板式塔内流体的流动

合集下载

板式塔流体力学事故

板式塔流体力学事故

板式塔流体力学事故(实用版)目录1.板式塔的概述2.板式塔的流体力学原理3.板式塔的常见事故及其原因4.板式塔事故的预防和处理措施正文【板式塔的概述】板式塔是一种常用的塔式设备,广泛应用于化工、石油、制药等行业。

其主要功能是通过塔内液体和气体的接触,实现物质的分离、吸收或反应等过程。

板式塔通常由塔体、塔板、进出口、支撑结构等部分组成,其中塔板是核心部件,起到增大气液接触面积、提高传质效果的作用。

【板式塔的流体力学原理】板式塔的流体力学原理主要涉及两个方面:一是气体在塔内的流动状态,二是液体在塔内的分布和流动。

在塔内,气体自下而上流动,通过塔板时,会形成气泡并扩大接触面积,从而促进物质的传递。

液体则在塔内自上而下流动,与气体进行逆流接触,以提高吸收或反应效果。

板式塔的设计需要充分考虑流体的动力学特性,以实现高效的物质传递。

【板式塔的常见事故及其原因】板式塔在运行过程中可能会发生一些流体力学事故,如气泡夹带、压降过大、泛液等。

这些事故的原因多种多样,包括:1.气泡夹带:气泡在塔内夹带液体,导致塔顶液体泡沫过多,影响塔内分离效果。

原因可能包括气速过快、液体黏度过高、塔板设计不合理等。

2.压降过大:塔内气体流动阻力过大,导致压力降过高,影响气体流动和物质传递。

原因可能包括塔板结构不合理、气体流速过快、管道阻力过大等。

3.泛液:塔内液体超过设计高度,从塔顶溢出。

原因可能包括进液量过大、塔内液体分布不均、塔板堵塞等。

【板式塔事故的预防和处理措施】为预防和处理板式塔的流体力学事故,可以采取以下措施:1.合理设计塔板结构,提高气液分布均匀性,降低气泡夹带和泛液的风险。

2.控制进液量和进气量,避免过大的流速导致压降过大和气泡夹带。

3.定期对塔内进行清洗和维护,确保塔板畅通,避免塔内液体分布不均和泛液现象。

4.安装监测设备,实时监测塔内压力、流量等参数,以便及时发现并处理异常情况。

总之,板式塔作为一种重要的化工设备,其流体力学事故的预防和处理至关重要。

精馏装置-板式塔的结构和原理

精馏装置-板式塔的结构和原理

精馏塔是进行精馏的一种塔式汽液接触装置。

作为精馏过程的主要设备,有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

今天就带大家了解板式塔的结构和原理。

一、板式塔板式塔通常是由一个圆柱型的壳体及沿塔高按一定的间距水平设置的若干层塔板(或塔盘)所组成。

板式塔实物图板式塔结构图二、板式塔塔板板式塔的塔板可分为有降液管及无降液管两大类。

有降液管的一般液体呈错流式,无降液管的液体呈逆流式。

板式塔由塔板不同可以分为泡罩塔、浮阀塔、筛板塔、舌型板和斜孔板等等。

其中以泡罩塔,浮阀塔和筛板塔在工业生产中使用最为广泛。

三、泡罩塔泡罩塔板是工业上应用最早的塔板,它由升气管及泡罩构成。

泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。

泡罩有f80、f100和f150mm三种尺寸,可根据塔径大小选择。

泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。

泡罩在塔板上为正三角形排列。

泡罩边缘开有纵向齿缝,中心装升气管。

升气管直接与塔板连接固定。

塔板下方的气相进入升管,然后从齿缝吹出与塔板上液相接触进行传质。

由于升气管作用,避免了低气速下的漏液现象。

优点:该塔板操作弹性,塔效率也比较高,运用较为广泛。

缺点:是结构复杂,塔压降低,生产强度低,造价高。

四、筛板塔筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。

筛孔在塔板上为正三角形排列。

塔板上设置溢流堰,使板上能保持一定厚度的液层。

筛板塔的优点是结构简单、造价低,生产能力大,板上液面落差小,气体压降低,同时塔板效率较高。

缺点是操作弹性小,筛孔易堵塞,不宜处理易结焦、黏度大的物料。

五、浮阀塔浮阀是20世纪二战后开始研究,50年代开始启用的一种新型塔板,后来又逐渐出现各种型式的浮阀。

其型式有圆形、方形、条形及伞形等。

较多使用圆形浮阀,而圆形浮阀又分为多种型式。

其特点是浮阀取消了泡罩塔的泡罩与升气管,改在塔上开孔,阀片上装有限位的三条腿。

北京化工大学实验报告——板式塔的流体力学性能的测定

北京化工大学实验报告——板式塔的流体力学性能的测定

实验五板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、普通筛板、导向筛板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。

4、观察流体在塔板上的流动状态。

三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。

塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。

实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。

通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。

图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。

孔板流量计计算公式:0v q C A =由《化工原理》查询孔流系数,并计算气体流量。

测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。

干板压降经验式:()220'00.051()1vd Lw h C ρϕρ=- ϕ-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱;'0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制)2、测定湿板压降和夹带、漏液调节气体流量为一定值,打开转子流量计。

固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。

每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。

计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。

3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。

板式塔流体力学实验报告

板式塔流体力学实验报告

板式塔流体力学实验报告引言本实验旨在研究板式塔的流体力学特性。

板式塔是一种常用于化工领域的设备,用于分离液体混合物中的组分。

通过实验观察和数据分析,我们可以了解板式塔的流体流动行为,从而优化塔的设计和操作参数,提高分离效率。

实验装置和方法实验中使用的板式塔装置由一根垂直立管和多层水平放置的板组成。

我们通过向塔底注入液体混合物,控制流量和温度,观察在不同操作条件下的塔内流体流动情况。

实验结果与分析根据实验数据,我们可以得出以下结论:1. 流体流动模式在不同操作条件下,板式塔内流体的流动模式会发生变化。

当流速较低时,流体呈现层流状态,流线整齐有序;而当流速增加时,流体会变为湍流状态,流线杂乱无序。

这对于塔内物质传递和分离过程有着重要影响。

2. 流体分布在塔内的不同位置,流体的浓度和温度分布不均匀。

通常情况下,塔底的浓度较高,而塔顶的浓度较低。

这是由于塔内的物质传递和分离过程导致的。

3. 塔板效率塔板效率是评价板式塔分离效果的重要指标。

通过实验观察和数据分析,我们可以计算出塔板效率,并比较不同操作条件下的效率差异。

从实验结果可以看出,塔板效率随着流速的增加而提高,但也存在一个最佳操作点,超过此点后效率会下降。

结论本实验通过观察和数据分析,深入了解了板式塔的流体力学特性。

我们发现流体流动模式、流体分布和塔板效率对于塔的设计和操作至关重要。

在实际应用中,我们可以根据不同的分离要求和操作条件,优化塔的结构和操作参数,以提高分离效率。

通过本实验,我对板式塔的流体力学特性有了更深入的了解。

我将继续深入研究和探索,在化工领域的实际应用中发挥作用,为工业生产提供技术支持和解决方案。

板式塔的流体力学性能介绍

板式塔的流体力学性能介绍

板式塔的流体力学性能介绍★评价塔设备性能的主要指标生产能力塔板效率操作弹性塔板压强降★板式塔的流体力学性能塔板压强液泛雾沫夹带漏液液面落差一、塔板压降也就是气体通过塔板时的阻力损失。

包括:干板阻力:由板上各部件所造成的局部阻力板上充气液层的静压强板上液体的表面张力(摩擦阻力)∙塔板压降对板式塔操作特性的影响∙影响塔底操作压强:塔板压降↑若为吸收操作,则要求送气压强↑ ;若为精馏操作,则要求釜底压强↑ ;若为真空精馏操作,则同样要求釜底压强↑ →导致实际操作不能在真空下进行。

∙影响板效率:∙干板压降↑ → 气体流动不畅↑ 气液接触时间↑ → 板效率↑∙板上充气液层静压↑(即板上液层厚度↑)→ 气液传质时间↑→板效率↑总而言之,要综合考虑,原则:在保证较高板效率的前提下,力求减小塔板压强,以降低能耗,改善塔的操作性能。

二、液泛正常操作时,降液管中有一足够的液体高度,以克服两板间由气体压差造成的压降使液体能够自上而下流动。

∙但若气相的流量↑→塔板压降↑→降液管内液体流动不畅→管内液体积累;∙若液相的流量↑→降液管内截面不能满足该液体顺利流过→管内液体积累;从而必然使降液管内液体不断增高→最终使整个板间充满液体→塔操作被严重破坏。

这种现象即为液泛(淹塔)。

一般,气速↑→有利于形成湍动的泡沫层→传质速率↑。

但显然不能超过液泛时的气速。

因此,液泛时的气速应为塔操作的极限速度。

此外,板间距↑→可提高液泛速度。

三、雾沫夹带∙当气速↑,使塔板处于泡沫状态或喷射状态时→液体被吹塔板,该现象称为雾沫夹带。

∙雾沫夹带造成的影响:液相在塔板间返混→塔板效率↓∙因此,应限制雾沫夹带。

eV<0.1kg(液)/kg(气)∙影响雾沫夹带量的因素:空塔气速↑塔板间距↓雾沫夹带量↑四、漏液∙在正常操作的塔板上,液体横向流过塔板,然后通过降液管流下。

∙但若气体通过塔板的速度↓ → 上升气体通过孔道的动压不足以克服板上液体的重力→液体从塔板上的开孔处往下漏,称漏液。

化工原理第六章第六节 板式塔

化工原理第六章第六节 板式塔

2013-1-7
2.塔板上的液面落差
液面落差:塔板进出口清液层高度差 减少液面落差的措施: 多溢流。
2013-1-7
当液体横向流过塔板时,为克服板上的摩擦阻力和板
上部件(如泡罩、浮阀等)的局部阻力,需要一定的液位
差,则在板上形成由液体进入板面到离开板面的液面落差。 液面落差也是影响板式塔操作特性的重要因素,液面落差 将导致气流分布不均,从而造成漏液现象,使塔板的效率 下降。因此,在塔板设计中应尽量减小液面落差。
2013-1-7
3.筛孔塔板
2013-1-7
筛孔塔板简称筛板,其结构如图所示。塔板上开有许多均
匀的小孔,孔径一般为3~8mm。筛孔在塔板上为正三角形排
列。塔板上设置溢流堰,使板上能保持一定厚度的液层。 操作时,气体经筛孔分散成小股气流,鼓泡通过液层, 气液间密切接触而进行传热和传质。在正常的操作条件下, 通过筛孔上升的气流,应能阻止液体经筛孔向下泄漏。 筛板的优点是结构简单、造价低,板上液面落差小,气 体压降低,生产能力大,传质效率高。其缺点是筛孔易堵塞, 不宜处理易结焦、粘度大的物料。 应予指出,筛板塔的设计和操作精度要求较高,过去工业 上应用较为谨慎。近年来,由于设计和控制水平的不断提高, 可使筛板塔的操作非常精确,故应用日趋广泛。
2013-1-7
奥康内尔收集了
几十个工业塔的塔板
效率数据,认为对于 蒸馏塔,可用相对挥 发度与进料液体黏度 的乘积αμL作为参数来
表示全塔效率,关联
曲线见图6-56。
图6-56 精馏塔效率关联曲线
2013-1-7
(二)单板效率(莫弗里板效率)
单板效率又称莫弗里(Murphree)板效率。它用汽相(或液相)经过 一实际塔板时组成变化与经过一理论板时组成变化的比值来表示。

实验八、板式塔流体力学性能测定【最新】

实验八、板式塔流体力学性能测定【最新】

实验八、板式塔流体力学性能测定一、实验目的1.观察塔板上气、液两相流动状况。

2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。

3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。

二、实验原理板式塔为逐级接触的气~液传质设备,当液体从上层塔板经溢流管流经塔板与气体形成错流通过塔板,由于塔板上装有一定高度的堰,使塔板上保持一定的液层,然后越过堰从降液管流到下层塔板。

气体从下层塔板经筛孔或浮阀、泡罩齿缝等,上升穿过液层进行气液两相接触,然后与液体分开继续上升到上一层塔板。

塔板传质的好坏很大程度取决于塔板上的流体力学状况。

1.塔板上的气液两相接触状况及不正常的流动现象。

(1)气液两相在塔板上接触的三种状态:1)当气体的速度较低时,气液两相呈鼓泡接触状态。

塔板上存在明显的清液层,气体以气泡形态分散在清液层中间,气液两相在气泡表面进行传质。

2)当气体速度较高时,气液两相呈泡沫接触状态,此时塔板上清液层明显变薄,只有在塔板表面处才能看到清液,清液层随气速增加而减少,塔板上存在大量泡沫,液体主要以不断更新的液膜形态存在于十分密集的泡沫之间,气液两相以液膜表面进行传质。

3)当气体速度很高时,气液两相呈喷射接触状态,液体以不断更新的液滴形态分散在气相中间,气液两相以液滴表面进行传质。

(2)塔板上不正常的流动现象1)漏液当上升的气体速度很低时,气体通过塔板升气孔的动压不足阻止塔板上液层的重力,液体将从塔板的开孔处往下漏而出现漏液现象。

2)雾沫夹带当上升的气体穿过塔板液层时,将板上的液滴挟裹到上一层塔板引起浓度返混的现象称为雾沫夹带。

3)液泛当塔板上液体量很大,上升气体速度很高,塔板压降很大时,液体不能顺利地从降液管流下,于是液体在塔板上不断积累,液层不断上升,使塔内整个塔板间都充满积液的现象称为液泛。

2.流体力学性能测定(1)压降在塔板的上面和下面气液分离空间中各设置一个测压口,分别连在U型压差计的两端,可以测定气体通过塔板的压降。

(四)塔板上的液体流动安排

(四)塔板上的液体流动安排

一、塔板结构(一)气液鼓泡区(二)溢流堰(三)降液管(四)塔板上的液体流动安排根据液体流量和塔径的大小,塔板上的液体流量安排有:单溢流、双溢流。

(1)单溢流:塔板上只有一个降液管,一般是弓形的,多用于小塔。

(2)双溢流:塔板上有两个溢流堰,上层塔板的液体分成两半,从左右两个降液管流到下层塔板,再分别流向中间的降液管,径中间的降液管流到下层塔板,再由中央向两侧流动。

特点:液体流径短,液面落差小,由于液气比较大的塔。

塔板结构复杂。

二、塔板上气液两相的流动现象汽液两相的接触状态、液面落差、漏液、液沫夹带、液泛(一)汽液两相的接触状态鼓泡接触状态:汽速低时。

接触面积为气泡的表面。

由于气泡少,接触面小,且气泡表面的湍动程度不强,所以传质阻力大。

泡沫接触状态:随着汽速的增加,气泡的数量不断增多,气泡相连,气泡间形成液膜。

在气泡不断相互碰撞、合并和破裂的过程中,液沫表面不断更新,形成一些直径较小、扰动剧烈的动态泡沫。

塔板上的液体大部分以泡沫之间的液膜形式存在。

特点:接触表面大,且表面不断更新。

有利于传热和传质。

喷射接触状态:汽速再进一步增大,气相以喷射状态穿过液层,将塔板上的液体破碎成许多大小不同的液滴,抛向上方空间。

大液滴落下,小液滴被气相夹带走,成为液沫夹带。

特点:液相为分散相,气体为连续相。

液滴的表面成为传质的表面,传质面积大。

液滴的多次形成与合并使液滴表面不断更新,这些有利于传质和传热。

关于泡沫状态和喷射状态下操作的几个问题:1.通常在泡沫状态、喷射状态或两者的过渡状态(混合泡沫状态)下操作,常压精馏塔多在混合泡沫状态下操作。

2.液体流量一定时,汽速小,泡沫状态;汽速大,喷射状态。

一定的汽速下,液流量大,泡沫状态;液流量小,喷射状态。

总之,L/V大,泡沫状态,L/V小,喷射状态。

3.易挥发组分和难挥发组分的表面张力σ难和σ易相对大小接触状态有影响。

对双组分混合液的σ易<σ难,易在泡沫状态下操作。

板式塔原理

板式塔原理

板式塔原理板式塔是一种常见的化工设备,其原理是利用气体和液体之间的传质和传热作用,实现气体和液体的分离和净化。

板式塔通常由塔体、填料、分布器、进料口、出料口等部分组成,其工作原理复杂而精密,下面将对其原理进行详细介绍。

首先,板式塔的工作原理基于气液两相之间的接触和传质。

在板式塔内,气体从底部进入,经过填料层,与从顶部流下来的液体接触。

在接触的过程中,气体中的有害物质会被液体吸收,从而达到净化的目的。

而填料的作用是增加气液接触的表面积,加快传质速度,提高净化效率。

其次,板式塔利用了气体和液体的重力作用。

在板式塔内,气体由下往上流动,液体由上往下流动,这种逆流运动有利于气液之间的接触和传质。

此外,板式塔中通常会设置分布器,用于均匀分布液体,保证填料层的充分润湿,进一步提高传质效率。

另外,板式塔还利用了气液两相的密度差异。

在板式塔内,气体的密度通常比液体小,因此气体会向上升腾,而液体则向下流动。

这种差异的运动方式有利于气液之间的接触和传质,使得板式塔能够有效地实现气液分离和净化的功能。

此外,板式塔还可以根据需要进行改良和优化。

例如,可以通过改变填料的形状和材质,调整分布器的结构,优化进料口和出料口的设计等方式,提高板式塔的传质效率和净化效果,使其更加适应不同的工艺要求。

总的来说,板式塔是一种利用气液接触和传质作用实现气液分离和净化的化工设备,其工作原理复杂而精密。

通过气液接触、重力作用和密度差异等原理的综合作用,板式塔能够高效地实现气液分离和净化的功能。

同时,板式塔还具有改良和优化的潜力,可以根据需要进行调整和改进,以满足不同工艺的要求。

通过对板式塔原理的深入理解,可以更好地应用和优化板式塔,提高工艺的效率和产品的质量。

板式塔基本知识

板式塔基本知识

在塔板或填料中,气体和液体进行传质和传 热过程,最终实现它们之间的分离。
板式塔的流体力学原理
液体的流动
液体的流动受到重力、摩擦力和惯性力的影响,这些力的大小和方向都会影响液体的流动 状态。
气体的流动
气体的流动则受到重力、压力、摩擦力和浮力的影响,这些力的相互作用决定了气体的流 动状态。
板式塔的流体力学特性
溢流装置的位置
溢流装置的位置应合理设置,以保证液体 分布的均匀性。
溢流装置的类型
溢流装置有多种类型,如堰式、槽式等, 应根据工艺条件和物料性质进行选择。
溢流装置的尺寸
溢流装置的尺寸要与塔盘相适应,以保证 液体能够顺畅地流到下一层塔盘。
降液管的选用与设计
降液管的功能
降液管主要用来使液体从上一层塔 盘流到下一层塔盘,同时防止气体 从下层塔盘反窜到上一层塔盘。
板式塔的分类
1
根据操作原理,板式塔主要分为溢流型和鼓泡 型两种。
2
溢流型板式塔是液体从塔顶进入,通过溢流装 置均匀分布在第一块塔板上,然后逐层流下, 与从塔底进入的气体逆流接触。
3
鼓泡型板式塔则是气体从塔底进入,通过分散 装置将气体分散成小气泡,与从塔顶进入的液 体进行逆流接触。
板式塔的特点
板式塔具有较高的分离效率,能够实现高精度的分离 。
板式塔在制药工业中的应用
总结词
高可靠性、高卫生标准
详细描述
制药工业对于产品的质量和生产过程的可靠性要求非常高。板式塔作为一种高效 、可靠的分离设备,在制药工业中扮演着重要角色。其高可靠性和高卫生标准的 特点,能够满足制药工业对于物料分离和精制的高标准要求。
板式塔在环保工业中的应用
总结词
环保、高效

板式塔流体力学

板式塔流体力学
按拟定的实验步骤进行实验,在获取到必 要的数据后,经指导教师同意,停止实验 操作; 整理实验数据,写实验报告。
化工原理实验教学研究室
四、实验基本操作步骤
(1)检查鼓风机旁路阀与转子流量计阀门的 状态,确认鼓风机旁路阀门开启,转子流 量计阀门关闭; (2)启动泵2,将水箱1中的水输送至塔6顶 部,其流量大小由转子流量计3控制和调节; (3)启动离心式鼓风机4,将空气输送至塔6 底部,其流量大小由转子流量计5控制和调 节;
当塔板在很低的气速下操作时, 会出现漏液现象;在很高的气速下, 又会产生过量的液沫夹带;在气速 和液体负荷均过大时会产生液泛等 几种不正常操作状态。
化工原理实验教学漏液量,并能观 察鼓泡接触、泡沫接触、喷射接触 和液泛等现象。这对于认识和了解 板式塔的各种操作、建立感性认识 有很大帮助。
化工原理实验教学研究室
二、实验原理
必须创造良好的气、液接触条件, 造成较大的接触面积,而且接触 面积应不断更新,以增加传质、 传热推动力; 从全塔总体上,应保证气、液逆 流流动,防止返液和气液短路。
化工原理实验教学研究室
二、实验原理
塔是靠自下而上的气体和自上 而下的液体在踏板上流动时进行接 触而达到传质和传热目的的。因此 在某种意义上来说,塔板的传质传 热性能的好坏主要取决于板上的气 液两相流体力学状态。
化工原理实验教学研究室
二、实验原理
塔板上气、液就出好坏主要取决于流 体的流动状态、两相混合物的物性及塔板 的结构等因素。当液体流量一定时,气体 空塔速度由小到大变动时,可以观察到塔 板上气液接触时的几种操作状态,即鼓泡 接触状态、泡沫接触状态和喷射接触状态 等。
化工原理实验教学研究室
二、实验原理
化工原理实验教学研究室

第六节 板式塔

第六节 板式塔

第六节 板式塔一、塔板的结构型式板式塔的壳体通常为圆筒形,里面沿塔高装有若干块水平的塔板。

传质机理:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。

溢流堰的作用是使塔板上保持一定厚度的液层。

气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。

在塔板上,气液两相密切接触,进行热量和质量的交换。

在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。

为有效地实现气液两相之间的传质,板式塔应具有以下两方面的功能: ①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。

由吸收章可知,当气液两相进、出塔设备的浓度一定时,两相逆流接触时的平均传质推动力最大。

在板式塔内,各块塔板正是按两相逆流的原则组合起来的。

但是,在每块塔板上,由于气液两相的剧烈搅动,是不可能达到充分的逆流流动的。

为获得尽可能大的传质推动力,目前在塔板设计中只能采用错流流动的方式,即液体横向流过塔板,而气体垂直穿过液层。

由此可见,除保证气液两相在塔板上有充分的接触之外,板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。

板式塔的结构1-塔壳体;2-塔板;3-溢流堰;4-受液盘;5-降液管 1 2 3 5 4塔板是板式塔的核心构件,其功能是使气、液两相保持充分的接触,使之能在良好的条件下进行传质和传热传递过程。

塔板上的气液两相流动方式有错、逆流两种,如图5—4所示。

错流塔板在板间设有专供液体流通的降液管(又称溢流管)。

从降液管出来的液体横过塔板,然后再溢流进入另一降液管而到达下一层塔板;气体则经过板上的孔道上升,在每一层塔板上气、液两相呈错流方式接触。

简述板式塔的工作原理及应用

简述板式塔的工作原理及应用

简述板式塔的工作原理及应用1. 引言板式塔是一种常见的分离设备,广泛应用于化工、环保、石油和食品等领域。

它通过将气体或液体通过塔体进行间接接触和传质,以实现分离和纯化的目的。

本文将简述板式塔的工作原理及其应用领域。

2. 工作原理板式塔的工作原理是基于物质之间的传质与分质特性的差异。

在塔内,通过增大物料与气体或液体之间的接触界面,促进物质间的传递,实现塔内物质的分离。

2.1 驱动力板式塔的工作离不开驱动力的作用。

常见的驱动力包括质量传递驱动力和热力传递驱动力。

2.1.1 质量传递驱动力质量传递驱动力是指由于物料浓度或组分差异导致的物质传递。

例如,在气体吸收塔中,通过在液相中溶解气体,利用气体与液体之间的浓度差进行传质。

2.1.2 热力传递驱动力热力传递驱动力是指由于物料温度差异而导致的传热驱动力。

例如,在蒸馏塔中,热力传递驱动力通过加热塔底部液体,使其蒸发,然后在塔顶部冷凝,实现分离纯化。

2.2 传质机制板式塔的传质机制主要有两种:传递、升速和离心等离子传质和湿壁流传质。

2.2.1 传递、升速和离心等离子传质在板式塔中,流体经过转盘孔板和塔板时,会产生传递、升速和离心等力的作用,从而增大传质速度,提高传质效率。

2.2.2 湿壁流传质湿壁流传质是指气体或液体从板式塔壁面上通过薄膜的方式传质。

薄膜与壁面的接触面积较大,传质速率较快。

3. 应用领域板式塔广泛应用于化工、环保、石油和食品等领域,以下列举几个常见的应用场景。

3.1 萃取分离板式塔可用于化工生产中的溶剂萃取分离过程。

通过固定的提取剂将目标物质从溶液中提取出来,以实现物质的分离纯化。

3.2 洗涤过程在化工和食品行业中,板式塔常用于洗涤过程中的废气处理,如除去氨气、硫化氢等有害物质。

3.3 反应器冷却板式塔还可用于化工生产中的反应器冷却过程。

通过在塔内引入冷却剂与反应产生的热量进行传热,以降低反应温度。

3.4 吸收塔吸收塔是板式塔的一种常见应用形式。

板式塔的工作原理

板式塔的工作原理

板式塔的工作原理
板式塔是一种常用的分离设备,其工作原理是通过气体和液体之间的质量传递和相互接触来实现物质的分离。

板式塔由塔体、填料层、液体分布器和气体分布器等组成。

气体和液体进入塔体后,通过液体分布器均匀地分布在填料层上。

填料层是由许多塔板叠放而成的,塔板上通常装有填料物质,如圆环状填料或网状填料,用于增加接触面积,促进气体和液体之间的质量传递。

填料层的多层堆叠形式有效地增加了传质面积,提高了分离效果。

当气体在填料层中上升时,与填料物质接触并进行质量传递。

气体中的组分在填料层中与液体发生物质传递,使液体中的溶质被气体带走,从而实现气体的净化或液体的分离。

此外,填料层还可以增加气液界面的接触时间,提高传质效率。

在板式塔中,还设置了气体分布器和液体分布器。

气体分布器的作用是将气体均匀地引入塔体,避免局部流量过大或过小,影响分离效果。

液体分布器则用于将液体均匀地分布在填料层上,保证液体与气体充分接触,提高分离效率。

板式塔还可以通过调节操作参数来控制分离效果。

例如,可以通过调节进料流量、塔体压力和温度等参数来改变气体和液体的流动状态,从而实现不同物质的分离。

板式塔利用填料层增加气液接触面积和接触时间,通过质量传递实现气体和液体的分离。

其工作原理简单明了,可以根据不同的需求进行调节和优化,广泛应用于化工、石油、环保等领域中的气体净化和液体分离过程中。

对于工业生产过程中的分离和净化操作,板式塔是一种高效可靠的设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板式塔内流体的流动
操作时,塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。

溢流堰的作用是使塔板上保持一定厚度的液层。

气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。

在塔板上,气液两相密切接触,进行热量和质量的交换。

在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。

一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。

塔板可分为有降液管式塔板(也称溢流式塔板或错流式塔板)及无降液管式塔板(也称穿流式塔板或逆流式塔板)两类,在工业生产中,以有降液管式塔板应用最为广泛,在此只讨论有降液管式塔板。

6.9.2 塔内气、液两相的流动
目标:塔内气、液两相异常流动及塔板上流动状态
(1)塔内气、液两相异常流动
a. 液泛
气、液两相在塔内总体上呈逆行流动,并在塔板上维持适宜的液层高度,气、液两相适宜接触状态,进行接触传质。

如果由于某种
原因,使得气、液两相流动不畅,使板上液层迅速积累,以致充满整个空间,破坏塔的正常操作,称此现象为液泛,如图 6.9.2所示。

根据液泛发生原因不同,可分为两种不同性质的液泛。

·过量雾沫夹带液泛
雾沫夹带造成返混,降低塔板效率。

少量夹带不可避免,只有过量的夹带才能引起严重后果。

液沫夹带有两种原因引起,其一是气
相在液层中鼓泡,气泡破裂,将雾沫弹溅至上一层塔板。

可见,增加板间距可减少夹带量。

另一种原因是气相运动是喷射状,将液体分散并可携带一部分液沫流动,此时增加板间距不会奏效。

随气速增大,使塔板阻力增大,上层塔板上液层增厚,塔板液流不畅,液层迅
速积累,以致充满整个空间,即液泛。

由此原因诱发的液泛为液沫夹带液泛。

开始发生液泛时的气速称之为液泛气速。

相关文档
最新文档