浙教版八年级数学下册:第5章《特殊平行四边形》训练题题及解析
浙教版数学八年级下册八下第五章 特殊平行四边形 拔尖训练(含答案)
![浙教版数学八年级下册八下第五章 特殊平行四边形 拔尖训练(含答案)](https://img.taocdn.com/s3/m/dfdf7617bf23482fb4daa58da0116c175f0e1e05.png)
八下第五章特殊平行四边形拔尖训练一、单选题1.如图,在菱形ABCD中,不一定成立的是( ).A.四边形ABCD是平行四边形B.AC⊥BDC.△ABD是等边三角形D.∠CAB=∠CAD2.菱形的两条对角线长分别为6与8,则此菱形的面积为( )A.48B.20C.14D.243.矩形、菱形、正方形都具有的性质是( )A.每一条对角线都平分一组对角B.对角线相等C.对角线互相垂直D.对角线互相平分4.如图,菱形ABCD中,AC交BD于O,AE⊥DC于点E,连接OE,若∠ABC=40°,则∠OEA 的度数是( )A.20°B.30°C.50°D.70°5.如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,若AC=6,则DE的长为( )A.3B.C.D.46.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=13,S B=8,S C=10,S D=5,则S=( )A.25B.36C.32D.407.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为( )A.23B.43C.4D.68.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( ).A.8B.3C.4D.329.如图,P是正方形ABCD的对角线BD上任意一点,PE⊥AB于点E,PF⊥AD于点F,连接EF.有下列结论:①CP=EF;②CP⊥EF;③△CPD一定是等腰三角形;④∠PFE=∠BCP;⑤PD=2AE.其中,正确结论的序号是( )A.①②③④B.②③④⑤C.①②④⑤D.①③④⑤10.如图,正方形ABCD的边长为2cm,正方形CEFG的边长为1cm,若正方形CEFG绕点C旋转,则点F 到点A的距离最小值为( )A.3B.22C.32D.2二、填空题11.菱形定义:一组 相等的平行四边形叫菱形.12.如图,矩形ABCD中,AB=4,AD=6.在边AD上取一点E,使BE=BC,过点C作CF⊥BE,垂足为点F,则BF的长为 .13.如图是一幅赵爽弦图,利用此图可以证明勾股定理.现连接BE,发现AB=BE,若DE=1,则正方形ABCD的面积为 .14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.15.如图,大正方形ABCD中,AB=3,小正方形AEFG中,AE=3,在小正方形绕A点旋转的过程中,当C,F,G三点共线时,线段CF的长为 .16.如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=PA+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为22−2,其中所有正确结论的序号是 .三、作图题17.图1,图2,图3,图4是四张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,A,C两点都在格点上,连结AC,请完成下列作图:(1)以AC为对角线在图1中作一个正方形,且正方形各顶点均在格点上.(2)以AC为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.(3)以AC为对角线在图3和图4中分别作出一个面积为8的平行四边形(不含矩形),且平行四边形顶点在格点上.四、综合题18.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.19.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.20.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E、F.(1)求证:四边形AECF是菱形;(2)当BE=3,AF=5时,求AC的长.21.如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=4,AC=4 3,求平行四边形ABCD的面积.22.如图,在菱形ABCD中,AB=10,S菱形ABCD=60,点E从点B出发在边BC上向终点C运动.过点E作边BC的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.①求证:FA=FG;②若点G是AC的中点,求证:BF=FG;(2)若EF=FG,当EF过AC中点时,求AG的长.23.已知:在边长为4的正方形ABCD中,点P为对角线BD上一点,且BP=32.将三角板的直角顶点与点P重合,一条直角边与直线BC交于点E,另一条直角边与射线BA交于点F(点F 不与点B重合),将三角板绕点P旋转.(1)如图,当点E、F在线段BC、AB上时,求证:PE=PF;(2)当∠FPB=30°时,求△BEP的面积;(3)当△BEP为等腰三角形时,求线段BF的长.五、实践探究题24.如图,点E为正方形ABCD内一动点,∠AEB=90°.过点B作BG⊥BE,且BG=BE,连接CG,DE.(1)求证:∠EAB=∠GCB;(2)延长AE交CG于点F,求证:EF=BE;(3)在(2)的条件下,若点E在运动过程中,存在四边形CFBE为平行四边形,试探究此时DE、CD满足的数量关系.答案解析部分1.【答案】C【解析】【解答】菱形是特殊的平行四边形,故A正确,根据菱形的性质:对角线互相平分且平分对角得B、D正确,所以选C.【分析】此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角;以及和平行四边形的联系.2.【答案】D【解析】【解答】6×8÷2=24故答案为:D.【分析】根据S菱形等于两对角线乘积的一半可求解.3.【答案】D【解析】【解答】解:矩形、菱形、正方形都具有的性质是:对角线互相平分,故答案为:D.【分析】根据矩形、菱形、正方形的性质判断求解即可。
浙教版初中数学八年级下册第五单元《特殊平行四边形》(标准难度)(含答案解析)(含答案解析)
![浙教版初中数学八年级下册第五单元《特殊平行四边形》(标准难度)(含答案解析)(含答案解析)](https://img.taocdn.com/s3/m/5690a762ff4733687e21af45b307e87101f6f8ec.png)
浙教版初中数学八年级下册第五单元《特殊平行四边形》(标准难度)(含答案解析)考试范围:第五单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )A. AD//BCB. AC=BDC. AC⊥BDD. AD=AB2. 如图,在矩形ABCD中,AB=6,AD=8,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为( )A. 4B. 4.4C. 4.8D. 53. 平行四边形的四个内角平分线相交所构成的四边形一定是( )A. 一般平行四边形B. 一般四边形C. 对角线垂直的四边形D. 矩形4. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则OM+OB的长为( )A. 7B. 8C. 9D. 105. 如图:已知菱形ABCD的顶点B(−2,0),且∠ABC=60∘,点A在y轴的正半轴上.按以下步骤作图: ①以点B为圆心,适当长度为半径作弧,分别交边AB、BC于点M、N; ②分别以点M(N为圆心,大于12MN的长为半径作弧,两弧在∠ABC内交于点P; ③作射线BP,交菱形的对角线AC于点E,则点E的坐标为( )A. (1,√3)B. (1,2)C. (12,1) D. (12,√3)6. 如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是( )A. 正方形B. 矩形C. 菱形D. 平行四边形7. 如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )A. 12B. 1C. √2D. 28. 如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,菱形ABCD 的面积为24,则OE长为( )A. 2.5B. 3.5C. 3D. 49. 如图,正方形ABCD的面积为12,△ABE为正三角形,点E在正方形ABCD内,在对角线AC 上取一点P,使PD+PE最小,则这个最小值为( )A. √3B. 2√3C. 2√6D. 3√210. 如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD交于点O.添加一个条件使这个四边形成为一种特殊的平行四边形,则以下说法错误的是( )A. 添加“AB//CD”,则四边形ABCD是菱形B. 添加“∠BAD=90°”,则四边形ABCD是矩形C. 添加“OA=OC”,则四边形ABCD是菱形D. 添加“∠ABC=∠BCD=90°”,则四边形ABCD是正方形11. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 412. 如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是( )A. B.C. D.第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 矩形的三个顶点坐标分别是(−2,−3),(1,−3),(−2,−4),那么第四个顶点坐标是____________.14. 如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60∘,连结DF,则DF的长为.15. 如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD= 2BE,∠DAE=∠DEA,EO=1,则线段AE的长为______.16. 如图,定义:若菱形AECF与正方形ABCD的两个顶点A,C重合,另外两个顶点E,F在正方形ABCD的内部,则称菱形AECF为正方形ABCD的内含菱形.若正方形的周长为16,其内含菱形的边长是整数,则内含菱形的周长为________;若正方形的面积为18,其内含菱形的面积为6,则内含菱形的边长为________.三、解答题(本大题共9小题,共72.0分。
浙教版八年级下册数学第五章《特殊平行四边形》检测题(含答案)
![浙教版八年级下册数学第五章《特殊平行四边形》检测题(含答案)](https://img.taocdn.com/s3/m/fe3b2020590216fc700abb68a98271fe910eaf84.png)
八年级数学下第五章《特殊平行四边形》检测题一、单选题(共30分)1.(本题3分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形2.(本题3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.(本题3分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是()A.3 B.4 C.5 D.64.(本题3分)菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1 B.5:1 C.6:1 D.7:15.(本题3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直6.(本题3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形7.(本题3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=25°,则EFC'∠的度数为()A.122.5°B.130°C.135°D.140°8.(本题3分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()B.1 C2D.2A.129.(本题3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1 B.1.3 C.1.2 D.1.510.(本题3分)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个二、填空题(共21分)11.(本题3分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为_________cm.12.(本题3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.13.(本题3分)如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD7,则图中阴影部分的面积为_____.14.(本题3分)如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.15.(本题3分)如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D 作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.16.(本题3分)如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB '为直角三角形时,BE 的长为____17.(本题3分)如图,四边形 ABCD 是菱形,A B =6,且∠ABC =60° ,M 是菱形内任一点,连接AM ,BM ,CM ,则AM +BM +CM 的最小值为________.三、解答题(共49分)18.(本题6分)如图,四边形ABCD 是平行四边形, ,AE BC AF CD ⊥⊥,垂足分别为,E F ,且BE DF =.(1)求证:四边形ABCD 是菱形;(2)连接EF 并延长,交AD 的延长线于点G ,若30,2CEG AE ︒∠==,求EG 的长.19.(本题8分)如图,四边形ABCD中,AD∥BC,AB⊥AC,点E是BC的中点,AE与BD 交于点F,且F是AE的中点.(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四边形ABCD的面积.20.(本题8分)如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系.已知,2OC=,点D为x轴上一动点,以BD为OA=,4一边在BD右侧作正方形BDEF.(1)若点D与点A重合,请直接写出....点E的坐标.(2)若点D在OA的延长线上,且EA EB=,求点E的坐标.(3)若217OE=E的坐标.21.(本题8分)图①,图②均为44⨯的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A B C D、、、均为格点,按下列要求画图:⑴在图①中,以AB为对角线画一个菱形AEBF,且,E F为格点;⑵在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且,G H为格点,∠=∠=.CGD CHD9022.(本题9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.23.(本题10分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记ODE的面积为S,求S与b的函数关系式,并求出自变量b的取值范围;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图为四边形O A B C'''',试探究O A B C''''与矩形OABC的重叠部分的四边形是什么特殊四边形,并说明理由.(3)若54b=,试求出(2)中重叠部分四边形的面积参考答案一、单选题(共30分)1.(本题3分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【答案】D【解析】【分析】分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.【点睛】本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.2.(本题3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【答案】D【解析】【分析】根据菱形、矩形、正方形的判定定理判断即可.【详解】解:A. 当AB=BC时,它是菱形,正确,不符合题意;B. 当AC⊥BD时,它是菱形,正确,不符合题意;C. 当∠ABC=90°时,它是矩形,正确,不符合题意;D. 当AC=BD时,它是矩形,原选项不正确,符合题意;故选:D.【点睛】本题考查了菱形、矩形、正方形的判定,解题关键是熟记相关判定定理,准确进行判断.3.(本题3分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】在Rt△ABC中利用勾股定理可求出AC=10,设BE=a,则CE=8﹣a,根据折叠的性质可得出BE=FE=a,AF=AB=6,∠AFE=∠B=90°,进而可得出FC=4,在Rt△CEF中,利用勾股定理可得出关于a的一元二次方程,解之即可得出a值,将其代入8﹣a中即可得出线段CE的长度.【详解】解:在Rt△ABC中,AB=6,BC=8,∴AC=10.设BE=a,则CE=8﹣a,根据翻折的性质可知,BE=FE=a,AF=AB=6,∠AFE=∠B=90°,∴FC=4.在Rt△CEF中,EF=a,CE=8﹣a,CF=4,∴CE2=EF2+CF2,即(8﹣a)2=a2+42,解得:a=3,∴8﹣a=5.故选C.【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt△CEF中,利用勾股定理找出关于a的一元二次方程是解题的关键.4.(本题3分)菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1 B.5:1 C.6:1 D.7:1【答案】B【解析】【分析】先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.【详解】如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180︒,∵AE=1,AE⊥BC,∴AE=12 AB,∴∠B=30︒,∴∠DAB=150︒,∴∠DAB:∠B=5:1;故选B.【点睛】本题考查菱形的性质.5.(本题3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】C【解析】【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A、菱形、矩形的内角和都为360°,故本选项错误;B、对角互相平分,菱形、矩形都具有,故本选项错误;C、对角线相等菱形不具有,而矩形具有,故本选项正确;D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误;故选:C【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.6.(本题3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】【分析】根据连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断,即可求解【详解】解:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选D.7.(本题3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=25°,则EFC'∠的度数为()A.122.5°B.130°C.135°D.140°【答案】A【解析】【分析】由折叠的性质知:EBC'∠、BC F'∠都是直角,因此//BE C F',那么EFC'∠和∠BEF互补,欲求EFC'∠的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB 的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.【详解】解:Rt△ABE中,∠ABE=25°,∴∠AEB=90902565ABE︒-∠=︒-︒=︒;由折叠的性质知:∠BEF=∠DEF;而∠BED=180°-∠AEB=115°,∴∠BEF=157.52BED∠=︒;∵EBC'∠=∠D=BC F'∠=∠C=90°,∴//BE C F',∴180BEF EFC'∠+∠=︒∴EFC'∠=180°-∠BEF=122.5°.故选A.【点睛】本题主要考查折叠的性质及平行线的性质,掌握折叠的性质及平行线的性质是解题的关键.8.(本题3分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()B.1 C2D.2A.12【答案】B【解析】【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.9.(本题3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1 B.1.3 C.1.2 D.1.5【答案】C【解析】【分析】首先证明四边形AEPF为矩形,可得AM=12AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.【详解】在△ABC中,因为AB2+AC2=BC2,所以△ABC为直角三角形,∠A=90°,又因为PE⊥AB,PF⊥AC,故四边形AEPF为矩形,因为M为EF中点,所以M也是AP中点,即AM=12AP,故当AP⊥BC时,AP有最小值,此时AM最小,由1122ABCS AB AC BC AP∆=⨯⨯=⨯⨯,可得AP=125,AM=12AP=61.25=故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.10.(本题3分)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【详解】解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理,正方形的性质.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共21分)11.(本题3分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为_________cm.【答案】4.【解析】【详解】试题解析:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.12.(本题3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.【答案】2【解析】【分析】利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=12×1×4=2.故答案为2.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).记住菱形面积=12ab(a、b是两条对角线的长度).13.(本题3分)如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD7,则图中阴影部分的面积为_____.7【解析】【分析】先证得△ADF≅△BAE,再利用等量代换即可求得阴影部分的面积等于△AOD的面积.【详解】解:正方形ABCD中,∠DAF=∠ABE=90︒,AD=AB,∵AE⊥DF,∴∠DOA=∠DAF =90︒,∴∠DAO+∠ADF=∠DAO+∠F AO =90︒,∴∠ADF=∠F AO,在△ADF 和△BAE 中,ADF FAO AD ABDAF ABE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≅△BAE ,∴ADF BAE SS =, ∴ADF AOF BAE AOF S S S S -=-, ∴AOF 7S S =阴影 7【点睛】本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是证得阴影部分的面积等于△AOD 的面积.14.(本题3分)如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE +PF =_____.【答案】4【解析】【分析】由矩形的性质可得AO =CO =5=BO =DO ,由S △DCO =S △DPO +S △PCO ,可得PE +PF 的值.【详解】解:如图,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形∴AO =CO =5=BO =DO ,∴S△DCO=14S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=12×DO×PF+12×OC×PE∴20=5PF+5PE∴PE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.15.(本题3分)如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D 作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.【答案】13【解析】【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF =AF+AE=13.【详解】解:∵ABCD是正方形(已知)∴AB=AD,∠ABC=∠BAD=90°又∵∠F AB+∠FBA=∠F AB+∠EAD=90°∴∠FBA=∠EAD(等量代换)∵BF⊥a于点F,DE⊥a于点E∴在Rt△AFB和Rt△AED中∵90 AFB DEAFBA EADAB DA︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△AFB≌△DEA(AAS)∴AF=DE=8,BF=AE=5(全等三角形的对应边相等)∴EF=AF+AE=DE+BF=8+5=13故答案为:13【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.16.(本题3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B'处,当CEB 为直角三角形时,BE的长为____【答案】3或3 2【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC2243+,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得32x=,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.【点睛】此题考查了折叠和矩形的性质,勾股定理的运用,正方形的判定和性质等知识,解题的关键是熟练掌握折叠和矩形的性质,勾股定理的运用,正方形的判定和性质.17.(本题3分)如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.【答案】63【解析】【分析】以BM为边作等边△BMN,以BC为边作等边△BCE,如图,则△BCM≌△BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E 四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH⊥AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.AB=3,∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=12AH3=33AE=2AH=63故答案为63【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.三、解答题(共49分)18.(本题6分)如图,四边形ABCD是平行四边形,,⊥⊥,垂足分别为,E F,AE BC AF CD且BE DF=.(1)求证:四边形ABCD 是菱形;(2)连接EF 并延长,交AD 的延长线于点G ,若30,2CEG AE ︒∠==,求EG 的长.【答案】(1)详见解析;(2)4.【解析】【分析】(1)根据平行四边形的性质可得对角相等,再利用角角边证明△ABE≌△ADF 即可.(2)由平行得出∠G=30°,再根据30°特殊三角形的比求出EG 即可.【详解】(1)∵四边形ABCD 是平行四边形,∴∠D=∠B,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD,又∵BE=DF,∴△ABE≌△ADF(AAS),∴AB=AD ,∴平行四边形ABCD 是菱形.(2)∵AG//BC,∴∠G=∠CEG=30°,∠GAE=∠AEB=90°,∵AE=2,∴EG=2AE=4.【点睛】本题考查菱形的判定和三角形全等的判定和性质及特殊的直角三角形,关键在于结合图形熟练运用基础知识.19.(本题8分)如图,四边形ABCD 中,AD∥BC,AB⊥AC,点E 是BC 的中点,AE 与BD 交于点F ,且F 是AE 的中点.(Ⅰ)求证:四边形AECD 是菱形;(Ⅱ)若AC =4,AB =5,求四边形ABCD 的面积.【答案】(Ⅰ)见解析;(Ⅱ)15.【解析】【分析】(Ⅰ)先证四边形ADCE是平行四边形,根据直角三角形斜边上的中线等于斜边的一半可求AE=CE,即可得四边形AECD是菱形;S△ABC,即可求四边形ABCD的面积.(Ⅱ)由题意可求S△AEC=S△ACD=12【详解】证明(Ⅰ)∵AD∥BC∴∠ADB=∠DBE∵F是AE中点∴AF=EF且∠AFD=∠BFE,∠ADB=∠DBE∴△ADF≌△BEF∴BE=AD∵AB⊥AC,E是BC中点∴AE=BE=EC∴AD=EC,且AD∥BC∴四边形ADCE是平行四边形且AE=EC∴四边形ADCE是菱形;(Ⅱ)∵AC=4,AB=5,AB⊥AC∴S△ABC=10∵E是BC中点∴S△AEC=1S△ABC=52∵四边形ADCE是菱形∴S△AEC=S△ACD=5∴四边形ABCD的面积=S△ABC+S△ACD=15.【点睛】本题考查菱形的判定,直角三角形斜边上的中线等于斜边的一半,解题的关键是利用三角形中线的性质求三角形的面积.20.(本题8分)如图,以矩形OABC 的顶点O 为坐标原点,OA 所在直线为x 轴,OC 所在直线为y 轴,建立平面直角坐标系.已知,2OA =,4OC =,点D 为x 轴上一动点,以BD 为一边在BD 右侧作正方形BDEF .(1)若点D 与点A 重合,请直接写出....点E 的坐标. (2)若点D 在OA 的延长线上,且EA EB =,求点E 的坐标.(3)若217OE =E 的坐标.【答案】(1)()6,0E ;(2)()8,2E ;(3)()18,2E ,()22,8E --.【解析】【分析】(1)D 与点A 重合则点E 为(6,3)(2)E 作EM x ⊥轴,证明:ABD MDE ∆≅∆即4228OM =++=则点E 为(8,3)(3)分情况解答,D 在点A 右侧,过点E 作EM x ⊥轴,证明:ABD MDE ∆≅∆;D 在点A 左侧,点E 作EM x ⊥轴,证明:ABD MDE ∆≅∆【详解】解:(1) D 与点A 重合则点E 再x 轴的位置为2+4=6∴ ()6,0E .(2)过点E 作EM x ⊥轴,∵∠BAD=∠EMD=∠BDE=90°,∴∠BDA+∠ABD=∠BDA+∠MDE,∴∠ABD=∠MDE,∵BD=DE,ABD MDE ∆≅∆EB EA =,∴点E 在线段AB 的中垂线上,2EM =.2AD EM ∴==,4DM AB ==.4228OM ∴=++=.()8,2E ∴(3)①点D 在点A 右侧,如图,过点E 作EM x ⊥轴,同(2)ABD MDE ∆≅∆设()0AD a a =>,可得:EM a =,6OM a =+()222668OE a a =++= 求得:12a =,28a =-(舍去)()8,2E②点D 在点A 左侧,如图,过点E 作EM x ⊥轴,同上得ABD MDE ∆≅∆设()0AD a a =>,可得:EM a =,6OM a =-()222668OE a a =-+=, 求得:18a =,22a =-(舍去)()2,8E --综上所述:()18,2E ,()22,8E --【点睛】本题考查正方形的性质,解题关键在于分情况作出垂直线.21.(本题8分)图①,图②均为44⨯的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A B C D 、、、均为格点,按下列要求画图:⑴在图①中,以AB 为对角线画一个菱形AEBF ,且,E F 为格点;⑵在图②中,以CD 为对角线画一个对边不相等的四边形CGDH ,且,G H 为格点,090CGD CHD ∠=∠=.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据菱形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.【点睛】本题考查作图-应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(本题9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析;(2)90°;(3)AP=CE【解析】【分析】(1)根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP≌△CBP,从而得出结论;(2)根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据P A=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)首先证明△ABP和△CBP全等,然后得出P A=PC,∠BAP=∠BCP,然后得出∠DCP=∠DEP,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,又∵ PB=PB,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB.∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PE.∴∠DAP=∠DEP,∴∠DCP=∠DEP.∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠DEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC 是等边三角形,∴PC =CE ,∴AP =CE.23.(本题10分)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E .(1)记ODE 的面积为S ,求S 与b 的函数关系式,并求出自变量b 的取值范围;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图为四边形O A B C '''',试探究O A B C ''''与矩形OABC 的重叠部分的四边形是什么特殊四边形,并说明理由.(3)若54b =,试求出(2)中重叠部分四边形的面积. 【答案】(1)2312535222b b S b b b ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-<< ⎪⎪⎝⎭⎩;(2)菱形,理由见解析;(3)54 【解析】【分析】(1)首先求得直线经过点A ,B ,C 时,b 的值;然后分别从若直线与折线OAB 的交点在OA 上时,即312b <≤时与若直线与折线OAB 的交点在BA 上时,即3522b <<时分析求解,即可求得S 与b 的函数关系式;(2)首先设O′A′与CB 相交于点M ,OA 与C′B′相交于点N ,则矩形O′A′B′C′与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积.根据轴对称的性质易得四边形DNEM 为菱形;(3)过点D 作DH⊥OA,垂足为H ,设菱形DNEM 的边长为a ,利用勾股定理求出EN 的长,即可求出结果.【详解】解:(1)∵四边形OABC 是矩形,A (3,0),C (0,1),∴B(3,1),若直线经过点(3,0)A 时,则32b =, 若直线经过点(3,1)B 时,则52b =, 若直线经过点(0,1)C 时,则1b =, ①若直线与折线OAB 的交点在OA 上时,即312b <时, 如图1,此时(2,0)E b ,112122S OE OC b b ∴==⨯⨯=; ②若直线与折线OAB 的交点在BA 上时,即3522b <<时, 如图1,此时3(3,)2E b -,(22,1)D b -,22CD b ∴=-,352BD CD b =-=-,32AE b =-,52BE AB AE b =-=-, ∴S=S 矩形OABC OCD DBE OAE S S S ∆∆∆---=()()211513531122523222222b b b b b b ⎛⎫⎛⎫⨯-⨯⨯--⨯-⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭, S ∴与b 的函数关系式为:2312535222b b S b b b ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-<< ⎪⎪⎝⎭⎩;(2)如图3,设O A ''与CB 相交于点M ,OA 与C B ''相交于点N ,则矩形O A B C ''''与矩形OABC 的重叠部分即为四边形DNEM . 由题意知,//DM NE ,//DN ME , ∴四边形DNEM 为平行四边形, 根据轴对称知,MED NED ∠=∠, 又MDE NED ∠=∠,M ED MDE ∴∠=∠,MD ME ∴=,∴平行四边形DNEM 为菱形.(3)∵54b =, ∴此时△ODE 的面积为54, ∴OE=5214⨯÷=52, 在直线12y x b =-+中,54b =, 令y=1,则x=12, ∴D(12,1),过点D 作DH OA ⊥,垂足为H ,如图3, 可得:OH=12, ∴EH=OE -OH=5122-=2, 设菱形DNEM 的边长为a ,即DN=NE=a , ∴HN=EH -EN=2-a , 在△DHN 中,有()22212a a =+-,解得:a=54, ∴四边形DNEM 的面积=EN DH ⋅=514⨯=54.。
浙教版八年级下册数学第五章 特殊平行四边形含答案
![浙教版八年级下册数学第五章 特殊平行四边形含答案](https://img.taocdn.com/s3/m/b5308fe4112de2bd960590c69ec3d5bbfd0ada5f.png)
浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,在矩形中,,,平分,与对角线相交于点,是线段的中点,则下列结论中:①;②;③;④,正确的有()个A.1B.2C.3D.42、所示,有一张一个角为的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形3、已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④4、下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等5、若正方形的周长为40,则其对角线长为()A.100B.20C.10D.106、如图,在矩形ABCD中,AB=8 ,AD=10,点E是CD的中点,将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图②,折痕为MN,连接ME,NE;第二次折叠纸片使点N与点E重合,如图③,点B落到B′处,折痕为HG,连接HE,则下列结论:①ME∥HG;②△MEH是等边三角形;③∠EHG =∠AMN;④tan∠EHG=.其中正确的个数是( )A.1个B.2个C.3个D.4个7、正方形的一条对角线之长为4,则此正方形的面积是()A.16B.4C.8D.88、如图,点P是边长为2的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则的最小值是()A.1B.2C.D.49、如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,- )B.(- ,)C.(- ,) D.(,- )10、如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,若AC=6,则DE的长为()A.3B.C.D.411、下列说法正确的是()①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体;③﹣27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分,=82分,S2甲=245,S2乙=190,那么成绩较为整齐的是乙班.A.1个B.2个C.3个D.4个12、如图,在矩形中,对角线和相交于点,点分别是的中点.若,则的周长为()A.6B.C.D.13、如图,是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是().A.4或6B.3或5C.1或7D.3或614、如图,用两根等长的金属丝,各自首尾相接,分别围成正方形ABCD和扇形A 1D1C1,使A1D1=AD,D1C1=DC,正方形面积为P,扇形面积为Q,那么P和Q的关系是()A.P<QB.P=QC. P>QD. 无法确定15、下列能够判定一个四边形是正方形的条件是()①一组邻边相等且对角线相等并互相平分;②对角线互相垂直平分;③四条边相等且四个内角也相等;④对角线相等的菱形.A.①②④B.①③④C.③④D.①②③④二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为________.17、菱形ABCD的一条对角线长为6,边AB的长是方程的一个根,则菱形ABCD的周长为________.18、如图,正方形ABCD的边长为3,延长CB至点M,使S= ,过点B作△ABMBN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.19、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B 为圆心,大于的长为半径画弧,两弧相交于C,D,则直线CD即为所求.根据他的作图方法可知四边形ACBD一定是________.20、如图,在△ABC中,点D,E,F分别是△ABC的边AB,BC,AC上的点,且DE∥AC,EF∥AB,要使四边形ADEF是正方形,还需添加条件:________.21、如图1,将矩形和正方形分别沿对角线和剪开,拼成如图2所示的平行四边形,中间空白部分的四边形是正方形.如果正方形和正方形的面积分别是16和1,则矩形的面积为________.22、如图,在菱形中,,分别在,上,且,与交于点,连接.若,则的大小为________.23、如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以它的对角线OB1为一边作正方形OB1B2C1,以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,再以正方形OB2B3C2的对角线OB3为一边作正方形OB3B4C3,…,依次进行下去,则点B6的坐标是________24、如图,将边长为1的正方形绕点逆时针旋转30°到正方形的位置,则图中阴影部分的面积为________.25、如图,P、G是菱形ABCD的边BC、DC的中点,K是菱形的对角线BD上的动点,若BD=8, AC=6,则KP+KG的最小值是________。
浙教版八年级下册数学第五章 特殊平行四边形含答案(完整版)
![浙教版八年级下册数学第五章 特殊平行四边形含答案(完整版)](https://img.taocdn.com/s3/m/d1466514f68a6529647d27284b73f242336c318d.png)
浙教版八年级下册数学第五章特殊平行四边形含答案一、单选题(共15题,共计45分)1、如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x 轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.-27C.-32D.-362、在如图所示的网格中,已知线段AB,现要在该网格内再确定格点C和格点D,某数学探究小组在探究时发现以下结论:以下结论错误的是()A.将线段平移得到线段,使四边形为正方形的有2种; B.将线段平移得到线段,使四边形为菱形的(正方形除外)有3种; C.将线段平移得到线段,使四边形为矩形的(正方形除外)有两种; D.不存在以为对角线的四边形是菱形.3、已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是( )A.4个B.3个C.2个D.1个4、如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长是()A.5B.7.5C.10D.255、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.17B.18C.19D.206、在▱ABCD中,AB=5,BC=7,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.5B.4或5C.3或4D.5或77、下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等8、下列命题中,正确的是()A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形9、如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥B F;③AO=OE;④S△AOB =S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个10、如图1,正方形纸片ABCD边长为2,折叠∠B和∠D,使两个直角的顶点重合于对角线BD上的一点P,EF、GH分别是折痕(图2),设AE=x(0<x<2),给出下列判断:①x= 时,EF+AB>AC;②六边形AEFCHG周长的值为定值;③六边形AEFCHG面积为定值,其中正确的是()A.①②B.①③C.②D.②③11、如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A. B. C. D.12、正方形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对边平行且相等D.对角线互相垂直平分13、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对14、如图,在Rt△ABC中,∠ACB=90°,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论不正确是()A. B. C. D.四边形DECF是正方形15、如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1, S2,则S1, S2的关系是()A.S1>S2B.S1<S2C.S1=S2D.3S1=2S2二、填空题(共10题,共计30分)16、如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB= ,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(且),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接AC,AD.有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着的变化而变化;③当时,四边形OADC为正方形;④ 面积的最大值为.其中正确的是________.(把你认为正确结论的序号都填上)17、在菱形ABCD中,DE⊥AB,cosA= ,BE=2,则tan∠DBE的值是________.18、如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为________.19、已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.20、在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点C,若将菱形向下平移2个单位,点B恰好落在反比例函数的图象上,则反比例函数的表达式为________.21、如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是________cm.22、已知正方形ABCD的对角线AC= ,则正方形ABCD的周长为________.23、如图,正方形ABCD的面积为3cm2, E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________ cm.24、如图,两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.25、如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,请计算耕地的面积.28、如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.求证:四边形AECD是菱形.29、如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.30、如图,已知菱形ABCD,延长AD到点F,使,延长CD到点E,使DE=CD,顺次连接点A,C,F,E,A.求证:四边形ACFE是矩形.参考答案一、单选题(共15题,共计45分)2、C3、D4、C5、B6、C7、C8、D9、A10、C11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
浙教版八年级下册第5章《特殊平行四边形》单元测试卷(含答案解析)
![浙教版八年级下册第5章《特殊平行四边形》单元测试卷(含答案解析)](https://img.taocdn.com/s3/m/3ea96c9633d4b14e85246863.png)
浙教版八年级下册第5章《特殊平行四边形》测试卷考试时间:100分钟满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的矩形是正方形D.对角线相等的菱形是正方形2.(3分)下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形3.(3分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD4.(3分)在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A.B.8C.D.5.(3分)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.156.(3分)已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 7.(3分)已知:如图,在矩形ABCD中,DE⊥AC,AE=CE,那么∠BDC等于()A.60°B.45°C.30°D.22.5°8.(3分)如图,直线m∥n,直线l与m、n分别相交于点A和点C,AC为对角线作四边形ABCD,使点B和点D分别在直线m和n上,则不能作出的图形是()A.平行四边形ABCD B.矩形ABCDC.菱形ABCD D.正方形ABCD9.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2D.10.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)11.(3分)下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形12.(3分)如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)已知矩形的两邻边的长分别为3cm和6cm,则顺次连接各边中点所得的四边形的面积为cm2.14.(3分)在矩形ABCD中,AE=CF=AD=1,BE的垂直平分线过点F,交BE于点H,交AB于点G,则AB的长度为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是.16.(3分)如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为.17.(3分)如图,菱形ABCD的边长为8,∠ABC=60°,点E、F分别为AO、AB的中点,则EF的长度为.18.(3分)如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为.三.解答题(共7小题,满分66分)19.(8分)▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.20.(8分)如图所示,在平行四边形ABCD中,∠A=60°,AD=6,且AD⊥BD于点D,点E,F分别是边AB,CD上的动点,且AE=CF.①求证:四边形DEBF是平行四边形;②当BE为何值时,四边形DEBF是矩形?21.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.22.(10分)如图,△ABC中,AB=BC,过A点作BC的平行线与∠ABC的平分线交于点D,连接OE,CD.(1)求证四边形ABCD是菱形;(2)连接AC与BD交于点O,过点D作DE⊥BC与BC的延长线交于E点,连接EO,若CE=3,DE=4,求OE的长.23.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.24.(10分)如图:正方形ABCD中,点E、点F、点G分别在边BC、AB、CD上,∠1=∠2=∠3,求证:(1)EF+EG=AE;(2)CE+CG=AF.25.(12分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC 上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的矩形是正方形D.对角线相等的菱形是正方形【分析】根据矩形的判定方法对A进行判断;根据菱形的判定方法对B、D进行判断;根据正方形的判定方法对C进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线垂直的平行四边形是菱形,所以B选项错误;C、对角线垂直的矩形是正方形,所以C选项错误;D、对角线相等的菱形是正方形,所以D选项正确.故选:D.2.(3分)下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形【分析】依据正方形的判定方法、菱形的判定方法,即可得出结论.【解答】解:A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形,本选项正确;B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形,本选项正确;C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形不一定是菱形,本选项错误;D.两张等宽的纸条交叠在一起,重叠的部分是菱形,本选项正确;故选:C.3.(3分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、邻边相等的平行四边形是菱形,故A选项不符合题意;B、对角线平分对角的平行四边形是菱形,故B选项不符合题意;C、由∠BAC=∠ABD不一定能够判断这个平行四边形是菱形,故C选项符合题意;D、对角线互相垂直平分的平行四边形是菱形,故D选项不符合题意.故选:C.4.(3分)在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A.B.8C.D.【分析】过点A作AM⊥BC于点M,由直角的性质可求AM的长,即可求菱形ABCD的面积.【解答】解:如图,过点A作AM⊥BC于点M,∵四边形ABCD是菱形∴AB=BC=3,∵∠ABC=60°,AM⊥BC∴BM=,AM=BM=∴菱形ABCD的面积=BC×AM=故选:A.5.(3分)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.15【分析】根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.6.(3分)已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 【分析】证出四边形ABCD是菱形,由菱形的性质即可得出结论.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.7.(3分)已知:如图,在矩形ABCD中,DE⊥AC,AE=CE,那么∠BDC等于()A.60°B.45°C.30°D.22.5°【分析】由矩形的性质可得AO=BO=CO=DO,可得DO=2OE,可求∠EDO=30°,可得∠EOD=60°,由等腰三角形的性质可求解.【解答】解:设AC与BD的交点为O,∵四边形ABCD是矩形∴AO=BO=CO=DO,∵AE=CE,∴AC=4AE,∴AO=BO=CO=DO=2AE,∴EA=EO∴DO=2AE=2EO∴∠EDO=30°,∴∠EOD=60°∵OD=OC∴∠OCD=∠BDC=30°故选:C.8.(3分)如图,直线m∥n,直线l与m、n分别相交于点A和点C,AC为对角线作四边形ABCD,使点B和点D分别在直线m和n上,则不能作出的图形是()A.平行四边形ABCD B.矩形ABCDC.菱形ABCD D.正方形ABCD【分析】依据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【解答】解:取AC的中O,过点O任意作直线交直线m、n于B、D,则四边形ABCD 为平行四边形,故A不符合题意;过点C作m的垂线,垂足为B,过点A作n的垂线,垂足为D,则ABCD为矩形,故B 不符合题意;取AC的中点O,过点O作AC的垂线交直线m、n于点B,D,则ABCD为菱形,故C 不符合题意.AC为对角线作四边形ABCD,ABCD不一定为正方形,故D错误,符合题意.故选:D.9.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2D.【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=BD,OC=AC,求得OC =OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=∴DE=;故选:A.10.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()A.(﹣3,4)B.(﹣2,3)C.(﹣5,4)D.(5,4)【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(﹣5,4).故选:C.11.(3分)下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形【分析】由菱形的判定依次判断可求解.【解答】解:A、一组对边平行且相等的四边形是平行四边形,不一定是菱形,故A选项不符合题意;B、对角线相等的平行四边形是矩形,故B选项不符合题意;C、对角线垂直的四边形不一定是菱形,故C选项不符合题意;D、对角线互相垂直且平分的四边形是菱形,故D选项符合题意;故选:D.12.(3分)如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1D.【分析】先求出菱形ABCD的面积,由平移的性质可得四边形A'ECF的面积是▱ABCD 面积的,即可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=2=CD,∠DCA=∠BCD=30°,∴A'D=1,A'C=DA'=,∴菱形ABCD的面积=4××A'D×A'C=2,如图,由平移的性质得,▱ABCD∽▱A'ECF,且A'C=AC,∴四边形A'ECF的面积是▱ABCD面积的,∴阴影部分的面积==,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.(3分)已知矩形的两邻边的长分别为3cm和6cm,则顺次连接各边中点所得的四边形的面积为9cm2.【分析】根据菱形的判定定理,顺次连接矩形各边中点所得的四边形是菱形,又菱形的面积为两条对角线乘积的一半,由此即可解得答案.【解答】解:如图:E,F,G,H为矩形的中点,则AH=HD=BF=CF,AE=BE=CG =DG,在Rt△AEH与Rt△DGH中,AH=HD,AE=DG,∴△AEH≌△DGH,∴EH=HG,同理,△AEH≌△DGH≌△BEF≌△CGF≌△DGH∴EH=HG=GF=EF,∠EHG=∠EFG,∴四边形EFGH为菱形.∴四边形的面积=×3×6=9.故答案为9.14.(3分)在矩形ABCD中,AE=CF=AD=1,BE的垂直平分线过点F,交BE于点H,交AB于点G,则AB的长度为.【分析】如图作EM⊥BC于M,连接EF.首先证明四边形ABME是矩形,在Rt△EFM 中,利用勾股定理求出EM即可解决问题;【解答】解:如图作EM⊥BC于M,连接EF.∵四边形ABCD是矩形,∴∠A=∠ABM=∠EMB=90°,∴四边形ABME是矩形,∴AE=BM=1,AD=BC=3,∵GF垂直平分BE,∴BF=EF=2,MF=BF﹣BM=1,在Rt△EFM中,EM===,∴AB=EM=,故答案为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【解答】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB===13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×12×5=×13•CD,解得:CD=,∴EF=.故答案为:.16.(3分)如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为.【分析】连接EB,构造直角三角形,设AE为x,则DE=BE=4﹣x,利用勾股定理得到有关x的一元一次方程,求得x,即可求出BE的长.【解答】解:连接EB,∵EF垂直平分BD,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=.∴DE=AD=AE=,故答案为:.17.(3分)如图,菱形ABCD的边长为8,∠ABC=60°,点E、F分别为AO、AB的中点,则EF的长度为2.【分析】先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∴OA=AB=4,∴OB==4,∵点E、F分别为AO、AB的中点,∴EF为△AOB的中位线,∴EF=OB=2.故答案为2.18.(3分)如图,点P是线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,点M,N分别是对角线AC,BE的中点,连接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,则线段MN的长为.【分析】连接PM、PN,△MPN是直角三角形,由勾股定理可得MN2=PM2+PN2,在在Rt△APM中,AP=2PM,在Rt△PNB中,PB=PN,代入已知的AP2+3PB2=2,即可.【解答】解:连接PM、PN.∵菱形APCD和菱形PBFE,∠DAP=60°,M,N分别是对角线AC,BE的中点,∴PM⊥AC,PN⊥BE,∠CAB=∠NPB=30°.∴∠MPC+∠NPC=90°,即△MPN是直角三角形.在Rt△APM中,AP=2PM,在Rt△PNB中,PB=PN.∵AP2+3PB2=1,∴(2PM)2+3(PN)2=2,整理得PM2+PN2=在Rt△MPN中,MN2=PM2+PN2,所以MN=.故答案为:.三.解答题(共7小题,满分66分)19.(8分)▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)由平行线和角平分线定义得出∠DF A=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵AB∥CD,∴∠BAF=∠DF A,∵AF平分∠BAD,∴∠BAF=∠DAF,∴∠DF A=∠DAF,∴AD=DF=5,∵DE⊥AB,∴∠AED=90°,由勾股定理得:DE==4,∴矩形BFDE的面积=DF×DE=5×4=20.20.(8分)如图所示,在平行四边形ABCD中,∠A=60°,AD=6,且AD⊥BD于点D,点E,F分别是边AB,CD上的动点,且AE=CF.①求证:四边形DEBF是平行四边形;②当BE为何值时,四边形DEBF是矩形?【分析】①根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再求出BE=DF,然后根据一组对边平行且相等的四边形是平行四边形证明;②过D作DE⊥AB于E,根据直角三角形两锐角互余求出∠ADE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AE=AD,解直角三角形即可得到结论.【解答】①证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD∵AE=CF,∴DF=BE,∵DF∥BE,∴四边形DEBF为平行四边形;②解:当BE=9时,∴四边形DEBF为矩形.理由是:过点D作DE⊥AB于点E,∴∠DEA=90°,∵∠A=60°,∴∠ADE=30°,在Rt△ADE中,∠ADE=30°,∴,∵AD⊥DB,∴∠ADB=90°在Rt△ADB中,∠A=60°,∠ABD=30°,AB=2AD=12,∴BE=AB﹣AE=12﹣3=9,∴当BE=9时,∠DEB=∠DEA=90°,即平行四边形DEBF是矩形.21.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE⊥AC,DE⊥BD,∴平行四边形OCED是矩形;(2)解:由(1)知,四边形OCED是菱形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.22.(10分)如图,△ABC中,AB=BC,过A点作BC的平行线与∠ABC的平分线交于点D,连接OE,CD.(1)求证四边形ABCD是菱形;(2)连接AC与BD交于点O,过点D作DE⊥BC与BC的延长线交于E点,连接EO,若CE=3,DE=4,求OE的长.【分析】(1)由角平分线的性质和平行线的性质可得∠ABD=∠ADB,可得AB=AD=BC,由菱形的判定可证四边形ABCD是菱形;(2)由勾股定理可求DC=BC=5,由勾股定理可求BD的长,由直角三角形的性质可求OE的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠ADB∴AB=AD,且AB=BC,∴AD=BC,且AD∥BC∴四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形,(2)∵DE⊥BC,CE=3,DE=4,∴CD=5,∵四边形ABCD是菱形∴BC=CD=5,BO=DO∴BE=BC+CE=8,∴BD===4,∵BO=DO,DE⊥BC∴OE=BD=223.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.(1)求证:平行四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠F AE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠F AE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.24.(10分)如图:正方形ABCD中,点E、点F、点G分别在边BC、AB、CD上,∠1=∠2=∠3,求证:(1)EF+EG=AE;(2)CE+CG=AF.【分析】(1)延长AB、GE交于点M,作MN⊥DC于N,则MN∥BC,MN=BC,BM =CN,∠N=90°,证明△BEF≌△BEM(ASA),得出EF=EM,BF=BM,证明△MNG ≌△ABE(ASA),得出MG=AE,即可得出结论;(2)由(1)得出BM=CN=BF,△MNG≌△ABE,得出BE=GN=CG+CN=CG+BM,由线段的和差即可得出结论.【解答】证明:(1)延长AB、GE交于点M,作MN⊥DC于N,如图所示:则MN∥BC,MN=BC,BM=CN,∠N=90°,∵四边形ABCD是正方形,∴∠BCD=∠EBF=90°,AB=BC=MN,∴∠EBM=90°,∵∠2=∠3,∠3=∠BEM,∴∠2=∠BEM,在△BEF和△BEM中,,∴△BEF≌△BEM(ASA),∴EF=EM,BF=BM,∵MN∥BC,∴∠NMG=∠3,∵∠1=∠3,∴∠NMG=∠1,在△MNG和△ABE中,,∴△MNG≌△ABE(ASA),∴MG=AE,∵MG=EM+EG=EF+EG,∴EF+EG=AE;(2)由(1)得:BM=CN=BF,△MNG≌△ABE,∴BE=GN=CG+CN=CG+BM,∴CE+CG=BC﹣BE+GN﹣CN=AB﹣BE+BE﹣BF=AB﹣BF=AF.25.(12分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC 上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.【分析】(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF =∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;②设AE=x,则FC=AF=x,DF=8﹣x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【解答】解:(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∠FCH=∠EAG∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形;(2)①如图,连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF;②设AE=x,则FC=AF=x,DF=8﹣x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8﹣x)2=x2,解得x=5,∴AE=5.。
浙教版八年级下册数学第5章《特殊平行四边形》单元测试卷【答案+解析】
![浙教版八年级下册数学第5章《特殊平行四边形》单元测试卷【答案+解析】](https://img.taocdn.com/s3/m/73f5ec8304a1b0717fd5dd92.png)
浙教版八年级下册第5章《特殊平行四边形》测试卷考试时间:100分钟满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列说法正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等的矩形是正方形D.对角线相等的菱形是正方形2.(3分)下列说法中,错误的是()A.如果一个四边形绕对角线的交点旋转90°后,所得的图形能与原图形重合,那么这个四边形是正方形B.在一个平行四边形中,如果有一条对角线平分一个内角,那么该平行四边形是菱形C.在一个四边形中,如果有一条对角线平分一组内角,则该四边形是菱形D.两张等宽的纸条交叠在一起,重叠的部分是菱形3.(3分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD4.(3分)在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A.B.8C.D.5.(3分)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.156.(3分)已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 7.(3分)已知:如图,在矩形ABCD中,DE⊥AC,AE=CE,那么∠BDC等于()A.60°B.45°C.30°D.22.5°8.(3分)如图,直线m∥n,直线l与m、n分别相交于点A和点C,AC为对角线作四边形ABCD,使点B和点D分别在直线m和n上,则不能作出的图形是()A.平行四边形ABCD B.矩形ABCDC.菱形ABCD D.正方形ABCD9.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2D.10.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标()。
浙教版初中数学八年级下册第5章 特殊平行四边形测试题(解析版)
![浙教版初中数学八年级下册第5章 特殊平行四边形测试题(解析版)](https://img.taocdn.com/s3/m/de4a1a1458f5f61fb6366671.png)
浙教版初中数学八年级下册第5章特殊平行四边形测试题一、单选题1.如图,在长方形钟面示意图中,时钟的中心在长方形对角线的交点上,长方形宽为40cm,钟面数字 2 在长方形的顶点处,则长方形的长为()cmA. 80B. 60C. 50D. 402.下列条件中,不能判定平行四边形ABCD为矩形的是()A. ∠A=∠CB. ∠A=∠BC. AC=BDD. AB⊥BC3.如图,在▱ABCD中,AB=2 √13,AD=4,AC⊥BC,则△DBC比△ABC的周长长( )A. 2B. 4C. 5D. √134.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是()A. 测量对角线是否互相平分B. 测量两组对边是否分别相等C. 测量一组对角是否为直角D. 测量两组对边是否相等,再测量对角线是否相等5.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中错误的是( )A. 四边形AEDF是平行四边形B. 若∠BAC=90°,则四边形AEDF是矩形C. 若AD平分∠BAC,则四边形AEDF是矩形D. 若AD⊥BC且AB=AC,则四边形AEDF是菱形6.如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=2,那么菱形ABCD的周长是()A. 16B. 8C. 4D. 27.菱形具有而矩形不具有的性质是()A. 对边相等B. 对角线互相平分C. 对角线互相垂直D. 对角线相等8.如图,在一张平行四边形纸片ABCD中,画一个菱形,甲、乙两位同学的画法如下:甲:以B,A为圆心,AB长为半径作弧,分别交BC,AD于点E,F,则四边形ABEF为菱形;乙:作∠A, ∠B的平分线AE,BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形;关于甲、乙两人的画法,下列判断正确的是()A. 仅甲正确B. 仅乙正确C. 甲、乙均正确D. 甲、乙均错误9.下列说法不能判断是正方形的是()A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形10.一个大矩形按如图方式分割成16个小矩形,且只有标号为①②③的三个大小不同的小矩形为正方形,在满足条件的所有分割中,若知道16个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是( )A. 3B. 4C. 5D. 611.如图,四边形ABCD是正方形,直线L1、L2、L3,若L1与L2的距离为5,L2与L3的距离7,则正方形ABCD的面积等于()A. 70B. 74C. 144D. 14812.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,A n分别是正方形的中心,则这n个正方形重叠的面积之和是()A. nB. n-1C. 4nD. 4(n-1)二、填空题13.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB边上不与A,B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是________.14.如图所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.15.矩形ABCD中,AD=5,AB=4,点E、点F在直线AD上,且四边形BCFE为菱形,若点M为线段EF的中点,则线段AM的长为________.16.菱形的面积为24,一条对角线长为6,则它的周长是________.17.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG=________.18.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC=40cm,则图1中对角线AC的长为________ cm.三、解答题19.如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-2,0)、B(0,-2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.20.如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ 与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.21.如图,在正方形方格纸中,线段AB的两个端点和点P都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为边的平行四边形,使点P落在AB的对边上(不包括端点).(2)在图乙中画一个以AB为对角线的菱形,使点P落在菱形的内部(不包括边界).(注:图甲、图乙在答卷纸上)22.如图,已知在矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形;(2)若□AFCE是菱形,求菱形AFCE的周长.23.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.24.我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是________.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形” ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是矩形.(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果不正确,请给出反例.25.已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B 运动.设动点P的运动时间为t秒.(1)当t为何值时,四边形PODB是平行四边形;(2)在直线CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由;(3)在线段PB上有一点M,且PM=5,当P运动▲秒时,四边形OAMP的周长最小, 并画图标出点M 的位置.26.如图,等腰△ABC中,已知AC=BC=2√10,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.答案解析一、单选题1.【答案】A【考点】矩形的性质【解析】【解答】如上图,矩形的宽对应2个空格,长为40cm∴1个空格的长度为:40÷2=20cm矩形的长对应4个空格∴长为:4×20=80cm故答案为:A【分析】根据矩形的宽40cm对应2个空格长度,得到1个空格长度,利用矩形的长对应4个空格长求得.2.【答案】A【考点】矩形的判定【解析】【解答】A、∠A=∠C不能判定这个平行四边形为矩形,故此项错误;B、∵∠A=∠B,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故此项正确;D、AB⊥BC,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故答案为:A.【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.3.【答案】B【考点】矩形的判定与性质【解析】【解答】解:过点D作DG⊥BC,交BC的延长线于点G,∵平行四边形ABCD,∴AD=BC=4,AB=CD=2√13,AD∥BC∵AC⊥BC∴AC⊥AD∴∠CAD=∠ACG=∠DGC=90°∴四边形ACGD是矩形,∴AD=CG;∴BG=BC+CG=4+4=8;在Rt△ABC中,AC=√AB2−BC2=√(2√13)2−42=6在Rt△BDC中,BD=√BG2−DG2=√82+62=10∴△DBC和△ABC的周长差为BD+BC+DC-AB-AC-BC=BD-AC=10-6=4.故答案为:4.【分析】过点D作DG⊥BC,交BC的延长线于点G,利用平行四边形的性质,可证得AD=BC=4,AB=CD=2√13,AD∥BC,再证明四边形ACGD是矩形,根据矩形的性质,可证得AD=CG,由此可求出BG的长,然后利用勾股定理求出BD,AC的长,再求出△DBC和△ABC的周长差就是BD与AC的差,即可求出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级数学下册:第5章《特殊平行四边形》训练题题及解析第5章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题有( C )A.1个B.2个C.3个D.4个2.矩形具有而菱形不具有的性质是( B )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是( B )A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②4.若顺次连结四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( C ) A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形5.在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连结AN,CM,则四边形ANCM 是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连结EF,则四边形ABEF是菱形.根据两人的作法可判断( C )A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误,第5题图),第6题图),第7题图)6.如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连结EF.若EF =3,BD =4,则菱形ABCD 的周长为( C )A .4B .4 6C .47D .287.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ′处,则点C 的对应点C ′的坐标为( D )A .(3,1)B .(2,1)C .(1,3)D .(2,3)8.一张矩形纸片ABCD ,已知AB =3,AD =2,小明按如图步骤折叠纸片,则线段DG 长为( A )A. 2 B .2 2 C .1 D .2,第8题图) ,第9题图) ,第10题图)9.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( D )A.54B.52C.53D.6510.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC ,DC 分别交于点G ,F ,H 为CG 的中点,连结DE ,EH ,DH ,FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( D )A .1个B .2个C .3个D .4个 二、细心填一填(每小题4分,共24分)11.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是__∠ABC =90°或AC =BD __.(补充一个即可)12.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为__14__.,第11题图) ,第12题图) ,第13题图)13.如图,正方形ABCD 的边长为4,E 是BC 边的中点,P 是对角线BD 上一动点,则PE +PC 的最小值是.14.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD =1500 m ,小敏行走的路线为B →A →G →E ,小聪行走的路线为B →A →D →E →F.若小敏行走的路程为3100 m ,则小聪行走的路程为__4600__m.15.如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,得到下面四个结论:①OA =OD ;②AD ⊥EF ;③当∠BAC =90°时,四边形AEDF 是正方形;④AE 2+DF 2=AF 2+DE 2.其中正确的是__②③④___.(填序号),第14题图) ,第15题图) ,第16题图)16.如图,在矩形ABCD 中,点E ,F 分别是BC ,DC 上的一个动点,以EF 为对称轴折叠△CEF ,使点C 的对称点G 落在AD 上,若AB =3,BC =5,则CF 的取值范围为__53≤CF ≤3__.三、耐心做一做(共66分)17.(6分)如图,已知矩形ABCD ,将△BCD 沿对角线BD 折叠,记点C 的对应点为点C ′,若∠ADC ′=20°,求∠BDC 的度数.解:设AD ,BC 交于点E ,证△ABE ≌△C ′DE 得∠ABE =∠ADC ′=20°,∴∠CBC ′=90°-∠ABE =70°,∴∠CBD =12∠CBC ′=35°,∴∠BDC =55°18.(6分)如图,是一个菱形的花坛,花坛的周长为40 m ,沿着花坛相对的两个顶点分别修建了两条小路,这两条小路的长度之比为3∶4,请你计算这个花坛的面积是多少?(小路的宽度忽略不计)解:设两条小路将于点O ,则AB =40 m ÷4=10(m ),又∵AC ∶BD =3∶4,,∴OA ∶OB =3∶4,设OA =3x m ,OB =4x m ,则由勾股定理得(3x )2+(4x )2=102,解得x =2,∴OA =6 m ,OB =8 m ,∴S △OAB =12×OA ×OB =24(m 2),∴S 菱形ABCD =4S △OAB =96 m 219.(6分)如图,在正方形ABCD 中,E ,F 分别为边AD 和CD 上的点,且AE =CF ,连结AF ,CE 交于点G.求证:AG =CG .证明:∵四边形ABCD 是正方形,∴∠ADF =CDE =90°,AD =CD.∵AE =CF ,∴DE =DF ,∴△ADF ≌△CDE (SAS ),∴∠DAF =∠DCE ,在△AGE 和△CGF 中,⎩⎨⎧∠DAF =∠DCE ,∠AGE =∠CGF ,AE =CF ,∴△AGE ≌△CGF (AAS ),∴AG =CG20.(8分)如图,在△ABC 中,点D 是BC 的中点,点F 是AD 的中点,过点D 作DE ∥AC ,交CF 的延长线于点E ,连结BE ,AE.(1)求证:四边形ACDE 是平行四边形;(2)若AB =AC ,试判断四边形ADBE 的形状,并证明你的结论.解:(1)证△AFC ≌△DFE 得CF =EF ,又AF =DF ,∴四边形ACDE 是平行四边形 (2)四边形ADBE 是矩形,由(1)知,四边形ACDE 是平行四边形,∴AE ∥BC ,AE =CD =BD ,∴四边形ADBE 是平行四边形,又AB =AC ,CD =BD ,∴AD ⊥BC ,∴四边形ADBE 是矩形21.(8分)如图,在▱ABCD 中,AE ⊥BC 于点E ,延长BC 至点F 使CF =BE ,连结AF ,DE ,DF.(1)求证:四边形AEFD 是矩形;(2)若AB =6,DE =8,BF =10,求AE 的长.解:(1)∵CF =BE ,∴CF +EC =BE +EC ,即EF =BC.∵在▱ABCD 中,AD ∥BC 且AD =BC ,∴AD ∥EF 且AD =EF.∴四边形AEFD 是平行四边形.∵AE ⊥BC ,∴∠AEF =90°.∴四边形AEFD 是矩形(2)∵四边形AEFD 是矩形,DE =8,∴AF =DE =8.∵AB =6,BF =10,∴AB 2+AF 2=62+82=100=BF 2.∴∠BAF =90°.∵AE ⊥BF ,∴△ABF 的面积=12AB ·AF =12BF ·AE.∴AE =AB ·AF BF =6×810=24522.(10分)如图,在矩形ABCD 中,AB =4 cm ,BC =8 cm ,点P 从点D 出发向点A 运动,运动到点A 即停止;同时点Q 从点B 出发向点C 运动,运动到点C 即停止.点P ,Q 的速度的速度都是1 cm /s ,连结PQ ,AQ ,CP ,设点P ,Q 运动的时间为t(s ).(1)当t 为何值时,四边形ABQP 是矩形? (2)当t 为何值时,四边形AQCP 是菱形?(3)分别求出(2)中菱形AQCP 的周长和面积.解:(1)当四边形ABQP 是矩形时,BQ =AP ,即:t =8-t ,解得t =4(2)当AQ =CQ 时,四边形AQCP 是菱形,即t 2+42=8-t 时,四边形AQCP 为菱形,解得t =3(3)当t =3时,CQ =5,则周长为4CQ =20 (cm ),面积为4×8-2×12×3×4=20(cm 2)23.(10分)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图①,他连结AD ,CF ,经测量发现AD =CF.(1)他将正方形ODEF 绕O 点逆时针旋转一定的角度,如图②,试判断AD 与CF 还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图③,请你求出CF的长.解:(1)AD=CF,证△AOD≌△COF(SAS)(2)连结DF交OE于M,DF=OD2+OF2=2,∴DM=OM=1,∴AD=12+(1+3)2=17,由(1)得CF=AD=1724.(12分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合).以AD为边作正方形ADEF,连结CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC-CD.(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变:①请直接写出CF,BC,CD三条线段之间的关系.②若连结正方形对角线AE,DF,交点为O,连结OC,探究△AOC的形状,并说明理由.解:(1)①∵∠BAC =90°,AB =AC ,∴∠ABC =∠ACB =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAC =∠BAD +∠DAC =90°,∠DAF =∠CAF +∠DAC =90°,∴∠BAD =∠CAF ,∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD =45°,∴∠ACF +∠ACB =90°,∴BD ⊥CF ;②由①△BAD ≌△CAF 可得BD =CF ,∵BD =BC -CD ,∴CF =BC -CD(2)与(1)同理可得BD =CF ,∴CF =BC +CD(3)①与(1)同理可得,BD =CF ,∴CF =CD -BC ;②∵∠BAC =90°,AB =AC ,∴∠ABC =∠ACB =45°,则∠ABD =180°-45°=135°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAC =∠BAF +∠CAF =90°,∠DAF =∠BAD +∠BAF =90°,∴∠BAD =∠CAF ,∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD =135°,∴∠FCD =∠ACF -∠ACB =90°,则△FCD 为直角三角形,∵正方形ADEF 中,O 为DF 中点,∴OC =12DF ,∵在正方形ADEF 中,OA =12AE ,AE =DF ,∴OC =OA ,∴△AOC是等腰三角形。