板式塔流体力学实验

合集下载

板式塔流体力学性质

板式塔流体力学性质

化工基础实验报告实验名称板式塔流体力学实验班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林一、实验目的1、观察塔板上气、液两相流动时的特性。

2、测量气体通过塔板的压力降与空塔气速的关系,测定雾沫夹带量、漏液量与气速的关系。

3、研究板式塔负荷性能图的影响因素,做出筛孔塔板的负荷性能图。

二、实验原理当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。

当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相符合均过大时,还会产生液泛这种不正常的操作状态。

塔板的气液正常操作区通常以塔板的负荷性能图表示。

当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验测定。

三、实验装置与流程1、塔主体是用有机玻璃制成的,分段用法兰连接。

2、风源:罗茨鼓风机,D22 / 5型;风压:3500mm H2O;风量5m3/min。

3、气液流量测量用转子流量计:LZB-50,气体流量16~160m3/h。

LZB-25,液体体积流量100~1000 L/h4、U型管压差计:指示液为水,测量范围0~700 mm H2O实验装置图如下:1-水箱;2-泵;3-液体流量计;4-气体流量计;5-压差计;6-板式塔四、实验步骤及注意事项1、熟悉实验装置流程,了解各部分作用。

2、在启动气路前,要检查罗茨鼓风机旁路阀是否开启,转子流量计阀门是否关闭,以免损坏设备。

3、测量干板阻力降与气速关系。

4、启动水泵。

启动前要检查水泵内是否充满水,转动泵的联轴节是否灵活,关闭泵的出口阀门。

5、在一定的喷淋密度下,测定塔板的压降、漏液量和雾沫夹带与空塔速度的关系。

6、改变喷淋密度,重复5的内容。

7、实验结束,先关水,后关气。

五、实验原始数据表格1、设备参数塔内径D=2000mm;堰长l w=130mm;堰高ℎw=30mm;堰宽w d=27mm;孔径d0=8mm;孔数n=36;t=20mm;开孔率φ=12.6%2、原始数据记录表1、干板压降2、不同喷淋密度下的操作状态六、数据处理1、对原始数据表格中的数据进行换算塔半径r=0.1m,则塔截面积A = 0.0314m2;空塔气速=流量÷截面积÷3600;压降(pa)=ρgh=压降(mmH2O)×9.8×1000÷1000=压降(mmH2O)×9.8;漏液量(ml/s)=夹带量/时间;夹带量(ml/s)=夹带量/时间;换算后的数据列表如下:干板气速-压降关系2、干板及各种喷淋密度下压力降与空塔速度的关系曲线(1)空塔压降与气速的关系:对压降与气速取对数做双对数图如下:拟合出的直线斜率为1.43,与理论值2相差较大,原因暂时还不是很清楚,可能是由于塔设备相对于直管路的不理想程度比较大,也有可能是某些参数的错误,但这样大的差距必然有其内在的原因,目前还不能从根本上得出具体的结论。

板式塔的实验报告

板式塔的实验报告

实验名称:板式塔流体力学性能测定学生姓名:[你的姓名]学号:[你的学号]指导教师:[指导教师姓名]生助教:[生助教姓名]实验日期:[实验日期]交报告日期:[交报告日期]一、实验目的1. 了解板式塔的结构和工作原理。

2. 掌握板式塔的流体力学性能测定方法。

3. 分析不同操作条件下板式塔的流体力学性能。

4. 培养实验操作能力和数据处理能力。

二、实验原理板式塔是一种常用的分离设备,广泛应用于化工、石油、食品等行业。

板式塔的工作原理是利用气液两相在塔板上的接触、传质和分离作用,实现物质的分离。

本实验通过测定板式塔的流体力学性能,包括塔板压降、液相流量、气相流量等参数,分析不同操作条件下板式塔的流体力学性能。

三、实验装置与仪器1. 实验装置:板式塔、进料泵、流量计、压力计、温度计、流量调节阀、冷却水系统等。

2. 实验仪器:秒表、卷尺、计算器、数据采集器等。

四、实验步骤1. 搭建实验装置,检查各连接部分是否严密。

2. 将进料泵、流量计、压力计、温度计等仪器与板式塔连接。

3. 开启冷却水系统,保持实验温度稳定。

4. 调节进料泵,控制进料流量。

5. 测量塔板压降、液相流量、气相流量等参数。

6. 改变操作条件(如进料流量、塔板间距等),重复步骤5,记录实验数据。

7. 对实验数据进行处理和分析。

五、实验结果与分析1. 塔板压降:塔板压降是衡量板式塔流体力学性能的重要指标。

实验结果表明,塔板压降随液相流量和气相流量的增加而增加,这与流体力学原理相符。

2. 液相流量:液相流量是影响板式塔分离效果的重要因素。

实验结果表明,液相流量与塔板压降呈正相关关系,即液相流量越大,塔板压降越大。

3. 气相流量:气相流量对板式塔的分离效果也有较大影响。

实验结果表明,气相流量与塔板压降呈正相关关系,即气相流量越大,塔板压降越大。

4. 操作条件对流体力学性能的影响:实验结果表明,改变进料流量和塔板间距对板式塔的流体力学性能有显著影响。

增大进料流量和塔板间距,塔板压降增大,分离效果降低。

板式塔流体力学性能测定 实验报告

板式塔流体力学性能测定 实验报告

化学实验教学中心实验报告化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告学生姓名:学号:院(系):年级:级班指导教师:研究生助教:实验日期: 2017.05.25 交报告日期: 2017.06.01(3) 当气流速度略微增加时,塔板上积液层将很快上升到溢流堰的高度,塔板压力降也随之急剧增大。

当液体开始由溢流堰溢出时,为另一个转折点,如图中B 点。

这时,仍有部分液体从筛孔中泄漏下去。

自该转折点之后,随着气流速度增大,液体的泄漏量不断减少,而塔板压力降却变化不大。

(4) 当气流速度继续增大到某一数值时,液体基本上停止泄漏,则称该转折点为泄漏点,如图中C 点。

自C点以后,塔板的压力降随气速的增加而增大。

(5)当气速高达某一极限值时,塔板上方的雾沫挟带将会十分严重、或者发生液泛。

自该转折点(如图中D点)之后,塔板压降会随气速迅速增大。

塔板上形成稳定液层后,塔板上气液两相的接触和混和状态,也将随着气速的改变而发生变化。

当气速较较小时,气体以鼓泡方式通过液层。

随着气速增大,鼓泡层逐渐转化为泡沫层,并在液面上形成的雾沫层也将随之增大。

对传质效率有着重要作用的因素是充气液层的高度及其结构。

充气液层的结构通常用其平均密度大小来表示。

如果充气液层的气体质量相对于液体质量可略而不计,则h fρf= h1ρl(4)式中,h f 、h1分别为充气液层和静液层的高度,m;ρf、ρl分别为充气液层的平均密度和静液层的密度,kg· m– 3;若将充气液层的平均密度之比定义为充气液层的相对密度,即∅=ρfρl=ℎlℎf则单位体积充气液层中滞留的气体量,即持气量可按下式计算:V g=(ℎf−ℎl)/ℎf=1−∅ m3∙m−3(5)单位体积充气液层中滞留的液体量,即持液量可按下式计算:V l=ℎl/ℎf=∅ m3∙m−3(6)气体在塔板上的液层的平均停留时间为:t g=[ℎf S(1−∅ )]V s =ℎfu0(1−∅) s (7)液体在塔板上的平均停留时间为图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线t l =ℎf ∙S∙∅L s=ℎf ∅Ws (8)式中,S 为空塔横截面积,m 2;V s 为气体体积流率,m 3∙s −1;L s 为液体体积流率,m 3∙s −1;W 为液体喷淋密度,m 3∙m −2∙s −1;u 0 为气体的空塔速度,m ∙s −1。

板式塔演示实验实验大纲

板式塔演示实验实验大纲

《板式塔演示实验》实验大纲一、仪器设备简介1、塔主体是用有机破璃制成,其主要参数如下:塔内径D=310mm板间距H=300mm其它结构尺寸如开孔率φ,孔径等应根据板的结构测量求得。

2、风源;3、流体流量测量用转子流量计实验流程见下图分离器雾沫夹带收集处热球风速仪水箱漏液收集处塔设备实验装置图二、试验目的、任务1、熟悉塔板结构。

2、考察在正常操作时气液两相在塔板上的接触状态,同时观察不正常的流动——漏液、雾沫夹带及液泛现象。

3、塔板流体力学性能。

三、实验原理及步骤1、实验原理:实现吸收过程和精馏过程的主要设备是塔设备,而板式塔是广泛应用的一种气液传质设备,研究塔板结构和操作参数是工程技术人员必不可少的工作。

在板式塔设计中,塔板的设计关系到生产处理能力、效率、操作弹性及操作费用。

因此,研究其结构参数、操作参数、塔板负荷性能是从事这方面工作人员的研究课题。

(1)塔板压降:板压降对塔板性能有着重要的影响,特别是在减压精馏时,对板压降有所限制。

在实验中可用压差计来测取板压降。

(2)气液接触状态:一般说来,在气液接触过程中,随着气流速度的变化,大致有三种状态。

①鼓泡接触。

当气流速度很低时,气体通过筛孔时断裂成气泡,在板上浮升,此时,形成的气液混合物基本上以液体为主(连续相),气泡占的比例较小(分散相),气液接触面积不大。

②泡沫接触状态。

当气流速度增加,气泡数量急剧增加,气泡表面连成一片,并且不断发生合并与破裂,此时板上液体大部分以液膜形式存在,仅在靠近塔板表面处才能看到清液,清液层高度随气流速度增加而减少。

此时,液体仍为连续相,气体为分散相。

③喷射接触。

当气流速度很高时,由于气体动能很大,不能形成气泡,而把液体喷射成液滴,而被气流抛起。

直径较大液滴因为重力作用又落到塔板上,直径较小液滴容易被气流带走形成液沫夹带,这种气液接触状态称喷射状态。

在喷射接触情况下,气流速度很大,液体分散较好,对传质传热是有利的,但产生过量液沫夹带,会影响和破坏传质过程。

实验十二板式塔流体力学状态观测

实验十二板式塔流体力学状态观测

实验十二 板式塔流体力学状态观测一、实验目的1、了解不同类型塔板的结构及流体力学性能,包括:气体通过塔板的阻力、板上鼓泡情况、漏夜情况、雾沫夹带及液泛等。

2、了解风量和水量改变时,各塔板操作性能的变化规律。

3、在相同的操作条件(风量、水量)下比较各塔板的操作性能。

二、实验装置来自风机的空气经转子流量计,由塔底入塔。

经过各塔板,最后经塔顶金属网除雾器后放空。

泵将水打入转子流量计后送入塔顶,与空气逆向接触后,流入塔底的循环水槽(同时起水封作用)循环使用。

有机玻璃制冷模塔内径为φ140,内装有四块不同类型的筛板、泡罩、浮阀和舌形板塔板,塔板间距为150毫米,各塔板均设有弓形降液管:筛孔板:板上有67个φ4直孔,呈等腰三角形排列,开孔率5.5%。

水封循环水槽泡罩板浮阀板舌型板筛板丝网除沫气放空浮阀筛板泡罩全塔舌型泡罩塔板:板上安装φ50×3泡罩两个,泡罩开有15×3气缝30条,,板上开有泪孔,以便在停车时能将塔板上积存的液体排净。

浮阀塔板:装有2个标准F型不锈钢浮阀。

升气孔为φ39阀重33g,浮阀的最小开度为2.5mm,最大开度为8.5mm。

舌形板:板上有五个舌形开孔,喷出角为20°,气液流向一致可减少液面落差和避免板上液体“返混”,舌形板不设溢流堰。

各板均有引压管,用以测定各单板和全塔压降。

三、实验方法及注意事项1.检查泵出口回流阀是否全开。

开启循环泵,逐渐关小回流阀调节水流量到一定值。

2.检查空气流量计前放空阀是否全开。

开启风机,逐渐关小放空阀将风量调到合适。

3.观察正常操作时的情况。

4、关闭水量或气量到偏小,观察各板情况。

5、开大水量或气量到偏大,观察各板情况。

6、实验完毕,开大回流水阀,关泵;开大放空阀,停风机。

四、现象观察1、结构了解观察每块板的结构;舌形板与其它板比较在气液接触方向和接触方式的差别;了解塔底排水水封;了解如何测定每块板的压降;了解如何测定板上清液层的高度;2、正常操作下的现象观察与比较:观察:舌形板的操作特点,观察喷射三角区;降液管内气泡夹带情况;各板的气液接触区和分离空间,在分离区的液滴夹带情况;观察分析:筛板、泡罩板、浮阀板的气液接触情况,判断板效率情况;结合各板的结构特点,结合板效率,评价各板。

板式塔流体力学性能测定-实验报告

板式塔流体力学性能测定-实验报告

化学实验教学中心
实验报告
化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告
学生姓名:学号:
院(系):年级:级班
指导教师:研究生助教:
实验日期: 2017.05.25 交报告日期: 2017.06.01
图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线
塔板上形成稳定液层后,塔板上气液两相的接触和混和状态,也将随着气速的改变而发生变化。

当气速较较小时,气体以鼓泡方式通过液层。

随着气速增大,鼓泡层逐渐转化为泡沫层,并在液面上形成的雾沫层也将随之增大。

对传质效率有着重要作用的因素是充气液层的高度及其结构。

充气液层的结构通常用其平均密度大小来表示。

如果充气液层的气体质量相对于液体质量可略而不计,则
h fρf= h1ρl(4)
调节阀和孔板流量计进入塔底。

通过塔板的尾气由塔顶排出。

气体通过塔板的压力降由压差计显示。

图3 筛板塔
1.塔体;
2.筛孔塔板;
3.漏液排放口;
4.温度计;
5.溢流装置
图4 板式塔流动特性实验装置流程
空气源;2.放空阀;3.消声器;4.孔板流量计;5.U型水柱压差计;6. U型汞柱压差计;
7.板式塔;转子流量计;9. U型水柱塔压差计;10.高位槽;11.排水管。

北京化工大学实验报告——板式塔的流体力学性能的测定

北京化工大学实验报告——板式塔的流体力学性能的测定

实验五板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、普通筛板、导向筛板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。

4、观察流体在塔板上的流动状态。

三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。

塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。

实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。

通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。

图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。

孔板流量计计算公式:0v q C A =由《化工原理》查询孔流系数,并计算气体流量。

测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。

干板压降经验式:()220'00.051()1vd Lw h C ρϕρ=- ϕ-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱;'0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制)2、测定湿板压降和夹带、漏液调节气体流量为一定值,打开转子流量计。

固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。

每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。

计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。

3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。

板式塔流体力学实验报告

板式塔流体力学实验报告

板式塔流体力学实验报告引言本实验旨在研究板式塔的流体力学特性。

板式塔是一种常用于化工领域的设备,用于分离液体混合物中的组分。

通过实验观察和数据分析,我们可以了解板式塔的流体流动行为,从而优化塔的设计和操作参数,提高分离效率。

实验装置和方法实验中使用的板式塔装置由一根垂直立管和多层水平放置的板组成。

我们通过向塔底注入液体混合物,控制流量和温度,观察在不同操作条件下的塔内流体流动情况。

实验结果与分析根据实验数据,我们可以得出以下结论:1. 流体流动模式在不同操作条件下,板式塔内流体的流动模式会发生变化。

当流速较低时,流体呈现层流状态,流线整齐有序;而当流速增加时,流体会变为湍流状态,流线杂乱无序。

这对于塔内物质传递和分离过程有着重要影响。

2. 流体分布在塔内的不同位置,流体的浓度和温度分布不均匀。

通常情况下,塔底的浓度较高,而塔顶的浓度较低。

这是由于塔内的物质传递和分离过程导致的。

3. 塔板效率塔板效率是评价板式塔分离效果的重要指标。

通过实验观察和数据分析,我们可以计算出塔板效率,并比较不同操作条件下的效率差异。

从实验结果可以看出,塔板效率随着流速的增加而提高,但也存在一个最佳操作点,超过此点后效率会下降。

结论本实验通过观察和数据分析,深入了解了板式塔的流体力学特性。

我们发现流体流动模式、流体分布和塔板效率对于塔的设计和操作至关重要。

在实际应用中,我们可以根据不同的分离要求和操作条件,优化塔的结构和操作参数,以提高分离效率。

通过本实验,我对板式塔的流体力学特性有了更深入的了解。

我将继续深入研究和探索,在化工领域的实际应用中发挥作用,为工业生产提供技术支持和解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.再进一步关小气阀 再进一步关小气阀 当气速大大小于设计气速时,泡沫层明显减少, 当气速大大小于设计气速时,泡沫层明显减少, 因为鼓泡少, 液两相接触面积大大减少, 因为鼓泡少,气、液两相接触面积大大减少, 显然,这是各类型塔不正常运行状态。 显然,这是各类型塔不正常运行状态。 7.再慢慢关小气阀 再慢慢关小气阀 可以看见塔板上既不鼓泡、 可以看见塔板上既不鼓泡、液体也不下漏的现 若再关小气阀, 象。若再关小气阀,则可看见液体从塔板上漏 这就是塔板的漏液点。 出,这就是塔板的漏液点。
够大时,塔板上的液体会有一部分从筛孔漏下, 够大时,塔板上的液体会有一部分从筛孔漏下, 这样就会降低塔板的传质效率。 这样就会降低塔板的传质效率。因此一般要求 塔板应在不漏液的情况下操作。所谓“漏液点” 塔板应在不漏液的情况下操作。所谓“漏液点” 是指刚使液体不从塔板上泄漏时的气速。 是指刚使液体不从塔板上泄漏时的气速。 液泛点 当气速大到一定程度, 当气速大到一定程度,液体就不再从 降液管下流,而是从下塔板上升, 降液管下流,而是从下塔板上升,这就是板式 塔的液泛。液泛速度也就是达到液泛时的气速。 塔的液泛。液泛速度也就是达到液泛时的气速。
实验九
板式塔流体力学实验
教师: 教师:张晓艳
一、实验目的
1.观察板式塔各类型塔板的结构, 1.观察板式塔各类型塔板的结构,比较各塔板 观察板式塔各类型塔板的结构 上的气液接触状况。 上的气液接触状况。 2.实验研究板式塔的极限操作状态, 2.实验研究板式塔的极限操作状态,确定各塔 实验研究板式塔的极限操作状态 板的漏液点和液泛点。 板的漏液点和液泛点。
三、实验装置
4
5 6 7 8 3 2 1
图 9-4 塔板流体力学演示实验 1-增压水泵,2-调节阀,3-转子流量计,4-有降液管筛孔板,5- 浮阀塔板,6-泡罩塔板,7-无降液管筛孔板,8-风机。
四、操作步骤
1.实验开始前,先检查水泵和风机电源, 1.实验开始前,先检查水泵和风机电源,并保 实验开始前 持所有阀门全关状态。 持所有阀门全关状态。 2.打开水泵出口调节阀,开启水泵电源。观察 2.打开水泵出口调节阀,开启水泵电源。 打开水泵出口调节阀 液流从塔顶流出的速度, 液流从塔顶流出的速度,通过水转子流量计调 节液流量在转子流量计显示适中的位置,并保 节液流量在转子流量计显示适中的位置, 持稳定流动。 持稳定流动。
4.全开气阀 4.全开气阀 这种情况气速达到最大值, 这种情况气速达到最大值,此时可看到泡沫层 很高,并有大量液滴从泡沫层上方往上冲,这 很高,并有大量液滴从泡沫层上方往上冲, 就是雾沫夹带现象。 就是雾沫夹带现象。这种现象表示实际气速大 大超过设计气速。 大超过设计气速。 5. 逐渐关小气阀 这时飞溅的液滴明显减少,泡沫层高度适中, 这时飞溅的液滴明显减少,泡沫层高度适中, 气泡很均匀,表示实际气速符合设计值, 气泡很均匀,表示实际气速符合设计值,这是 各类型塔正常运行状态。 各类型塔正常运行状态。
浮阀塔
是在20世纪40来的, 20世纪40 年代才发展起来的
现在使用很广。 现在使用很广。其特点是当气流在较大范围内 波动时均能稳定地操作,弹性大,效率好, 波动时均能稳定地操作,弹性大,效率好,适 应性强。 应性强。
漏液点
可以设想,在一定液量下, 可以设想,在一定液量下,当气速不
3.打开风机出口阀, 3.打开风机出口阀,打开有降液管的筛孔板下 打开风机出口阀 对应的气流进口阀,开启风机电源。 对应的气流进口阀,开启风机电源。通过空气 转子流量计自小而大调节气流量, 转子流量计自小而大调节气流量,观察塔板上 气液接触的几个不同阶段,即由漏液至鼓泡、 气液接触的几个不同阶段,即由漏液至鼓泡、 泡沫和雾沫夹带到最后淹塔。 泡沫和雾沫夹带到最后淹塔。
1.常用塔板类型 1.常用塔板类型 这是最早应用于生产上的塔板之一, 泡罩塔 这是最早应用于生产上的塔板之一, 因其操作性能稳定,故一直到20世纪40年代还 因其操作性能稳定,故一直到20世纪40年代还 20世纪40 在板式塔中占绝对优势。 在板式塔中占绝对优势。泡罩塔特别适用于容 易堵塞的物系。 易堵塞的物系。 筛板塔也是最早出现的塔板之一。 筛板塔 筛板塔也是最早出现的塔板之一。筛 板塔的优点是构造简单、造价低, 板塔的优点是构造简单、造价低,此外也能稳 定操作,板效率也较高。 定操作,板效率也较高。缺点是小孔易堵
二、实验原理 板式塔是一种应用广泛的气液两相接触并 进行传热、传质的塔设备,可用于吸收(解 进行传热、传质的塔设备,可用于吸收( 吸)、精馏和萃取等化工单元操作。与填料塔 )、精馏和萃取等化工单元操作。 精馏和萃取等化工单元操作 不同,板式塔属于分段接触式气液传质设备, 不同,板式塔属于分段接触式气液传质设备, 塔板上气液接触的良好与否和塔板结构及气液 两相相对流动情况有关, 两相相对流动情况有关,后者即是本实验研究 的流体力学性能。 的流体力学性能。
相关文档
最新文档