七年级数学下册《消元法解二元一次方程组》同步练习题(含答案)
人教版初中数学7年级下册第8章 二元一次方程组 同步试题及答案(23页)
第八章 二元一次方程组测试1 二元一次方程组学习要求理解二元一次方程、二元一次方程组及它们的解的含义;会检验一对数是不是某个二元一次方程(组)的解.一、二元一次方程的概念:(1)方程中含有两个未知数,即未知数的系数不能为______ (2)含有未知数的项的次数都是____(3)二元一次方程是整式方程,即等式的两边必须都是整式(分母中不含有未知数) 二、二元一次方程组的概念: (1)两个方程都是一次方程 (2)方程组中共含有两个未知数课堂学习检测一、填空题1.方程2x m +1+3y 2n =5是二元一次方程,则m =______,n =______. 2.如果⎩⎨⎧==2,1y x 是二元一次方程3mx -2y -1=0的解,则m =______. 3.在二元一次方程组⎩⎨⎧-==-ym x y x 32,4中有x =6,则y =______,m =______.4.若⎩⎨⎧==2,1y x 是方程组⎩⎨⎧=+=-3,0by x y ax 的解,则a =______,b =______.5.方程(m +1)x +(m -1)y =0,当m ______时,它是二元一次方程,当m ______时,它是一元一次方程. 二、选择题6.下列各式中,是关于x ,y 的二元一次方程的是( ). (A)2x -y(B)xy +x -2=0(C)x -3y =-1(D)02=-y x7.下列方程组中,是二元一次方程组的是( ). (A)⎩⎨⎧=-=+.31,52x y x(B)⎩⎨⎧⋅-==-y x y x 423,1)(2(C)⎩⎨⎧==+.1,122y y x(D)⎪⎩⎪⎨⎧=-=.2,1y x x y 8.已知二元一次方程组⎩⎨⎧=+=+②①923,545y x y x 下列说法正确的是( ).(A)适合方程②的x ,y 的值是方程组的解(B)适合方程①的x ,y 的值是方程组的解(C)同时适合方程①和②的x ,y 的值是方程组的解(D)同时适合方程①和②的x ,y 的值不一定是方程组的解 9.方程2x -y =3与3x +2y =1的公共解是( ). (A)⎩⎨⎧-==.3,0y x(B)⎩⎨⎧-==.1,1y x(C)⎪⎩⎪⎨⎧⋅==21,0y x(D)⎪⎩⎪⎨⎧-==.2,21y x三、解答题10.写出二元一次方程2x +y =5的所有正整数解.11.已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+23,4y nx my x 的解是⎩⎨⎧-==,3,1y x 求m +n 的值.综合、运用、诊断一、填空题12.已知(k -2)x |k |-1-2y =1,则k ______时,它是二元一次方程;k =______时,它是一元一次方程. 13.若|x -2|+(3y +2x )2=0,则yx的值是______. 14.二元一次方程4x +y =10共有______组非负整数解.15.已知y =ax +b ,当x =1时,y =1;当x =-1时,y =0,则a =______,b =______. 16.已知⎩⎨⎧-==1,2y x 是二元一次方程mx +ny =-2的一个解,则2m -n -6的值等于_______.二、选择题17.已知二元一次方程x +y =1,下列说法不正确的是( ).(A)它有无数多组解 (B)它有无数多组整数解 (C)它只有一组非负整数解 (D)它没有正整数解 18.若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4 (B)-3∶4 (C)-1∶4 (D)-1∶12 三、解答题19.已知满足二元一次方程5x +y =17的x 值也是方程2x +3(x -1)=12的解,求该二元一次方程的解.20.根据题意列出方程组:(1)某班共有学生42人,男生比女生人数的2倍少6人,问男、女生各有多少人?(2)某玩具厂要生产一批玩具,若每天生产35个,则差10个才能完成任务;若每天生产40个,则可超额生产20个.求预定期限是多少天?计划生产多少个玩具?拓展、探究、思考 21.若等式0|21|)42(2=-+-y x 中的x 、y 满足方程组⎩⎨⎧=+=+,165,84n y x y mx 求2m 2-n +41mn 的值.22.现有足够的1元、2元的人民币,需要把面值为10元人民币换成零钱,请你设计几种兑换方案.测试2 消元(一)学习要求会用代入消元法解二元一次方程组.课堂学习检测一、填空题1.已知方程6x -3y =5,用含x 的式子表示y ,则y =______.2.若⎩⎨⎧-==1,1y x 和⎩⎨⎧==3,2y x 是关于x ,y 的方程y =kx +b 的两个解,则k =______,b =______.3.在方程3x +5y =10中,若3x =6,则x =______,y =______.二、选择题 4.方程组⎩⎨⎧=++=143,5y x y x 的解是( ).(A)无解(B)无数解(C)⎩⎨⎧=-=.3,2y x(D)⎩⎨⎧-==.2,3y x5.以方程组⎩⎨⎧-=+-=1,2x y x y 的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限6.下列方程组中和方程组⎩⎨⎧=+-=732,43y x y x 同解的是( ).(A)⎩⎨⎧=+=.732,11y x x(B)⎩⎨⎧=+=.732,5y x y(C)⎩⎨⎧=+--=.7386,43y x y x(D)⎩⎨⎧-==.43,1y x x三、用代入消元法解下列方程 7.⎩⎨⎧=+=+.53,1y x y x8.⎩⎨⎧=+=+.643,02b a b a综合、运用、诊断一、填空题9.小明用36元买了两种邮票共40枚,其中一种面值1元,一种面值0.8元,则小明买了面值1元的邮票______张,面值0.8元的邮票______张. 10.已知⎩⎨⎧-==.2,1y x 和⎩⎨⎧==.0,2.y x 都是方程ax -by =1的解,则a =______,b =______.11.若|x -y -1|+(2x -3y +4)2=0,则x =______,y =______.二、选择题12.用代入消元法解方程组⎩⎨⎧=-=+②①52,243y x y x 使得代入后化简比较容易的变形是( ).(A)由①得342yx -= (B)由①得432xy -=(C)由②得25+=y x (D)由②得y =2x -5 13.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y14.把x =1和x =-1分别代入式子x 2+bx +c 中,值分别为2和8,则b 、c 的值是( ).(A)⎩⎨⎧==4,3c b(B)⎩⎨⎧-==4,3c b(C)⎩⎨⎧-=-=4,3c b(D)⎩⎨⎧=-=4,3c b三、用代入消元法解下列方程组 15.⎩⎨⎧-=-=-.234,423x y y x16.⎩⎨⎧==-.3:4:,52y x y x拓展、探究、思考17.如果关于x ,y 的方程组⎪⎩⎪⎨⎧-=-+=-321,734k y x k y x 的解中,x 与y 互为相反数,求k 的值.18.研究下列方程组的解的个数:(1)⎩⎨⎧=-=-.342,12y x y x (2)⎩⎨⎧=-=-.32,12y x y x (3)⎩⎨⎧=-=-.242,12y x y x你发现了什么规律?19.对于有理数x ,y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值测试3 消元(二)学习要求会用加减消元法解二元一次方程组.课堂学习检测一、填空题1.已知方程组⎩⎨⎧-=-=-②①138,447y x y x 方程②-①得______.2.若x -y =2,则7-x +y =______. 3.已知⎩⎨⎧==4,3y x 是方程组⎩⎨⎧=+=+256,7y a by ax 的解,那么a 2+2ab +b 2的值为______.二、选择题 4.方程组⎩⎨⎧=-=+7283y x y x 的解是( ).(A)⎩⎨⎧-=-=.1,3y x(B)⎩⎨⎧=-=.3,1y x(C)⎩⎨⎧-==.1,3y x(D)⎩⎨⎧=-=.1,3y x三、用加减消元法解下列方程组 5.⎩⎨⎧=+=+.1543,2525y x y x6.⎩⎨⎧=-=+.05,1323n m n m综合、运用、诊断一、填空题7.用加减消元法解方程组⎩⎨⎧-=+=-②235,623b a b a ①时,把①×3+②×2,得_______.8.已知二元一次方程组⎩⎨⎧=+=+②①8272,y x y x 那么x +y =______,x -y =______.9.已知方程ax +by =8的两个解为⎩⎨⎧=-=0,1y x 和⎩⎨⎧==4,1y x 则a +b =______.二、选择题10.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°.设∠BAE和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的方程组是( )(A)⎩⎨⎧=+=-.90,48x y x y(B)⎩⎨⎧==-.2,48x y x y(C)⎩⎨⎧=+=-.902,48x y x y(D)⎩⎨⎧=+=-.902,48x y y x11.下列方程组中,只有一组解的是( ).(A)⎩⎨⎧=+=+.033,1y x y x(B)⎩⎨⎧=+=+.333,0y x y x(C)⎩⎨⎧=-=+.333,1y x y x(D)⎩⎨⎧=+=+.333,1y x y x12.关于x ,y 的方程组⎩⎨⎧=-=+1935,023by ax by ax 的解为⎩⎨⎧-==.1,1y x 则a ,b 的值分别为( ).(A)2和3 (B)2和-3(C)-2和3(D)-2和-3三、用加减消元法解下列方程组13.⎩⎨⎧=-=+.732,423t s t s14.⎪⎪⎩⎪⎪⎨⎧=+-=-.732,143n m nm15.已知使3x +5y =k +2和2x +3y =k 成立的x ,y 的值的和等于2,求k 的值.拓展、探究、思考16.已知:关于x ,y 的方程组⎩⎨⎧=++=-02254,53by ax y x 与⎩⎨⎧-=+=-53,8y x by ax 的解相同.求a ,b 的值.17.已知⎩⎨⎧=+-=++②①.15232,25c b a c b a 求b 的值.18.甲、乙两人同时解方程组⎩⎨⎧-=-=+.23,2y cx by ax 甲正确解得⎩⎨⎧-==;1,1y x 乙因为抄错c 的值,错得⎩⎨⎧-==.6,2y x 求a ,b ,c 的值.测试4 消元(三)学习要求能选择适当的消元方法解二元一次方程组及相关问题.课堂学习检测一、填空题1.二元一次方程x +y =4有______组解,有_______组正整数解.2.二元一次方程2x -y =10,当x =______时,y =5;当x =5,y =______. 3.若⎩⎨⎧⋅-==1,1y x 是方程组⎩⎨⎧-=-=+124,2a by x b y ax 的解,则a =_______,b =_______.二、选择题4.已知2a y +5b 3x 与b 2-4y a 2x 是同类项,那么x ,y 的值是( ).(A)⎩⎨⎧=-=.2,1y x(B)⎩⎨⎧-==.1,2y x(C)⎪⎩⎪⎨⎧⋅-==53,0y x(D)⎩⎨⎧==.0,7y x5.若x ∶y =3∶4,且x +3y =-10,则x ,y 的值为( ).(A)⎪⎩⎪⎨⎧⋅==38,2y x(B)⎪⎩⎪⎨⎧⋅-=-=38,2y x(C)⎩⎨⎧-=-=.3,1y x(D)⎩⎨⎧==.4,3y x6.在式子x 2+ax +b 中,当x =2时,其值是3;当x =-3时,其值是3;则当x =1时,其值是( ). (A)5 (B)3 (C)-3 (D)-1 三、选择合适的方法解下列方程组 7.⎩⎨⎧⋅-==-y x y x 2113,238.⎩⎨⎧-=++=-).3(3)1(2),3(2)1(5n m n m综合、运用、诊断一、填空题9.若2x -5y =0,且x ≠0,则yx yx 5656+-的值是______.10.若⎩⎨⎧==⎩⎨⎧-==2,21,1y x y x 和⎩⎨⎧==c y x ,3都是方程ax +by +2=0的解,则c =______. 11.已知方程组⎩⎨⎧=-=+3,1y x y x 与方程组⎩⎨⎧=-=+2,1by ax by ax 的解相同,则a =______,b =______.12.与方程组⎩⎨⎧=+=-+02,032y x y x 有完全相同的解的是( ).(A)x +2y -3=0 (B)2x +y =0(C)(x +2y -3)(2x +y )=0(D)|x +2y -3|+(2x +y )2=013.若方程组⎩⎨⎧=+=+84,42y x my x 的解为正整数,则m 的值为( ).(A)2(B)4(C)6(D)-4三、解下列方程组14.⎩⎨⎧=+=+.1034,1353y x y x15.⎪⎩⎪⎨⎧=++-=-.927532,232y y x y x拓展、探究、思考16.在方程(x +2y -8)+λ(4x +3y -7)=0中,找出一对x ,y 值,使得λ无论取何值,方程恒成立.17.已知方程组⎩⎨⎧=--=-+01523,0172c a b c b a 其中c ≠0,求c b a cb a -++-的值.18.当k ,m 分别为何值时,关于x ,y 的方程组⎩⎨⎧+-=+=4)12(,x k y m kx y 至少有一组解?测试5 再探实际问题与二元一次方程组(一)学习要求能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力.课堂学习检测一、填空题1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 4.如果一个两位正整数的十位上的数字与个位上的数字的和是6,那么符合这个条件的两位数的个数是______.5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ). (A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ). (A)⎩⎨⎧==+.34,42y x y x(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧⋅==+y x y x 43,4234(D)⎩⎨⎧⋅==+y x y x 34,4243三、列方程组解应用题7.某单位组织了200人到甲、乙两地旅游,到甲地的人数比到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.大盒、小盒每盒各装多少瓶?9.某车间工人举行茶话会,如果每桌12人,还有一桌空着;如果每桌10人,则还差两个桌子.此车间共有工人多少名?综合、运用、诊断一、填空题 10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17.则k =_______,b =______. 11.在公式s =v 0t +21at 2中,当t =1时,s =13;当t =2时,s =42.则v 0=_______,a =______,并且当t =3时,s =______. 二、选择题12.出境旅游者问某童:“你有几个兄弟、几个姐妹?”答:“有几个兄弟就有几个姐妹。
2020—2021年新人教版初中数学七年级下册消元法解二元一次方程组(加减法)同步测试题及答案.docx
8.2.2消元——解二元一次方程组(加减法)同步测试题一、选择题1.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1)2.用加减消元法解方程组 将两个方程相加,得( )A .3x=8B .7x=2C .10x=8D .10x=103.用加减消元法解方程组,①-②得( )A .2y=1B .5y=4C .7y=5D .-3y=-34.用加减消元法解方程组正确的方法是( )A .①+②得2x=5B .①+②得3x=12C .①+②得3x+7=5D .先将②变为x-3y=7③,再①-③得x=-25.方程组,②×3-①×2得( )A .-3y=2B .4y+1=0C .y=0D .7y=-86.已知,则xy 的值是( )A .2B .1C .-1D .2326231x y x y +=⎧⎨+=⎩966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩358752x y x y -=⎧⎨+=⎩231354y x x y +=⎧⎨-=-⎩23537x y x y -=⎧⎨=+⎩356234x y x y -=⎧⎨-=⎩023x y x y -=⎧⎨+=⎩7.方程组的解是( ) A .8.已知都是方程y=ax+b 的解,则a 和b 的值是( )A .二、填空题9.如果实数x ,y 满足方程组12225x y x y ⎧-=-⎪⎨⎪+=⎩,则x = ;y= .10.若方程组4,2ax by ax by -=⎧⎨+=⎩与方程组234,456x y x y +=⎧⎨-=⎩的解相同,则a =_____,b =______.11.为庆祝抗日战争胜利70周年,某校八年(1)班举行了主题班会,有20名同学共做了52张纪念卡,其中女生每人做3张,男生每人做2张.问女生和男生各有几人做纪念卡.设女生有x 人,男生有y 人,根据题意,可列方程组为__________________.12.阅读诗句:“栖树一群鸦,鸦树不知数;两只栖一树,三只没去处;三只栖一树,闲了两棵树;请你仔细数,鸦树各几何?”诗句中谈到的群鸦有 只.13.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32cm ,则小长方形的面积 是 cm 2.1325y x x y +=⎧⎨+=⎩3333 (2)422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩2441x x y y =-=⎧⎧⎨⎨==⎩⎩和1111 (22225)311a a a a B C D b b b b ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎩⎩⎩⎩三、解答题14.小亮在解方程组27,4ax ycx dy+=⎧⎨-=⎩时,因把a看错而得到5,1,xy=⎧⎨=⎩而方程组正确的解是3,1,xy=⎧⎨=-⎩求a-c-d的值.15.母亲节来临之际,小丽准备为母亲送一束鲜花,花店中的每束鲜花由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花,同一种鲜花每支的价格相同,你根据第一、二束鲜花所提供的信息,求出第三束鲜花的价格吗?第一束第二束第三束共计19元共计18元共计?元参考答案一、选择题1.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( C )A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1)2.用加减消元法解方程组 将两个方程相加,得( D )A .3x=8B .7x=2C .10x=8D .10x=103.用加减消元法解方程组,①-②得( C )A .2y=1B .5y=4C .7y=5D .-3y=-34.用加减消元法解方程组正确的方法是(D )A .①+②得2x=5B .①+②得3x=12C .①+②得3x+7=5D .先将②变为x-3y=7③,再①-③得x=-25.方程组,②×3-①×2得(C )A .-3y=2B .4y+1=0C .y=0D .7y=-86.已知,则xy 的值是( B )A .2B .1C .-1D .2326231x y x y +=⎧⎨+=⎩966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩358752x y x y -=⎧⎨+=⎩231354y x x y +=⎧⎨-=-⎩23537x y x y -=⎧⎨=+⎩356234x y x y -=⎧⎨-=⎩023x y x y -=⎧⎨+=⎩7.方程组的解是( A ) A .8.已知都是方程y=ax+b 的解,则a 和b 的值是( B )A .二、填空题9.如果实数x ,y 满足方程组12225x y x y ⎧-=-⎪⎨⎪+=⎩,则x = 1 ;y=32.10.若方程组4,2ax by ax by -=⎧⎨+=⎩与方程组234,456x y x y +=⎧⎨-=⎩的解相同,则a =_3319____,b =_112-_____.11.为庆祝抗日战争胜利70周年,某校八年(1)班举行了主题班会,有20名同学共做了52张纪念卡,其中女生每人做3张,男生每人做2张.问女生和男生各有几人做纪念卡.设女生有x 人,男生有y 人,根据题意,可列方程组为______203252x y x y +=⎧⎨+=⎩____________.12.阅读诗句:“栖树一群鸦,鸦树不知数;两只栖一树,三只没去处;三只栖一树,闲了两棵树;请你仔细数,鸦树各几何?”诗句中谈到的群鸦有 21 只.13.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32cm ,则小长方形的面积1325y x x y +=⎧⎨+=⎩3333 (2)422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩2441x x y y =-=⎧⎧⎨⎨==⎩⎩和1111 (22225)311a a a a B C D b b b b ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎩⎩⎩⎩是12 cm2.三、解答题14.小亮在解方程组27,4ax ycx dy+=⎧⎨-=⎩时,因把a看错而得到5,1,xy=⎧⎨=⎩而方程组正确的解是3,1,xy=⎧⎨=-⎩求a-c-d的值.【解析】因为3,1,xy=⎧⎨=-⎩是27ax y+=的解,代入后可求a值;因为5,1,xy=⎧⎨=⎩和3,1,xy=⎧⎨=-⎩是方程4cx dy-=的解,代入后可得关于c、d的方程组,解方程组即可得出c、d的值.解:把3,1xy=⎧⎨=-⎩代入ax+2y=7,得a=3.把5,1xy=⎧⎨=⎩和3,1xy=⎧⎨=-⎩分别代入cx-dy=4,得54,34,c dc d-=⎧⎨+=⎩15.母亲节来临之际,小丽准备为母亲送一束鲜花,花店中的每束鲜花由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花,同一种鲜花每支的价格相同,你根据第一、二束鲜花所提供的信息,求出第三束鲜花的价格吗?第一束第二束第三束共计19元共计18元共计?元。
人教版七年级数学下册第八章第二节解二元一次方程组习题(含答案) (87)
人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩ 【答案】1812m n =⎧⎨=⎩【解析】试题分析:首先将方程进行变形,然后利用加减消元法得出方程组的解.试题解析:将方程组变形可得:3278?4336?m n m n +=⎧⎨-=⎩①②,①×3+②×2得:9m+8m=306,解得:m=18, 将m=18代入①可得:3×18+2n=78,解得:n=12,∴原方程组的解为:1812m n =⎧⎨=⎩.52.解方程组:(1)326{2317x y x y -=+=;(2)414{3314312x y x y +=---=【答案】(1)43x y =⎧⎨=⎩ ;(2)3114x y =⎧⎪⎨=⎪⎩ .【解析】 【分析】(1)利用加减消法即可得解;(2)先对第二个方程进行整理和变形,然后再利用加减消元法即可. 【详解】解:(1)326 2317x yx y-=⎧⎨+=⎩①②,①×2,得:6x﹣4y=12 ①,①×3,得:6x+9y=51 ①,则①﹣①得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为:43xy=⎧⎨=⎩.(2)4143314312x yx y+=⎧⎪⎨---=⎪⎩①②,方程①两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ①,①+①,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y=114.故原方程组的解为:3114xy=⎧⎪⎨=⎪⎩.53.已知232x y ax y a+=⎧⎨-=⎩,求xy的值.【答案】7【解析】【试题分析】先解关于x、y的二元一次方程组,再代入求值即可. 【试题解析】232x y a x y a +=⎧⎨-=⎩75715x a x y y a⎧=⎪⎪⇒⇒=⎨⎪=⎪⎩. 【方法点睛】本题目先将x 、y 用a 的代数式表示出来,再代入即可.54.甲乙两人同时解方程组832ax by cx y +=⎧⎨-=-⎩ ,甲正确解得11x y =⎧⎨=-⎩ ;乙因为抄错c 的值,解得26x y =⎧⎨=-⎩.求a ,b ,c 的值.【答案】1025a b c =⎧⎪=⎨⎪=-⎩【解析】试题分析:把11x y =⎧⎨=-⎩代入方程组,把26x y =⎧⎨=-⎩代入方程组中的第一个方程,即可得到一个关于a 、b 、c 的方程组,解方程组即可求解.试题解析:根据题意得:832268a b c a b -⎧⎪+-⎨⎪-⎩===,解得:1025a b c =⎧⎪=⎨⎪=-⎩.55.用合适的方法解下列方程组:(1)402? 3222? y x x y ①②=-⎧⎨+=⎩ (2)235? 421? x y x y +=⎧⎨-=⎩①② (3)6515?33? x y x y +=⎧⎨-=-⎩①②【答案】(1)5876x y =⎧⎨=-⎩;(2)131698x y ⎧=⎪⎪⎨⎪=⎪⎩;(3)03x y =⎧⎨=⎩【解析】【试题分析】(1)代入法;(2)加减法;(3)代入法或加减法都可以.【试题解析】(1)将①代入①得,32(402)22,x x+-=得:x=58,将x=58代入①,得:y=-76.故原方程组的解为:5876 xy=⎧⎨=-⎩(2)①×2得,4x+6y=10①,①-①得:8y=9,y=98,将y=98代入①,得:1316x=,故原方程组的解为:131698 xy⎧=⎪⎪⎨⎪=⎪⎩(3)①×5得:15x-5y=-15①,①+①得:21x=0,解得:x=0,将x=0代入①得:y=3.故原方程组的解为:3 xy=⎧⎨=⎩.56.用加减法解下列方程组:(1)3827x yx y+=⎧⎨-=⎩(2)379475m nm n+=⎧⎨-=⎩(3)92153410x yx y+=⎧⎨+=⎩(4)2343211x yx y+=⎧⎨-=⎩(5)()()()()31445135x yy x⎧-=-⎪⎨-=+⎪⎩(6)15357525x x yy x+-⎧=⎪⎨⎪=+⎩【答案】(1)31 xy=⎧⎨=-⎩;(2)237mn=⎧⎪⎨=⎪⎩;(3)4332xy⎧=⎪⎪⎨⎪=⎪⎩;(4)41131013xy⎧=⎪⎪⎨⎪=-⎪⎩;(5)57xy=⎧⎨=⎩(6)25 xy=⎧⎨=⎩【解析】【试题分析】利用加减消元法解二元一次方程组即可. 【试题解析】(1)3827x y x y +=⎧⎨-=⎩①+②得:5x=15,x=3,将x=3代入①得,y=-1, 故原方程组的解为:31x y =⎧⎨=-⎩. (2)379475m n m n +=⎧⎨-=⎩①+②得:7m=14,m=2,将m=2代入①得,37n =, 故原方程组的解为:237m n =⎧⎪⎨=⎪⎩; (3)92153410x y x y +=⎧⎨+=⎩①2⨯得,18x+4y=30 ③,③-②得,41520,3x x ==,将43x =代入①得,32y =, 故原方程组的解为:4332x y ⎧=⎪⎪⎨⎪=⎪⎩; (4)2343211x y x y +=⎧⎨-=⎩①2⨯得4x+6y=8,②3⨯得9x-6y=33,两式相加得:4113x = ,将4113x =代入①,得:1013y =-故原方程组的解为:41131013x y ⎧=⎪⎪⎨⎪=-⎪⎩(5)()()()()31445135x y y x ⎧-=-⎪⎨-=+⎪⎩方程组变形为:3413535207x y x x y y -=-=⎧⎧⇒⎨⎨-=-=⎩⎩故原方程组的解为:57x y =⎧⎨=⎩(6)15357525x x yy x +-⎧=⎪⎨⎪=+⎩ 10351035257251014505x y x y x x y x y y -=-==⎧⎧⎧⇒⇒⎨⎨⎨-=--=-=⎩⎩⎩ 故原方程组的解为:25x y =⎧⎨=⎩. 57.小明和小刚同时解方程组266ax by cx y +=⎧⎨+=⎩根据小明和小刚的对话,试求a ,b ,c 的值.【答案】a =5,b =-3,c =2.【解析】试题分析:根据小明的正确解,得出c的值,然后把两组解代入第一个方程ax+by=26,可求出a、b的值.试题解析:把4100xy=⎧⎨=-⎩、73xy=⎧⎨=⎩代入方程组的第1个方程中得42267326a ba b-=⎧⎨+=⎩,解得1100ab=⎧⎨=⎩,再把42xy=⎧⎨=-⎩代入方程cx+y=6中,得4c+(-2)=6,所以c=2.故a=5,b=-3,c=2.58.解方程组:230230x yx y-=⎧⎨+-=⎩.【答案】9767xx⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:用①﹣①×2消去x,得到关于y的一元一次方程,解这个方程求出y 的值,再把求得的y的值代入到①中求出x的值即可.详解:,①﹣②×2得:﹣7y=﹣6,即y=,将y=代入①,得x=,则原方程组的解为.点睛:本题考查了二元一次方程组的解法,其基本思路是消元,转化为一元一次方程求解,消元的方法有加减消元法和代入消元法两种,根据方程组的特点选择合适的方法是解答本题的关键.59.已知关于x ,y 的方程组51542ax y x by +=⎧⎨-=-⎩①②甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙由于看错了方程②中的b ,得到方程组的解54x y =⎧⎨=⎩.若按正确的a ,b 计算,则原方程组的解x 与y 的差x -y 的值是多少?【答案】8.2 【解析】试题分析:把31x y =-⎧⎨=-⎩代入到42x by -=-,可得10b =,把54x y =⎧⎨=⎩代入515ax y +=,可得: 1a =-,把110a b =-⎧⎨=⎩代入51542ax y x by +=⎧⎨-=-⎩可得:5154102x y x y -+=⎧⎨-=-⎩,解方程组可得:145.8x y =⎧⎨=⎩,最后代入x -y 计算即可.试题解析: 因为甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩,把31x y =-⎧⎨=-⎩代入②可得10b =, 乙由于看错了方程②中的b ,得到方程组的解54x y =⎧⎨=⎩,把54x y =⎧⎨=⎩代入①可得: 1a =-,把110a b =-⎧⎨=⎩代入51542ax y x by +=⎧⎨-=-⎩可得:515 4102x y x y -+=⎧⎨-=-⎩,解方程组可得:145.8x y =⎧⎨=⎩,则x -y=14-5.8=8.2.60.解下列方程组:(1)35231x y x y =⎧⎨-=⎩ (2)2232328x yx y ⎧+=⎪⎨⎪+=⎩(3)()()()1523254345x y x y ⎧+=+⎪⎨--+=⎪⎩ (4)()()23352121132x y x y ⎧+=--⎪⎨++-=⎪⎩【答案】(1)53x y =⎧⎨=⎩(2)412x y =-⎧⎨=⎩(3)41x y =⎧⎨=-⎩(4)720x y ⎧=⎪⎨⎪=⎩ 【解析】试题分析:(1)先由①可变形得:53x y =,把53x y =代入到②可得:10313y -=,解得:3y =,把3y =代入到①可得:5x =,(2)先由4⨯①可得:4283y x +=③,再由-③②可得:5203y =,解得12y =, 将12y =代入③可得:4x =-, (3)由①可得:59x y =+③,把③代入②可得:()()3101854345y y +--+=,1818,y =-解得:1y =-,把1y =-代入③可得:4x =,(4) 先由①可得:263510x y +=-+,可得257x y +=③, 由6⨯②可得:22636x y +--=,即267x y -=④, 由-③④可得:0y =,把0y =代入③可得72x =, 试题解析:(1)35231x y x y =⎧⎨-=⎩①②,由①可得:53x y =,把53x y =代入到②可得:10313y -=,解得:1y =-,把1y =-代入到①可得:5x =,所以方程组的解是51x y =⎧⎨=-⎩,(2)2232328x yx y ⎧+=⎪⎨⎪+=⎩①②,由4⨯①可得:4283yx +=③, 由-③②可得:5203y=,解得12y =, 将12y =代入③可得:4x =-,所以方程组的解是412x y =-⎧⎨=⎩.(3)()()()1523254345x y x y ⎧+=+⎪⎨--+=⎪⎩①②,由①可得:59x y =+③,把③代入②可得:()()3101854345y y +--+=,1818,y =-解得:1y =-,把1y =-代入③可得:4x =,所以方程组的解是41x y =⎧⎨=-⎩.(4)()()23352121132x y x y ⎧+=--⎪⎨++-=⎪⎩①②,由①可得:263510x y +=-+,可得257x y +=③, 由6⨯②可得:22636x y +--=,即267x y -=④, 由-③④可得:0y =,把0y =代入③可得72x =, 所以方程组的解是720x y ⎧=⎪⎨⎪=⎩.。
2021-2022学年人教版初中数学七年级下册第八章二元一次方程组同步训练试卷(含答案详细解析)
初中数学七年级下册第八章二元一次方程组同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩2、二元一次方程324x y -=的解可以是( )A .2,1x y =⎧⎨=⎩B .3,2x y =⎧⎨=⎩C .1,1x y =-⎧⎨=⎩D .3,4x y =-⎧⎨=-⎩3、若关于x ,y 的二元一次方程组32129x y k x y +=+⎧⎨-=⎩的解互为相反数,则k 的值是( )A .4B .3C .2D .14、下列各式中是二元一次方程的是( )A .2327x y -=B .25x y +=C .123y x += D .234x y -=5、用加减法解方程组336x y x y +=-⎧⎨+=⎩①②由②-①消去未知数y ,所得到的一元一次方程是( ) A .29x = B .23x = C .49=x D .43x =6、已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为( ) A .﹣2 B .2 C .4 D .﹣47、下列各组数值是二元一次方程2x ﹣y =5的解是( )A .21x y =-⎧⎨=⎩B .05x y =⎧⎨=⎩C .15x y =⎧⎨=⎩D .31x y =⎧⎨=⎩8、已知方程组242x y x y k +=⎧⎨+=⎩的解满足1x y +=,则k 的值为( ) A .7 B .7- C .1 D .1-9、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A .1.2元B .1.05元C .0.95元D .0.9元10、下列方程组中是三元一次方程组的是( ).A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y zz x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D .::3:4:524x y z x y z =⎧⎨++=⎩ 二、填空题(5小题,每小题4分,共计20分)1、若关于x 、y 的方程()12m m x y ++=是二元一次方程,则m =_______.2、方程(1)(1)0a x a y ++-=,当a ≠___时,它是二元一次方程,当a =____时,它是一元一次方程.3、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x 文钱,乙原有y 文钱,可列方程组为____________.4、已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解,则1123a b -的值为____________.5、若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 三、解答题(5小题,每小题10分,共计50分)1、 “文明其精神,野蛮其体魄”,为进一步提升学生的健康水平,我市某校计划用760元购买14个体育用品,备选体育用品及单价如表:(1)若760元全部用来购买足球和排球,求足球和排球各购买的数量.(2)若该校先用一部分资金购买了a 个排球,再用剩下的资金购买了足球和篮球,且篮球和足球的个数相同,此时正好剩余80元,求a的值.(3)由于篮球和排球都不够分配,该校再补充采购这两种球共花费了480元,其中这两种球都至少购进2个,则有几种补购方案?2、《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大、小和尚各有多少人?3、下面4组数值中,哪一组是二元一次方程组73228x yx y-=⎧⎨+=⎩的解?(1)13xy=-⎧⎨=-⎩(2)24xy=⎧⎨=⎩(3)42xy=⎧⎨=⎩(4)16xy=⎧⎨=⎩4、用代入消元法解下列方程组:(1)32x yy x-=⎧⎨=⎩(2)528x yx y+=⎧⎨+=⎩(3)43524x yx y+=⎧⎨-=⎩(4)222312nmm n⎧-=⎪⎨⎪+=⎩5、在解方程组4635ax yx by+⎧⎨+-⎩=①=②时,由于小明看错了方程①中的a,得到方程组的解为12xy⎧⎨⎩==,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.---------参考答案-----------一、单选题1、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x y y x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩, 故选A .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A 、21x y =⎧⎨=⎩代入324x y -=中,方程左边=3221=4⨯-⨯ ,边等于右边,故此选项符合题意; B 、32x y =⎧⎨=⎩代入324x y -=中,方程左边=3322=5⨯-⨯ ,左边不等于右边,故此选项不符合题意; C 、11x y =-⎧⎨=⎩代入324x y -=中,方程左边()=3121=5⨯--⨯- ,左边不等于右边,故此选项不符合题意; D 、34x y =-⎧⎨=-⎩代入324x y -=中,方程左边()()=3324=1⨯--⨯-- ,左边不等于右边,故此选项不符合题意;故选A .本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.3、C【解析】【分析】先根据“方程组的解互为相反数”可得0x y +=,再与方程29x y -=联立,利用消元法求出,x y 的值,然后代入方程321x y k +=+即可得.【详解】解:由题意得:0x y +=,联立029x y x y +=⎧⎨-=⎩①②, 由①-②得:39y =-,解得3y =-,将3y =-代入①得:30x -=,解得3x =,将3,3x y ==-代入方程321x y k +=+得:196k +=-,解得2k =,故选:C .【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.4、B【解析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】2327x y -=中x 的次数为2,故A 不符合题意;25x y +=是二元一次方程,故B 符合题意;123y x +=中1x不是整式,故C 不符合题意; 234x y -=中y 的次数为2,故D 不符合题意;故选B .【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.5、A【解析】【分析】观察两方程发现y 的系数相等,故将两方程相减消去y 即可得到关于x 的一元一次方程.【详解】解:解方程组336x y x y +=-⎧⎨+=⎩①②,由②-①消去未知数y ,所得到的一元一次方程是2x =9, 故选:A .【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.6、C【分析】把23xy=-⎧⎨=⎩代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把23xy=-⎧⎨=⎩代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.7、D【解析】【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把21xy=-⎧⎨=⎩代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把5xy=⎧⎨=⎩代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把15xy=⎧⎨=⎩代入方程2x﹣y=5,2-5=-3≠5,不满足题意;D. 把31x y =⎧⎨=⎩代入方程2x ﹣y =5,6-1=5,满足题意; 故选:D .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.8、D【解析】【分析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值.【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=,解得:1k =-,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得x y z ++的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x 、y 和z 元,根据题意得:37 3.15482 4.2x y z x y z ++=⎧⎨++=⎩①②, ②–①可得: 1.05x y z ++=.故选:B .【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含x y z ++的等式.10、D【解析】【分析】三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.【详解】解:A 、a 的最高次数是2,选项错误;B 、x 、y 、z 的最高次数都是2,选项错误;C 、每个方程都是分式方程,选项错误;D 、符合题意,选项正确.故选:D【点睛】本题考查三元一次方程组的识别,牢记定义是解题的切入点.二、填空题1、1【分析】根据二元一次方程定义可得:|m |=1,且m-1≠0,进而可得答案.【详解】∵关于x 、y 的方程()12m m x y ++=是二元一次方程,∴|m |=1,且m -1≠0,解得:m =1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.2、±1 1-或1【分析】根据一元一次方程的定义可得分两种情况讨论,当10a +=,即1a =-时;当10a -=,即1a =时,方程为一元一次方程,即可得a 的值;根据二元一次方程的定义可得10a +≠且10a -≠,解可得a 的值.【详解】 解:关于x 的方程(1)(1)0a x a y ++-=,是二元一次方程,10a ∴+≠且10a -≠,解得:1a ≠±;方程(1)(1)0a x a y ++-=,是一元一次方程,分类讨论如下:当10a +=,即1a =-时,方程为20y -=为一元一次方程;当10a -=,即1a =时,方程为20x =为一元一次方程;故答案是:±1;1-或1.【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.3、4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲原有x 文钱,乙原有y 文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的2348=文钱,据此列方程组可得. 【详解】解:设甲原有x 文钱,乙原有y 文钱, 根据题意,得:4822483y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.4、0【分析】结合题意,根据二元一次方程组的性质,将13x y =⎧⎨=⎩代入到原方程组,得到关于a 和b 的二元一次方程组,通过求解即可得到a 和b ,结合代数式的性质计算,即可得到答案.【详解】∵13x y =⎧⎨=⎩是关于x ,y 的二元一次方程组()2715ax y x b y +=⎧⎨--=-⎩的解 ∴将13x y =⎧⎨=⎩代入到()2715ax y x b y +=⎧⎨--=-⎩,得()2371315a b +=⎧⎨--=-⎩∴23a b =⎧⎨=⎩ ∴1111023a b -=-=故答案为:0.【点睛】本题考查了二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.5、1 12-【分析】 单项式522325m n x y ++与632134m n x y ---的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得52263321m n m n ++=⎧⎨=--⎩,解方程即可求得m 和n 的值. 【详解】解:由题意知单项式522325m n x y ++与632134m n x y ---是同类项, 所以有52263321m n m n ++=⎧⎨=--⎩, 解得112m n =⎧⎪⎨=-⎪⎩. 故答案为:1;12-.【点睛】此题考查了合并同类项,以及单项式,熟练掌握合并同类项法则是解本题的关键.三、解答题1、(1)足球购买5个、排球购买9个;(2)a 的值为10;(3)则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【分析】(1)设购买足球x 个和排球y 个,根据两种球共14个,足球支出总钱数+排球支出总钱数=760元,列方程组804076014x y x y +=⎧⎨+=⎩,解方程组即可; (2)设篮球购买b 个,篮球和足球的个数相同,足球购买b 个,根据三种球共14个,排球支付的总钱数+足球支出总钱数+篮球球支出总钱数=760-80元,列方程组40806076080214a b b a b ++=-⎧⎨+=⎩,解方程组即可;(3)设篮球购买m 个和排球n 个,根据篮球支出总钱数+排球支出总钱数=480元,列二元一次方程60m +40n =480求方程的整数解即可.【详解】解:(1)设购买足球x 个和排球y 个,根据题意得:804076014x yx y+=⎧⎨+=⎩,解得59xy=⎧⎨=⎩,答足球购买5个、排球购买9个;(2)设篮球购买b个,篮球和足球的个数相同,足球购买b个,根据题意得40806076080214a b ba b++=-⎧⎨+=⎩,解得102ab=⎧⎨=⎩,答a的值为10;(3)设篮球购买m个和排球n个,根据题意得60m+40n=480,整理得3m+2n=24,∵m≥2,n≥2,∴3122mn=-,当29m n==,;46m n==,,63m n==,,则有3种补购方案,分别为篮球购2个,排球购9个,或篮球购4个,排球购6个,或篮球购6个,排球购3个.【点睛】本题考查列二元一次方程组解应用题,掌握列方程组解应用题的步骤与方法,列二元一次方程,求整数解确定方案是解题关键.2、大和尚有25人,小和尚有75人.【分析】设大和尚有x人,小和尚有y人,根据“100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头”建立方程组,解方程组即可得.【详解】解:设大和尚有x人,小和尚有y人,由题意得:100 31003x yyx+=⎧⎪⎨+=⎪⎩,解得2575xy=⎧⎨=⎩,答:大和尚有25人,小和尚有75人.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.3、(2)【分析】根据二元一次方程组解定义:使二元一次方程组的两个二元一次方程左右两边都相等的一对未知数的解,把四组解分别代入到方程组中看使得方程组中的两个二元一次方程左右两边是否相等即可.【详解】解:732 28x yx y-=⎧⎨+=⎩①②把13xy=-⎧⎨=-⎩代入①中,得到()()7133792⨯--⨯-=-+=,方程左右两边相等,把13xy=-⎧⎨=-⎩代入②中,方程左边()()2132358⨯-+-=--=-≠,方程左右两边不相等,故13xy=-⎧⎨=-⎩不是原方程的解,故(1)不符合题意;把24xy=⎧⎨=⎩代入①中,得到723414122⨯-⨯=-=,方程左右两边相等,把24xy=⎧⎨=⎩代入②中,方程左边224448⨯+=+=,方程左右两边相等,故24xy=⎧⎨=⎩是原方程的解,故(2)不符合题意;把42xy=⎧⎨=⎩代入①中,得到7432286222⨯-⨯=-=≠,方程左右两边不相等,把42xy=⎧⎨=⎩代入②中,方程左边242108⨯+=≠,方程左右两边不相等,故42xy=⎧⎨=⎩不是原方程的解,故(3)不符合题意;把16xy=⎧⎨=⎩代入①中,得到7136718112⨯-⨯=-=-≠,方程左右两边不相等,把16xy=⎧⎨=⎩代入②中,方程左边2168⨯+=,方程左右两边相等,故16xy=⎧⎨=⎩不是原方程的解,故(4)不符合题意;∴第(2)组是原方程组的解.【点睛】本题主要考查了二元一次方程组的解,解题的关键在于能够熟知二元一次方程组的解得定义.4、(1)11xy=-⎧⎨=-⎩(2)32xy=⎧⎨=⎩(3)21xy=⎧⎨=-⎩(4)32mn=⎧⎨=⎩【分析】方程组利用代入消元法求出解即可.【详解】解:(1)32x yy x-=⎧⎨=⎩①②,把②代入①得:-3=2x x,解得:x=-1,把x=-1代入②得:y=-1,则原方程组的解为:11xy=-⎧⎨=-⎩;(2)528x yx y+=⎧⎨+=⎩①②,由①得:y=5-x③把③代入②中得:2x+5-x=8,解得:x=3,把x=3代入③中得:y=5-3=2,则原方程组的解为:32x y =⎧⎨=⎩; (3)43524x y x y +=⎧⎨-=⎩①②, 由②得:x =4+2y ③,将③代入①得:4×(4+2y )+3y =5,解得:y =-1,将y =-1代入③中得:x =4+2×(-1)=2,则原方程组的解为:21x y =⎧⎨=-⎩; (4)222312n m m n ⎧-=⎪⎨⎪+=⎩①②, 由①得:m =2n +2③,将③代入②得: 2×(2n +2)+3n =12,解得:n =2,将n =2代入③中得: m =22+2=3, 则原方程组的解为:32m n =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、(1)1a =,4b =-;(2)14x = ,2316y =【分析】(1)根据方程组的解的定义,12x y ⎧⎨⎩==应满足方程②,x =2,y =1应满足方程①,将它们分别代入方程②①,就可得到关于a ,b 的二元一次方程组,解得a ,b 的值;(2)将a ,b 代入原方程组,求解即可.【详解】解:(1)将12x y =,=代入②得325b +=-,解得:4b =- 将x =2,y =1代入①得246a +=,解得:1a = ,∴1a =,4b =-;(2)方程组为:46345x y x y +⎧⎨-⎩=①=﹣②, ①+②得:365x x +=- ,41x = , 解得:14x = , 将14x =代入①得:1464y += ,2344y = , 解得:2316y = ,∴方程组的解为142316xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.。
人教版初一数学下册《消元——解二元一次方程组第课时用加减消元法解方程组》课时练(附答案)
第2课时用加减消元法解方程组要点感知两个二元一次方程中同一个未知数的系数_________或_________时,把这两个方程的两边分别_________或_________,就能消去这个未知数,得到一个__________.这种方法叫做加减消元法,简称__________.预习练习1-1 解方程组①3,759,y xx y=-+=-⎧⎨⎩②3512,315 6.x yx y+=-=-⎧⎨⎩比较简便的方法是( )A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法1-2二元一次方程组28,20x yx y+=-=⎧⎨⎩的解是( )A.24xy==-⎧⎨⎩B.24xy==⎧⎨⎩C.24xy=-=⎧⎨⎩D.24 xy=-=-⎧⎨⎩知识点1 用加减法解二元一次方程组1.方程组24,53x yx y-=+=⎧⎨⎩的解是( )A.12xy==⎧⎨⎩B.31xy==⎧⎨⎩C.2xy==-⎧⎨⎩D.12xy==-⎧⎨⎩2.若|m-n-3|+(m+n+1)2=0,则m+2n的值为( )A.-1B.-3C.0D.33.已知方程组25,27,x yx y+=+=⎧⎨⎩那么x+y=__________.4.(2013·淄博)解方程组:2332 2.x yx y-=+=-⎧⎨⎩,①②知识点2 用加减法解二元一次方程组的简单应用5.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本6.有大小两种货车,2辆大车与3辆小车一次可以运货34吨,5辆大车与6辆小车一次可以运货76吨,3辆大车与5辆小车一次可以运货多少吨?7.某超市为“开业三周年”举行了店庆活动,对A,B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买50件A商品和50件B商品仅需960元,这比不打折少花多少钱?8.(2014·娄底)方程组1,25x yx y+=-=⎧⎨⎩的解是( )A.12xy=-=⎧⎨⎩B.23xy==-⎧⎨⎩C.21xy==⎧⎨⎩D.21 xy==-⎧⎨⎩9.(2014·襄阳)若方程mx+ny=6的两个解是1,1,xy==⎧⎨⎩2,1,xy==-⎧⎨⎩则m,n的值为( )A.4,2B.2,4C.-4,-2D.-2,-410.已知方程组23,434x y ax y a+=-=-⎧⎨⎩的解x与y的和是2,则a=__________.11.解方程组:(1)(2014·湖州)37,2 3.x yx y+=-=⎧⎨⎩①②(2)(2014·威海)353,1.23x yx y-=-=⎧⎪⎨⎪⎩12.在课间活动中,小英、小丽和小敏在操场上画出A,B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小敏的四次总分.13.在实施“中小学校舍安全工程”之际,某市计划对A,B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?挑战自我14.已知关于x 、y 的方程组352,23x y m x y m+=++=⎧⎨⎩的解满足x+y=-10,求式子m 2-2m+1的值.参考答案课前预习要点感知 相反 相等 相加 相减 一元一次方程 加减法预习练习1-1 C1-2 B当堂训练1.D2.B3.44.由②×2-①,得7y=-7.解得y=-1.把y=-1代入②,得x+2×(-1)=-2.解得x=0.∴原方程组的解为01.x y ==-⎧⎨⎩, 5.D6.设大车一次运货x 吨,小车一次运货y 吨,由题意,得2334,5676.x y x y +=+=⎧⎨⎩解得8,6.x y ==⎧⎨⎩ 3x+5y=3×8+5×6=54.答:3辆大车与5辆小车一次可以运货54吨.7.设打折前A 商品的单价为x 元,B 商品的单价为y 元,根据题意有584,63108.x y x y +=+=⎧⎨⎩解得16,4.x y ==⎧⎨⎩ 打折前购买50件A 商品和50件B 商品共需:50x+50y=16×50+4×50=1 000.1 000-960=40(元).答:打折后少花40元.课后作业8.D 9.A 10.511.(1)由①+②,得5x=10.∴x=2.把x=2代入②,得4-y=3.∴y=1.∴原方程组的解是2,1.x y ==⎧⎨⎩ (2)将方程2x -3y =1去分母,得3x-2y=6 ①. 又3x-5y=3 ②,由②-①,得y=1. 把y=1代入①,得x=83. ∴原方程组的解为8,31.x y ⎧==⎪⎨⎪⎩12.设沙包落在A 区域得x 分,落在B 区域得y 分,根据题意,得334,2232.x y x y +=+=⎧⎨⎩解得9,7.x y ==⎧⎨⎩ ∴x+3y=9+3×7=30.答:小敏的四次总分为30分.13.设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元.依题意,得3480,3400.x y x y +=+=⎧⎨⎩解得90,130.x y ==⎧⎨⎩ 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元.14.解关于x 、y 的方程组352,23,x y m x y m +=++=⎧⎨⎩得26,4.x m y m =-=-+⎧⎨⎩把26,4.x m y m =-=-+⎧⎨⎩代入x+y=-10.得(2m-6)+(-m+4)=-10.解得m=-8.∴m 2-2m+1=(-8)2-2×(-8)+1=81.。
人教版七年级下第八章二元一次方程组(二元一次方程组的解法)同步练习题含解析
人教版七年级下第八章二元一次方程组(二元一次方程组的解法)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知两个数的和是7,差是1,则这两个数的积是_____.2.对于实数,x y ,规定新运算:1x y ax by *=+-,其中,a b 是常数.若124*=,()2*310-=,则a b *= ___________.3.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为___. 4.如果ABC 的三边长分别为3,5,7,DEF 的三边长分别为3,32x -,21y -,若这两个三角形全等,则x y +=______.5.解方程组213211x y x y +=⎧⎨-=⎩①②既可用_____消去未知数x ,也可用_____消去未知数y . 6.若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.二、单选题7.如果x ,y 满足方程组127x y x y +=-⎧⎨-=⎩,那么x ﹣2y 的值是( ) A .﹣4 B .2 C .6 D .88.方程组839845x y x y -=⎧⎨+=-⎩ 消去x 得到的方程是( ) A .y =4 B .y =-14 C .7y =14 D .-7y =14 9.有理数m ,n 满足|m +1|+(n ﹣2)2=0,则mn +mn 等于( ).A .3B .-2C .-1D .010.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( ) A .3 B .-3 CD.11.不解方程组,下列与237328x y x y +=⎧⎨+=⎩的解相同的方程组是( )A .2836921y x x y =-⎧⎨+=⎩B .283237y x x y =+⎧⎨=+⎩C .372283y x y y +⎧=⎪⎪⎨+⎪=⎪⎩D .372382y x x y -+⎧=⎪⎪⎨+⎪=⎪⎩12.如果3xm +1+5yn ﹣2=0是关于x 、y 的二元一次方程,那么( )A .01m n =⎧⎨=⎩B .11m n =⎧⎨=⎩C .03m n =⎧⎨=⎩D .13m n =⎧⎨=⎩三、解答题13.解方程(组)(1)2(21)4x -= (2)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 14.已知关于x 、y 的方程组123x y a x y a-=--⎧⎨-=-⎩. (1)若0x y +=,求实数a 的值;(2)若15x y -≤-≤,求实数a 的取值范围.15.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a +b )2020的值.参考答案:1.12【分析】要求这两个数,可设这两个数是x 、y ,因为这两个数的和是7,它们的差是1,所以71x y x y +=⎧⎨-=⎩,解方程求出这两个数,再求它们的积. 【详解】设这两个数是x 、y依题意得:71x y x y +=⎧⎨-=⎩解得: 43x y =⎧⎨=⎩∴这两个数的积是43=12⨯【点睛】此类题目的解决只需仔细分析题意,利用方程组即可解决问题.2.9【分析】先根据题意得到关于a 、b 的二元一次方程组21423110a b a b +-=⎧⎨-+-=⎩,求出a 、b 的值,然后根据221a b a b *=+-进行求解即可.【详解】解:由题意得:21423110a b a b +-=⎧⎨-+-=⎩, 解得13a b =-⎧⎨=⎩, ∴()222211319a b a b *=+-=-+-=,故答案为:9.【点睛】本题主要考查了新定义下的实数运算,解二元一次方程组,正确理解题意求出a 、b 的值是解题的关键.3.22x y =⎧⎨=-⎩ 【分析】由加减消元法或代入消元法都可求解.【详解】解:2222x y x y +=-⎧⎨+=⎩①②, 由∴式得:22x y =-- ,代入∴式,得:2(22)2y y ,解得2y =- , 再将2y =-代入∴式,222x ,解得2x = ,∴22x y =⎧⎨=-⎩, 故填:22x y =⎧⎨=-⎩. 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单. 4.6或193【分析】根据全等三角形的对应边相等分类讨论,分别求出x 值判断即可.【详解】解:∴ABC 和DEF 全等,∴当325217x y -=⎧⎨-=⎩时,解得:734x y ⎧=⎪⎨⎪=⎩, ∴719433x y +=+=; 当327215x y -=⎧⎨-=⎩时,解得:33x y =⎧⎨=⎩, ∴336x y +=+=;∴综上所述,193x y +=或6. 故答案为:6或193. 【点睛】此题考查的是根据全等三角形的性质求字母的值,掌握全等三角形的对应边相等是解决此题的关键.5. ∴×3-∴ ∴+∴【解析】略6.-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∴x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.7.D【分析】利用方程组中的第二个方程减去第一个方程即可得.【详解】解:127x y x y +=-⎧⎨-=⎩①②, 由∴-∴得:27(1)x x y y ---=--,即28x y -=,故选:D .【点睛】本题考查了利用加减消元法解二元一次方程组,熟练掌握方程组的解法是解题关键.8.D【分析】直接利用两式相减进而得出消去x 后得到的方程.【详解】解:839845x y x y -=⎧⎨+=-⎩①② ∴-∴得:-7y =14.故答案为:-7y =14,故选:D .【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键. 9.C【分析】根据非负数的性质列方程求出m 、n 的值,再代入所求代数式计算即可.【详解】解:∴|m +1|+(n −2)2=0,∴m +1=0,n −2=0,解得:m =−1,n =2,∴mn +mn =−1×2+(−1)2=−2+1=−1.故选:C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,也考查了有理数的混合运算.10.C【分析】将21a b =⎧⎨=⎩代入二元一次方程组中解出x 和y 的值,再计算2x y +的算术平方根即可. 【详解】解:将21a b =⎧⎨=⎩代入二元一次方程3522ax by ax by ⎧+=⎪⎨⎪-=⎩中, 得到:3522x y x y +=⎧⎨-=⎩①②, ∴+∴得:57,x =7,5x ∴= 1442,55y ∴=-= 所有方程组的解是:75,45x y ⎧=⎪⎪⎨⎪=⎪⎩74223,55x y ∴+=+⨯= ∴2x y +故选:C .【点睛】本题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法.11.A【详解】试题解析:对A 选项,将方程283y x =-移项,得328.x y +=将方程6921x y +=两边同除以3,得237.x y +=所以A 选项的方程组中的两个方程与题目中的两个方程相同,即解相同,故选A12.C【分析】根据二元一次方程的定义可得到关于m 、n 的方程,可求得答案.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.【详解】解:∴3xm +1+5yn ﹣2=0是关于x 、y 的二元一次方程,∴1121m n +=⎧⎨-=⎩,解得03m n =⎧⎨=⎩, 故选:C .【点睛】本题主要考查二元一次方程的定义,掌握二元一次方程的未知项的次数为1是解题的关键.13.(1)32x =或12x =- (2)373x y =-⎧⎪⎨=-⎪⎩【分析】(1)利用平方根的定义解方程;(2)将方程组整理后,根据加减消元法解二元一次方程组即可求解.(1)解:2(21)4x -=,212x -=±, 解得32x =或12x =-; (2) 1243231y x x y ++⎧=⎪⎨⎪-=⎩ 整理得345231y x x y -=⎧⎨-=⎩①②, ∴+∴得,26x -=,将3x =-,代入∴得,()3435y -⨯-=, 解得73y =-,∴方程组的解为373x y =-⎧⎪⎨=-⎪⎩. 【点睛】本题考查了根据平方根解方程,加减消元法解二元一次方程组,正确的计算是解题的关键.14.(1)1a =;(2)60a -≤≤.【分析】(1)根据方程组分别用a 表示出x 、y 的值,代入0x y +=求解即可; (2)根据方程组分别用a 表示出x 、y 的值,代入15x y -≤-≤求解即可【详解】(1)由方程组123x y a x y a -=--⎧⎨-=-⎩①②, ∴-∴得:21x a =-+,将21x a =-+代入1x y a -=--得:2y a =-+,又∴0x y +=,∴2120a a -+-+=,解得:1a =;(2)由(1)可知21x a =-+,2y a =-+,又∴15x y -≤-≤,∴()12125a a --+--+≤≤,整理得:115a ---≤≤,解得:60a -≤≤.【点睛】此题考查了二元一次方程和不等式结合的含参数问题,,解题的关键是根据题意列出关于参数a 的方程或不等式.15.25a b =-⎧⎨=⎩,1. 【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值,代入(3a +b )2020计算即可.【详解】解:由题意可得2333211x y x y -=⎧⎨+=⎩, 解得31x y =⎧⎨=⎩, 将31x y =⎧⎨=⎩代入1233ax by ax by +=-⎧⎨+=⎩得31633a b a b +=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.。
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。
七年级下册数学同步练习题库:消元——解二元一次方程组(填空题:较易)
消元——解二元一次方程组(填空题:较易)1、二元一次方程组的解是.2、是方程2x-ay=5的一个解,则a=____.3、已知x与y互为相反数,且3x-y=4,则x=______,y=______.4、已知方程组那么b-a的值为____5、已知,则=____.6、已知是实数,且,则的值是____________.7、已知a,b满足方程组,则3a+b的值为__________.8、已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解_____.9、方程组的解是_____.10、由方程组,可得到x与y的关系式是_____.11、已知方程用含的代数式表示为:________.12、已知x=3+t, y=3﹣t,用x的代数式表示y为___________13、方程3x+y=4,用含有y的式子x表示,则x= ________.14、已知方程组,当m__时,x+y>0..15、已知二元一次方程组,则x+y=_______.16、已知二元一次方程组,则____________17、方程组的解是________.18、已知关于、的二元一次方程组,则的值为_______.19、已知关于x、y的方程组的解满足x+y=2,k=________.20、由,可得到用x表示y的式子为y=______21、已知,则x+y=__.22、方程组的解满足方程x+y+a=0,那么 a的值是________.23、已知x,y满足方程组,则x﹣y的值是.24、已知:关于的方程组的解,满足则=_____.25、方程组的解是.26、已知,那么x+y的值为,x﹣y的值为.27、方程组的解是.28、已知方程组,则x+y= .29、单项式3x2m+3n y8与﹣2x2y3m+2n是同类项,则m+n= .30、方程组的解是.31、若,则 .32、已知二元一次方程组的解是,则的值是 .33、若|x-2y+1|+|x+y-5|=0,则2x+y=________.34、方程组的解是.35、孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.36、已知方程2x﹣3y﹣1=0,用x表示y,则y=_____________.37、定义运算“”,规定x y=ax+by,其中a,b为常数,且12=5,21=6,则32=_______.38、(2015秋•薛城区校级月考)已知是方程3ax+4y=16的解,则a= .39、若4x2m y m+n与—3x6y2是同类项,则mn= .40、已知,则.41、若方程组的解是,那么|a﹣b|= .42、若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为 .43、(3分)已知方程组,不解方程组,则x+y= .44、已知方程组的解x、y之和为2,则k= .45、(4分)方程组的解为.46、对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.47、由方程组,可得到x与y的关系式是_____.48、已知是关于m,n的方程组的解,则a+b= .49、若方程组的解满足,则m的值为.50、如果实数x,y满足方程组,则x2﹣y2的值为.51、由方程组,可得到x与y的关系式是__________.52、如果实数x、y满足方程组,那么x2– y2= .53、方程组的解是___________.54、方程组的解是.55、若是关于字母,的二元一次方程,则= ,= 。
七年级下册数学 第七章二元一次方程组同步练习题及答案
7.1 谁的包裹多(1)如果设这个班有x 名女同学,y 名男同学.由女生人数的一半比男生人数少15人,可得什么方程?答:______.由再来4名女同学,男女生人数就相等了,你能得怎样的方程?答:______. (2)如果设小华买了x 张80分的邮票,y 张2元的邮票,你能得到怎样的方程? 答:______.测验评价等级:A B C ,我对测验结果(满意、一般、不满意)参考答案 (1)x +15=y ,x +4=y (2)x +y =16,0.8x +2y =18.87.1 谁的包裹多班级:________ 姓名:________一、选择题(1)以下方程中,是二元一次方程的是( ) A.8x -y =y B.xy =3 C.3x +2y D.y =21x1(2)以下的各组数值是方程组的解的是( )A.B .C.D.(3)若是方程组的解,则m +n 的值是( )A.1B.-1C.2D.-2(4)二元一次方程3a +b =9在正整数范围内的解的个数是( ) A.0 B.1 C.2 D.3 二、填空题(1)若方程(2m -6)x |n|-1+(n +2)y=1是二元一次方程,则m =_________,n =__________.(2)若是二元一次方程ax +by =2的一个解,则2a -b -6的值是__________.(3)图1表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n>1)盆花,每个图案花盆的总数是S .图1按此规律推断,以S 、n 为未知数的二元一次方程是________.(4)请写出解为的一个二元一次方程组________.三、根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?四、现有布料25米,需裁成大人和小孩的两种服装.已知大人每套用布2.4米,小孩每套用布1米,问各裁多少套恰好把布用完?⎩⎨⎧-=+=+2222y x y x ⎩⎨⎧-==22y x ⎩⎨⎧=-=22y x ⎩⎨⎧==20y x ⎩⎨⎧==02y x ⎩⎨⎧==12y x ⎩⎨⎧=+=-+12)1(2y nx y m x 82-m ⎩⎨⎧-==12yx ⎩⎨⎧==11y x测验评价结果:________;对自己想说的一句话是:__________________。
人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (26)
人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案)解方程组: x 2y 72x y 2+=⎧⎨+=⎩. 【答案】14x y =-⎧⎨=⎩【解析】【分析】根据加减消元法即可求解.【详解】解:2722x y x y +=⎧⎨+=⎩①②, 2⨯②得,424x y +=③,③①-得,33x =-,解得1x =-,将1x =-代入①得,127y -+=,解得4y =,所以,方程组的解是14x y =-⎧⎨=⎩. 【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法求解二元一次方程组.52.已知方程组54106x y a x y a+=+⎧⎨-=-⎩的解x 、y 的值的符号相同. (1)求a 的取值范围;(2)化简:2223a a +--.【答案】(1) −1<a <3;(2)4a 4-.【解析】【分析】(1)把a 看做已知数表示出方程组的解,根据x 与y 同号求出a 的范围即可;(2)由a 的范围判断绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】(1)54106x y a x y a +=+⎧⎨-=-⎩①②, ①+②得:5x =15−5a ,即x =3−a ,代入①得:y =2+2a ,根据题意得:xy =(3−a )(2+2a )>0,解得−1<a <3;(2)∵−1<a <3,∴当−1<a <3时,()22232a 223a 2a 262a 4a 4.a a +--=+--=+-+=-【点睛】考查含参数的二元一次方程组的解法,熟练掌握加减消元法是解题的关键.53.已知,关于x ,y 的方程组4325x y a x y a -=-⎧⎨+=-⎩的解为x 、y . (1)x=______,y=________(用含a 的代数式表示);(2)若x 、y 互为相反数,求a 的值;(3)若282x y m =,用含有a 的代数式表示m .【答案】(1)2,31x a y a =-=-+(2)12a =-(3)81m a =-+ 【解析】【分析】(1)根据加减消元法即可求解;(2)令x+y=0,即可得出a 的值;(3)根据幂的运算即可求解.【详解】解:(1)4325x y a x y a -=-⎧⎨+=-⎩①②, ①×2得2x-2y=8a-6③,②+①得3x=3a-6,解得x=a-2,把x=a-2代入①得y=-3a+1∴x=a-2, y=-3a+1(2)∵x 、y 互为相反数∴a-2+(-3a+1)=0, 解得1 2a =- (3)28x y •=322x y •=32x y +=2m∴m=x+3y=( a-2)+3(-3a+1)=-8a+1【点睛】此题主要考查二元一次方程组的应用,解题的关键是熟知加减消元法的解法.54.解方程组.(1)2460 x yx y=⎧⎨+-=⎩(2)341 526 x yx y-=⎧⎨+=⎩【答案】(1)21xy=⎧⎨=⎩(2)112xy=⎧⎪⎨=⎪⎩【解析】【分析】根据代入消元法和加减消元法即可求解二元一次方程组. 【详解】(1)2460x yx y=⎧⎨+-=⎩①②把①代入②得2y+4y-6=0,解得y=1,把y=1代入①得x=2,∴原方程组的解为21 xy=⎧⎨=⎩(2)341 526x yx y-=⎧⎨+=⎩①②令②×2得:10x+4y=12③①+①得13x=13,解得x=1 把x=1代入①得y=12,∴原方程组的解为112 xy=⎧⎪⎨=⎪⎩.【点睛】此题主要考查解二元一次方程组,解题的关键是熟知二元一次方程组的解法.55.解下列方程和方程组:(1)()32512y y -=--(2)3131632x y x y -=-⎧⎨+=⎩【答案】(1)52y =;(2)11x y =-⎧⎨=⎩. 【解析】【分析】(1)去括号后移项、合并同类项、系数化为1即可求得方程的解;(2)利用加减消元法解方程组即可.【详解】(1)()32512y y -=-- ,3y-2=5y-5-2,3y-5y = -5-2+2,-2y=-5, 52y =; (2)3131632x y x y -=-⎧⎨+=⎩①② ②×3得,3x+9y=6③,①-③得,-22y=-22,y=1,把y=1代入②得,x+3=2,x=-1;∴原方程组的解为11x y =-⎧⎨=⎩. 【点睛】本题考查了一元一次方程及二元一次方程组的解法,属于基础题,较为简单.56.计算下列各题(1) 计算 ()20191- ﹣2|(2)解方程组52356x y x y -=⎧⎨+=⎩【答案】;(2)11x y =⎧⎨=⎩. 【解析】【分析】(1)根据实数的性质即可进行化简,再合并即可;(2)利用代入消元法即可求解.【详解】(1)原式=-1-()-2+2-2+2(2)52356x y x y -=⎧⎨+=⎩①② 由①,得:x =6-5y ①把①代入①,得:5(6-5y )-2y =3,解得:y =1把y =1代入①得:x =6-51=1①原方程组的解为1{1x y ==.【点睛】此题主要考查实数的运算与二元一次方程组的求解,解题的关键是熟知实数的性质及二元一次方程组的解法.57.解方程组 {1281x y x y -=+=() 13+4225-342x y x y ==⎧⎪⎨⎪⎩() 【答案】321? 222x x y y ;()==⎧⎧⎨⎨==⎩⎩. 【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)128,x y x y -=⎧⎨+=⎩①② ①+②得:3x =9,解得:3x =把x =3代入①得:31y -=,解得:y =2,则原方程组的解为32.x y =⎧⎨=⎩(2)方程组整理得:38534x y x y +=⎧⎨-=⎩①②, ①+②得:6x =12,即x =2,把x =2代入①得:238y +=,解得:y =2,则原方程组的解为22.x y =⎧⎨=⎩【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法是解题关键.58.已知关于x 、y 的方程组2311x y ax by -=⎧⎨+=⎩和16x y bx ay -=-⎧⎨+=⎩的解相同,求(a+b )2019的值.【答案】-1.【解析】【分析】方程组2311x y x y -=⎧⎨-=-⎩的解就是原来方程组的解,据此求得x 、y 的值,再代回方程组求得a+b 的值,继而代入计算可得.【详解】解:由题意得2311x y x y -=⎧⎨-=-⎩,解得:43x y =-⎧⎨=-⎩将43x y =-⎧⎨=-⎩代入61bx ay ax by +=⎧⎨+=⎩中得:346431a b a b ①②+=-⎧⎨+=-⎩将①+②得:a+b=-1∴(a+b )2019=-1故答案为:-1.【点睛】本题考查了解二元一次方程组和方程组的解.这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.59.解方程组:3238x y x y =+⎧⎨+=⎩【答案】51x y =⎧⎨=⎩【解析】【分析】利用代入消元法求解可得;【详解】解:3238x y x y =+⎧⎨+=⎩①②, 将①代入②,得:3y+2+3y=8,解得y=1,将y=1代入①,得:x=5,则方程组的解为51x y =⎧⎨=⎩; 【点睛】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.60.解下列二元一次方程组:(1)23100y x x y =⎧⎨+-=⎩;(2)213211x y x y +=⎧⎨-=⎩;(3)3(21)2()1263x y x y x y --=--⎧⎪⎨-=⎪⎩ 【答案】(1)24x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩;(3)225x y =⎧⎨=⎩. 【解析】【分析】(1)方程组利用代入消元法求解即可;(2)(3)方程组利用加减消元法求解即可.【详解】(1)23100y x x y ①②=⎧⎨+-=⎩, 把①代入②得:32100x x +-=,解得:x=2,把x=2代入①得:4y =,则原方程组的解为24x y =⎧⎨=⎩. (2)213211x y x y ①②+=⎧⎨-=⎩,①+②得:4x=12,解得x=3,把x=3代入①得:321y+=,解得:y=−1,则原方程组的解为31xy=⎧⎨=-⎩.(3)方程组整理得:42212x yx y-=⎧⎨-=⎩①②,②–①得:2y=10,解得y=5,把y=5代入①得:x=22,则方程组的解为225xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
2.3.1 代入消元法 浙教版七年级数学下册同步练习(含解析)
2.3 解二元一次方程组第1课时 代入消元法基础过关全练知识点 代入消元法1.(2022湖南株洲中考)对于二元一次方程组{y =x −1,①x +2y =7,②将①式代入②式,消去y 可以得到( ) A.x+2x-1=7 B.x+2x-2=7C.x+x-1=7D.x+2x+2=72.四名学生利用代入法解二元一次方程组{3x −4y =5,①x −2y =3②时,提出四种不同的解法,其中解法不正确的是( ) A.由①得x=5+4y 3③,将③代入② B.由①得y=3x−54③,将③代入② C.由②得y=-x−32③,将③代入①D.由②得x=3+2y ③,将③代入①3.(2022江苏无锡中考)二元一次方程组{3x +2y =12,2x −y =1的解为 .4.【新独家原创】 已知关于a,b 的二元一次方程组{a +m =3,b −3=m,则-a-b 的值为 .5.(2021浙江丽水中考)解方程组:{x =2y,x −y =6.6.【易错题】下面是老师在铭铭的数学作业本上截取的部分内容:解方程组{2x −y =3,①x +y =−12.②解:方程①变形,得y=2x-3③, 第一步把方程③代入方程①,得2x-(2x-3)=3, 第二步整理,得3=3, 第三步因为x 可以取任意实数,所以原方程组有无数个解.问题:这种解方程组的方法叫 ;铭铭的解法正确吗?如果不正确,错在哪一步?并求出正确的解.能力提升全练7.已知单项式-3x m-1y 3与52x n y m+n 是同类项,那么m,n 的值分别是 ( )A.2,1B.1,2C.0,-1D.-1,28.小明说{x =−1,y =2为方程ax+by=10的解,小惠说{x =2,y =−1为方程ax+by=10的解,两人谁也不能说服对方.若他们的说法都正确,则a,b 的值分别为 ( )A.12,10B.9,10C.10,11D.10,109.(2022浙江杭州西湖期中,9,)在解关于x,y 的方程组{ax −2by =8①,2x =by +2②时,小明将方程①中的“-”看成了“+”,得到的解为{x =2,y =1,则原方程组的解为 ( ) A.{a =2b =2 B.{x =2y =2 C.{x =−2y =−3 D.{x =2y =−110.如果|x-2y+1|+|x+y-5|=0,那么x= .11.(2022浙江杭州期中改编,15,)若 1 314x+17y=2y+x-5=2x-3,则2(x-2y)= .12.(2022浙江杭州萧山期中,14,)对于有理数x,y,定义一种新运算:x ⊕y=ax+by-5,其中a,b 为常数.已知1⊕2=9,(-3)⊕3=-2,则2a+b= .13.(2022浙江杭州余杭月考,15,)已知关于x,y 的二元一次方程(3x-2y+9)+m(2x+y-1)=0,无论m 取何值,方程总有一个固定不变的解,这个解是 .14.【一题多解】当关于x,y 的二元一次方程组{2x −y −4m =0,14x −3y −20=0中y 的值是x 值的3倍时,求x,y 的值.15.已知关于x,y 的二元一次方程组{ax +5y =4,5x +y =3与{x −2y =5,5x +by =1的解相同,求a,b 的值.素养探究全练16.【运算能力】材料:解方程组{x −y −1=0①,4(x −y)−y =5②时,可由①得x-y=1③,然后将③代入②得4×1-y=5,解得y=-1,将y=-1代入③,得x-(-1)=1,解得x=0,∴方程组的解为{x =0,y =−1,这种方法被称为“整体代入法”.请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.17.【运算能力】三个同学对问题“若关于x,y 的二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,求关于x,y 的二元一次方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决?”参考他们的讨论,解决上述问题.答案全解全析基础过关全练1.B 将①式代入②式,得x+2(x-1)=7,∴x+2x-2=7,故选B.2.C C 中,应该由②得y=x−32,故选项C 解法错误,符合题意,故选C.3.答案 {x =2y =3 解析 {3x +2y =12,①2x −y =1②,由②得y=2x-1③,将③代入①得3x+2(2x-1)=12,解得x=2,将x=2代入③得y=3,∴原方程组的解为{x =2,y =3. 4.答案 -6解析 {a +m =3①,b −3=m②,把②代入①,得a+b-3=3, ∴a+b=6,∴-a-b=-6.5.解析 {x =2y①,x −y =6②,把①代入②得,2y-y=6,解得y=6, 把y=6代入①得,x=12, 则原方程组的解为{x =12,y =6. 6.解析 代入消元法.铭铭的解法不正确,错在第二步,正确解法:将方程①变形,得y=2x-3③,把③代入②,得x+2x-3=-12,解得x=-3,把x=-3代入③,得y=-9,所以原方程组的解为{x =−3,y =−9.能力提升全练7.A 根据题意得{m −1=n,m +n =3,解得{m =2,n =1.故选A. 8.D 由{x =−1,y =2为方程ax+by=10的解,{x =2,y =−1为方程ax+by=10的解,得{−a +2b =10,2a −b =10,解得{a =10,b =10.故选D. 9.C 把{x =2,y =1代入{ax +2by =8,2x =by +2,得{2a +2b =8,4=b +2,解得{a =2,b =2, ∴原方程组为{2x −4y =8,2x =2y +2,解得{x =−2,y =−3.故选C. 10.答案 3解析 ∵|x-2y+1|+|x+y-5|=0,∴{x −2y +1=0,①x +y −5=0,②由①得x=2y-1③,把③代入②,得2y-1+y-5=0,解得y=2,把y=2代入③,得x=2×2-1=3,∴原方程组的解为{x =3,y =2.11.答案 -4解析 由2y+x-5=2x-3得2y+x-2x=-3+5,∴2y-x=2,∴x-2y=-2.∴2(x-2y)=2×(-2)=-4.12.答案 13解析 根据题中的新定义得{a +2b −5=9,−3a +3b −5=−2,整理得{a +2b =14,①−a +b =1,②由②得b=1+a ③,把③代入①,得a+2(1+a)=14,解得a=4,把a=4代入③,得b=1+4=5.则原方程组的解为{a =4,b =5,则2a+b=8+5=13.13.答案 {x =−1y =3解析 ∵无论m 取何值,方程总有一个固定不变的解,∴{2x +y −1=0,3x −2y +9=0,解得{x =−1,y =3. 14.解析 解法一:∵y 的值是x 值的3倍,∴y=3x,∴{2x −3x −4m =0,14x −9x −20=0,解得{x =4,m =−1, ∴y=3×4=12.故x 的值为4,y 的值为12.解法二:{2x −y −4m =0,①14x −3y −20=0,② 由①得,y=2x-4m,③把③代入②,得14x-3(2x-4m)-20=0,∴x=−3m+52,∴y=-7m+5,∵y 的值是x 值的3倍,∴y=3x,∴-7m+5=3×−3m+52,解得m=-1.∴x=4,y=12.故x 的值为4,y 的值为12.15.解析 ∵两个方程组的解相同,∴可用方程5x+y=3,x-2y=5组成新方程组,得{5x +y =3,①x −2y =5,②由①得,y=3-5x ③,把③代入②,得x-2(3-5x)=5,解得x=1,把x=1代入③得y=-2,∴此方程组的解为{x =1,y =−2,把{x =1,y =−2代入{ax +5y =4,5x +by =1,得{a −10=4,5−2b =1,解得{a =14,b =2.素养探究全练16.解析 {2x −y −2=0,①6x−3y+45+2y =12,② 由①得2x-y=2③,将③代入②得3×2+45+2y=12,解得y=5,把y=5代入③得2x-5=2,解得x=3.5.所以原方程组的解为{x =3.5,y =5.17.解析 方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2中的两个方程的两边都除以5,得{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2, 因为方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,所以{35x =3,25y =4,解得{x =5,y =10.所以方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解是{x =5,y =10.。
人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案) (33)
人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)用“加减法”将方程组5x 3y 55x 4y 1-=-⎧+=-⎨⎩中的未知数x 消去后得到的方程是( ) A .y=4B .7y=4C .-7y=4D .-7y=14【答案】B【解析】 分析:根据题意,用第二个方程减去第一个方程即可消去未知数x.详解:5x 3y 55x 4y 1-=-⎧+=-⎨⎩①② ②-①得7y=4.故选:B.点睛:此题主要考查了加减消元法解二元一次方程组,关键是观察特点,选择合适的方式消去未知数x ,比较简单.二、解答题22.解方程组:(1)150243300x y x y =-⎧⎨+=⎩ (2)3005%53%25%300x y x y +=⎧⎨+=⨯⎩【答案】⑴ 3060x y =⎧⎨=⎩;(2)175125x y =⎧⎨=⎩【解析】分析:(1)直接利用代入消元法求解即可;(2)先将②化简,去掉百分号再利用加减消元法解答.详解:(1)150243300x y x y =-⎧⎨+=⎩①②, ①代入②得,4(150-2y )+3y=300,解得y=60,把y=60代入①得,x=150-2×60=30,所以,方程组的解是3060x y =⎧⎨=⎩; (2)3005%53%25%300x y x y +=⎧⎨+=⨯⎩①② ①×5-②得,-48y=-6000,解得:y=125,把y=125代入①得:x+125=300,x=175,于是方程组的解为:175125x y =⎧⎨=⎩. 点睛:本题要求同学们要熟悉二元一次方程组的解法:加减消元法和代入消元法,解题时要根据方程组的特点进行有针对性的计算.23.(1)计算:()()1200802009123 1.523π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)解方程组:743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 【答案】(1)52-;(2)6024x y =⎧⎨=-⎩; 【解析】分析:(1)根据零指数幂、负整数指数幂、有理数的乘方等知识点进行解答;(2)原方程组去分母后,用加法消元法求解即可.详解:(1)原式=1﹣2﹣2008233()322⨯⨯=52-; (2)方程整理得:34842348x y x y +=⎧⎨+=⎩①②, ①×2-②×3得:y =-24,把y =-24代入②得:x =60,∴原方程组的解为)6024x y =⎧⎨=-⎩点睛:需要注意的知识点是:a ﹣p =1pa ;解二元一次方程组的关键是熟练运用方程组的解法,本题属于基础题型.24.按要求解二元一次方程组:(1)用代入法解:528x y x y +=⎧⎨+=⎩①② (2)用加减法解:3272322x y x y -=⎧⎨+=⎩①② 【答案】(1) 32x y =⎧⎨=⎩;(2) 54x y =⎧⎨=⎩【解析】 分析:(1)根据代入消元法的方法,先由x+y=5用x 表示y ,然后直接代入2x+y=8进行解题即可;(2)把方程3x-2y=7乘以3,方程2x+3y=22乘以2,然后利用加减消元法消去y 即可求解.详解:(1)由①得,5y x =-⑴把③代入②得,258x x +-=解得,3x =.把3x =代入③得,2y =.∴这个二元一次方程组的解为32x y =⎧⎨=⎩. (2)⑴×3得,9621x y -=⑴⑴×2得,4644x y +=⑴由③+④得,1365x =.解得,5x =把5x =代入①得,3527y ⨯-=解得,4y =∴这个二元一次方程组的解为54x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程的解法,关键是根据方程的特点,按照要求,选择加减消元法和代入消元法求解,比较简单.25.已知方程组4234ax by x y -=⎧⎨+=⎩与2432ax by x y +=⎧⎨-=⎩的解相同,试求a+b 的值. 【答案】32. 【解析】分析:根据题意先解方程组234432x y x y +=⎧⎨-=⎩, 再求a b ,的值即可. 详解:依题意可有234432x y x y +=⎧⎨-=⎩, 解得123x y =⎧⎪⎨=⎪⎩,所以,有243223a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得332a b =⎧⎪⎨=-⎪⎩, 因此333.22a b +=-= 点睛:考查解二元一次方程组,常用的方法有加减消元法和代入消元法.26.已知二元一次方程28px y +=,564x y -=,2580x y +-=有公共解,求p 的值. 【答案】5817【解析】【分析】先解方程组5642580x y x y -=⎧⎨+-=⎩,再把求得的解代入28px y +=,可求p.【详解】解:解方程组5642580x y x y -=⎧⎨+-=⎩得68373237x y ⎧=⎪⎪⎨⎪=⎪⎩, 代入28px y +=,得6832283737p +⨯=,解得5817p =. 【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解方程组.27.解方程组:(1)6x y x y =⎧⎨+=⎩ ; (2)3213 325x y x y +=⎧⎨-=⎩.【答案】(1)33x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩【解析】【分析】(1)用代入法解方程组;(2)用加减法解方程组.【详解】解:(1)6x y x y =⎧⎨+=⎩①②, 把①代入②得:26y =,即3y =,把3y =代入①得:3x =,则方程组的解为33x y =⎧⎨=⎩; ()32132325x y x y +=⎧⎨-=⎩①②, ①+②得:618x =,即3x =,①-②得:48y =,即2y =,则方程组的解为32x y =⎧⎨=⎩. 【点睛】本题考核知识点:解二元一次方程组.解题关键点:掌握二元一次方程组的解法.28.解方程组:(1)623x y x y -=⎧⎨-=⎩(2)22(1)2(2)(1)5x y x y -=-⎧⎨-+-=⎩ 【答案】(1)39x y =-⎧⎨=-⎩;(2)42x y =⎧⎨=⎩【解析】【分析】(1)用加减法可求解;(2)先化简再运用加减法求解.【详解】解:(1) (1)623x y x y -=⎧⎨-=⎩①② ①-②,得-x=3,所以,x=-3把x=-3代入①得-3-y=6,解得y=-9所以方程组的解是39x y =-⎧⎨=-⎩. (2)方程组可化为20210x y x y -=⎧⎨+=⎩①② ①+②×2,得5x=20解得x=4.把x=4代入②,得2×4+y=10解得y=2.所以,方程组的解是42x y =⎧⎨=⎩. 【点睛】本题考核知识点:解方程组. 解题关键点:熟记方程组的一般解法.29.解方程组:521x y x y +=⎧⎨-=⎩①② 【答案】23x y =⎧⎨=⎩【解析】分析:本题用加减消元法或代入消元法均可.详解:解方程组:521x y x y +=⎧⎨-=⎩①② 解:①+②得:3x=6x=2把x=2代入①得:y=3.∴23x y =⎧⎨=⎩点睛:这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法.30.解方程组:22120y x x xy y -=⎧⎨--=⎩【答案】21x y =-⎧⎨=-⎩ ,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩【解析】【分析】分析:根据题意,把方程②因式分解为ab=0的形式,然后构造二元一次方程组,再根据加减消元法或代入消元法求解方程即可.【详解】详解:22120y x x xy y -=⎧⎨--=⎩①② 由⑴得:(x ﹣2y )(x+y )=0x ﹣2y=0或x+y=0原方程组可化为120y x x y -=⎧⎨-=⎩,10y x x y -=⎧⎨+=⎩解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩⑴原方程组的解是为21x y =-⎧⎨=-⎩, 点睛:此题主要考查了二元一次方程组的特殊解法,利用加减消元法或代入消元法解方程组,应用因式分解法对方程变形是解题关键,有一定的难度,是中考扩展型的题目.。
消元——解二元一次方程组(代入法 )(作业)-七年级数学下册同步备课系列(人教版)
8.2二元一次方程组的解法(代入消元法)作业一.选择题1.把方程3−2=1写成用含x的代数式表示y,以下各式中正确的是()A.=2K23B.=23−13C.=23−2D.=2−232.由4K32=1,可以得到用y表示x的式子为()A.=3K24B.3=4−2C.=4K23D.=2−433.已知方程组=−2−4,①3−=5.②把①代入②得()A.3x+2x+4=5B.3x+2x–4=5C.3x–2x+4=5D.3x–2x–4=5 4.方程组=+12+=5消去x后所得的方程是()A.2+1+=5B.2+2+=5C.+2+=5D.+1+=5.5.方程2x–3y=7,用含x的代数式表示y为()A.=7−23B.=2K73C.=7+32D.=7−326.用代入法解方程组=2−3①3−2=10②将方程①代入②中,所得的正确方程是()A.3x–4y–3=10B.3x–4x+3=10C.3x–4x+6=10D.3x–4x–6=10 7.用代入法解方程组=2s①−=10.②下列说法正确的是()A.直接把①代入②,消去y B.直接把①代入②,消去xC.直接把②代入①,消去y D.直接把②代入①,消去x 8.若3−+52+2−+3=0,则x–y的值为()A.1B.–1C.3D.–3 9.由方程组2+=1,−3=u可得出x与y的关系是()A.2x+y=4B.2x–y=4C.2x–y=–4D.2x+y=–4 10.用代入法解方程组7−2=3,①−2=−12.②有以下步骤:第一步:由①得=7K32③第二步:由③代入①,得7−2×7K32=3;第三步:整理得3=3;第四步:所以x可取一切有理数,原方程组有无数个解。
以上解法中,最先造成错误的一步是()A .第一步B .第二步C .第三步D .第四步二、填空题11.方程y =2x –3与方程3x +2y =1的公共解为______.12.如果方程组=+1,2−=2.的解是方程3x –4y +a =6的解,那么a 的值是______.13.已知方程2x –y =3,用含x 的代数式表示y 是_______.14.已知关于x ,y 的二元一次方程组2+3=s +2=−1的解互为相反数,则K 的值是______.三、解答题15.把下列方程改写成用含x 的式子表示y 的形式:(1)32+2=1(2)14+74y =2(3)5x –3y =x +2y ;(4)2(3y –3)=6x +416.用代入法解下列方程组:(1)=+3,①7+5=9.②(2)3−=5,①5+2=15.②(3)4+=15,①3−2=3.②(4)4+2+5=1,2+3(+2)=3.17.先阅读材料,然后解方程组:材料:解方程组+=4,①3(+p +=14.②将①整体代入②,得3×4+y =14,解得y =2.把y =2代入①得x =2.∴=2,=2.这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请这种方法解方程组−−1=0,①4(−p −=5.②参考答案一、选择题12345678910C C A B B C B B A B 二、填空题11.=1,=−1.12.313.=2−314.–1三、解答题15.解:(1)=−34+12(2)y =–17x +87(3)=45(4)=+5318.16.用代入法解下列方程组:(2)=+3,①7+5=9.②(2)3−=5,①5+2=15.②解:(1)把①代入②,得(2)由①,得t =3s –5.③7x +5(x +3)=9把③代入②,得5s +2(3s –5)=15解得:=−12.解得=2511把x =−12代入①,得=52把=2511代入③,解得t =2011∴方程组的解为:=−12=52∴方程组的解为:=2511=2011(3)4+=15,①3−2=3.②(4)4+2+5=1,2+3(+2)=3.解:(3)由①,得解:化简,得y =–4x +15,③4+5=−7,①2+3=−3.②把③代入②得由①,得=−5K74③3x –2(–4x +15)=3把③代入②,得解得:x =32×−5K74+3y =–3把x =3代入③,解得y =1.得y =3.把y =1代入③,得x =3.∴方程组的解为=3,=3.∴方程组的解为=−3,=1.17.解方程组−−1=0,①4(−p−=5.②解:由①得,x–y=1③将③整体代入②得y=–1把y=–1代入①得x=0∴=0,=−1.。
数学:6.3用代入消元法解二元一次方程组同步练习1(北京课改版七年级下)1
6.3 用代入消元法解二元一次方程组同步练习【主干知识】1.我们把________,从而求出方程组的解的方法,叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)把方程组中的一个方程变形,写出_________的形式;(2)把它_________中,得到一个一元一次方程;(3)解这个__________;(4)把求得的值代入到_________,从而得到原方程组的解.3.在方程2x+3y-6=0中,用含x的代数式表示y,则y=_______,用含y的代数式表示x,则x=_______.4.•用代入法解方程组59224x yx y-=⎧⎨-=⎩最好是先把方程______•变形为________,•再代入方程_______求得_______的值,最后再求______的值,最后写出方程组的解.5.用代入法解方程组1235x yx y-=⎧⎨+=⎩.【点击思维】1.用代入法解二元一次方程组时,•要把一个未知数用含另一个未知数的代数式来表示,你认为应该选择哪一个方程来变形?2.检验方程组的解时,必须将求得的未知数的值代入________方程,看左右两边的值是否相等.3.方程4(3x-y)=x-3y,用含x的代数式表示,则y=________.例1解方程组41 32x yx y x+=⎧⎪+⎨-=⎪⎩1.方程-x+4y=-15用含y的代数式表示,x是()A.-x=4y-15 B.x=-15+4y C.x=4y+15 D.x=-4y+15 2.将y=-2x-4代入3x-y=5可得()A.3x-2x+4=5 B.3x+2x+4=5 C.3x+2x-4=5 D.3x-2x-4=5 3.判断正误:(1)方程32x+2y=2变形得y=1-3x ()(2)方程x-3y=12x-写成含y的代数式表示x的形式是x=3y+12x-()4.将y=12x+3代入2x+4y=-1后,化简的结果是________,从而求得x的值是_____.5.当a=3时,方程组122a x yx y+=⎧⎨+=⎩的解是_________.6.把方程7x-2y=15写成用含x的代数式表示y的形式,得()A.x=215152715157 ...7722x x y x xB xC yD y----===7.用代入法解方程组252138x yx y+=-⎧⎨+=⎩较为简便的方法是()A.先把①变形 B.先把②变形C.可先把①变形,也可先把②变形 D.把①、②同时变形8.已知方程2x+3y=2,当x与y互为相反数时,x=______,y=_______.9.若方程组431(1)3x ykx k y+=⎧⎨+-=⎩的解x和y的值相等,则k=________.10.已知x=-1,y=2是方程组的1311a xb yb x a y+=⎧⎨+=-⎩解,则ab=________.11.把下列方程写成用含x的代数式表示y的形式:①3x+5y=21 ②2x-3y=-11; ③4x+3y=x-y+1 ④2(x+y)=3(x-y)-112.如果12xy=⎧⎨=⎩是方程2mx-7y=10的解,则m=_______.13.下面方程组的解法对不对?为什么?解方程组235 y xx y=⎧⎨+=⎩解:把①代入②得3x+2x=5,5x=5,所以x=1是方程组的解.14.已知方程组21 221x yx y-=⎧⎨+=-⎩(1)求出方程①的5个解,其中x=0,16,1,3,4;(2)求出方程②的5个解,其中x=0,16,1,3,4;(3)求出这个方程组的解.15.若x-3y=2x+y-15=1,则x=______,y=_______.16.用代入法解下列方程组:(1)23328y xx y=-⎧⎨-=⎩3(2)3814x yx y-=⎧⎨-=⎩23(3)253s tts=⎧⎪+⎨=⎪⎩356(4)415x yx y-=⎧⎨+=-⎩【综合创新训练】17.在y=kx+b中,当x=1时,y=2;当x=2时,y=4,那么k=_______,b=_______.18.已知1331024x a x yy x b y=--=⎧⎧⎨⎨=+=⎩⎩是方程组的解,求a、b的值.19.若│x+y-2│+(x-y)2=0,那么x=________,y=________.20.请思考:方程组582324x yx y-=⎧⎨-=⎩的解是不是方程8x-10y=6的一个解.21.已知二元一次方程组941175yxx y⎧+=⎪⎪⎨⎪+=⎪⎩的解为x=a,y=b,则│a-b│=()A.1 B.11 C.13 D.1622.已知x=5-t,y-3=2t,则x与y之间的关系式是_______.。
8.2消元——解二元一次方程组(一) 同步练习习题 2020-2021学年七年级数学人教版下册
第八章 二元一次方程组8.2 消元——解二元一次方程组(一)【笔记】1.将未知数的个数由多化少,逐一解决的思想,叫做 思想.2.我们把 , 再代入另一个方程,实现消元,进而求出方程组的解的方法,叫做 ,简称代入法.【训练】1.用代入法解方程组{x =2y,①y −x =3,②下列说法正确的是()A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x 2.用代入法解方程组{3x +4y =2,①2x −y =5,②最好的变形是 ()A.由①得x =2−4y3 B.由①得y =2−3x4C.由②得x =y+52D.由②得y =2x -53.方程y =1-x 与3x +2y =5的公共解是 ( )A.{x =3,y =2B.{x =−3,y =4C.{x =3,y =−2D.{x =−3,y =−24.(临沂中考)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =785.如图所示,点O 在直线AB 上,OC 为射线,∠1比∠2少60°,则∠1,∠2分别为 ( )A.70°,110°B.60°,120°第5题图C.50°,130°D.40°,140°6.如果x ∶y =5∶2,且满足x -3y =-7,那么x ,y 中较小的值是 ( )A.35B.-14C.-35D.147.已知方程2x -3y =4,用含x 的式子表示y = ,用含y 的式子表示x = . 8.若-2x m -n y 2与3x 4y2m +n是同类项,则m -3n 的立方根为 .9.在一本书上写着方程组{x +py =2,x +y =1的解是{x =0.5,y =□,其中,y 的值被墨渍盖住了,不过,我们可得出p = .10.关于x ,y 的方程y =kx +b 中,当x =2时,y =0,当x =-1时,y =5,则当x =0时,y = . 11.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?若设x 名工人完成第一道工序,y 名工人完成第二道工序,则可列方程组:.12.解下列方程组: (1){y =4x,①2x +y =5;②(2){x −2y =−3,①3x +y =2.②13.如果{x =3,y =−2是方程组{ax +by =1,ax −by =5的解,求a 2021+2b 2021的值.14.(乐山中考)方程组x 3=y2=x +y -4的解是 ( )A.{x =−3,y =−2 B.{x =6,y =4 C.{x =2,y =3D.{x =3,y =215.关于x ,y 的方程组{x +y =a,x +2y =a +5,那么y 是 ()A.5B.2a +5C.a -5D.2a16.已知y =x 2+px +q ,当x =1时,y 的值为2;当x =-2时,y 的值为2.求当x =-3时,y 的值.17.已知方程组{ax +by =1,2x −y =1和{ax −by =5,x +2y =3的解相同,求a 和b 的值.18.(海南中考)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元,则这两种百香果每千克的价格各是多少元?19.先阅读,然后解方程组{x −y −1=0,①4(x −y)−y =5.②解方程组时,可由①得x -y =1③,然后再将③代入②得4×1-y =5,求得y =-1,从而进一步求得{x =0,y =−1.这种方法被称为“整体代入法”. 请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.参考答案8.2 消元——解二元一次方程组(一)【笔记】 1.消元2.二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来 代入消元法 【训练】1.B2.D3.C4.D5.B6.D7.2x−433y+42 8.2 9.3 10.10311.{x +y =7,900x =1200y12.(1)把①代入②得2x +4x =5,解得x =56,把x =56代入①得,y =103.∴原方程组的解为{x =56,y =103. (2)由①得x =2y -3,把x =2y -3代入②得:3(2y -3)+y =2,解得y =117,把y =117代入x =2y -3得x =17, ∴原方程组的解是{x =17,y =117.13.把{x =3,y =−2代入方程组得{3a −2b =1,3a +2b =5,解得{a =1,b =1.∴a 2021+2b 2021=1+2=3.14.D 15.A 16.6 17.由{2x −y =1,x +2y =3,得{x =1,y =1.将{x =1,y =1代入{ax +by =1,ax −by =5, 得{a +b =1,a −b =5,解得{a =3,b =−2.18.设每千克“红土”百香果的价格是x 元,每千克“黄金”百香果的价格是y 元. 根据题意,得{2x +y =80,x +3y =115,解得{x =25,y =30.答:每千克“红土”百香果的价格是25元,每千克“黄金”百香果的价格是30元. 19.{2x −y −2=0,①6x−3y+45+2y =12.②由①得2x -y =2③,将③代入②得3×2+45+2y =12,解得y =5,把y =5代入③得x =72.则方程组的解为{x =72,y =5.。
人教版七年级下册数学消元法解二元一次方程组练习题(含答案)
人教版七年级下册数学8.2消元法解二元一次方程组练习题(含答案)一、单选题1.已知关于x ,y 的二元一次方程{2ax +by =3ax −by =1的解为{x =1y =1,则a +2b 的值是( ) A .1 B .2 C .3 D .42.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m 的值为( ) A .−3 B .1 C .2 D .33.已知a ,b 满足方程组{5a +3b =73a +5b =9,则a+b 的值为( ) A .2 B .4 C .﹣2 D .﹣44.在解二元一次方程组时,我们常常采用的方法是消元法,将二元一次方程组转化为一元一次方程求解.下面是甲、乙两个同学解方程组{2x +5y =18,①7x +4y =36②的解题思路: 甲同学:①+②,得9x +9y =54③.③×29−①得到一元一次方程再求解. 乙同学:②-①×2,得3x −6y =0③.由③,得x =2y .再代入原方程组中的任意一个方程中,转化为一元一次方程求解.通过阅读可知,下列对甲、乙两同学的思路判断正确的是( )A .只有甲同学的思路正确B .只有乙同学的思路正确C .甲、乙两同学的思路都不正确D .甲、乙两同学的思路都正确5.在用代入消元法解二元一次方程组{x +3y =−23x −4y =6时,消去未知数x 后,得到的方程为( ) A .3(−2−3y)−4y =6B .3(−2−3y)+4y =6C .3(−2+3y)−4y =6D .3(−2+3y)+4y =66.已知代数式-3x m-1y 3与 52x n y m+n 是同类项,那么m ,n 的值分别是( ) A .{m =2n =−1 B .{m =−2n =−1 C .{m =2n =1 D .{m =−2n =1二、填空题7.已知关于x ,y 的方程组{x +a =6y −3=a ,则x +y =. 8.已知方程组 {3x −2y =12x −3y =−1,则x +y 的值为 . 9.已知{2x +y =5x +2y =4,则x −y = . 10.已知关于x ,y 的二元一次方程组{3x +2y +k =32x +3y +3k =5的解满足x +y =−4,则k 的值为 .11.若 {x +2y =62x +3y =7则x+y = 12.若关于x ,y 的方程组{x +3y =4m +1x −y =3的解满足x +y =4,则m 的值为 . 13.二元一次方程组{x −4y =06y −x =10的解为 . 14.已知方程组{2x +y =4x +2y =5,则x-y 的值为 . 15.如果|x ﹣2y+1|+|x+y ﹣5|=0,那么x = .16.解方程组{2x +3y =53x −y =2的解是 . 17.已知{x =3y =2是方程组{ax +by =3bx +ay =7的解,则代数式(a +b)(a −b) 的值为 . 18.设M =2x −3y ,N =3x −2y ,P =xy .若 M =5,N =0 ,则 P = .三、解答题19.若方程组{2x−y 3−2y =62(2x +y)=1−32y的解满足方程2ax ﹣3by =26.求正整数a ,b 的值 20.已知关于x ,y 的方程组{2x −3y =3mx +ny =−1和{2mx +3ny =33x +2y =11的解相同,求(3m +n)2021的值. 四、计算题21.解方程组:{2x −y =−812x +2y =5222.解方程(组):(1)2(2x +1)−(3x −4)=2(2){3x +5y =82x −y =1⋅23.解方程组(1){x −y =22x +y =16; (2){2x +3y =13x −2y =8.答 案1.B 2.A 3.A 4.D 5.A 6.C 7.9 8.2 9.1 10.7 11.1 12.113.{x =20y =5 14.-1 15.3 16.{x =1y =117.-8 18.6 19.解:方程组整理得:{2x −7y =18①8x +7y =2②, ①+②得:10x =20,解得:x =2,把x =2代入①得:y =﹣2,把{x =2y =−2代入方程得:2a+3b =13,解得:a =13−3b 2, 当b =1时,a =5;b =3时,a =2.20.解:根据题意得:{2x −3y =3①3x +2y =11②①×2+②×3:13x =39,∴x =3,把x =3代入①:y =1,∴ {x =3y =1把{x =3y =1代入{2mx +3ny =3mx +ny =−1得{2m +n =13m +n =−1解得:{m =−2n =5∴(3m +n)2021=[3×(−2)+5]2021=(−1)2021=−1 21.解:{2x −y =−8①12x +2y =52② ①×2+②可得:4x +12x =−16+52解得x =−3, 把x =−3代入①,解得y=2, ∴原方程组的解是{x =−3y =2.22.(1)解: 2(2x +1)−(3x −4)=2去括号得, 4x +2−3x +4=2移项,合并同类项得,x=-4(2)解: {3x +5y =8①2x −y =1②⋅ ①+②×5得,13x=13 解得,x=1把x=1代入②得,2-y=1 解得,y=1所以,方程组的解为: {x =1y =123.(1)解:{x−y=2①2x+y=16②①+②得:3x=18解得:x=6将x=6代入①中得:y=4∴此方程组的解为{x=6y=4(2)解:{2x+3y=1①3x−2y=8②①×2得:4x+6y=2③②×3得:9x−6y=24④③+④得:13x=26解得:x=2将x=2代入①中得:y=−1∴此方程组的解为{x=2y=−1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.已知(2 -4)2 + x 2 y 8 =0,则 x y 2018 ___________.
12. 定 义 一 种 新 运 算 “※”, 规 定 ������※������=������������ + ������������2, 其 中 ������、 ������为 常 数 , 且 1※2=5,2※1=3,则 2※3=____________.
【 解 析 】 关 于 x,y 的 方 程 组 {
与{
,有 相 同 的 解 ,所 以
ax by 2 bx ay 4
2x 3y 4
x2
x2
ax by 2
2a 2
{
,解 得 {
,将 {
代入{
可得{
,解 得
3x 5y 6
y0
y0
bx ay 4
2b 4
a 1
{
,故选 B.
b 2
5.A
y 2x m① 【解析】 {
x 2 5m②
由②得, x=5m-2,③ 把③代入①得
y 25m 2 m ,
∴y=4-9m, ∵x+y=6, ∴5m-2+4-9m=6, ∴m=-1. 故选 A. 6.D
2x y 3 0
【解析】由题意得: {
2 36
(2) 2s t 3s 2t 3
3
8
3 x y 2 x y 10,
15.解方程组: { x y x y 7 . 4 22
{ { 16.甲、乙两人解关于 x,
y 的方程组
4������ ‒ ������������ =‒ 1 ������������ + ������������ = 5
《消元法解二元一次方程组》同步练习题
一、选择题(每小题只有一个正确答案) 1.把方程 2x+3y﹣1=0 改写成含 x 的式子表示 y 的形式为( )
1
1
A. y=3(2x﹣1) B. y=3(1﹣2x)
C. y=3(2x﹣1) D. y=3(1﹣2x)
3x 5y 8
2.用加减消元法解方程组 {
,
2x y 11 0
x 2
解得: {
,
y7
故选 D. 7.C 【解析】试题解析:其中错误的一步为(3), 正确解法为:去分母得:24−9y−10y=10, 移项合并得:−19y=−14,
解得: y 14 . 19
1
∴������ =‒ 3(1 ‒ 2������).
故选 B. 2.D 【解析】将两个方程相加,得:10x=10,故选 D. 3.A
y x 1
2x 2y 2
x3
【解析】 {
{
{
.
3x 2y 5
3x+2y 5
y 2
故选 A. 4.B
2x 3y 4 3x 5y 6
x 2 5mA. ﹣来自 B. 2 C. 1 D. 4
6.已知 2x y 3 +(2x+y+11)2=0,则( )
x 2, A. {
y 1
x 0, B. {
y 3
x 1, C. {
y 5
x 2, D. {
y 7
2x 3y 8①
7.用代入法解方程组{
将两个方程相加,得( )
7x 5y 2
A. 3x=8 B. 7x=2 C. 10x=8
y x 1
3.方程组{
的解是(
3x 2y 5
D. 10x=10 )
x3 A. {
y 2
x 3 B{
y4
x3 C{
y2
x 3 D{
y 2
2x 3y 4
3x 5y 6
+ 3������1������ = + 3������2������ =
4������1 4������2
的
解为_____.
{������ + ������������ = 11
9.已知方程组 ������ + 3 = 2������ 有正整数解,则整数 m 的值为_____.
10.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如 果搭建正三角形和正六边形共用了 2016 根火柴棍,并且正三角形的个数比正六边形的 个数多 6 个,那么能连续搭建正三角形的个数是__________
,甲因看错
a,解得
������ ������
= =
2 3
,乙将
{������ =‒ 1
其中一个方程的 b 写成了它的相反数,解得 ������ =‒ 1 ,求 a、b 的值.
ax by 26
17.小明和小刚同时解方程组 {
根据小明和小刚的对话,试求 a,b,c
cx y 6
的值.
参考答案 1.B 【解析】把 2x+3y-1=0 改写成含 x 的式子表示 y 的形式: 3y=-2x+1,
三、解答题
13.解下列二元一次方程组:
{ (1)
3������ ‒ ������ = 2 9������ + 8������ = 17
{ (2)
2������ ‒ 3������ = 4 5������ ‒ 3������ = 19
x 1 y 2 0
14.(1){ 3
4
x 3 y 1 1
4.已知关于 x,y 的方程组 {
,与{
,有相同的解,则 a,
ax by 2
bx ay 4
b 的值为( )
a 2 A. {
b 1
a 1 B. {
b 2
a 1 C. {
b2
a 1 D. {
b 2
y 2x m
5.关于 x,y 的方程组{
的解满足 x+y=6,则 m 的值为( )
{ { { 8.若关于
x,y
方程组
������1������ ������2������
+ +
������1������ ������2������
= =
������1 ������2
的解为
������ = 5 ������ = 6
,则方程组
5������1������ 5������2������
有以下过程,其中错误的一步是( )
3x 5y 5②
8-3 y (1)由①得 x= ③;
2 (2)把③代入②得 3× 8-3y -5y=5;
2 (3)去分母得 24-9y-10y=5; (4)解得 y=1,再由③得 x=2.5.
A. (1) B. (2) C. (3) D. (4)
二、填空题