高三数学第一轮复习讲义 导数小结.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮复习讲义(小结) 2005.1.14
一.课前预习: 导 数
1.设函数()f x 在0x x =处有导数,且1)()2(lim 000=∆-∆+→∆x
x f x x f x ,则0()f x '=( C ) ()A 1 ()B 0 ()C 2 ()D 2
1 2.设()f x '是函数()f x 的导函数,()y f x '=的图象如下图(1)所示,则()y f x =的图象
3.若曲线3y x px q =++与x 轴相切,则,p q 之间的关系满足 ( A )
()A 22()()032p q += ()B 23()()023
p q += ()C 2230p q -= ()D 2230q p -= 4.已知函数23()2
f x ax x =-的最大值不大于16,又当11[,]42x ∈时,1()8f x ≥,则a = 1 . 5.若对任意3,()4,(1)1x R f x x f '∈==-,则()f x =42x -.
四.例题分析:
例1.若函数3211()(1)132
f x x ax a x =
-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.
解:2()1(1)[(1)]f x x ax a x x a '=-+-=---,
令()0f x '=得1x =或1x a =-,
∴当(1,4)x ∈时,()0f x '≤,当(6,)x ∈+∞时,()0f x '≥,
∴416a ≤-≤,∴57a ≤≤.
例2.已知函数3()f x ax cx d =++(0)a ≠是R 上的奇函数,当1x =时()f x 取得极值2-,
(1)求()f x 的单调区间和极大值;
(2)证明对任意12,(1,1)x x ∈-,不等式12|()()|4f x f x -<恒成立.
解:(1)由奇函数的定义,应有)()(x f x f -=-,R x ∈,
即d cx ax d cx ax ---=+--33,∴ 0=d ,∴cx ax x f +=3)(,∴c ax x f +='2
3)(,由条件2)1(-=f 为)(x f 的极值,必有0)1(='f ,故⎩⎨
⎧=+-=+032c a c a , 解得1=a ,3-=c ,∴x x x f 3)(3-=,)1)(1(333)(2-+=-='x x x x f ,
∴0)1()1(='=-'f f ,
当)1,(--∞∈x 时,0)(>'x f ,故)(x f 在单调区间)1,(--∞上是增函数;
当)1,1(-∈x 时,0)(<'x f ,故)(x f 在单调区间)1,1(-上是减函数;
当),1(∞+∈x 时,0)(>'x f ,故)(x f 在单调区间),1(∞+上是增函数,
所以,)(x f 在1-=x 处取得极大值,极大值为2)1(=-f .
(2)由(1)知,x x x f 3)(3
-=)]1,1[(-∈x 是减函数,
且)(x f 在]1,1[-上的最大值2)1(=-=f M ,最小值2)1(-==f m ,
所以,对任意的1x ,)1,1(2-∈x ,恒有4)2(2)()(21=--=-<-m M x f x f . 例3.设函数321()532
a b f x x x x -=
+++(,,0)a b R a ∈>的定义域为R ,当1x x =时,取得极大值;当2x x =时取得极小值,1||2x <且12||4x x -=.
(1)求证:120x x >;(2)求证:22(1)164b a a -=+;(3)求实数b 的取值范围.
(1)证明:2()(1)1f x ax b x '=+-+,
由题意,2()(1)10f x ax b x '=+-+=的两根为12,x x ,∴1210x x a =>.
(2)12||4x x -==,∴22(1)164b a a -=+. (3)①若102x <<,则10(2)4210
b f a b ->⎧⎨'=+-<⎩,
∴412(1)a b +<-,从而222
(41)4(1)4(164)a b a a +<-=+, 解得112a >或14
a <-(舍) ∴42(1)3
b ->,得13
b <. ②若120x -<<,则10(2)4230b f a b -<⎧⎨'-=-+<⎩, ∴412(1)a b +<-,从而222
(41)4(1)4(164)a b a a +<-=+, 解得112a >或14
a <-(舍) ∴42(1)3
b ->,∴53b >, 综上可得,b 的取值范围是15(,)(,)33
-∞+∞. 小结:本题主要考查导数、函数、不等式等基础知识,综合分析问题和解决问题的能力.
五.课后作业: 班级 学号 姓名
1.函数3223125y x x x =--+在[0,3]上的最大值与最小值分别是 ( )
()A 5、15- ()B 5、4 ()C 4-、15- ()D 5、16-
2.关于函数762)(23+-=x x x f ,下列说法不正确的是 ( )
()A 在区间(,0)-∞内,)(x f 为增函数 ()B 在区间(0,2)内,)(x f 为减函数
()C 在区间(2,)+∞内,)(x f 为增函数 ()D 在区间(,0)(2,)-∞+∞内,)(x f 为增函数
3.设)(x f 在0x x =处可导,且000(3)()lim 1x f x x f x x
∆→-∆-=∆,则)(0x f '等于 ( ) ()A 1 ()B 13- ()C 3- ()D 3
1 4.设对于任意的x ,都有0)(),()(0≠-=-'-=-k x f x f x f ,则0()f x '= ( )
()A k ()B k - ()C k 1 ()D k
1- 5.一物体运动方程是)/8.9(3
120022s m g gt s =+=,则3=t 时物体的瞬时速度为 . 6.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.
(1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;
(2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.
7.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨的价格P (元/吨)之间的关系为21242005
P x =-
,且生产x 吨的成本为50000200R x =+元,问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)
8.已知1,0b c >->,函数()f x x b =+的图象与函数2()g x x bx c =++的图象相切,
(1)求,b c 的关系式(用c 表示b );
(2)设函数()()()F x f x g x =在(,)-∞+∞内有极值点,求c 的取值范围.
精美句子
1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂; 幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。

一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。

一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。

8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。

相关文档
最新文档