二叉树的各种基本操作实验报告

合集下载

数据结构-实验五-二叉树的操作

数据结构-实验五-二叉树的操作

数据结构实验报告实验五二叉树的操作班级:12卓越6班学号:***********名:***任课教师:***计算机与信息工程学院2014年5月13 日实验五二叉树的操作一、实验目的1.进一步掌握指针变量、动态变量的含义;2.掌握二叉树的结构特征,以及各种存储结构的特点及适用范围;3.掌握用指针类型描述、访问和处理二叉树的运算。

二、实验要求1.按实验内容编写实验的程序,主程序以菜单形式运行。

2.上机调试运行本程序。

3.保存和打印出程序的运行结果,并结合程序进行分析。

4.提交源程序和运行结果。

三、实验内容1.创建以二叉链表作存储结构的二叉树;2.按中序遍历二叉树;3.按层次遍历二叉树;4.计算二叉树的单枝结点数;5.交换二叉树的左右子树。

解://声明类BiTree及定义结构BiNode,文件名为bitree.h#ifndef BITREE_H#define BITREE_H//int num;template <class T>struct BiNode //二叉树的结点结构{T data;BiNode<T> *lchild, *rchild;};template <class T>class BiTree{public:BiTree( ); //构造函数,初始化一棵二叉树,其前序序列由键盘输入~BiTree(void); //析构函数,释放二叉链表中各结点的存储空间BiNode<T>* Getroot(); //获得指向根结点的指针void PreOrder(BiNode<T> *root); //前序遍历二叉树void InOrder(BiNode<T> *root); //中序遍历二叉树void PostOrder(BiNode<T> *root); //后序遍历二叉树void LeverOrder(BiNode<T> *root); //层序遍历二叉树int depth(BiNode<T> *root); //求二叉树的深度void nodenum(BiNode<T> *root); //求二叉树的结点个数void leafnum(BiNode<T> *root); //求二叉树的叶子结点个数void empty( ); //判断二叉树是否为空int printnum( ); // 输出(全部、叶子或单分支)结点数void sbnodenum(BiNode<T> *root); //求二叉树的单分支结点个数void exchangetree(BiNode<T> *root); //交换二叉树的左右子树private:BiNode<T> *root; //指向根结点的头指针BiNode<T> *p;BiNode<T> *Creat( ); //有参构造函数调用void Release(BiNode<T> *root); //析构函数调用int num;};#endif//定义类中的成员函数,文件名为bitree.cpp#include<iostream>#include<string>#include"bietree.h"using namespace std;/**前置条件:二叉树不存在*输入:无*功能:构造一棵二叉树*输出:无*后置条件:产生一棵二叉树*/template<class T>BiTree<T>::BiTree( ){this->num=0;this->root = Creat( );}/**前置条件:二叉树已存在*输入:无*功能:释放二叉链表中各结点的存储空间*输出:无*后置条件:二叉树不存在*/template<class T>BiTree<T>::~BiTree(void){Release(root);}*前置条件:二叉树已存在*输入:无*功能:获取指向二叉树根结点的指针*输出:指向二叉树根结点的指针*后置条件:二叉树不变*/template<class T>BiNode<T>* BiTree<T>::Getroot( ){return root;}/**前置条件:二叉树已存在*输入:无*功能:前序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template<class T>void BiTree<T>::PreOrder(BiNode<T> *root) {if(root==NULL) return;else{cout<<root->data<<" ";PreOrder(root->lchild);PreOrder(root->rchild);}}*前置条件:二叉树已存在*输入:无*功能:中序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template <class T>void BiTree<T>::InOrder (BiNode<T> *root){if (root==NULL) return; //递归调用的结束条件else{InOrder(root->lchild); //中序递归遍历root的左子树cout<<root->data<<" "; //访问根结点的数据域InOrder(root->rchild); //中序递归遍历root的右子树}}/**前置条件:二叉树已存在*输入:无*功能:后序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template <class T>void BiTree<T>::PostOrder(BiNode<T> *root){if (root==NULL) return; //递归调用的结束条件else{PostOrder(root->lchild); //后序递归遍历root的左子树PostOrder(root->rchild); //后序递归遍历root的右子树cout<<root->data<<" "; //访问根结点的数据域}}/**前置条件:二叉树已存在*输入:无*功能:层序遍历二叉树*输出:二叉树中结点的一个线性排列*后置条件:二叉树不变*/template <class T>void BiTree<T>::LeverOrder(BiNode<T> *root){const int MaxSize = 100;int front = 0;int rear = 0; //采用顺序队列,并假定不会发生上溢BiNode<T>* Q[MaxSize];BiNode<T>* q;if (root==NULL) return;else{Q[rear++] = root;while (front != rear){q = Q[front++];cout<<q->data<<" ";if (q->lchild != NULL) Q[rear++] = q->lchild;if (q->rchild != NULL) Q[rear++] = q->rchild;}}}/**前置条件:空二叉树*输入:数据ch;*功能:初始化一棵二叉树,构造函数调用*输出:无*后置条件:产生一棵二叉树*/template <class T>BiNode<T>* BiTree<T>::Creat( ){BiNode<T>* root;T ch;cout<<"请输入创建一棵二叉树的结点数据"<<endl;cin>>ch;if (ch=="#") root = NULL;else{root = new BiNode<T>; //生成一个结点root->data=ch;root->lchild = Creat( ); //递归建立左子树root->rchild = Creat( ); //递归建立右子树}return root;}/**前置条件:二叉树已经存在*输入:无*功能:释放二叉树的存储空间,析构函数调用*输出:无*后置条件:二叉树不存在*/template<class T>void BiTree<T>::Release(BiNode<T>* root){if (root != NULL){Release(root->lchild); //释放左子树Release(root->rchild); //释放右子树delete root;}}/**前置条件:二叉树已经存在*输入:无*功能:求二叉树的深度*输出:二叉树的深度*后置条件:二叉树不变*/template<class T>int BiTree<T>::depth(BiNode<T> *root){int n,m;if(root==NULL) return 0;else{n=depth(root->lchild); //左子树的深度m=depth(root->rchild); //右子树的深度if (n>m)return n+1;elsereturn m+1;}}/**前置条件:二叉树已经存在*输入:无*功能:求二叉树的结点个数*输出:二叉树的结点个数*后置条件:二叉树不变*/template<class T>void BiTree<T>::nodenum(BiNode<T> *root){if(root==NULL) return;else{num++;nodenum(root->lchild); //左子树的结点个数nodenum(root->rchild); //右子树的结点个数}}*前置条件:二叉树已经存在*输入:无*功能:求二叉树2 的叶子结点个数*输出:二叉树的叶子结点个数*后置条件:二叉树不变*/template<class T>void BiTree<T>::leafnum(BiNode<T> *root){if(root==NULL) return;else{if(!(root->lchild) && !(root->rchild)) //判断是否为叶子结点num++;leafnum(root->lchild); //左子树中的叶子结点个数leafnum(root->rchild); //右子树中的叶子结点个数}}/*将全局变量num初始化为0*/template<class T>void BiTree<T>::empty( ){num=0;}输出全局变量num的值*/template<class T>int BiTree<T>::printnum( ){return num;}/**前置条件:二叉树已经存在*输入:无*功能:求二叉树的单分支结点个数*输出:二叉树的单分支结点个数*后置条件:二叉树不变*/template<class T>void BiTree<T>::sbnodenum(BiNode<T> *root){if(root==NULL) return;else{if((!(root->lchild) && (root->rchild))||((root->lchild) && !(root->rchild))) //判断是否为叶子结点num++;sbnodenum(root->lchild); //左子树中的叶子结点个数sbnodenum(root->rchild); //右子树中的叶子结点个数}}/**前置条件:二叉树已经存在*输入:无*功能:交换二叉树的左右子树*输出:无*后置条件:二叉树左右子树交换*/template<class T>void BiTree<T>::exchangetree(BiNode<T> *root){if(root==NULL) return;else{if((root->rchild)&&(root->lchild)) //判断左右叶子结点都存在{ p=root->lchild;root->lchild=root->rchild;root->rchild=p;}exchangetree(root->lchild); //左子树中的叶子结点个数exchangetree(root->rchild); //右子树中的叶子结点个数}}/* BiNode<T> * Q[20];BiNode<T> *q;int front=-1;int rear=-1;int n=0;int m=0;Q[++rear]=root;if(root==NULL)cout<<0;else{while(front!=rear){q=Q[++front];if(q->lchild==NULL && q->rchild!=NULL)m++;if(q->lchild!=NULL && q->rchild==NULL)n++;if(q->lchild!=NULL) Q[++rear]=q->lchild;if(q->rchild!=NULL) Q[++rear]=q->rchild;}}cout<<"单分支节点的个数为:"<<m+n<<endl;*///二叉树的主函数,文件名为bitreemain.cpp#include<iostream>#include<string>#include"bietree.cpp"using namespace std;void main(){BiTree<string> bt; //创建一棵树BiNode<string>* root = bt.Getroot( ); //获取指向根结点的指针int s=-1;while(s!=0){cout<<"1.前序遍历"<<endl;cout<<"2.中序遍历"<<endl;cout<<"3.后序遍历"<<endl;cout<<"4.层序遍历"<<endl;cout<<"5.树的深度"<<endl;cout<<"6.叶子节点个数"<<endl;cout<<"7.单分支结点个数"<<endl;cout<<"8.左右子树交换后的结果"<<endl;cout<<"0.退出"<<endl;cin>>s;switch(s){ case 1:bt.PreOrder(root);cout<<endl;break;case 2:bt.InOrder(root);cout<<endl;break;case 3:bt.PostOrder(root);cout<<endl;break;case 4:bt.LeverOrder(root);cout<<endl;break;case 5:cout<<"树的深度为:"<<bt.depth(root)<<endl;break;case 6:bt.empty();bt.leafnum(root);cout<<"叶子结点个数为:"<<bt.printnum()<<endl;break;case 7:bt.empty();bt.sbnodenum(root);cout<<"单分支结点个数为:"<<bt.printnum()<<endl;break;case 8:bt.empty();bt.exchangetree(root);cout<<"左右子树交换后的结果:";bt.PreOrder(root);cout<<endl;break;case 0:exit(0);}}}。

实验报告:二叉树

实验报告:二叉树

实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。

3、掌握用指针类型描述、访问和处理二叉树的运算。

4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。

二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。

在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。

树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。

遍历二叉树的实质是将非线性结构转为线性结构。

三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。

【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。

【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。

五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。

六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。

第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。

二叉树的各种基本操作实验报告范文

二叉树的各种基本操作实验报告范文

二叉树的各种基本操作实验报告范文a.输入完全二叉树的先序序列,用#代表虚结点(空指针),如ABD###CE##F##建立二叉树,实现先序、中序和后序以及按层次遍历序列。

b.求所有叶子及结点总数。

掌握二叉树的存储实现;掌握二叉树的遍历思想;掌握二叉树的常见算法的程序实现。

实目项型验项二叉树的操作目类综合型完成时间2022-11-2实验目的及要求掌握二叉树的存储实现;掌握二叉树的遍历思想;掌握二叉树的常见算法的程序实现。

(实验步骤【实验过程】实验步骤、绘图、记录、数据、分析、结果)实验过程】实验步骤、绘图、记录、数据、分析、结果)(实验内容:实验内容:a.输入完全二叉树的先序序列,用#代表虚结点(空指针)如ABD###CE##F##建,立二叉树,实现先序、中序和后序以及按层次遍历序列。

b.求所有叶子及结点总数。

实验步骤:实验步骤:#include<tdio.h>#include<tdlib.h>#defineMA某10#defineSTACK_INIT_SIZE40//存储空间初始分配量#defineSTACKINCREMENT10//存储空间分配增量typedeftructBiTNode{chardata;tructBiTNode某lchild;tructBiTNode某rchild;}BiTNode,某BiTree;//将BiTree定义为指向二叉链表结点结构的指针类型BiTNode某bt;typedeftruct{BiTree某bae;inttop;inttackize;}SqStack;typedeftruct{BiTree某bae;a.输入完全二叉树的先序序列,用#代表虚结点(空指针),如ABD###CE##F##建立二叉树,实现先序、中序和后序以及按层次遍历序列。

b.求所有叶子及结点总数。

掌握二叉树的存储实现;掌握二叉树的遍历思想;掌握二叉树的常见算法的程序实现。

二叉树的基本操作实验报告

二叉树的基本操作实验报告

二叉树的基本操作实验报告学号姓名实验日期 2012-12-26实验室计算机软件技术实验指导教师设备编号 401实验内容二叉树的基本操作一实验题目实现二叉树的基本操作的代码实现二实验目的1、掌握二叉树的基本特性2、掌握二叉树的先序、中序、后序的递归遍历算法3、通过求二叉树的深度、度为2的结点数和叶子结点数等算法三实习要求(1)认真阅读书上给出的算法(2)编写程序并独立调试四、给出二叉树的抽象数据类型ADT BinaryTree{//数据对象D:D是具有相同特性的数据元素的集合。

//数据关系R:// 若D=Φ,则R=Φ,称BinaryTree为空二叉树;// 若D?Φ,则R={H},H是如下二元关系;// (1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱; // (2)若D-{root}?Φ,则存在D-{root}={D1,Dr},且D1?Dr =Φ; // (3)若D1?Φ,则D1中存在惟一的元素x1,<root,x1>?H,且存在D1上的关系H1 ?H;若Dr?Φ,则Dr中存在惟一的元素xr,<root,xr>?H,且存在上的关系Hr ?H;H={<root,x1>,<root,xr>,H1,Hr};// (4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。

//基本操作:CreateBiTree( &T, definition ) // 初始条件:definition给出二叉树T的定义。

// 操作结果:按definiton构造二叉树T。

BiTreeDepth( T )// 初始条件:二叉树T存在。

// 操作结果:返回T的深度。

PreOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。

二、实验内容
1、构造一个二叉树。

我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。

2、实现查找二叉树中的节点。

在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。

3、实现删除二叉树中的节点。

在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。

4、对二叉树进行遍历操作。

二叉树的遍历有多种方法,本实验使用的是先序遍历。

首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。

三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。

数据结构与算法实验——二叉树基本操作

数据结构与算法实验——二叉树基本操作

二叉树基本操作实验报告实验名称二叉树基本操作实验目的1.熟悉二叉树结点的结构和二叉树的基本操作;2.掌握二叉树每种操作的具体实现;3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法;4.在二叉树基本操作的基础上掌握对二叉树的一些其它操作的具体实现方法;5.掌握构造哈夫曼树以及哈夫曼编码的方法。

实验内容编制一个演示二叉树创建、遍历、计算等操作的程序。

问题描述用数据结构相关知识,实现二叉树的定义和操作。

该程序包括二叉树结构类型以及对二叉树操作的具体的函数定义(包括:初始化二叉树、清空二叉树、检查二叉树是否为空、遍历二叉树(先序、后序、中序、层次)、求二叉树的深度、求二叉树所有节点数)。

问题分析该实验是基于C语言和数据结构知识基础的对二叉树的基本操作的检验,无需设计复杂的算法,程序语句也相对简单。

因此,我直接按要求定义了对二叉树操作的具体函数,并于主函数中实现对应的功能调用,其中,功能选择靠switch语句实现。

实验步骤1.需求分析本演示程序用VC++编写,完成二叉树的生成、遍历、计算等基本操作。

①输入的形式和输入值的范围:以字符(其中‘#’表示虚节点)的形式输入,以创建二叉树;在输入二叉树节点前,必须先确定该序列能正确创建二叉树。

②输出的形式:在所有三种操作中都显示操作是否正确以及操作后二叉树的内容。

③程序所能达到的功能:完成二叉树的生成、遍历(包括先序、后序、中序、层次四种方式)、计算等基本操作。

④测试数据:创建操作中依次输入a,b,d,#,g,#,#,#,c,e,#,#,f,#,#生成一个二叉树。

2.概要设计1)为了实现上述程序功能,需要定义二叉树的抽象数据类型:ADT BitTree {数据对象:由一个根节点和两个互不相交的左右子树构成数据关系:结点具有相同的数据类型及层次结构基本操作:Void BinTreeInit(BitTree *T)初始条件:无操作结果:初始化一棵二叉树Void BinTreeCreat(BitTree *T)初始条件:二叉树T已存在操作结果:按先序次序创建一棵二叉树2)本程序包含7个函数:①主函数main() ②初始化二叉树函数BinTreeInit() ③建立一棵二叉树函数BinTreeCreat() ④先序遍历函数PreOrderTraverse() ⑤中序遍历函数InOrderTraverse()⑥后序遍历函数PostOrderTraverse()⑦层次遍历函数LevelOrderTraverse()⑧求二叉树深度函数Countlevel()⑨检验空树函数BinTreeEmpty()⑩求节点数函数 Countnode()函数说明#include<stdio.h>#include<stdlib.h>typedef char Datatype;typedef struct NodeType{Datatype data;struct NodeType *lchild;struct NodeType *rchild;}BiTNode;typedef BiTNode * BinTree;//初始化二叉树。

数据结构二叉树实验报告

数据结构二叉树实验报告

数据结构二叉树实验报告二叉树是一种常用的数据结构,它在计算机科学中有着广泛的应用。

本文将介绍二叉树的定义、基本操作以及一些常见的应用场景。

一、二叉树的定义和基本操作二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

一个节点的左子节点称为左子树,右子节点称为右子树。

二叉树的示意图如下:```A/ \B C/ \D E```在二叉树中,每个节点可以有零个、一个或两个子节点。

如果一个节点没有子节点,我们称之为叶子节点。

在上面的示例中,节点 D 和 E 是叶子节点。

二叉树的基本操作包括插入节点、删除节点、查找节点和遍历节点。

插入节点操作可以将一个新节点插入到二叉树中的合适位置。

删除节点操作可以将一个指定的节点从二叉树中删除。

查找节点操作可以在二叉树中查找指定的节点。

遍历节点操作可以按照一定的顺序遍历二叉树中的所有节点。

二、二叉树的应用场景二叉树在计算机科学中有着广泛的应用。

下面将介绍一些常见的应用场景。

1. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值都大于其左子树中的节点的值,小于其右子树中的节点的值。

二叉搜索树可以用来实现快速的查找、插入和删除操作。

它在数据库索引、字典等场景中有着重要的应用。

2. 堆堆是一种特殊的二叉树,它的每个节点的值都大于或小于其子节点的值。

堆可以用来实现优先队列,它在任务调度、操作系统中的内存管理等场景中有着重要的应用。

3. 表达式树表达式树是一种用来表示数学表达式的二叉树。

在表达式树中,每个节点可以是操作符或操作数。

表达式树可以用来实现数学表达式的计算,它在编译器、计算器等场景中有着重要的应用。

4. 平衡二叉树平衡二叉树是一种特殊的二叉树,它的左子树和右子树的高度差不超过1。

平衡二叉树可以用来实现高效的查找、插入和删除操作。

它在数据库索引、自平衡搜索树等场景中有着重要的应用。

三、总结二叉树是一种常用的数据结构,它在计算机科学中有着广泛的应用。

本文介绍了二叉树的定义、基本操作以及一些常见的应用场景。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

数据结构二叉树实验报告

数据结构二叉树实验报告

数据结构二叉树实验报告1. 引言二叉树是一种常见的数据结构,由节点(Node)和链接(Link)构成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树在计算机科学中被广泛应用,例如在搜索算法中,二叉树可以用来快速查找和插入数据。

本实验旨在通过编写二叉树的基本操作来深入理解二叉树的特性和实现方式。

2. 实验内容2.1 二叉树的定义二叉树可以用以下方式定义:class TreeNode:def__init__(self, val):self.val = valself.left =Noneself.right =None每个节点包含一个值和两个指针,分别指向左子节点和右子节点。

根据需求,可以为节点添加其他属性。

2.2 二叉树的基本操作本实验主要涉及以下二叉树的基本操作:•创建二叉树:根据给定的节点值构建二叉树。

•遍历二叉树:将二叉树的节点按照特定顺序访问。

•查找节点:在二叉树中查找特定值的节点。

•插入节点:向二叉树中插入新节点。

•删除节点:从二叉树中删除特定值的节点。

以上操作将在下面章节详细讨论。

3. 实验步骤3.1 创建二叉树二叉树可以通过递归的方式构建。

以创建一个简单的二叉树为例:def create_binary_tree():root = TreeNode(1)root.left = TreeNode(2)root.right = TreeNode(3)root.left.left = TreeNode(4)root.left.right = TreeNode(5)return root以上代码创建了一个二叉树,根节点的值为1,左子节点值为2,右子节点值为3,左子节点的左子节点值为4,左子节点的右子节点值为5。

3.2 遍历二叉树二叉树的遍历方式有多种,包括前序遍历、中序遍历和后序遍历。

以下是三种遍历方式的代码实现:•前序遍历:def preorder_traversal(root):if root:print(root.val)preorder_traversal(root.left)preorder_traversal(root.right)•中序遍历:def inorder_traversal(root):if root:inorder_traversal(root.left)print(root.val)inorder_traversal(root.right)•后序遍历:def postorder_traversal(root):if root:postorder_traversal(root.left)postorder_traversal(root.right)print(root.val)3.3 查找节点在二叉树中查找特定值的节点可以使用递归的方式实现。

二叉树实验报告

二叉树实验报告

二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。

本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。

本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。

2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。

树的左子节点和右子节点被称为二叉树的左子树和右子树。

3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。

节点结构包含一个数据域和左右指针,用于指向左右子节点。

创建二叉树的过程可以通过递归或者迭代的方式来完成。

3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。

插入时需要考虑保持二叉树的有序性。

删除操作是将指定节点从树中删除,并保持二叉树的有序性。

在实验中,我们可以使用递归或者循环的方式实现这些操作。

3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。

常见的遍历方式包括前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。

中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。

后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。

3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。

可以通过递归或者循环的方式实现二叉树的查找操作。

基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。

4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。

具体实现包括二叉树的创建、插入、删除、遍历和查找操作。

在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。

4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。

另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。

本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。

一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。

二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。

在本实验中,我们将介绍二叉树的基本操作和实现。

二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。

三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。

四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。

二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。

二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。

2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。

(2)插入节点:在指定位置插入一个新节点。

(3)删除节点:删除指定位置的节点。

(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。

3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。

我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。

然后根据具体的需求,实现相应的操作函数。

4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。

通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。

五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。

通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。

同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。

二叉树的基本操作实验报告

二叉树的基本操作实验报告

二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树的基本操作包括创建、遍历、插入和删除等。

本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。

一、创建二叉树创建二叉树是二叉树操作中的第一步。

在本实验中,我们使用了递归算法来创建二叉树。

递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。

在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。

二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。

三、插入节点插入节点是向二叉树中添加新节点的操作。

插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。

在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。

四、删除节点删除节点是从二叉树中移除节点的操作。

删除节点的过程相对复杂,需要考虑多种情况。

如果要删除的节点是叶子节点,直接删除即可。

如果要删除的节点只有一个子节点,将其子节点连接到父节点上。

如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。

实验结果:通过实验,我们成功地实现了二叉树的基本操作。

创建二叉树的递归算法能够正确地创建出符合要求的二叉树。

遍历二叉树的算法能够按照指定的顺序遍历每个节点。

插入节点和删除节点的操作也能够正确地修改二叉树的结构。

讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。

通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。

数据结构实验报告(二叉树的基本操作)

数据结构实验报告(二叉树的基本操作)
else if((root->LChild==NULL)&&(root->RChild==NULL)) LeafNum=1;
else LeafNum=LeafCount(root->LChild)+LeafCount(root->RChild);
//叶子数为左右子树数目之和
return LeafNum;
printf("\n菜单选择\n\n");
printf(" 1.树状输出二叉树2.先序遍历二叉树\n");
printf(" 3.中序遍历二叉树4.后序遍历二叉树\n");
printf(" 5.输出叶子结点6.输出叶子结点的个数\n");
printf(" 7.输出二叉树的深度8.退出\n");
printf("\n----------------------------------------------------------------------\n");
{
printf("\n\n");
j=j+1; k=0;
while(k<nlocate)
{
printf(" ");
k++;
}
}
while(k<(nlocate-1))
{
printf(" ");
k++;
}
printf("%c",bt->data );
q.front=q.front+1;
if(bt->LChild !=NULL)//存在左子树,将左子树根节点入队列

二叉树操作实验报告

二叉树操作实验报告

二叉树操作实验报告一、实验背景二叉树是一种常用的数据结构,它由节点和连接节点的边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。

在二叉树的操作中,常用的操作包括创建二叉树、插入节点、删除节点、查找节点、遍历等。

本次实验旨在通过对二叉树的操作,加强对二叉树数据结构的理解,并熟练掌握其操作方法。

二、实验目的1.掌握二叉树的创建方法,能够编写代码创建一个二叉树;2.了解二叉树的插入节点操作,掌握节点的插入方法;3.掌握二叉树的删除节点操作,了解节点删除的细节和方法;4.熟练掌握二叉树的查找节点操作;5.掌握二叉树的遍历方法,能够实现对二叉树的前序、中序、后序、层次遍历。

三、实验原理1.二叉树的创建方法:通过递归的方式,先创建根节点,再依次创建左子树和右子树;2.二叉树的插入节点操作:从根节点开始,根据节点值的大小关系,将待插入节点放到适当的位置;3.二叉树的删除节点操作:首先查找待删除的节点,然后根据其子节点的情况,进行相应的删除处理;4.二叉树的查找节点操作:从根节点开始遍历,根据节点值的大小关系,在左子树或右子树中继续查找,直到找到目标节点或遍历到叶子节点;5.二叉树的遍历方法:前序遍历先访问根节点,再遍历左子树和右子树;中序遍历先遍历左子树,再访问根节点和右子树;后序遍历先遍历左子树和右子树,再访问根节点;层次遍历按层次逐个访问节点。

四、实验过程1.创建二叉树:首先,定义二叉树的节点类,包含节点值和左右子节点;然后,通过递归的方式创建根节点、左子树和右子树。

2.插入节点:要插入一个节点,首先需要找到插入位置。

如果待插入节点大于当前节点的值,则插入到右子树中,否则插入到左子树中。

如果节点为空,则表示找到了插入位置。

3.删除节点:删除节点有以下几种情况:(1) 待删除节点为叶子节点:直接删除即可;(2) 待删除节点只有一个子节点:用子节点替换待删除节点的位置;(3) 待删除节点有两个子节点:找到待删除节点的后继节点(右子树的最左下角节点),用后继节点替换待删除节点的位置。

数据结构实验报告二叉树

数据结构实验报告二叉树

数据结构实验报告二叉树二叉树是一种重要的数据结构,广泛应用于计算机科学和算法设计中。

在本次实验中,我们通过实际编程实践,深入理解了二叉树的基本概念、性质和操作。

一、二叉树的定义和基本性质二叉树是一种特殊的树结构,每个节点最多有两个子节点。

它具有以下基本性质:1. 根节点:二叉树的顶部节点称为根节点,它没有父节点。

2. 子节点:每个节点最多有两个子节点,分别称为左子节点和右子节点。

3. 叶节点:没有子节点的节点称为叶节点。

4. 深度:从根节点到某个节点的路径长度称为该节点的深度。

5. 高度:从某个节点到其叶节点的最长路径长度称为该节点的高度。

6. 层次遍历:按照从上到下、从左到右的顺序遍历二叉树的节点。

二、二叉树的实现在本次实验中,我们使用C++语言实现了二叉树的基本操作,包括创建二叉树、插入节点、删除节点、查找节点等。

通过这些操作,我们可以方便地对二叉树进行增删改查。

三、二叉树的遍历二叉树的遍历是指按照某种顺序访问二叉树的所有节点。

常用的遍历方式有三种:前序遍历、中序遍历和后序遍历。

1. 前序遍历:先访问根节点,然后依次递归遍历左子树和右子树。

2. 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。

3. 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。

四、二叉树的应用二叉树在计算机科学和算法设计中有广泛的应用。

以下是一些常见的应用场景:1. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树的值都小于根节点的值,右子树的值都大于根节点的值。

它可以高效地支持插入、删除和查找操作,常用于有序数据的存储和检索。

2. 堆:堆是一种特殊的二叉树,它的每个节点的值都大于(或小于)其子节点的值。

堆常用于实现优先队列等数据结构。

3. 表达式树:表达式树是一种用二叉树表示数学表达式的方法。

通过对表达式树的遍历,可以实现对数学表达式的计算。

4. 平衡树:平衡树是一种特殊的二叉树,它的左右子树的高度差不超过1。

二叉树基本操作--实验报告

二叉树基本操作--实验报告

宁波工程学院电信学院计算机教研室实验报告一、实验目的1、熟悉二叉树树的基本操作。

2、掌握二叉树的实现以及实际应用。

3、加深二叉树的理解,逐步培养解决实际问题的编程能力。

二、实验环境1台WINDOWS环境的PC机,装有Visual C++ 6.0。

三、实验内容【问题描述】现需要编写一套二叉树的操作函数,以便用户能够方便的利用这些函数来实现自己的应用。

其中操作函数包括:1>创建二叉树CreateBTNode(*b,*str):根据二叉树括号表示法的字符串*str生成对应的链式存储结构。

2>输出二叉树DispBTNode(*b):以括号表示法输出一棵二叉树。

3>查找结点FindNode(*b,x):在二叉树b中寻找data域值为x的结点,并返回指向该结点的指针。

4>求高度BTNodeDepth(*b):求二叉树b的高度。

若二叉树为空,则其高度为0;否则,其高度等于左子树与右子树中的最大高度加l。

5>求二叉树的结点个数NodesCount(BTNode *b)6>先序遍历的递归算法:void PreOrder(BTNode *b)7>中序遍历的递归算法:void InOrder(BTNode *b)8>后序遍历递归算法:void PostOrder(BTNode *b)9>层次遍历算法void LevelOrder(BTNode *b)【基本要求】实现以上9个函数。

主函数中实现以下功能:创建下图中的树b输出二叉树b找到’H’节点,输出其左右孩子值输出b的高度输出b的节点个数输出b的四种遍历顺序上图转化为二叉树括号表示法为A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))程序:#include <stdio.h>#include <malloc.h>#define MaxSize 100typedef char ElemType;typedef struct node{ElemType data; /*数据元素*/struct node *lchild; /*指向左孩子*/struct node *rchild; /*指向右孩子*/} BTNode;void CreateBTNode(BTNode *&b,char *str);//创建BTNode *FindNode(BTNode *b,ElemType x);//查找节点int BTNodeHeight(BTNode *b);//求高度void DispBTNode(BTNode *b);//输出int NodesCount(BTNode *b);//二叉树的结点个数void PreOrder(BTNode *b);//先序遍历递归void InOrder(BTNode *b);//中序遍历递归void PostOrder(BTNode *b);//后序遍历递归void LevelOrder(BTNode *b);//层次遍历//创建void CreateBTNode(BTNode *&b,char *str){BTNode *St[MaxSize],*p=NULL;int top=-1,k,j=0;char ch;b=NULL;ch=str[j];while(ch!='\0'){switch(ch){case '(':top++;St[top]=p;k=1;break;case ')':top--;break;case ',':k=2;break;default:p=(BTNode *)malloc(sizeof(BTNode));p->data=ch;p->lchild=p->rchild=NULL;if(b==NULL)b=p;else{switch(k){case 1:St[top]->lchild=p;break;case 2:St[top]->rchild=p;break;}}}j++;ch=str[j];}}//输出void DispBTNode(BTNode *b){if(b!=NULL){printf("%c",b->data);if(b->lchild!=NULL||b->rchild!=NULL){printf("(");DispBTNode(b->lchild);if(b->rchild!=NULL)printf(",");DispBTNode(b->rchild);printf(")");}}}//查找节点BTNode *FindNode(BTNode *b,ElemType x){BTNode *p;if(b==NULL)return b;else if(b->data==x)return b;else{p=FindNode(b->lchild,x);if(p!=NULL)return p;elsereturn FindNode(b->rchild,x);}}//求高度int BTNodeHeight(BTNode *b){int lchildh,rchildh;if(b==NULL)return (0);else{lchildh=BTNodeHeight(b->lchild);rchildh=BTNodeHeight(b->rchild);return(lchildh>rchildh)?(lchildh+1):(rchildh+1);}}//二叉树的结点个数int NodesCount(BTNode *b){if(b==NULL)return 0;elsereturn NodesCount(b->lchild)+NodesCount(b->rchild)+1;}//先序遍历递归void PreOrder(BTNode *b){if(b!=NULL){printf("%c",b->data);PreOrder(b->lchild);PreOrder(b->rchild);}}//中序遍历递归void InOrder(BTNode *b){if(b!=NULL){InOrder(b->lchild);printf("%c",b->data);InOrder(b->rchild);}}//后序遍历递归void PostOrder(BTNode *b){if(b!=NULL){PostOrder(b->lchild);PostOrder(b->rchild);printf("%c",b->data);}}//层次遍历void LevelOrder(BTNode *b){BTNode *p;BTNode *qu[MaxSize];int front,rear;front=rear=-1;rear++;qu[rear]=b;while(front!=rear){front=(front+1)%MaxSize;p=qu[front];printf("%c",p->data);if(p->lchild!=NULL){rear=(rear+1)%MaxSize;qu[rear]=p->lchild;}if(p->rchild!=NULL){rear=(rear+1)%MaxSize;qu[rear]=p->rchild;}}}void main(){BTNode *b,*p,*lp,*rp;char str[]="A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))";//根据树形图改写成的//二叉树括号表示法的字符串*str//char str[100];scanf("%s",&str);//自行输入括号表示的二叉树CreateBTNode(b,str); //创建树bprintf("\n");printf("输出二叉树:");//输出二叉树bDispBTNode(b);printf("\n");printf("'H'结点:");//找到'H'节点,输出其左右孩子值p=FindNode(b,'H');printf("\n");if (p!=NULL){printf("左孩子节点的值");printf("%c",p->lchild->data);printf("\n");printf("右孩子节点的值");printf("%c",p->rchild->data);printf("\n");//此处输出p的左右孩子节点的值}printf("\n");printf("二叉树b的深度:%d\n",BTNodeHeight(b));//输出b的高度printf("二叉树b的结点个数:%d\n",NodesCount(b));//输出b的节点个数printf("\n");printf(" 先序遍历序列:\n");//输出b的四种遍历顺序printf(" 算法:");PreOrder(b);printf("\n");printf(" 中序遍历序列:\n");printf(" 算法:");InOrder(b);printf("\n");printf(" 后序遍历序列:\n");printf(" 算法:");PostOrder(b);printf("\n");printf(" 层次遍历序列:\n");printf(" 算法:");LevelOrder(b); printf("\n");}四、实验心得与小结通过实验,我熟悉二叉树树的基本操作,掌握二叉树的实现以及实际应用。

二叉树的基本操作实验

二叉树的基本操作实验
六 运行结果
图(1)
图表1
else if(a==4)
{
printf("层序遍历:");
howmuch(T,2);
}
else if(a==5)
{
printf("总节点数:");
howmuch(T,0);
}
else if(a==6)
{
printf("总叶子数:");
howmuch(T,1);
}
else if(a==7)
{
printf("树的深度:");
二 概要设计
功能实现
1.int CreatBiTree(BiTree &T)用递归的方法先序建立二叉树, 并用链表储存该二叉树
2.int PreTravel(BiTree &T)前序遍历
3.intMidTravel(BiTree &T)中序遍历
4.intPostTravel(BiTree &T)后序遍历
实验三 二叉树的基本运算
一、实验目的
1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容
[问题描述]
建立一棵二叉树,试编程实现二叉树的如下基本操作:
1. 按先序序列构造一棵二叉链表表示的二叉树T;
2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;
5.int Depth(BiTree &T) //计算树的深度
6.inthowmuch(BiTree T,int h)采用树节点指针数组,用于存放遍历到的元素地址,如果有左孩子,存入地址,j加一 ,否则没操作,通过访问数组输出层次遍历的结果。k计算叶子数,j为总节点。

二叉树实验报告总结(共10篇)

二叉树实验报告总结(共10篇)

二叉树实验报告总结(共10篇)二叉树实验报告实验报告课程名称算法与数据结构专业学号姓名实验日期算法与数据结构实验报告一、实验目的1.了解二叉树的结构特点及有关概念,掌握二叉树建立的基本算法2.了解二叉树遍历的概念,掌握遍历二叉的算法3.进一步掌握树的结构及非线性特点,递归特点和动态性。

二、实验内容二叉树的实现和运算三、实验要求1.用C++/C完成算法设计和程序设计并上机调试通过。

2.撰写实验报告,提供实验结果和数据。

3.分析算法,并简要给出算法设计小结和心得。

四、算法步骤用户以三元组形式输入二叉树的结点元素及其位置关系,建立二叉树,并打印输出该二叉树。

用户输入选择结点,程序调用BiTNode* Find Node(char tag, BiTNode* node)函数,返回子树的根结点,然后调用BiTreeDepth(BiTree T)函数,求出子树的深度,并输出该值。

3.用户可以选择是否继续执行程序,若继续,则输入1,否则输入0,结束程序。

五、主程序代码:int main(void){BiTree T;TElemType e1;char node; // node为用户选择输入的结点//int b,choose; // b为以选定结点为子树的深度,choose为实现多次选择输入的标志//BiTNode* a; // a为选定结点为子树的根结点//choose=1; // 多次选择的标志,当choose为1时运行程序,为0时结束程序// InitBiTree(T);printf(构造空二叉树后,树空否?%d(1:是0:否), 树的深度=%d\n,BiTreeEmpty(T),BiTreeDepth(T));e1 = Root(T);if(e1 != Nil)#ifdef CHARprintf(二叉树的根为: %c\n,e1);#endif#ifdef INTprintf(二叉树的根为: %d\n,e1);#endifelseprintf(树空,无根\n); //三元组构建二叉树striile(x!=end){AddNode(T, x[0], x[1], x[2]);GetUserWord(x);} //输出树PrintTreeLevel( T );//以三元组形式输入任意二叉树(以大写字母表示结点),求以任意一选定结点为子树的深度。

二叉树实验

二叉树实验

二叉树实验1 实验目的1、熟悉二叉树的二叉链表存储结构;2、掌握构造二叉树的方法;3、加深对二叉树前序、中序、后序遍历的理解。

2 需求分析2.1 任务1功能:void PreOrder(BTNode *bt) 先序遍历约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若是二叉树链表不为空则对二叉树链表进行先序遍历。

2.2 任务2功能:void InOrder(BTNode *bt) 中序遍历。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若是二叉树链表不为空则对二叉树链表进行中序遍历。

2.3 任务3功能:void PostOrder(BTNode *bt) 后序遍历。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若是二叉树链表不为空则对二叉树链表进行后序遍历。

2.4 任务4功能:int HeightBTree(BTNode *bt) 求二叉树的深度。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若是二叉树链表为空则返回0,若二叉树链表不为空则统计出该二叉树的深度,然后返回该值。

2.5 任务5功能:void DisplayBTree(BTNode * bt,int i) 输出二叉树第i层的所有节点。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若输入的i小于1,或者二叉树链表为空则直接返回,若二叉树链表不为空且i值符合要求,则打印i层所有的节点。

3概要设计3.1任务1void PreOrder(BTNode *bt)该函数首先进行条件判断if (bt != NULL)。

如果节点不为空,则执行后续的遍历操作。

如果节点为空,则不执行任何操作。

之后执行线序遍历:先打印当前节点的数据printf("%c", bt->data),然后递归调用先序遍历函数来处理左子树PreOrder(bt->lchild),然后递归调用先序遍历函数来处理右子树PreOrder(bt->rchild)。

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告

软件技术基础实验四--二叉树的各种基本运算的实现班级:电信0901学号:0703090106姓名:蒋玮珂实验四二叉树的各种基本运算的实现(1)实验题目:编写一个程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)创建二叉树btree(2)求出二叉树btree的树高(3)中序遍历二叉树btree(4)统计二叉树btree的叶结点数(5)输出二叉树btree的所有叶结点(2)实验目的:(1)掌握二叉树的递归操作与运算;(2)加深对二叉树的建立,先序中序遍历方法以及树高的理解与应用(3)调试通过并正确执行给定功能要求的实验代码#include "stdafx.h"#include <fstream.h>struct bitree{char data;bitree *lchild;bitree *rchild;};bitree *createtree(char a[],char b[],int l1,int h1,int l2,int h2) {btree *root;int i,lhigh,rhigh;root=(btree*)malloc(sizeof(btree));root->data=a[l1];if(i=h1,(b[i]!=(root->data)),i++){lhigh=i-h1;rhigh=h2-i;if(lhigh)root->lchild=createtree(a,b,l1+1,l1+lhigh,h1,h1+lhigh-1);elseroot->lchild=NULL;if(rhigh)root->rchild=createtree(a,b,l2-rhigh+1,l2,h2-rhigh+1,h2);elseroot->rchild=NULL;}return root;}int treehigh(bitree *q)if(q==NULL)return 0;else{int lhigh,rhigh;lhigh=treehigh(q->lchild);rhigh=treehigh(q->rchild);if(lhigh>=rhigh)return lhigh+1;elsereturn rhigh+1;}}void inorder(bitree *q){j=0;if(q!=NULL){inorder(q->lchild,str1+(++j));*(str1+j)=q->data;inorder(q->rchild,str1+(++j));}}int countleaf(bitree *q, int count,int flag,char *str2) {k=0;if(q==0)return NULL;else if (q->lchild==NULL &&q->rchild==NULL){count ++;while (flag)*(str2+(k++))=q->data;return count;}else{countleaf(q->lchild ,count,flag,str2+(++k));countleaf(q->rchild ,count,flag,str2+(++k));if(!flag)return count;elsereturn NULL;}}void main()bitree *q;int high,flag,n=0,i=0;char x,y;ifstream infile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\infile.txt");ofstream outfile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\outfile.txt");char a[20],b[20],str2[20],str1[20];while(infile.get(x)){infile>>x;a[i++]=x;n++;}i=0;while(infile.get(y)){infile>>y;b[i++]=y;}q=createtree(a,b,1,n,1,n);high=treehigh(q);outfile<<"The height of the bitree is:"<<high<<endl;outfile<<"The sequence of the bitree by the way of inorder:"<<endl; inorder(q,str1);i=0;while(str1[i])outfile<<str1[i++];count=0;flag=0;count=countleaf(q,count,flag,str2);cout<<"The number of the leaves is:"<<endl<<count<<endl;flag=1;cout<<"The leaves of the bitree is:"<<endl;i=0;while(str2[i])outfile<<str2[i++];infile.close();outfile.close();}(4)实验结果截图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PostOrderTraverse1(bt->rchild);
printf("%2c",bt->data);
}
}
void LeverlOrderTraverse(BiTree bt)
{//层次遍历二叉树
SqQueue Q;
BiTree p;
if(bt)
{
InitQueue(Q);
EnQueue(Q,bt);
{
printf("%2c",bt->data);
}
else
{
if(bt->lchild)
{
PutOutLeaf(bt->lchild);
}
if(bt->rchild)
{
PutOutLeaf(bt->rchild);
}
}
}
}
void CountNodes(BiTree bt,int &n)
{//输出总的节点数
printf("\n中序遍历二叉树非递归算法\n");
InOrderTraverse2(bt);
printf("\n后序遍历二叉树递归算法\n");
PostOrderTraverse1(bt);
printf("\n后序遍历二叉树非递归算法\n");
PostOrderTraverse2(bt);
printf("\n层次遍历二叉树\n");
if(bt)
{
n++;
CountNodes( bt->lchild,n);
CountNodes( bt->rchild,n);
}
}
void main()
{
int n=0;
printf("先序建立二叉树,'#'代表虚结点\n");
printf("请输入你所建立二叉树的字符串\n");
PreCreatBiTree(bt);
exit(0);
}
e=S.base[--S.top];
}//Pop
int GetTop(SqStack S, BiTree &e)
{
//若栈不空则用e返回S的栈顶元素
if (S.top==0)
{
printf("栈空");
return 0;//栈为空
}
else
{
e=S.base[S.top-1];
return 1;
if (!S.base) exit (0); //存储分配失败
S.top=0; //空表长度为0
S.stacksize=STACK_INIT_SIZE; //初始存储容量
}//InitStack
int StackEmpty(SqStack &S)
{
//判断栈S是否是空栈,是返回1,否则返回0
if(S.top==0)
printf("<---遍历二叉树--->\n");
printf("先序遍历二叉树递归算法\n");
PreOrderTraverse1(bt);
printf("\n先序遍历二叉树非递归算法\n");
PreOrderTraverse2(bt);
printf("\n中序遍历二叉树递归算法\n");
InOrderTraverse1(bt);
void InOrderTraverse2(BiTree bt)
{//非递归对bt进行中序遍历
if(bt)
{
SqStack S;
BiTree p;
InitStack(S);
Push(S, bt); //根指针进栈
while(!StackEmpty(S))
{
while(GetTop(S,p)&&p)//栈顶元素非空
int stacksize;
}SqStack;
typedef struct
{
BiTree *base;
int front;
int rear;
}SqQueue;
void InitStack(SqStack &S)
{
//构造一个空栈S
S.base=(BiTree*) malloc(STACK_INIT_SIZE*sizeof(BiTree));
return 1;
else return 0;
}//StcakEmpty
void Push(SqStack &S, BiTree e)
{
//插入元素e为新的栈顶元素,
if (S.top>=S.stacksize)
{//栈满追加空间
S.base=(BiTree*) realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(BiTree));
if(!S.base)
exit(0);//存储分配失败
S.stacksize+=STACKINCREMENT;
}
S.base[S.top++]=e;
}//Push
void Pop(SqStack &S,BiTree &e)
{
//若栈不空则删除S的栈顶元素,并用e返回其值
if (S.top==0)
{
printf("栈空"); //栈为空
Push(S,p->lchild); //向左一直走到尽头
Pop(S,p);//空指针退栈
//对左子树操作完毕,再判断右子树
if(!StackEmpty(S))//栈非空
{
GetTop(S,p);
Push(S,p->rchild);//右孩子入栈
if(GetTop(S,p)&&p==NULL)
{
Pop(S,p); //空结点出栈
}
}//GetTop
void InitQueue(SqQueue &Q)
{//构建新队列Q
Q.base=(BiTree*)malloc(MAX * sizeof(BiTree));
Q.front=Q.rear=0;
}
int QueueEmpty(SqQueue Q)
{//判断队列是否是一个空队列
if(Q.front==Q.rear)
void PreOrderTraverse2(BiTree bt)
{
//非递归对bt进行先序遍历
SqStack S;
BiTree p;
if(bt){
InitStack(S);
Push(S, bt);//根指针进栈
while(!StackEmpty(S))
{
while(GetTop(S,p) && p)
{
char data;
struct BiTNode *lchild;
struct BiTNode *rchild;
}BiTNode,*BiTree;//将BiTree定义为指向二叉链表结点结构的指针类型
BiTNode *bt;
typedef struct {
BiTree *base;
int top;
Push(S, p->lchild); //向左一直走到尽头
Pop(S, p);//空指针退栈
if(!StackEmpty(S))
{
Popபைடு நூலகம்S,p);
printf("%2c",p->data);
Push(S, p->rchild);
}//if
}//while
}//if
}// InOrderTraverse
LeverlOrderTraverse(bt);
printf("\n叶子结点是\n");
PutOutLeaf(bt);
CountNodes(bt,n);
printf("\n结点总数是:%d",n);
printf("\n");
}实验运行结果
教师批阅评语:
成绩评定
教师签名:年月日
优秀
良好
中等
及格
不及格
实验项目
二叉树的操作
项目类型
综合型
完成时间
2009-11-2
实验目的及要求
掌握二叉树的存储实现;掌握二叉树的遍历思想;掌握二叉树的常见算法的程序实现。
【实验过程】(实验步骤、绘图、记录、数据、分析、结果)
实验内容:
a.输入完全二叉树的先序序列,用#代表虚结点(空指针),如ABD###CE##F##建立二叉树,实现先序、中序和后序以及按层次遍历序列。
Pop(S,p); //左右孩子处理完了
printf("%2c",p->data);//访问根结点
while(!StackEmpty(S)&&GetTop(S,q)&&q->rchild==p)
//并且刚刚访问的结点为栈顶元素的右孩子时,让栈顶元素出栈并访问他
{
Pop(S,p);
printf("%2c",p->data);
{
printf("%2c",p->data);
Push(S, p->lchild);
} //向左一直走到尽头
Pop(S,p);//空指针退栈
if(!StackEmpty(S))
相关文档
最新文档