大,ε值减小.2.5薄膜杨氏模量分析经高温焙烧处理后薄膜的杨氏模量和硬度分别为43.2GPa 和2.67GPa,经紫外光照处理后薄膜的杨氏模量和硬度分别为44.0GPa 和2.73GPa.经过紫外光照和高温焙烧处理脱除模板剂后的杨氏模量分别为44.0GPa 和43.2GPa,远远高于微电子工业所要求的低ε材料的杨氏模量必须大约6GPa 的要求.同时由于紫外光解法相对于高温焙烧法具有更好的结构有序度、空间缺陷少等优点,使其具备了更好的机械性能.3结论FTIR 、XRD 、SEM 表征结果和介电常数、机械性能分析表明,紫外光解法同传统的高温焙烧处理法相比,不仅在低温(<50℃)下有效地脱除分子筛薄膜模板剂,而且大大缩短脱除模板剂所需的时间(从48h 降低到4h).需要指出的是,紫外光解法比传统高温焙烧方法在保持薄膜结晶度、有序性方面具有更大的优势,同时可以避免因膜与基底间的热膨胀系数不同而导致在膜界面产生裂缝,因此,在制备高质量低介电常数的薄膜材料方面具有独特的优越性.References1Chen,S.J.;Evans,D.F.;Ninham,B.M.J.Phys.Chem.,1984,88:16312Banerjee,K.;Amerasekera,A.;Dixit,G.;Hu,C.Technical Digest of IEEE International Electron Device Meeting.San Francisco,1996:65-683Fan,H.Y.;Bentley,H.R.;Kathan,K.R.;Clem,Y.;Lu,Y.;Brink,C.J.J.Non ⁃Cryst.Solids,2001,285:79图3薄膜的SEM 照片Fig.3SEM micrographs of films(a)as ⁃synthesized film,(b)UV treated film,(c)calcined film(a)(b)(c)1222No.8袁昊等:紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用4Bhan,M.K.;Huang,J.;Cheung,D.Thin Solid Films,1997,308/ 309:5075Kazuhiko,E.;Toru,T.J.Vac.Sci.Technol.,1997,15(6):3134 6Lu,T.M.;Moore,J.A.MRS Bulletin,1997,22(10):287Homma,T.Material Science and Engineering,1998,23(6):243 8Wu,G.M.;Shen,J.;Wang,J.;Zhou,B.;Ni,X.Y.Atomic Energy Science and Technology,2002,36(4/5):374[吴广明,沈军,王珏,周斌,倪星元.原子能科学技术,2002,36(4/5):374] 9Stupp,S.I.;Lebonheur,V.;Walker,K.;Li,L.S.;Huggins,K.E.Science,1997,276:38410Wang,J.;Zhang,C.R.;Feng,J.Acta Phys.⁃Chim.Sin.,2004,20(12):1399[王娟,张长瑞,冯坚.物理化学学报,2004,20(12):1399]11Wang,Z.B.;Mitra,A.P.;Wang,H.T.;Yan,Y.Adv.Mater., 2001,13:74612Persson,A.E.;Schoeman,B.J.;Sterte,J.Zeolites,1995,15:611 13van Santen,P.A.;Kramer,G.J.Chem.Rev.,1995,95:63714Wang,Z.;Wang,H.;Mitra,A.;Huang,L.;Yan,Y.Adv.Mater.,2001,13:74615Mitra,A.;Cao,T.;Wang,H.;Wang,Z.;Huang,L.Ind.Eng.Chem.Res.,2004,43:294616Li,S.;Li,Z.;Yan,Y.Adv.Mater.,2003,15:152817Li,Z.;Johnson,M.C.;Sun,M.;Ryan,E.;Earl,D.J.Angew.Chem.Int.Ed.,2006,45:632918Parikh,A.;Navrotsky,A.;Li,Q.;Yee,C.K.;Amwg,M.L.Microporous Mesoporous Mat.,2004,76:1719Li,Q.;Amweg,M.;Yee,C.Microporous Mesoporous Mat.,2005, 87:4520Bellamy,L.J.The infrared sepctra of complex molecules.London: Chapman and Hall,1975:374-38321Taylor,D.J.;Fabes,B.D.J.Non⁃Cryst.Solids,1992,147-148: 45722Wu,E.L.;Lawton,S.L.;Oison,D.H.;Rohrman,A.C.J.Phys.Chem.,1979,83(21):277723Flanigen,E.M.;Bennett,J.M.;Grose,R.W.;Cohen,J.P.;Patton, R.L.;Kirchner,R.M.;Smith,J.V.Nature,1978,271:5121223。
EMA_关于基因毒性杂质限度指南的问答(中文)
EMA 关于基因毒性杂质限度指南的问答2010-9-23背景:本问答文件的目的是对 2006 年出版的基因毒性杂质限度指南( EMEA/CHMP/QWP/251344/2006 )进行相关内容统一和说明。
问答Q1:该指引并不要求对已批准销售的产品进行基因毒性杂质再评估,除非有一个特定的“重要原因”(cause-for-concern )。
请问什么是“重要原因”?A1:如果原料药的生产过程基本上没有改变,就不需要对基因毒性杂质进行重新评价。
但是,如果新知识表明有新原因时,例如几年前发现的甲磺酸盐药物可能形成甲磺酸烷基的基因毒性杂质,这需要进行基因毒性杂质的再评估,包括EP 药典中收载的所有甲磺酸盐类产品,并出示“生产声明”。
Q2:该指引指出:即使按决策树程序其水平低于毒理学关注阈值 (threshold of toxicological concern,TTC) ,也要尽可能地减少已知或未知的诱变杂质( mutagenic impurity )。
如果已知其诱变杂质的水平低于 TTC (TTC 是一个非常保守的值),为什么要还进一步减少呢?实际上这还涉及定量限在 1ppm 左右的分析方法,可以这样做但可能没结果,这是否有必要呢?A2:如果一个诱变杂质的水平低于毒理学关注阈值 (相当于临床剂量≤1.5微克 /天),就没有必要这样做。
除非它具有一个高度关注的风险结构:如N - 亚硝基,黄曲霉毒素类和氧化偶氮物就需要这样做。
Q3 :该指引规定:“当一个潜在的杂质包含“警示结构”(structural alerts )时,应考虑用细菌突变试验对其杂质进行的基因毒性分析”。
i )如果一个杂质能诱发“警示结构”,该杂质的致突变试验( Ames)结果为阴性时,是否就足以得出结论:该化合物不属于关注的遗传毒性杂质?是否还需要进一步的确认研究?ii )“警示结构”不存在就足以说明不属于关注杂质呢?iii )假设某杂质属于“警报结构”,但只要加以控制确保其杂质水平低于 TTC ,不进行常规检测是否可以接受?A3 回答:i)是的。
杏鲍菇废弃菌渣中D-氨基葡萄糖盐酸盐的制备工艺及生物学活性分析
张倩如,吴启赐,薛钰,等. 杏鲍菇废弃菌渣中D-氨基葡萄糖盐酸盐的制备工艺及生物学活性分析[J]. 食品工业科技,2023,44(17):263−271. doi: 10.13386/j.issn1002-0306.2022110139ZHANG Qianru, WU Qici, XUE Yu, et al. Preparation and Biological Activity of D-Glucosamine Hydrochloride from the Waste Residues of Pleurotus eryngii [J]. Science and Technology of Food Industry, 2023, 44(17): 263−271. (in Chinese with English abstract).doi: 10.13386/j.issn1002-0306.2022110139· 工艺技术 ·杏鲍菇废弃菌渣中D-氨基葡萄糖盐酸盐的制备工艺及生物学活性分析张倩如1,吴启赐1, *,薛 钰1,林志超1,黄家福1,吕昊坤1,彭 伟1,潘裕添1,林进妹2,*(1.闽南师范大学菌物产业福建省高校工程研究中心,福建漳州 363000;2.闽南师范大学化学化工与环境学院,福建漳州 363000)摘 要:本文以杏鲍菇废弃菌渣为原料,探究了D-氨基葡萄糖盐酸盐(D-glucosamine hydrochloride ,GAH )的制备工艺、液相-质谱(HPLC-MS )、红外光谱、理化指标及其对斑马鱼胚胎发育的影响。
采用单因素和响应面优化试验,获得盐酸水解制备GAH 的最佳条件:盐酸浓度31%,水解时间4 h ,水解温度82 ℃,液固比5 mL/g ,此时GAH 得率可达23.61%。
液相-质谱、红外光谱和理化指标分析显示,GAH 纯化样品纯度是标准品的101.9%,质谱和红外光谱图与标准品一致,各项指标均符合甚至优于美国药典43-国家处方集38(USP43-NF38)的质量标准,砷含量仅0.21 μg/g 。
内生毛壳菌的发酵培养及次生代谢产物研究[毕业作品]
真菌广泛存在于自然界中,是生物界中的一个很大的种群。
到目前为止,世界上被人类记录的真菌约有12万种。
真菌与人类生活密切相关,有些真菌有食用价值,有些真菌则具有药用价值,可以生产抗生素或治疗癌症等。
植物的内生真菌种类繁多,分布广泛,可以产生各种活性天然产物,是一种丰富资源。
目前为止,从植物的内生真菌中得到的次生代谢产物普遍具有抗炎、抗氧化、抗肿瘤和抗细胞毒等一系列活性。
一些结构多样性次生代谢产物来源于毛壳属真菌。
已经发现的某些次生代谢产物结构新颖并具有新的生物活性,例如抗炎、酶抑制活性、抗肿瘤、细胞毒性和抗菌活性等。
本文以天然产物化学的理论为依据,以微生物的发酵技术、有机溶剂的萃取技术以及柱层析色谱的分离技术为手段,将植物内生毛壳菌TY菌株进行扩大发酵培养,并对发酵液进行了分离提取及纯化。
提取物的分离提纯主要通过三种色谱技术即Seghadex LH-20、反相色谱、薄层层析色谱相结合来达到目的。
目前已经完成分离纯化工作,并且得到了一些纯度比较高的化合物样品,运用高分辨电子轰击质谱(EI-MS)技术结合氢谱(1H-NMR)技术对分离纯化所得到的物质进行结构鉴定,即可以推断出分离所得的化合物为何,甚至有可能进一步发现新的物质。
关键词:内生毛壳菌TY菌株;发酵;次生代谢产物;结构鉴定There is a wide range of fungi in nature it belongs in the biosphere large populations.As of recent years there have been about 120,000 fungi discovered and recorded by humans around the world.Fungus plays an important role in human life and human beings have a very close relationship.Among them some fungi have edible value such as Pleurotus ostreatus and some fungi have medicinal value such as Ganoderma lucidum which can extract effective substances to treat cancer or produce antibiotics.Plant endophytic fungi a wide range of widely distributed can produce a variety of natural products is a rich resource.So far the secondary metabolites obtained from plant endophytic fungi generally have a series of activities such as anti-inflammatory anti-oxidation anti-tumor and anti-cytotoxicity.Some structural diversity of secondary metabolites derived from the genus Fungi.Some of the secondary metabolites that have been found are novel and have new biological activities such as anti-inflammatory enzymatic inhibitory activity antitumor cytotoxicity and antibacterial activity.The main basis of this article is the basic theory of natural product chemistry the use of organic solvent extraction technology microbial fermentation technology and chromatographic chromatography separation method and means to expand the fermentation of plant endophytic fungus TY strain,and then the fermentation broth was separated and purified and the effective ingredients were extracted.Separation and purification of fermentation broth is mainly through the use of three chromatographic techniques to achieve the desired purpose,the three chromatographic techniques are:thin layer chromatography,reverse chromatography and Seghadex LH-20.So far has been completed separation and purification work and has been extracted from a number of relatively high purity compounds and structural identification of the sample.At the same time some compounds with high purity have been extracted and identified.The structure is identified by high-resolution electron impact mass spectrometry (EI-MS) combined with 1H-NMR so that it can be clarified what are the compounds that are isolated and extracted and that some of the new substances may be found.Keywords:Endogenous caterpillar fungus TY;Fermentation;Secondary metabolites; Structural identification目录摘要 (I)Abstract (II)第一章前言 (1)第1节内生毛壳菌TY菌株化学成分研究现状 (1)1.1 内生毛壳菌TY菌株研究现状 (1)1.2内生毛壳菌TY菌株研究的重要意义 (3)第2节分离纯化技术 (4)2.1硅胶柱层析 (4)2.2 Sephadex柱层析色谱 (4)2.3 反相层析柱 (4)2.4薄层色谱(TLC) (4)第3节结构鉴定主要技术 (5)3.1紫外-可见吸收光谱 (5)3.2核磁共振波谱(NMR) (5)3.3 质谱 (5)3.4红外光谱 (5)第4节研究背景、目的和意义、方法和路线 (6)4.1选题背景 (6)4.2研究目的和意义 (6)4.3研究路线和方法 (6)第二章内生毛壳菌TY菌株扩大培养与发酵 (7)第1节内生毛壳菌TY菌株的扩大培养 (7)1.1菌种的保存 (7)1.2.实验仪器和试剂 (7)1.3 实验方法 (7)第2节内生毛壳菌TY菌株的发酵 (8)2.1实验材料、药品及仪器 (8)2.2 实验方法 (9)第三章次生代谢产物的提取、萃取及分离纯化 (10)第1节内生毛壳菌TY菌株TY菌株次生代谢产物的提取 (10)1.1 实验材料、试剂及仪器 (10)1.2 实验方法 (10)第2节内生毛壳菌TY菌株次生代谢产物提取物的萃取 (11)2.1 实验材料、药品及仪器 (11)2.2 实验方法 (11)2.3 色谱分析 (11)2.4 详细流程图 (13)第3节提取物的分离纯化 (13)3.1 实验材料、药品及仪器 (13)3.2 C1部分 (14)3.3 C2部分 (14)3.4 C3部分 (15)3.5 详细流程图 (16)第四章结构鉴定 (17)1.1实验材料 (17)1.2样品 (17)1.3实验仪器 (17)1.4结构分析 (17)讨论 (18)结论 (19)致谢......................................................................... 错误!未定义书签。
法国蓝薰衣草挥发油改善记忆障碍的药效评价研究
法国蓝薰衣草挥发油改善记忆障碍的药效评价研究为研究薰衣草挥发油改善记忆障碍的潜在应用价值,采用GC-MS技术分析了薰衣草挥发油的化学组成,并建立小鼠阿尔茨海默病(Alzheimer′s disease,AD)模型,以跳台实验和脑组织中T-SOD,GSH-PX,CAT等抗氧化酶活性及其产物MDA含量的变化等研究了薰衣草挥发油的改善记忆障碍功能。
实验结果表明,GC-MS技术分析鉴定了薰衣草挥发油55种化学成分,主要为萜烯、萜醇和酯类化合物,樟醇和乙酸芳樟酯含量最高,占总挥发油的49.71%。
薰衣草挥发油给药组均显著改善了小鼠跳台记忆能力,对小鼠脑组织中GSH-PX、CAT 和T-SOD水平均显著高于模型组(P<0.05),MDA在模型组中达到最高,药物组MDA则与正常组水平无差异,体现了薰衣草挥发油显著的抗脑组织氧化活性,存在诱导神经元氧化应激减少的可能性,使记忆获得性障碍出现扭转的作用。
标签:薰衣草挥发油;记忆障碍;成分分析;抗氧化酶[Abstract] In order to study the potential application value of lavender volatile oil (LVO),the chemical composition of the volatile oil of lavender was analyzed by GC-MS,and the mouse model of Alzheimer’s disease (AD)was established. Additionally,the antioxidant enzymes activity of T-SOD,GSH-PX,CAT and MDA content were studied. Experimental results showed that 55 kinds of chemical constituents including terpene,terpene alcohol and ester compounds from LVO were identified,and the content of linalool and linalyl acetate was the highest,accounting for 49.71% of the total volatile oil. The ability of mouse platform memory was improved significantly. The levels of GSH-PX,CAT and T-SOD of mouse brain tissue in the treatment group were significantly higher than those in the model group (P<0.05). The level of MDA reached the maximum value in the model group,while there was no notable difference between the levels of MDA in the drug group and the normal group. The result indicated the significant oxidative activity of LVO,the possibility of induced oxidative stress reduction in neurons,and the reversal effect of memory acquired disorder.[Key word] lavender volatile oil;memory impairment;chemical composition;antioxidant enzymes activity挥发油,一类来源于植物花、茎、叶或根等部位,经水蒸气蒸馏、压榨法或CO2超临界萃取等方法提取的具有一定香味的挥发性油状物质,其组成成分复杂多样,主要含各种萜类、芳香族、脂肪族和含氮含硫化合物等。
羟胺与氰基反应
1. Single Step100%OverviewSteps/Stages Notes1.1 R:NH2OH, S:H2O, S:EtOH, 48 h, reflux Reactants: 1, Reagents: 1, Solvents: 2, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesNitrile and amidoxime compounds, theirpreparation and use in semiconductorprocessingBy Lee, Wai MunFrom U.S. Pat. Appl. Publ., 20090111965, 30Apr 2009Experimental ProcedureAB) Reaction of Benzonitrile. Benzonitrile (0.99 cm3, 1 g, 9.7 mmol) and hydroxylamine (50% in water,0.89 cm3, 0.96 g, 14.55 mmol, 1.5 eq) were stirred under reflux in EtOH (10 cm3) for 48 hours. Thesolvent was evaporated under reduced pressure and water (10 cm3) was added to the residue. Themixture was extracted with dichloromethane (100 cm3) and the organic extract was evaporated underreduced pressure. The residue was purified by column chromatography to give the product. N'-hydroxybenzimidamide, yield 1.32 g, 100%, as a white crystalline solid. mp 79-81° C. (lit 79-80° C.) CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.2. Single Step100%OverviewSteps/Stages Notes1.1 R:NH2OH, S:EtOH, 1 h, reflux; reflux → rt stereoselective, Reactants: 1, Reagents: 1,Solvents: 1, Steps: 1, Stages: 1, Most stagesin any one step: 1ReferencesPreparation of diaryl-substituted 5-memberedheterocycles as antibacterial agentsBy Mobashery, Shahriar et alFrom PCT Int. Appl., 2009082398, 02 Jul2009Experimental Procedure(Z)-N'-hydroxybenzamidine (compound 17-structure shown below): A solution of ethanol (5.0 mL),benzonitrile (203 mg, 1.97 mmol) and hydroxylamine (520 mg, 7.87 mmol) were refluxed for 1 hour.The reaction was then cooled to room temperature and concentrated in vacuo to give the a clear oilwhich was taken to the next step without further purification (268 mg, 100%). 1H NMR (500 MHz,CDCL3) δ(ppm): 4.92 (2H, bs), 7.38-7.44 (3H, m), 7.62-7.65 (2H, m). 13C NMR (125 MHz, CDCL3)δ(ppm): 126.1 (CH), 128.9 (CH), 130.2 (CH), 132.6, 152.8. MS (FAB+): 137 (MH+). HRMS forC7H8N2O (MH+): calculated: 137.0715; found 137.0718.CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.3. Single Step100%OverviewSteps/Stages Notes1.1 R:NH2OH, S:EtOH, 1 h, reflux; reflux → rt stereoselective, Reactants: 1, Reagents: 1,Solvents: 1, Steps: 1, Stages: 1, Most stagesin any one step: 1ReferencesPreparation of oxadiazole derivatives asantibacterial agentsBy Mobashery, Shahriar et alFrom PCT Int. Appl., 2009041972, 02 Apr2009Experimental Procedure(Z)-N'-hydroxybenzamidine (compound 17 - structure shown below): A solution of ethanol (5.0 mL),benzonitrile (203 mg, 1.97 mmol) and hydroxylamine (520 mg, 7.87 mmol) were refluxed for 1 hour.The reaction was then cooled to room temperature and concentrated in vacuo to give the a clear oilwhich was taken to the next step without further purification (268 mg, 100%). 1H NMR (500 MHz,CDCL3) δ(ppm): 4.92 (2H, bs), 7.38-7.44 (3H, m), 7.62-7.65 (2H, m). 13C NMR (125 MHz, CDCL3)δ(ppm): 126.1 (CH), 128.9 (CH), 130.2 (CH), 132.6, 152.8. MS (FAB+): 137 (MH+). HRMS forC7H8N2O (MH+): calculated: 137.0715; found 137.0718.CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.4. Single Step99%OverviewSteps/Stages Notes1.2 R:Disodium carbonate, S:H2OReferencesDiscovery and SAR exploration of N-aryl-N-(3-aryl-1,2,4-oxadiazol-5-yl)amines aspotential therapeutic agents for prostatecancerBy Krasavin, Mikhail et alFrom Chemistry Central Journal, 4, No pp.given; 2010CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.5. Single Step95%OverviewSteps/Stages Notes1.1 R:H2NOH-HCl, R:NaOH, S:H2O, 1 h, 30°C, pH 10; 2 h, reflux Reactants: 1, Reagents: 2, Solvents: 1, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesTwo synthetic methods of 3,4-bis(3-nitrophenyl)furoxanBy Yang, Jian-ming et alFrom Hanneng Cailiao, 17(5), 527-530; 2009 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.6. Single Step95%OverviewSteps/Stages NotesReferencesSynthesis of 3,4-bis(3',5'-dinitrophenyl-1'-yl)furoxanBy Huo, Huan et alFrom Hecheng Huaxue, 17(2), 208-210; 2009 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.7. Single Step93%OverviewSteps/Stages Notes1.1 R:NH2OH, S:H2O, S:MeOH, > 1 min, 50°C; 3 h, reflux Reactants: 1, Reagents: 1, Solvents: 2, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesQuinazoline derivatives as adrenergicreceptor antagonists and their preparation,pharmaceutical compositions and use in thetreatment of diseasesBy Sarma, Pakala Kumara Savithru et alFrom Indian Pat. Appl., 2005DE01706, 31Aug 2007CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.8. Single Step92%OverviewSteps/Stages Notes1.1 R:NH2OH, R:Et3N, S:EtOH, rt stereoselective, Reactants: 1, Reagents: 2,Solvents: 1, Steps: 1, Stages: 1, Most stagesin any one step: 1ReferencesPotent inhibitors of lipoprotein-associatedphospholipase A2: Benzaldehyde O-heterocycle-4-carbonyloximeBy Jeong, Hyung Jae et alFrom Bioorganic & Medicinal ChemistryLetters, 16(21), 5576-5579; 2006 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.9. Single Step89%OverviewSteps/Stages Notes1.1 R:EtN(Pr-i)2, R:H2NOH-HCl, S:EtOH, 18 h, 80°C Reactants: 1, Reagents: 2, Solvents: 1, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesTuned methods for conjugate addition to avinyl oxadiazole; synthesis ofpharmaceutically important motifsBy Burns, Alan R. et alFrom Organic & Biomolecular Chemistry,8(12), 2777-2783; 2010CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.10. Single Step91%OverviewSteps/Stages Notes1.1 R:NaOH, R:H2NOH-HCl, S:H2O, S:EtOH, 12 h, 80°C; cooled Reactants: 1, Reagents: 2, Solvents: 2, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesPreparation of heteropolycyclic compoundsand their use as metabotropic glutamatereceptor antagonistsBy Edwards, Louise et alFrom U.S. Pat. Appl. Publ., 20050272779, 08Dec 2005Experimental ProcedureGeneral/Typical Procedure: Example 6 N-Hydroxy-3-methoxy-benzamidine. Using the generalprocedure of Shine et al., J. Heterocyclic Chem. (1989) 26:125-128, hydroxylamine hydrochloride (22ml, 5 M, 110 mmol) and sodium hydroxide (11 ml, 10 M, 110 mmol) were added to a solution of 3-methoxybenzonitrile (11.5 ml. 94 mmol) in ethanol (130 ml). The reaction mixture was then heated atreflux (80 °C.) for 12 h. After the mixture was cooled, most of the solvent was removed in vacuo. Thecrude product was partitioned between ethyl acetate and water, washed with saturated brine, driedover anhydrous sodium sulfate and the solvent was removed in vacuo. Flash chromatography on silicagel using 35-50% ethyl acetate in hexane yielded the title compound (8.05 g, 52%). Examples 7-9were prepared in an analogous method to the procedure given in Example 6. N-Hydroxy-benzamidine.N-hydroxy-benzamidine (4.83 g, 91%, white solid) was obtained from benzonitrile (4 g, 38.9 mmol),hydroxylamine hydrochloride (8.89 ml, 44.0 mmol) and sodium hydroxide (4.49 ml, 45.0 mmol) inethanol (30 ml). 1H NMR (CDCl3), δ (ppm): 8.81 (broad peak, 1H), 7.63 (m, 2H), 7.39(m, 3H), 4.91 (s,2H).CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.11. Single Step91%OverviewSteps/Stages Notes1.1 R:NaOH, R:H2NOH-HCl, S:H2O, S:EtOH, 12 h, 80°C literature preparation, Reactants: 1, Reagents:2, Solvents: 2, Steps: 1, Stages: 1, Moststages in any one step: 1ReferencesPreparation of five-membered heterocycliccompounds as mGluR5 receptor antagonistsBy Wensbo, David et alFrom PCT Int. Appl., 2004014881, 19 Feb2004CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.12. Single Step85%OverviewSteps/Stages Notes1.1 R:Et3N, R:H2NOH-HCl, S:EtOH, 18 h, reflux stereoselective (Z), Reactants: 1, Reagents: 2,Solvents: 1, Steps: 1, Stages: 1, Most stagesin any one step: 1ReferencesUnexpected C-C Bond Cleavage: Synthesisof 1,2,4-Oxadiazol-5-ones from Amidoximeswith Pentafluorophenyl or TrifluoromethylAnion Acting as Leaving GroupBy Gerfaud, Thibaud et alFrom Organic Letters, 13(23), 6172-6175;2011CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.13. Single Step85%OverviewSteps/Stages Notes1.1 R:Disodium carbonate, R:H2NOH-HCl, S:H2O, S:EtOH, 15 min,55°Cultrasound (40kHz), reaction withoutultrasound at room temperature decreasedyield and increased reaction time, Reactants:1, Reagents: 2, Solvents: 2, Steps: 1, Stages:1, Most stages in any one step: 1ReferencesSynthesis of amidoximes using an efficientand rapid ultrasound methodBy Barros, Carlos Jonnatan Pimentel et alFrom Journal of the Chilean ChemicalSociety, 56(2), 721-722; 2011CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.14. Single Step83%OverviewSteps/Stages Notes1.1 R:NaHCO3, R:H2NOH-HCl, S:H2O, S:EtOH, 4 h, 80°C Reactants: 1, Reagents: 2, Solvents: 2, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesA novel bifunctional chelating agent based onbis(hydroxamamide) for 99mTc labeling ofpolypeptidesBy Ono, Masahiro et alFrom Journal of Labelled Compounds andRadiopharmaceuticals, 55(2), 71-79; 2012 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.15. Single Step80%OverviewSteps/Stages Notes1.1 R:NaHCO3, R:H2NOH-HCl, S:H2O, 10 min, 25°C1.2 S:EtOH, 20 h, 25°C1.3 R:H2NOH-HCl, 50 h, 25°Cregioselective, other product also detected, in-situ generated reagent, Reactants: 1,Reagents: 2, Solvents: 2, Steps: 1, Stages: 3,Most stages in any one step: 3ReferencesSynthesis, mechanism of formation, andmolecular orbital calculations ofarylamidoximesBy Srivastava, Rajendra M. et alFrom Monatshefte fuer Chemie, 140(11),1319-1324; 2009CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.16. Single Step79%OverviewSteps/Stages Notes1.1 R:Disodium carbonate, R:H2NOH-HCl, S:H2O, S:EtOH Reactants: 1, Reagents: 2, Solvents: 2, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesSynthesis of 1,2,4- and 1,3,4-oxadiazolesfrom 1-aryl-5-methyl-1H-1,2,3-triazole-4-carbonyl chloridesBy Obushak, N. D. et alFrom Russian Journal of Organic Chemistry,44(10), 1522-1527; 2008CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.17. Single Step85%OverviewSteps/Stages Notes1.1 R:K2CO3, R:H2NOH-HCl, S:EtOH1.2 R:HCl, S:Et2O, S:H2O1.3 R:NH3, R:NaCl1.4 S:Et2OReactants: 1, Reagents: 5, Solvents: 3, Steps:1, Stages: 4, Most stages in any one step: 4ReferencesModification of the Tiemann rearrangement:One-pot synthesis of N,N-disubstitutedcyanamides from amidoximesBy Bakunov, Stanislav A. et alFrom Synthesis, (8), 1148-1159; 2000 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.18. Single Step76%OverviewSteps/Stages Notes1.1 R:EtN(Pr-i)2, R:H2NOH-HCl, S:EtOH, 6-12 h, 80°C Reactants: 1, Reagents: 2, Solvents: 1, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesA versatile solid-phase synthesis of 3-aryl-1,2,4-oxadiazolones and analoguesBy Charton, Julie et alFrom Tetrahedron Letters, 48(8), 1479-1483;2007CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.19. Single Step70%OverviewSteps/Stages Notes1.1 R:Disodium carbonate, R:H2NOH-HCl, S:H2O, S:EtOH, 8 h, reflux Reactants: 1, Reagents: 2, Solvents: 2, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesDesign, synthesis, characterization, andantibacterial activity of {5-chloro-2-[(3-substitutedphenyl-1,2,4-oxadiazol-5-yl)-methoxy]-phenyl}-(phenyl)-methanonesBy Rai, Neithnadka Premsai et alFrom European Journal of MedicinalChemistry, 45(6), 2677-2682; 2010 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.20. Single Step70%OverviewSteps/Stages Notes1.1 R:H2NOH-HCl, R:NaHCO3, S:H2O, S:MeOH, 1 h, rt → 70°C; cooled stereoselective, Reactants: 1, Reagents: 2, Solvents: 2, Steps: 1, Stages: 1, Most stages in any one step: 1ReferencesDiscovery and Optimization of a Novel Series of N-Arylamide Oxadiazoles as Potent, Highly Selective and Orally Bioavailable Cannabinoid Receptor 2 (CB2) AgonistsBy Cheng, Yuan et alFrom Journal of Medicinal Chemistry, 51(16), 5019-5034; 2008Experimental ProcedureN-(9-Ethyl-9H-carbazol-3-yl)-3-(3-phenyl-1,2,4-oxadiazol-5-yl) propanamide (37). To a mixture ofsodium carbonate (1.0 g, 10 mmol) and hydroxylamine hydrochloride (1.0 g, 19 mmol) inmethanol/H2O was added benzonitrile (2 mL, 19 mmol). The mixture was heated to 70 °C for 1 h. Thecooled reaction mixture was concentrated, and the residue was taken up in dichloromethane. Theorganic layer was washed with water and concentrated to give (Z)-N'-hydroxybenzamidine (1.85 g,70% yield), which was used without further purification.CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.21. Single Step75%OverviewSteps/Stages Notes1.1 R:H2NOH-HCl, R:Disodium carbonate, S:MeOH Reactants: 1, Reagents: 2, Solvents: 1, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesN-Aryl N'-Hydroxyguanidines, A New Class ofNO-Donors after Selective Oxidation by NitricOxide Synthases: Structure-ActivityRelationshipBy Renodon-Corniere, Axelle et alFrom Journal of Medicinal Chemistry, 45(4),944-954; 2002Experimental ProcedureBenzamidoximes 30-32 were prepared by refluxing anhydrous methanolic solutions of hydroxylaminehydrochloride with the corresponding nitrile in the presence of sodium carbonate as previouslydescribed.57Benzamidoxime (30). Compound 30 was obtained as a white solid in 75% yield frombenzonitrile mp 76 °C (literature: 76 °C).57CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.22. Single Step70%OverviewSteps/Stages Notes1.1 R:KOH, R:H2NOH-HCl, S:MeOH, 3-6 h, 6°C in-situ generated reagent, Reactants: 1,Reagents: 2, Solvents: 1, Steps: 1, Stages: 1,Most stages in any one step: 1ReferencesHCV NS5b RNA-Dependent RNAPolymerase Inhibitors: From α,γ-Diketoacidsto 4,5-Dihydroxypyrimidine- or 3-Methyl-5-hydroxypyrimidinonecarboxylic Acids. Designand SynthesisBy Summa, Vincenzo et alFrom Journal of Medicinal Chemistry, 47(22),5336-5339; 2004Experimental ProcedureN'-hydroxybenzenecarboximidamide (12), 3-(benzyloxy)-N'-hydroxybenzenecarboximidamide (13), N'-hydroxy-3-[(4-methoxybenzyl)oxy]benzenecarboximidamide were prepared from the correspondingnitriles by use of known procedures. Generally, one equiv of potassium hydroxide dissolved inmethanol was added to a solution of hydroxylamine hydrochloride (1 equiv) in methanol. Theprecipitated potassium chloride was removed by filtration and to the above solution the appropriate arylnitrile was added. Reaction mixture was stirred at 60°C for the appropriate time (3-6 h, TLCmonitoring). After cooling, the solvent was removed under vacuum, and the residue was triturated withdiethyl ether. The precipitate was collected and eventually recristallyzed from an appropriate solvent,furnishing the desired amidoxime in 60-70 % yield. N'-hydroxybenzenecarboximidamide (12): spectraldata matches literature data.3CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.23. Single Step65%OverviewSteps/Stages Notes1.1 R:K2CO3, R:H2NOH-HCl, S:EtOH, 1 h, rt; 6 h, reflux Reactants: 1, Reagents: 2, Solvents: 1, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesAcetic acid aldose reductase inhibitorsbearing a five-membered heterocyclic corewith potent topical activity in a visualimpairment rat modelBy La Motta, Concettina et alFrom Journal of Medicinal Chemistry, 51(11),3182-3193; 2008Experimental ProcedureGeneral Procedure for the Synthesis of N-Hydroxybenzimidamides3a-i and N-Hydroxy-2-phenylacetimidamides 4a-i. A solution of the appropriate nitrile 1a-i or 2a-i (1.00 mmol), hydroxylaminehydrochloride (1.35 mmol), and potassium carbonate (1.00 mmol) in ethanol was left under stirring atroom temperature for 1 h, then heated under reflux until the disappearance of the starting materials (6h, TLC analysis). After cooling, the resulting mixture was filtered and the solvent was evaporated todryness under reduced pressure to give the target compound as a white solid, which was purified byrecrystallization (Supporting Information, Tables 1 and 2).CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.24. Single Step60%OverviewSteps/Stages Notes1.1 R:Et3N, R:H2NOH-HCl, S:EtOH, rt → reflux; 24 h, reflux Reactants: 1, Reagents: 2, Solvents: 1, Steps:1, Stages: 1, Most stages in any one step: 1ReferencesSynthesis and cannabinoid activity of 1-substituted-indole-3-oxadiazole derivatives:Novel agonists for the CB1 receptorBy Moloney, Gerard P. et alFrom European Journal of MedicinalChemistry, 43(3), 513-539; 2008 CASREACT ®: Copyright © 2012 American Chemical Society. All Rights Reserved. CASREACT contains reactions from CAS and from: ZIC/VINITI database (1974-1999) provided by InfoChem; INPI data prior to 1986; Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich; organic reactions, portions copyright 1996-2006 John Wiley & Sons, Ltd., John Wiley and Sons, Inc., Organic Reactions Inc., and Organic Syntheses Inc. Reproduced under license. All Rights Reserved.25. Single Step60%Overview。
advanced organic materials 植物甾醇
advanced organic materials 植物甾醇1. 引言1.1 概述植物甾醇是一类重要的有机材料,具有广泛的应用前景。
它们是天然植物成分中的一部分,主要存在于各种植物油脂中。
与动物来源的甾醇相比,植物甾醇受到越来越多人们的关注和研究,因为它们在医药、化妆品、食品等领域具有许多独特的优势。
1.2 文章结构本文主要分为四个部分进行讨论。
首先,在第2部分中,我们将定义和介绍植物甾醇,并着重阐述其特点和应用领域。
随后,在第3部分中,我们将详细介绍生产植物甾醇的方法和技术进展,并列举相关研究进展。
接下来,在第4部分中,我们将聚焦于探讨植物甾醇在材料科学领域中的应用研究和前景展望。
最后,在第5部分中,我们将进行总结并提出未来研究的展望。
1.3 目的本文旨在全面探讨植物甾醇的定义、特点及其在材料科学领域中的应用研究和前景展望。
通过系统地介绍植物甾醇的生产方法和技术进展,以及相关研究的最新进展,我们希望能够深入了解植物甾醇在不同领域中的应用情况,并对其未来可能带来的影响和发展方向进行分析和研究。
以上是“1. 引言”部分内容,请核对准确性,如果有需要请根据实际情况进行修改。
2. 植物甾醇的定义和特点2.1 定义:植物甾醇是一类天然存在于植物中的次生代谢产物,属于甾族化合物。
它们具有与胆固醇结构相似的环状核心,但在环上存在有不同的取代基。
植物甾醇可以在植物的叶片、茎、根等部位中发现,并且在许多常见的食物中也含有较高浓度的植物甾醇。
2.2 特点:- 结构稳定性:植物甾醇分子具有稳定的结构,能够在温度和压力条件下保持其形态和化学性质。
- 天然来源:植物甾醇是从天然植物提取得到的,因此可以被认为是一种可再生资源。
这使得它们在可持续发展领域具有广泛应用前景。
- 生理活性:植物甾醇对人体健康具有积极的影响。
它们被称为功能性成分,可以起到调节血脂、抗氧化、增强免疫系统等作用。
- 生化反应途径多样性:植物甾醇可以通过不同的生化反应途径进行合成和转化。
Nomenclature of Organic Chemistry
Nomenclature of Organic Chemistry For nomenclature purposes, a structure containing at least one carbon atom is considered to be an organic compound. The formation of a systematic name for an organic compound requires selection and then naming of a parent structure. This basic name may then be modified by prefixes, infixes, and, in the case of a parent hydride, suffixes, which convey precisely the structural changes required to generate the compound in question from the parent structure. In contrast to such systematic names, there are traditional names which are widely used in industry and academic circles. Examples are acetic acid, benzene and pyridine. Therefore, when they meet the requirements of utility and when they fit into the general pattern of systematic nomenclature, these traditional names are retained.A major new principle is elaborated in these Recommendations. The concept of ‘preferred IUPAC names’ is developed and systematically applied. Up to now, the nomenclature developed and recommended by IUPAC has emphasized the generation of unambiguous names in accord with the historical development of the subject. In 1993, due to the explosion in the circulation of information and the globalization of human activities, it was deemed necessary to have a common language that will prove important in legal situations, with manifestations in patents, export-import regulations, environmental and health and safety information, etc. However, rather than recommend only a single ‘unique name’ for each structure, we have developed rules for assigning ‘preferred IUPAC names’, while continuing to allow alternatives in order to preserve the diversity and adaptability of the nomenclature to daily activities in chemistry and in science in general.Thus, the existence of preferred IUPAC names does not prevent the use of other names to take into account a specific context or to emphasize structural features common to a series of compounds. Preferred IUPAC names belong to ‘preferred IUPAC nomenclature’ Any name other than a preferred IUPAC name, as long as it is unambiguous and follows the principles of the IUPAC recommendations herein, is acceptable as a ‘general’ IUPAC name, in the context of ‘general’ IUPAC nomenclature. The concept of preferred IUPAC names is developed as a contribution to the continuing evolution of the IUPAC nomenclature of organic compounds. This book (Recommendations 2004) covers and extends the principles, rules and conventions described in two former publications: Nomenclature of Organic Chemistry, 1979 Edition and A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993. In a few instances, the 1979 rules and the 1993 recommendations have been modified to achieve consistency within the entire system. In case of divergence among the various recommendations, Recommendations 2004 prevail.> Download full text of the Provisional Recommendations from the CONTENTS below. Alternatively, and to facilitate full text searching, the whole volume as single pdf is also available.In addition, a file compiling the changes made in this new edition and compare to the 1979 edition and the 1993 Guide is also available.Comments by 31 March 2005To Prof. Henri A. Favre 2031 Rue LeclaireMontréal, QC H1V 3A1 CanadaTEL: +1 514 259 7963E-MAIL: halfa@ and to Dr. Warren H. Powell 1436 Havencrest Court Columbus, OH 43220-3841 USATEL: +1 614 451 1830E-MAIL: wpowell2@CONTENTSCHAPTER P-1 NOMENCLATURE OF ORGANIC COMPOUNDS P-10 IntroductionP-11 Scope of nomenclature of organic compoundsP-12 Preferred, preselected and retained namesP-13 Operations in nomenclatureP-14 General rulesP-15 Types of nomenclatureP-16 Name writingCHAPTER P-2 PARENT HYDRIDESP-20 Introduction [P-20 to P-24]P-21 Mononuclear and polynuclear acyclic parent hydridesP-22 Monocyclic hydridesP-23 Polyalicyclic (von Baeyer) systemsP-24 Spiro compoundsP-25 Fused and bridged fused systemsP-26 Phane nomenclature [P-26 to P-29]P-27 FullerenesP-28 Ring assembliesP-29 Prefixes denoting substituent groups derived from parent hydrides CHAPTER P-3 CHARACTERISTIC (FUNCTIONAL) GROUPSP-30 IntroductionP-31 Modification of the degree of hydrogenation of parent hydridesP-32 Prefixes for substituent groups derived from parent hydrides with a modified degree of hydrogenationP-33 SuffixesP-34 Parent structures other than parent hydrides and corresponding prefixes for substituent groupsP-35 Prefixes denoting characteristic groupsCHAPTER P-4 RULES FOR NAME CONSTRUCTIONP-40 IntroductionP-41 Seniority order of classesP-42 Seniority order of acidsP-43 Seniority order of suffixesP-44 Seniority order of parent structuresP-45 The principal chain in substituent groupsP-46 Substitution rules for parent structures with retained namesCHAPTER P-5 CONSTRUCTING PREFERRED IUPAC NAMES P-50 IntroductionP-51 Selecting the preferred type of nomenclatureP-52 Selecting preferred IUPAC names and preselected names (see P-12) for parent hydrides namesP-53 Selecting the preferred method for modifying the degree of hydrogenation for parent hydridesP-54 Selecting the preferred suffix (principal group)P-55 Selecting preferred retained namesP-56 Selecting preferred substituent group namesP-57 Selecting preferred names for tautomeric compoundsP-58 Name constructionCHAPTER P-6 A PPLICATIONS TO SPECIFIC CLASSES OF COMPOUNDS P-60 Introduction [P-60 to P-64]P-61 Substitutive nomenclature: prefix modeP-62 Amines and iminesP-63 Hydroxy compounds, ethers, peroxols, peroxides and chalcogen analoguesP-64 Ketones, pseudo ketones and heterones, and chalcogen analoguesP-65 Acids and derivatives P-66 Amides, hydrazides, nitriles, aldehydes P-67 Oxoacids used as parents for organic compoundsP-68 Nomenclature of other classes of compoundsP-69 Organometallic compoundsCHAPTER P-7 RADICALS, IONS, AND RELATED SPECIES P-70 General methodologyP-71 RadicalsP-72 AnionsP-73 CationsP-74 ZwitterionsP-75 Radicals ionsP-76 Delocalized radicals and ionsP-77 Preferred namesCHAPTER P-8 ISOTOPICALLY MODIFIED COMPOUNDSP-80 IntroductionP-81 Symbols and definitionsP-82 Isotopically substituted compoundsP-83 Isotopically labelled compoundsP-84 Comparative examples of formulae and names of isotopically modified compoundsCHAPTER P-9 SPECIFICATION OF CONFIGURATION AND CONFORMATIONP-90 IntroductionP-91 CIP Priority and sequence rulesP-92 Configurational stereodescriptorsP-93 Applications of stereodescriptorsP-94 Conformation and conformational stereodescriptorsCHAPTER P-10 PARENT STRUCTURES FOR NATURAL PRODUCTS AND RELATED COMPOUNDSP-100 IntroductionP-101 Nomenclature for natural products based on parent hydrides (alkaloids, steroids, terpenes, carotenes, corrinoids, tetrapyrroles, and similar compounds)P-102 Carbohydrate nomenclatureP-103 Amino acids and peptidesP-104 CyclitolsP-105 NucleosidesP-106 NucleotidesP-107 LipidsREFERENCES APPENDIX 1Seniority list of elements and 'a' terms used in replacement ('a') nomenclature in decreasing order of seniorityAPPENDIX 2Usual detachable prefixes used in substitutive nomenclature> 'Preferred names' Project DescriptionPage last modified 27 October 2004.Copyright ©2004 International Union of Pure and Applied Chemistry.Questions or comments about IUPAC, please contact, the Secretariat.Questions regarding the website, please contact Web Help.。
天然药化讲义
天然药物化学的建立与形成
席勒 (K. W. Sheller) : 1769 酒石酸(酒石) 1975 苯甲酸(安息香) 1778 乳酸(酸乳) 1785 苹果酸(苹果)
观点1: “植物中只有酸性物质”
卢勒 (Rouelle): 1773 尿素 (脲)
柏格曼 (Bargmann) 1776 尿酸 (脲)
1928年,英国细菌学家 A. Fleming 发现抑 菌现象. 1935年, 英国病理学家弗洛里和侨居英国的 德国生物化学家钱恩,重新研究青霉素的性质、 分离和化学结构,终于解决了青霉素的浓缩 问题. 1945年, 诺贝尔生理学和医学奖.
“Golden Age of Antibiotics” 1940s – 1970s
█ Antibacterials: aminoglycosides
链霉素 第一个氨基糖苷类抗生素,也是 第一个应用于治疗肺结核的抗生 素。是从革兰氏阳性的放线菌灰 色链霉菌中分离出来的。
近代天然药物化学的引进和创建阶段
3) 四十年代 主要研究了常山的抗疟有效成分,定出了常山生物碱的分子式、母核, 并和国外学者共同研究取得一定成绩。另对羊角拗。远志、前胡、丹 参。射干、使君子等也做了许多工作。
这三、四十年中,我国科学家虽然在有效成分及药理方面做了一些艰苦 的工作,但在化学成分结构的研究上却较少突破,新成分的发现也较 少。 4)五十年代以后 1)利用丰富药源生产药物: 麻黄素、芦丁、洋地黄毒苷、咖啡因、黄连 素、粉防己碱、加兰他敏、山道年等。 2)减少进口,自给自足药物: 地高辛、西地兰、麦角新碱、秋水仙碱、阿 托品、东茛菪碱、长春碱、长春新碱、薯蓣皂苷元等。 3)民间草药发掘药物: 颅痛定、岩白菜素、天花粉素、川楝素、黄藤素、 鹤草酚、焊菜素、亮菌甲素、棉酚、羟基喜树碱等. 4)特色天然化学药物: 如青蒿素、三尖杉酯碱、山茛菪(gendang)碱、 天麻素、丁公藤碱II、高乌头碱、石杉碱甲、川芎嗪等.
食品工艺学课件
⾷品⼯艺学课件Processing of fruitsInstructor: mingfeng zheng(郑明锋) phd.Email:vanheng@/doc/bca037d13186bceb19e8bb68.htmlCell: 138********注意:课件全部根据⽼师提供的ppt整理,在编号上可能会有些问题,所以⼤家将就着看,祝⼤家考试顺利。
Chapter one:introductionFruit quality and preprocessingObjectsThrough the introduction, the students knowThe relationship between quality of fruit and the processed product,The relationship between composition of fruit and the processed product,Quality attributes of fresh fruits, and quality measurementspreprocessing methods and technologies1.1 classification of fruitsFruits are commonly classified by growing region as follows. Temperate zone, subtropical, and tropical. Growing region and environmental conditions specific to each regionsignificantly affect fruit quality. Examples of fruit grown in each region are listed below:1) temperate zone fruits2) subtropical fruits3) tropical fruits(1) temperate zone fruitsPome fruits(仁果类): apple, asian pear (nashi), european pear, quince榅桲果Stone fruits: apricot杏, cherry, nectarine, peach, plumSmall fruits and berries: grape (european and american types), strawberry, raspberry, blueberry, blackberry, cranberry (2) subtropical fruitsCitrus fruits: grapefruit, lemon, lime, orange, pummelo, tangerine, and mandarinNoncitrus fruits: avocado, cherimaya, fig, kiwifruit, olive, pomegranate(3) tropical fruitsMajor tropical fruits: banana, mango, papaya, pineappleMinor tropical fruits: carambola, cashew apple, durian, guava,longan, lychee, mangosteen, passion fruit, rambutan1.2 quality of raw materialsThe quality of processed fruit products depends on their quality at the start of processing; How maturity at harvest, Harvesting methods,Post harvest handling proceduresMaintenance in fresh fruits between harvest and process initiation.Quality attributes of fresh fruitsAppearance、exture factors、flavor components、nutritional quality、safety factorsAppearance factorsSize、shape、color、freedom from defects and decay.Texture factorsFirmness, crispness, juiciness.Flavor componentsSweetness, sourness (acidity), astringency, (收敛),bitterness, aroma, off-flavors,Nutritional qualityFruit's content of vitamins (a and c are the most important in fruits), minerals, dietary fiber, carbohydrates, proteins. Safety factorsResidues of pesticides, presence of heavy metals, mycotoxins produced by certain species of fungi, microbial contamination.1.3 losses in fresh fruits after harvastWater loss,Physical injuries,physiological breakdown, decayLoss of acidity, flavor, color, and nutritive valueFactors influence fruit qualityIn the orchard,During transportation,Throughout the handling system (sorting, sizing, ripening, and storage).The total time between harvesting and processingMinimizing the delays throughout the post harvest handling system greatly reduces finality loss, especially in highly perishable fruits such as strawberries, blackberries, apricots, and cherries.1.4 contribution of fruits to human nutritionEnergy (calories)VitaminsMineralsDietary fiberThe us. Department of agriculture and other organizations currently encourage consumers to participate in the "five a day" program which focuses on consumption of five servings of either fruit or vegetables each day.Energy (calories)(1) carbohydrates: banana, breadfruit, raisin葡萄⼲(2) proteins & amino acids: nuts, dried apricot and fig(3) fats. Avocado, olive, nutsFruits typically contain between 10% and 25% carbohydrates, a small amount (less than1.0%) of proteins, and a very small amount (less than 0.5 %) of fat. Carbohydrates, sugars,and starches are broken down to co2, water, and energy during metabolism. Carbohydrates and fats provide most of the calories the body requires for heat and energy.Vitamins(1) fresh fruits and vegetables contribute about 91% of vitamin c, 48% of vitamin a, 27% of vitamin b6, 17% of thiamin硫胺(维⽣素b1) to diet.(2) the following fruits are important contributors (based on their vitamin content and the amount consumed) to the supply of indicated vitamins in the u.s. Diet:*vitamin a: apricot, peach, cherry, orange, watermelon, cantaloupe*vitamin c: strawberry, orange, grapefruit, banana, apple, cantaloupe* niacin烟酸: peach, banana, orange, apricot"*riboflavin核黄素: banana, peach, orange, apple* thiamin: orange, banana, grapefruit, appleMinerals(1) fresh fruits and vegetables contribute about 26% of the magnesium镁and 19% of the iron to the u.s. Diet.(2) the following fruits are important contributors to the supply of indicated minerals in the us. Diet:* potassium钾: banana, peach, orange, apple* phosphorus磷: banana, orange, peach, raisin, fig*calcium: tangerine, grapefruit, orange* iron: strawberry, banana, apple, orangeDietary fiber(1) all fruits and nuts contribute to the dietary fiber in the diet. Dietary fiber consists of cellulose, hemicellulose, lignin⽊质素, and pectic substances, which are derived primarily from fruit cell walls and skin.(2) the dietary fiber content of fruits ranges from 0.5-1.5% (fresh weight basis).(3) dietary fiber plays an important role in relieving constipation by increasing water-holding capacity of feces. Its consumption is also linked to decreased incidence of cardiovascular disease, diverticulosis, and colon cancer.factors influefncing composition and quality of fruitsPreharvest factors(1) genetic: selection of cultivars, differences in raw fruit composition, durability, and response to processing. Fruit cultivars grown for fresh market sale will not be the optimal cultivars for processing.(2) climatic: temperature, light, wind--climatic factors may have a strong influence on nutritional quality of fruits. Light intensity significantly affects vitamin concentration, and temperature influences transpiration rate, which will affect mineral uptake and metabolism. ?(3) cultural practices: soil type, soil nutrient and water supply, pruning修剪, thinning, pest control-fertilizer addition may significantly affect the mineral content of fruit.1. 5 maturity at harvest and harvesting methodMaturity at harvest is one of the primary factors affecting fruit composition, quality, and storage life. Although most fruits reach peak eating quality when harvested fully ripe, they are usually picked mature, but not ripe, to decrease mechanical damage during postharvest handling. Harvesting may also mechanically damage fruit; therefore, choice of harvest methodshould allow for maintenance of quality.Postharvest factors1) environmental,2) handling methods,3) time period between harvesting and consumption(1) environmentalTemperature, relative humidity, atmospheric composition,(2) handling methodsPostharvest handling systems involve the channels through which harvested fruit reaches the processing facility or consumer. Handling methods should be chosen such that they maintain fruit quality and avoid delays.(3) time period between harvesting and consumptionDelays between harvesting and cooling or processing may result in direct losses (due to water loss and decay) and indirect losses (decrease in flavor and nutritional quality).Fruit maturity, ripening, and quality relationshipsMaturity at harvest is the most important factor that determines storage life and final fruit quality. Immature fruits are of inferior quality when ripened. Overripe fruits are likely to become soft and with insipid flavor soon after harvest. Fruits picked either too early or too late in the season are more susceptible to physiological disorders and have a shorter storage life than those picked at mid-season.Maturity and ripeningIn general, fruits become sweeter, more colorful, and softer as they mature.Some fruits are usually picked mature but unripe so that they can withstand the postharvest handling system when shipped long distances. Most currently used maturity indices are based on a compromise between those indices that would ensure the best eating quality to the consumer and those that provide the needed flexibility in transportation and marketing.Carbohydrates(碳⽔化合物)Carbohydrates : fresh fruits vary greatly in their carbohydrate content, with a general range being between 10% and 25%;. The texture, taste, and food value of a fresh fruit is related to its carbohydrate content. Sucrose, glucose, and fructose are the primary sugars found in fruits.Fructose is sweeter than sucrose, and sucrose is sweeter than glucose.Starch is converted to sugar as the fruits mature and ripen.Proteins(蛋⽩质)Fruits contain less than 1% protein (as opposed to 9-20% protein in nuts such as almond, and walnut). Changes in the level and activity of proteins resulting from permeability changes in cell membranes may be involved in chilling injury. Enzymes, which catalyze metabolic processes in fruits, are proteins that are important in the reactions involved in fruit ripening and senescence.Enzymes in fruits:(Organic acids(有机酸)Organic acids are important intermediate products of metabolism. The krebs (tca) cycle is the main channel for the oxidation of organic acids in living cells, and it provides the energy required for maintenance of cell integrity. Organic acids aremetabolized into manyconstituents, including amino acids, which are the building blocks of proteins.Citric acid、malic acid、tartaric acid、oxalic acidPigments(⾊素)Pigments undergo many changes during the maturation and ripening of fruits.(1) loss of chlorophyll (green color), which is influenced by ph changes, oxidative conditions, and chlorophyllase action(2) synthesis and/or revelation of carotenoids (yellow and orange colors)(3) development of anthocyanins (red, blue, and purple colors.Beta-carotene is a precursor to vitamin a. Carotenoids are very stable and remain intact in fruit tissues, even when extensive senescence has occurred.Phenolic compounds(酚类化合物)Total phenolic content is higher in immature fruits than in mature fruits and is the main substrate involved in enzymatic browning of cut, or otherwise damaged, fruit tissues when exposed to air.Enzymatic browning(酶促褐变)Enzymatic browning occurs due to the oxidation of phenolic compounds and is mediated, in the presence of o2, by the enzyme polyphenoloxidase (ppo). The initial product of oxidation is usually o-quinone, which is highly unstable and undergoes polymerization to yield brown pigments of higher molecular weight. Polyphenoloxidase catalyzes the following tworeactions:Volatiles(挥发性)Volatiles are responsible for the characteristic aroma of fruits. They are present in extremely small quantities (c <100µg/g fresh wt.).Volatile compounds are largely esters(酯), alcohols, acids, aldehydes(醛), an d ketones (low-molecular weight compounds).VitaminsThe water-soluble vitamins includeVitamin c,Thiamin硫胺(维⽣素b1),Riboflavin核黄素,Niacin烟酸, vitamin b6,Folacin叶酸, vitamin b12, biotin维⽣素h. Fat soluble vitamins include vitamins a, d, e, and k.Fat-soluble vitamins are less susceptible to postharvest losses.Vitamin cAscorbic acid is most sensitive to destruction when the commodity is subjected to adverse handling and storage conditions. Losses are enhanced by extended storage, highertemperatures, low relative humidity, physical damage, and chilling injury. Postharvest losses in vitamins a and b are usually much smaller than losses in vitamin c.1.7 biological factors involved in postharvest deterioration (变坏) of fruits ?Respiration (呼吸作⽤)Ethylene productionTranspiration (蒸腾作⽤)Physiological disordersPhysical damagePathological breakdownRespirationStored organic materials (carbohydrates, proteins, fats) are broken down into simple end products with a release of energy. Oxygen (o2) is used in this process, and carbon dioxide (co2) is produced.The loss of stored food reserves in the commodity during respiration hastens senescence as the reserves that provide energy to maintain the commodity's living status are exhausted. ?Food value (energy value) for the consumer is lost; it has reduced flavor quality, with sweetness especially being lost; and salable dry weight is lost (especially important for commodities destined for dehydration). The energy released as heat.Ethylene productionEthylene, the simplest of the organic compounds affecting the physiological processes of plants, is produced by all tissues of higher plants. As a plant hormone, ethylene regulates many aspects of growth development, and senescence and is physiologically active in traceamounts (less than 0.1 ppm).Transpiration or water lossWater loss is the main cause of deterioration because it results not only direct quantitative.Losses (loss of salable weight) hut also in loss of its appearance, loss of cripsness, andjuiciness), and nutritional quality.The dermal system (outer protective coverings) governs the regulation of water loss by the commodity.Physiological disorders(1) freezing injury :usually results in immediate collapse of the tissues and total loss.(2) chilling injury when fruits (mainly those of tropical and subtropical origin) are held at temperatures above their freezing point and below 5-15℃, depending on the commodity. ?(3) heat injury results from exposure to direct sunlight or to excessively high temperatures.Symptoms include surface scalding, uneven ripening, excessive softening, and desiccation. ?(4) very low (<1%) oxygen and/or elevated (>20%) carbon dioxide concentration can result in physiological breakdown of all fruits.Physical damageVarious types of physical damage (surface injuries, impact bruising, vibration bruising, etc.) Are major contributors to deterioration. Mechanical injuries are not only unsightly, but also accelerate water loss, stimulate higher respiration and ethylene production rates, and favor decay incidence.Pathological breakdownDecay is one of the most common or apparent causes of deterioration; however, attack by many microorganisms usually follows mechanical injury or physiological breakdown, which allows entry to the microorganism. Pathogens can infect healthy tissues and become the primary cause of deterioration.Environmental factors influencing deterioration of fruits(影响⽔果变坏的环境因素)Temperature,Relative humidity,Air movement,Atmospheric composition,Ethylene,Harvesting procedures Postharvest handling proceduresDumping、Sorting、Sizing、Cooling、Storage、RipeningDumping:Fresh fruits should be handled with care throughout the postharvest handling system in order to minimize mechanical injuries. Dumping in water or in flotation tanks should be used for fruits. If dry dumping systems are used, they should be well padded bruising. Sorting:Manual sorting is usually carried out to eliminate fruit exhibiting defects or decay. For some fruits, it may also be necessary to sort the fruit into two or more classes of maturity or ripeness.Mechanical sorters, which operate on the basis of color, soluble solids, moisture, or fat content, are being implemented and may greatly reduce time and labor requirements. Sizing:In some cases, sizing the fruits into two or more size categories may be required before processing. Sizing can be done mechanically on the basis of fruit dimension or by weight.Mechanical sizing can be a major source of physical damage to the fruit if the machines are not adequately padded and adjusted to the minimum possible fruit drop heights Ripening:Ripening before processing may be required for certain fruits (banana, kiwifruit, mango, papaya, peach, pear, plum, melon) that are picked mature but unripe. Ethylene treatment can be used to obtain faster and more uniform ripening. The optimum temperature range for ripening is 15-25℃and, within this range, the higher the temperature, the faster the ripening. Relative humidity should be maintained between 90% and 95 % during ripening. Cooling:Cooling is utilized to remove field heat and lower the fresh fruit's temperature to near its optimum storage temperature. Cooling can be done using cold water (hydrocooling) or cold air (forced-air cooling or "pressure cooling"). Highly perishable fruits, such as strawberries, bush berries, and apricots, should be cooled to near 4℃within six hours of harvest. Other fruits should be cooled to their optimum temperature within twelve hours of harvest. Storage:Short-term or long-term storage of fresh fruits may be needed before processing to regulate the product flow and extend the processing season. The relative humidity in the storage facility should be kept between 90% and 95%.To reduce decay, elevated c02 (15-20%) may be added to the atmosphere within pallet covers for strawberries, bush berries, and cherries, and sulfur dioxide (200 ppm) fumigation may be used on grapes.1.8 quality measurementsMany quality measurements can be made before a fruit crop is picked in order to determine if proper maturity or degree of ripeness has developed.ColourColour may be measured with instruments or by comparing the colour of fruit on the tree with standard picture charts. TextureTexture may be measured by compression by hand or by simple type of plungers.Soluble solidsAs fruit mature on the tree its concentration of juice solids, which are mostly sugars, changes. The concentration of soluble solids in the juice can be estimated with arefractometer or a hydrometer液体⽐重计.Acid contentThe acid content of fruit changes with maturity and affects flavour. Acid concentration can be measured by a simple chemical titration on the fruit juice. But for many fruits the tartness and flavour are really affected by the ratio of sugar to acid. Sugar to acid ratioIn describing the taste of tartness of several fruits and fruit juices, the term "sugar to acid ratio" or "brix to acid ratio" are commonly used. The higher the brix the greater the sugar concentration in the juice; the higher the "brix to acid ratio" the sweeter and lees tart is the juice.1.9 preprocessing1.9.1 harvestingThe above and other measurements, plus experience, indicate when fruit is ready for harvesting and subsequent processing.1.9.2 reception - quality and quantity1.9.3 temporary storage before processing1.9.4 washingHarvested fruit is washed to remove soil, micro-organisms and pesticide residues.Fruit washing is a mandatory processing step; it would be wise to eliminate spoiled fruit before washing in order to avoid the pollution of washing tools and/or equipment and the contamination of fruit during washing.1.9.5 sortingFruit sorting covers two main separate processing operations:Removal of damaged fruit and any foreign bodies (which might have been left behind after washing);Qualitative sorting based on organoleptic criteria and maturity stage.Mechanical sorting for size is usually not done at the preliminary stage. The most important initial sorting is for variety and maturity.1.9.6 trimming and peeling (skin removal)This processing step aims at removing the parts of the fruit which are either not edible or difficult to digest especially the skin.Up to now the industrial peeling of fruit and vegetables was performed by three procedures: Mechanically;By using water steam;Chemically; this method consists in treating fruit and vegetables by dipping them in a caustic soda solution at a temperature of 90 to 100°c; the concentration of this solution as well asthe dipping or immersion time varying according to each specific case.1.9.7 cuttingThis step is performed according to the specific requirements of the fruit processing technology.1.9.8 blanchingA brief heat treatment to vegetables some fruits to inactivate oxidative enzyme systems such as catalase, peroxidase, polyphenoloxidase, ascorbic acid oxidase, and lipoxygenase. ?When the unblanched tissue is disrupted or bruised and exposed to air, these enzymes come in contact with substrates causing softening, discoloration, and the production of off flavors. ?It is most often standard practice to blanch fruits in order to prevent quality deterioration. ?Although the primary purpose of blanching is enzyme inactivation.There are several other benefits blanching initially cleanses the product;Decreases the microbial load,Preheats the product before processing.Softens the fruit, facilitates compact packing in the can.Expell intercellular gases in the raw fruitImproved heat transfer during heat processing.Water blanching is generally of the immersion type or spray type as the product moves on a conveyor.Steam blanching often involves belt or chain conveyors upon which the product moves through a tunnel containing live steam.adequacy of blanching is usually based on inactivation of one of the heat resistant enzymes (peroxidase or polyphenol oxidase).During the blanching process, it is imperative that certain enzymes that have the potential to cause flavour and textural changes be inactiviated. The process involves a brief heattreatment applied to most vegetables and also to some fruits in order to inactivate oxidative enzyme system such as catalase, peroxidase, polyphenoloxidase,ascorbic acid oxidase, and lipoxygenase.When unblanched tissue is disrupted or bruised and exposed to air,these enzymes come in contact with substrate causing softening,discoloration, and the production of off-flavours.Since this action can potentially occur during the period prior to heat processing, it is most often standard practice to blanch fruits in order to prevent quality deterioration.1.9.9 ascorbic/citric acid dipAscorbic acid or vitamin c minimises fruit oxidation primarily by acting as an antioxidant and itself becoming oxidised in preference to catechol⼉茶酚-tannin compounds.It has been found that increased acidity also helps retard oxidative colour changes and so ascorbic acid plus citric acid may be used together. Citric acid further reacts with (chelates) metal ions thus removing these catalysts of oxidation from the system.1.9.10 sulphur dioxide treatmentSulphur dioxide may function in several ways:Sulphur dioxide is an enzyme poison against common oxidising enzymes;It also has antioxidant properties; i.e., it is an oxygen acceptor (as is ascorbic acid);Further so2 minimises non enzymatic maillard type browning by reacting with aldehyde醛groups of sugars so that they are no longer free to combine with amino acids;Sulphur dioxide also interferes with microbial growth.In many fruit processing pre-treatments two factors must be considered:Sulphur dioxide must be given time to penetrate the fruit tissues;So2 must not be used in excess because it has a characteristic unpleasant taste and odour, and international food laws limit the so2 content of fruit products, especially of those which are consumer oriented (e.g. Except semi-processed products oriented to further industrial utilisation).5.2.11 sugar syrupSugar syrup addition is one of the oldest methods of minimising oxidation.Sugar syrup minimises oxidation by coating the fruit and thereby preventing contact withatmospheric oxygen.Sugar syrup also offers some protection against loss of volatile 挥发性的fruit esters 酯and itcontributes sweet taste to otherwise tart fruits.It is common today to dissolve ascorbic acid and citric acid in the sugar syrup for addedeffect or to include sugar syrup after an so 2 treatment.QuestionsWhat factors influence the quality of fruits after harvest?How to maintain the fruit in good quality before the processing begin?第⼀节果蔬原料特性新鲜果蔬原料的特点 ? 果蔬原料的化学成分原料的化学成分与加⼯的关系1.新鲜果蔬原料的特点易腐性、季节性、区域性2.果蔬中的化学成分(chemical composition in fruits and vegetables )3.化学成分与加⼯的关系(relation between chemical composition and processing )3.1 ⽔分(water)果蔬中⽔的含量:⼤多数在80%以上,含⽔量⾼的如冬⽠(wax gourd)可达96%以上。
高效液相色谱质谱法测定食品接触材料着色剂中芳香胺类物质
高效液相色谱质谱法测定食品接触材料着色剂中芳香胺类物质花 锦1*,肖利龙2(1.太原海关技术中心,山西太原 030001;2.太原学院,山西太原 030001)摘 要:目的:建立高效液相色谱质谱法测定食品接触材料中着色剂中芳香胺类物质。
方法:用乙腈超声提取试样中芳香胺类物资,改进QuEChERS 法净化,使用ACQUITY HSS T3柱以水和甲醇溶液进行梯度洗脱,采用电离喷雾电离方式(ESI+),通过多反应监测(MRM)定量。
结果:该法测定时间短,在5 min 内出峰,线性关系良好,相关系数r 大于0.99,回收率在67.0%~95.0%,相对标准偏差(RSD )均小于15%。
该法快速、简便、精确度高、准确度高,对食品级着色剂中芳香胺残留有普遍适用性,其他着色剂可参考使用。
关键词:QuEChERS;食品接触材料;芳香胺;着色剂;液相色谱质谱联用食品接触材料通常是指与食物直接接触的物质,在带来生活上便利的同时也带来了食品安全问题。
着色剂是指能给予或改变食品包装材料颜色的物质,通常包括染料和颜料两种,此外还有一些特殊物质如光学增量剂、荧光漂白剂等本身没有颜色但能提高产品光亮的物质,主要用于提高产品的美观。
因此食品接触材料中会存在着色剂,其中偶氮类染料最为常见。
偶氮染料具有色谱范围广,牢度强,着色快,色光好等优势,因此偶氮染料的使用较为广泛,不仅应用于食品接触材料,还应用于皮革、纺织、化妆品、纸张等生活必需品[1]。
早在20世纪,有日本人发现偶氮染料中的溶剂黄可导致老鼠的肝细胞发生癌变,之后1905年德国也从染料品红、萘胺等物质中发现了偶氮染料的致癌性[2]。
偶氮染料主要通过分解为芳香胺来释放有毒有害物质,分解过程见 图1。
图1 芳香族偶氮染料分解为芳香胺芳香胺类物质对人类健康和环境具有危害性,尤其是2,4-二甲基苯胺、2-萘胺、对氯苯胺等,进入人体之后会产生高铁血红蛋白引起一系列疾病[3]。
由于食品安全方面芳香胺的危害较大,而我国目前对于食品接触材料中芳香胺的检测技术还不够全面,只对接触材料进行了研究,对其中着色剂没有深入探讨,因此芳香胺的检测方案急需优化以及扩充。
体外批次培养法研究莫能菌素对亚油酸氢化及反式11-油酸合成的影响
tlC1 : 和顺 式 9 顺 式 l 亚 油酸 ( 9, l 一 1 : ) 量 。结 果表 明 : 加 莫 能 菌 素 能显 著 降 l— 8 l , 2一 c c2C 8 2 含 添
低 培 养 液 中 C1 : 量 ( 0 0 ) 显 著提 高 1C 8 l和 c ,c2C1 : 8 0含 P< .5 , 1 . 1 : 9 1 一 8 2含 量 ( 0 0 ) 且 P< .5 ; 莫 能 菌 素浓 度 高 于 1 / g时培 养 液 中 tlC 8 l含 量 随 着 莫 能 菌 素 浓 度 的 增 加 逐 渐 升 高。 0mg k l—1 : 结 果提 示 , 外培养 液 中添加 莫 能 菌 素 能提 高 tlC 8 l含 量 , 莫 能菌 素 浓度 超 过 1 /g时 体 l—1 : 且 0mgk
摘 要 :采用体外批 次培养技 术 , 在以亚油酸( 1 : ) C 8 2 为脂肪 酸源的培 养液 中添加不 同水平的 莫 能菌 素 , 究其 对 C1 : 研 8 2氢化 及反 式 ¨ 一 酸 (l 一 8 1 合 成 的 影 响 。 试 验 采 用 单 因子 试 油 t1C1 : )
验设计 , 以微 晶 纤 维 素 为 培 养 底 物 , 能 菌 素 以 其 占底 物 的 质 量 浓 度 添 加 , 照 组 、 莫 对 M1组 、 M2
动 物 营 养 学 报 2 1 ,3 2 :4 —4 0 12 ( ) 3338
C iee o ra nma N t t n h s u n l fA i l ur i n J o io
d i 0 3 6 /. s . 0 6 7 . 0 . 2 0 3 o: .9 9 js n 1 0  ̄6 x 2 1 0 . 2 1 i 1
后 打 开振 荡 开关 , 始培 养 。 开
微米碱式碳酸镁合成的最佳工艺条件研究
第5期王卫兵:微米碱式碳酸镁合成的最佳工艺条件研究-9 -微米碱式碳酸镁合成的最佳工艺条件研究王卫兵(运城学院应用化学系,山西运城044000)摘要: 碳酸镁是一 有广泛化学原料,于工业、制 工业中, 作 理 食品方面° 酸镁与碳酸氢鞍为实验原料,通过单因素法来设计和进行试验,探讨最佳工艺条件,分别分析了 My (NO 3)2的浓度(NH 4HCO 3的浓度(M/ (NO 3) 2和NH 4HCO 3的物质的量比、温度对产物碱式碳酸镁的粒径大小的影响'结果表明:My (NO 3)2的浓度为1-28 mol/L , NH 4HCO 3的浓度为1.37 mol/L ,反应温度为67 < ,NH 4HCO 3与My (NO 3)2的物质的量比为2.18 : 1时,最小粒径为13.5吧。
关键词: 碳酸镁, 素法,最 工艺条件中图分类号:TQ132.2文献标识码:A 文章编号:1008-021X ( 2021) 05-0009-02Strdy on Optimal Technological Process for the Production ofMicron Basic Magnesium CaronateWang Weibing(Applied Chemistry Department , Yuncheny University ,Yuncheny 044000,China )Abstract : Basic magnesium carbonate is a widely chemical raw mateCal, which is often used in industry , pharmaceuticalondusiey , used on iood ioei —oueieeaimeniayeni.Theaom oiihospapeeosiousemaynesoumnoieaiesand ammonoum bocaebonaieaseawmaieeoa —s.Thea i e cisoiconcenieaieoimaynesoum noieaies , concenieaioon oiammonoum bocaebonaie , iempeeaiueeand mo —ae ratio of magnesium nitrate and ammonium bicarbonate on the particlo size of basic carbon - coated maynesium were analyzed teAip —oeAihAopiomum condoioonsioesynihAsos.ThAAipAeomAnia —esu —isshowihaiihAconcAnieaioon oimaynAsoum noieai os1.28mol/L , the concentration of ammonium bicarbonate is 1.37 mol/L, the temperature is 67 < , and the molar ratio of ammoniumbocaebonaieiomayneioum noieaieioi2.18 :1 and monomum yeaon ioeeoi13.5!m.Key words : basic maynesium carbonate ; sinylo factor method ; optinial techno —vy condition碱式碳酸镁是一种白色、无刺激性气味、无毒的单斜结晶 体, 末状’ 仅 作为化工原料来制备新的产, 化学工程 就是一种十分重要 机产品’大 方面:运于食 加剂与化工产 ;运于 制备以及作于临床; 与高 作为防火保温材料及作为制 化工产 原料等)1-*' 传统方式制备过程中会产生大量含有Mg" ,造成环境污染,同于工艺流程 合理 原料大量的浪费,所一 最 工艺 程 高原料 , 高 产 '1试验部分1.1试验原理酸原料, 碳酸氢 制备 碳酸 化学方程:5Mg ( NO 3) 2+ 10NH 4HC03=4MgC03 - Mg ( OH ) 2 - 4H 2O '+ 10NH 4N03+ 6CO 2 (化学方程 : 成 产4MgCO 3 - Mg (OH )2 & 4H 20o 由于此产物不易溶于水,而且伴 随产 成 有气体与易溶于水 质生成,易于分离。
天然产物SCI杂志
天然产物、天然药物相关SCI杂志一、相关SCI杂志目录1、AM J CHINESE MED IF=1.3832、Bioorg. Med. Chem IF=1.603 要求有生物活性3、Biochemical Systematics & Ecology IF=1.110 旧化合物也可以发,只要在化学分类方面有独到之处4、CARBOHYDRATE RESEARCH IF=1.8985、Chemical communication IF=5.7876、Chemistry of Natural Compounds(Russian) IF=0.6937、Chemical & Pharmaceutical Bulletin IF=1.5078、CHEMISTRY & BIOLOGY IF=5.8389、Chemistry & Biodivers IF=1.586 新出的一本杂志,比较容易中10、Chinese Chemical Letters IF=0.77511、DRUG DISCOVERY TODAY IF=6.42212、EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY IF=3.19313、Fitoterapia IF=1.899,荷兰杂志。
不一定都是新化合物,活性物也可以发。
14、Helvtica chimica acta IF=1.284一般两个新化合物就可以,周期也比较短.15、Heterocycle IF=1.09316、Journal of Antibiotics IF=1.62817、Journal of Asian Natural Product Research IF=0.70618、J CHROMATOGR A IF=4.19419、J CHROMATOGR B IF=2.97120、Journal of Essential Oil Research IF=0.64321、Journal of Natural Product IF=2.87222、JOURNAL OF ORGANOMETALLIC CHEMISTRY(RUSS) IF=0.63523、PROG LIPID RES IF=9.510主要刊登脂肪族化合物24、Marine Drugs IF=3.47125、NAT PROD REP IF=8.88126、NAT PROD RES IF=0.90627、PHYTOCHEMISTRY IF=3.15028、Phytochemical Analysis IF=1.84829、Phytochemistry letter IF=1.36430、Phytomedicine IF=2.66231、Phytotherapy Research IF=1.87832、PLANTA IF=3.09833、Planta Medica IF=2.36934、STEROIDS IF=3.10635、Tetrahedron IF=3.01136、Tetrahedron letters IF=2.618 基本上要求是新骨架二、相关SCI 杂志JCR 详细数据Rank Abbreviated Journal Title(linked to journalISSNTotal Cites Impact Factor5-Year Impactor Immediacy IndexArticles Cited Half-lifeEigenfactor TMScoreArticle Influence TM 4391 BIOCHEM SYST ECOL 0305-1978 2912 1.110 1.367 0.11 191 8.3 0.00436 0.311 2737 CARBOHYD RES 0008-6215 13215 1.898 2.072 0.391 371 >10.0 0.01695 0.506 3314 CHEM BIODIVERS 1612-1872 1893 1.586 1.743 0.286 220 3.5 0.00786 0.455 371 CHEM BIOL 1074-5521 8578 5.838 5.976 1.114 123 6.5 0.02892 2.406 375 CHEM COMMUN 1359-7345 88498 5.787 5.581 1.096 2416 5.9 0.23675 1.588 5665 CHEM NAT COMPD+ 0009-3130 1702 0.693 0.739 0.134 127 8.8 0.00233 0.143 3470 CHEM PHARM BULL 0009-2363 12855 1.507 1.621 0.222 329 >10.0 0.01237 0.37 5396 CHINESE CHEM LETT 1001-8417 2063 0.775 0.599 0.138 385 4 0.00544 0.13 308 DRUG DISCOV TODAY 1359-6446 7598 6.422 7.29 1.105 114 5 0.02653 2.006 1235 EUR J MED CHEM 0223-5234 8687 3.193 3.356 0.641 763 4.2 0.01941 0.689 2734 FITOTERAPIA 0367-326X 3723 1.899 1.884 0.273 227 8 0.00454 0.36 3969 HELV CHIM ACTA 0018-019X 7813 1.284 1.332 0.246 280 >10.0 0.00827 0.333 4445 HETEROCYCLES 0385-5414 5807 1.093 1.016 0.301 352 9.7 0.00905 0.244 3220 J ANTIBIOT 0021-8820 5964 1.628 1.614 0.462 130 >10.0 0.00368 0.368 5618J ASIAN NAT PROD RES1028-6020 7470.7060.7760.1011584.10.002190.1691416 J CHROMATOGR B 1570-0232 20222 2.971 3 0.349 493 6.7 0.04041 0.715 5857 J ESSENT OIL RES 1041-2905 2373 0.643 0.821 0.108 166 8.9 0.00239 0.133 1493 J NAT PROD 0163-3864 16840 2.872 2.855 0.504 393 8.3 0.02496 0.631 1060 MAR DRUGS 1660-3397 535 3.471 3.153 0.474 154 2.5 0.00185 0.726 3271 MED CHEM 1573-4064 685 1.603 0.316 38 3.8 0.0025189 NAT PROD REP 0265-0568 4775 8.881 8.865 1.824 74 6.1 0.01375 2.813 4977 NAT PROD RES 1478-6419 1071 0.906 0.89 0.169 242 3.6 0.00318 0.173 2827 PHYTOCHEM ANALYSIS 0958-0344 1533 1.848 1.871 0.493 75 7.3 0.00274 0.441 3787 PHYTOCHEM LETT 1874-3900 140 1.364 1.364 0.089 56 2.1 0.00056 0.292 1261 PHYTOCHEMISTRY 0031-9422 27311 3.150 3.335 0.38 258 >10.0 0.02524 0.837 1676 PHYTOMEDICINE 0944-7113 3576 2.662 2.837 0.521 192 5.1 0.00745 0.556 2773 PHYTOTHER RES 0951-418X 6360 1.878 2.222 0.38 353 6.7 0.01048 0.439 1306 PLANTA 0032-0935 13997 3.098 3.451 0.545 224 9.7 0.0244 1.025 2022 PLANTA MED 0032-0943 10144 2.369 2.307 0.361 299 >10.0 0.01161 0.499 162 PROG LIPID RES 0163-7827 3265 9.510 11.663 1.412 34 7.1 0.00792 4.028 5890 RUSS J ORG CHEM+ 1070-4280 2736 0.635 0.624 0.101 348 8 0.00394 0.119 1300 STEROIDS 0039-128X 4313 3.106 2.626 0.682 148 7.1 0.00884 0.66 1387 TETRAHEDRON 0040-4020 50472 3.011 2.983 0.656 1179 7.9 0.09855 0.78 1725 TETRAHEDRON LETT 0040-4039 73688 2.618 2.483 0.578 1741 9.2 0.11036 0.59三、部分期刊详细信息1. Phytochemistry(植物化学)The International Journal of Plant Chemistry, Plant Biochemistry and Molecular Biology.ISSN: 0031-9422/wps/find/journaldescription.cws_home/273/authorinstruction s2. Phytomedicine(植物医学)International Journal of Phytotherapy and PhytopharmacologyISSN: 0944-7113/wps/find/journaldescription.cws_home/701794/authorinstruct ions3. Phytochemistry Letters(植物化学快报)ISSN: 1874-3900/wps/find/journaldescription.cws_home/713881/description#d escription4. Fitoterapia(药用植物)The Journal for the Study of Medicinal PlantsISSN: 0367-326X创刊年:1934 出版地:荷兰Science Citation Index Expanded/wps/find/journaldescription.cws_home/620051/description#d escription5. Phytochemical Analysisis(植物化学分析)phytochemistry, natural product, herbal, plant biochemistry, plant extract, plant product/journal/10.1002/(ISSN)1099-1565/6. Chemistry & Biodiversity(化学与生物多样性)biologically relevant chemistry/journal/10.1002/(ISSN)1612-18807. Planta Medica(植物药)Journal of Medicinal Plant and Natural Product ResearchISSN 0032-0943http://www.thieme.de/fz/plantamedica-imprint.html8. Journal of Natural Products《天然产物杂志》ISSN: 0163-3864/journal/jnprdfScience Citation IndexScience Citation Index Expanded创刊年:1939 出版地:美国9. Journal of Asian Natural Products Research《亚洲天然产物研究杂志》ISSN: 1477-2213/smpp/title~content=t713454007~db=allTAYLOR & FRANCIS LTD, 4 PARK SQUARE, MILTON PARK, ABINGDON, ENGLAND, OXON, OX14 4RNScience Citation Index Expanded创刊年:1999 出版地:英国10. Journal of Medicinal Plants Research《药用植物研究杂志》ISSN: 1996-0875/JMPR/index.htmMonthly (注:2008年开始被SCI收录)ACADEMIC JOURNALS, P O BOX 5170-00200 NAIROBI, VICTORIA ISLAND, NIGERIA, LAGOS, 73023Science Citation Index Expanded创刊年:2007 出版地: 尼日利亚11. Journal of Natural Medicines 《生药学杂志》ISSN: 1861-0293/biomed/pharmaceutical+science/journal/11418(注:2008年开始被SCI收录)ISSN: 1340-3443Science Citation Index Expanded创刊年:1949 出版地: 日本12. Chemistry of Natural Compounds(天然产物化学)ISSN: 1573-8388/chemistry/organic+chemistry/book/978-3-540-40669-3 13. chemical & pharmaceutical bulletinhttp://cpb.pharm.or.jp/。
化学表观遗传修饰方法在真菌次级代谢产物研究中的应用_张伟
第33卷第5期2014年10月中国海洋药物CHINESE JOURNAL OF MARINE DRUGSVol.33 No.5October,2014·综述·化学表观遗传修饰方法在真菌次级代谢产物研究中的应用△*张伟,陈敏,邵长伦,王长云*(中国海洋大学海洋药物教育部重点实验室,医药学院,山东青岛266003)摘 要:真菌产生的次级代谢产物是新药开发的重要资源,其生物合成过程受到众多因素的调控。
化学表观遗传操作是利用小分子化学物质抑制真菌中影响表观遗传的酶类,激活沉默的生物合成基因,诱导真菌产生未知的次级代谢产物。
化学表观遗传修饰已成为1种简单有效的发现结构新颖的活性次级代谢产物的新方法。
本文综述了化学表观遗传修饰调控真菌次级代谢产物的研究进展,并对该方法用于海洋来源真菌次级代谢产物的研究进行了展望。
关键词:真菌;次级代谢调控;化学表观遗传修饰;沉默基因中图分类号:R931 文献标志码:A 文章编号:1002-3461(2014)05-083-09The application of chemical epigenetic modification method in theresearch of secondary metabolites from fungiZHANG Wei,CHEN Min,SHAO Chang-lun,WANG Chang-yun*(Key Laboratory of Marine Drugs,Ministry Education of China,School of Medicineand Pharmacy,Ocean University of China,Qingdao 266003,China)Abstract:Fungi have proven to be the significant resources for development of new drugs.The biosyn-thesis of secondary metabolites in fungi is regulated by various factors.Chemical epigenetic manipula-tion is an approach that chemical small molecules are introduced to inhibit the fungal enzymes which in-fluence the epigenetics.This method can activate the silence genes in fungi for the purpose of gainingaccess to hitherto unknown secondary metabolites.Therefore,chemical epigenetic modification has be-come a new method to obtain structurally novel and biologically active natural products simply and ef-fectively.In this paper,the applications of chemical epigenetic modification method in the research ofsecondary metabolites from fungi were reviewed.And the perspective for the study on secondary me-tabolites from marine-derived fungi by this method was also prospected.Key words:fungi;secondary metabolite regulation;chemical epigenetic modification;silence gene 全基因组测序工程研究发现真菌中存在大量编码化合物的基因,某些物种拥有的这些基因所能编码的化合物的数量远大于目前从中分离得到的化合物数量[1-3]。