2014年宁波市高三十校联考数学理科试卷

合集下载

2014年高考理科数学浙江卷(含答案解析)

2014年高考理科数学浙江卷(含答案解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页,非选择题部分4至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 柱体的体积公式24πS R = V Sh =球的体积公式其中S 表示柱体的底面积,h 表示柱体的高 33π4V R =台体的体积公式其中R 表示球的半径121(S )3V h S =+锥体的体积公式其中1S ,2S 分别表示台体的上、下底面积,13V Sh =h 表示台体的高其中S 表示锥体的底面积,如果事件A ,B 互斥,那么h 表示锥体的高()()()P A B P A P B +=+选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|2}U x x =∈Ν≥,集合2{|5}A x x =∈N ≥,则=U A ð( )A .∅B .{2}C .{5}D .{2,5}2.已知i 是虚数单位a ,b ∈R ,则“1a b ==”是“2(i)2i a b +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 ( )A .290cmB .2129cmC .2132cmD .2138cm4.为了得到函数sin3cos3y x x =+的图象,可以将函数y x =的图象( )A .向右平移π4个单位 B .向左平移π4个单位 C .向右平移π12个单位D .向左平移π12个单位5.在64(1)(1)x y ++的展开式中,记m n x y 项的系数为(,)f m n ,则(3,0)(2,1)(1,2)f f f ++(0,3)f +=( )A .45B .60C .120D .2106.已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f -=-=-<≤,则( )A .3c ≤B .36c <≤C .69c <≤D .9c >7.在同一直角坐标系中,函数()(0)a f x x x =>,()log a g x x =的图象可能是( )A.B.C. D.8.记,,max{,},,x x y x y y x y ⎧=⎨⎩≥<,,min{,},,y x y x y x x y ⎧=⎨⎩≥<设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}min{≤|a |,|b |}B .min{|a +b |,|a -b |}min{≥|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |29.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则( )A .12p p >,12()()E E ξξ<B .12p p <,12()()E E ξξ>C .12p p >,12()()E E ξξ>D .12p p <,12()()E E ξξ<10.设函数21()f x x =,22()2()f x x x =-,31()|sin 2π|3f x x =,99i ia =,0,1,2,,99i =⋅⋅⋅.记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-+⋅⋅⋅+-,1,2,3k =,则 ( )A .123I I I <<B .213I I I <<C .132I I I <<D .321I I I <<-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是.12.随机变量ξ的取值为0,1,2.若1(0)5Pξ==,()1Eξ=,则()Dξ=.13.若实数x,y满足240,10,1,x yx yx+-⎧⎪--⎨⎪⎩≤≤≥时,14ax y+≤≤恒成立,则实数a的取值范围是.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.设函数22, 0,(), 0,x x xf xx x⎧+⎪=⎨-⎪⎩<≥若(())2f f a≤,则实数a的取值范围是.16.设直线30(0)x y m m-+=≠与双曲线22221(0,0)x ya ba b-=>>的两条渐近线分别交于点A,B.若点(,0)P m满足||||PA PB=,则该双曲线的离心率是.17.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若15mAB=,25mAC=,30BCM∠=o,则tanθ的最大值是(仰角θ为直线AP与平面ABC所成角).三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)在ABC△中,内角A,B,C所对的边分别为a,b,c.已知a b≠,3c=,22cos cos3sin cos3sin cosA B A A B B-=-.(Ⅰ)求角C的大小;(Ⅱ)若4sin5A=,求ABC△的面积.19.(本小题满分14分)已知数列{}na和{}nb满足*123(2)()nbna a a a n⋅⋅⋅=∈Ν.若{}na为等比数列,且12a=,326b b=+.(Ⅰ)求na与nb;(Ⅱ)设*11()nn nc na b=-∈Ν.记数列{}nc的前n项和nS.(ⅰ)求nS;(ⅱ)求正整数k,使得对任意*()n∈Ν均有k nS S≥.20.(本小题满分15分)如图,在四棱锥A BCDE-中,平面ABC⊥平面BCDE,90CDE BED∠=∠=o,2AB CD==,1DE BE==,2AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B AD E--的大小.21.(本小题满分15分)如图,设椭圆C:22221(0)x ya ba b+=>>,动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线1l与l垂直,证明:点P到直线1l的距离的最大值为a b-.22.(本小题满分14分)已知函数3()3||()f x x x a a=+-∈R.(Ⅰ)若()f x在[1,1]-上的最大值和最小值分别记为()M a,()m a,求()()M a m a-;(Ⅱ)设b∈R.若2[()]4f x b+≤对[1,1]x∈-恒成立,求3a b+的取值范围.数学试卷第4页(共18页)数学试卷第5页(共18页)数学试卷第6页(共18页)数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析选择题部分一、选择题 1.【答案】B【解析】∵[)A =-∞+∞U ,∴{2}U A =ð.选B. 【提示】先化简集合A ,结合全集,求得U A ð. 【考点】集合的基本运算 2.【答案】A【解析】若1a b ==,则2(i)2i a b +=,所以前者是后者的充分条件.若2(i)2i a b +=,则1a b ==或1a b ==-,所以后者是前者的不必要条件.选A.【提示】给出两等式,判断两者之间的关系. 【考点】充分、必要条件 3.【答案】D【解析】可知该几何体由一个三棱柱和一个长方体组合而成, 长方体的表面积1342362462108S =⨯⨯+⨯⨯+⨯⨯=,三棱柱的表面积21432433335482S =⨯⨯⨯+⨯+⨯+⨯=所以该几何体的表面积为10848213833-⨯=⨯+2cm .选D.【提示】给出三视图,判断空间几何体的直观图,判断其构成,再根据公式求解. 【考点】简单几何体的表面积 4.【答案】C【解析】sin3cos3y x x =+可化为3412y x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,所以将3y x =向右平移12π个单位即可得到sin3cos3y x x =+的图象.【提示】给出三角函数的解析式,利用两角和差的公式将其化成正弦型三角函数,再根据已给出的正弦型三角函数的解析式,观察两者之间的关系. 【考点】两角和与差的公式,三角函数的图象的平移 5.【答案】C【解析】6(1)x +的通项公式1r T +r 66C r x -=,同理4(1)y +的通项公式t 1T +=44C t ty -,令6r m -=,4t n -=,求出3322x y x y xy,,,的系数即(3,0)(2,1)(1,2)(0,3)2046036120f f f f +++==+++.故选C.【提示】给出两式相乘的形式,利用二项式通项公式代入求值. 【考点】二项式定理的应用 6.【答案】C【解析】(1)12f a b c -=-+-+,(2)842f a b c -=-+-+,(3)2793f a b c -=-+-+,由(1)(2)3f f -=-=-()得,611a b ==,,∴32()611f x x x x c =+++∵0(1)3f ≤-≤,把(1)f -代入()f x 得c 的取值范围是69c <≤.故选C.【提示】给出函数和条件,根据条件代入求值得出a ,b ,代入函数,得出关于c 的不等式,求出c 的取值范围. 【考点】函数和不等式结合 7.【答案】D【解析】只有选项D 符合,此时01a <<,幂函数()f x 在(0,)+∞上为增函数, 且当(0,1)x ∈时,()f x 的图像在直线y x =的上方,对数函数()g x 在(0,)+∞上为减函数.选D.【提示】给出幂函数和指数函数的函数表达式,画出同一直角坐标系中的图像. 【考点】幂函数与对数函数的图像 8.【答案】D【解析】对于A ,当0a =r ,0b ≠r时,不等式不成立;对于B ,当0a b =≠r r时,不等式不成立;对于C 、D ,设a b =,构造平行四边形OACB ,根据平行四边形法则,AOB ∠与OBC ∠至少有一个大于或等于90︒,根据余弦定理,22max{||,||}||||a b a b a b +-≥+r r r r r r 成立.选D. 【提示】给出新定义,根据条件判断正误. 【考点】向量运算 9.【答案】A 【解析】方法一:不妨取3m n ==此时,132313,62624p =⨯+⨯=21213332322266632123333C C C p C C C C =⨯+⨯+⨯=则12p p >;1333()12662E ξ=⨯+⨯=,212133323222666()1232C C C E C C C C ξ=⨯+⨯+⨯=,则12()()E E ξξ<.故选A.方法二:1212,222()m n m n p m n m n m n +=⨯+⨯=+++ 21122222321333m m n n m n m n m n C C C C p C C C +++=⨯+⨯+⨯=223343()(1)m m mn n n m n m n -++-++-,则12(1)06()(1)6()n m n np p m n m n m n +--==>++-+12()=12,n m m nE m n m n m nξ+⨯+⨯=+++21122222C C C C ()123C C C n m n mm n m n m n E ξ+++=⨯+⨯+⨯=223343()(1)m m mn n n m n m n -++-++-212()()0()(1)m m mnE E m n m n ξξ-+--=<++-.选A.【提示】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当1ξ=时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;2ξ=时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出1p ,2P 和1()E ξ,2()E ξ进行比较即可. 【考点】概率的计算10.【答案】B【解析】对于1I ,由于222121(1,299)999999i i i i --⎛⎫⎛⎫-==⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,故2122199(1352991)1;9999I =+++⋅⋅⋅+⨯-==对于2I ,由于2112|()()|99999999i i i i ----+= 22|1002|(1,2,99),99i i -=⋅⋅⋅故22250(980)2992I +=⨯⨯=222100989911.9999⨯-=< 3110219998sin(2)sin(2)sin(2)sin(2)sin(2)sin(2)3999999999999I =π⨯-π⨯+π⨯-π⨯+⋅⋅⋅+π⨯-π⨯数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)故213I I I <<选B.【提示】给出数学概念新定义,比较1,2,3k =时,函数值的大小. 【考点】函数概念的新定义非选择题部分二、填空题 11.【答案】6【解析】第一步:0i 12i 1i i 12S S S ===+==+=,,,,; 第二步:1i 24i 3S S ====,,,; 第三步:4i 3,11i 4S S ====,,; 第四步:11i 557i 6S S ====,,,, 跳出循环,所以i 6=【提示】给出循环结构的程序框图,根据条件输出结果. 【考点】循环结构的程序框图12.【答案】25【解析】令(1)P x ξ==,(2)P y ξ==,则14155x y +=-=,2 1.x y += 解得1535x y ⎧=⎪⎪⎨⎪=⎪⎩,所以()D ξ=2221312(01)(11)(21)5555-+-+-=.【提示】给出ξ取值的部分概率和期望,求ξ的方差. 【考点】离散型随机变量的期望和方差13.【答案】31,2⎡⎤⎢⎥⎣⎦【解析】实数x ,y 满足的可行域如图中阴影部分所示,图中0(1)A ,,1(2)B ,,31,2C ⎛⎫⎪⎝⎭. 当0a ≤时,032y ≤≤,12x ≤≤,所以14ax y ≤≤+不可能恒成立; 当0a >时,借助图像得,当直线z ax y =+过点A 时z 取得最小值,当直线z ax y =+过点B 或C 时z 取得最大值,故14,1214,314,2a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩解得132a ≤≤.故31,2a ⎡∈⎤⎢⎥⎣⎦.【提示】给出不等式组和一个关于a 的不等式,求实数a 的取值范围. 【考点】二元规划与不等式结合 14.【答案】60【解析】分两种情况:一种是有一人获得两张奖券,一人获得一张奖券,有223436C A =种;另一种是三人各获得一张奖券,有3424A =种.故共有60种获奖情况.【提示】结合奖券实例运用排列组合知识计算获奖情况. 【考点】排列组合 15.【答案】(,-∞【解析】函数()f x 的图象如图所示,令()t f A =,则()2f t ≤,由图象知2t ≥-,所以()2f A ≥-,则a ≤【提示】给出分段函数,求解未知数的值. 【考点】分段函数 16.【解析】双曲线的渐近线为ay x b=±,渐近线与直线30x y m -+= 的交点为,33am bm A a b a b -⎛⎫ ⎪++⎝⎭,,33am bm B a b a b --⎛⎫⎪--⎝⎭.设AB 的中点为D ,由||||PA PB =知AB 与DP 垂直,则223,(3)(3)(3)(3)a m b mD a b a b a b a b ⎛⎫-- ⎪+-+-⎝⎭,3DP k =-,解得224a b =,故. 【提示】给出直线与双曲线的方程,求双曲线的离心率. 【考点】直线与双曲线的位置关系17.【解析】由勾股定理得20BC =m.如图,过P 点作PD BC ⊥于D ,连接AD ,则由点A 观察点P 的仰角PAD θ=∠,tan PDAD θ=.设PD x =,则DC =,BD =, 在Rt ABD △中,AD ==所以tan θ===≤故tan θ.数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)【提示】给出实例,求出角的大小进而求出正切值. 【考点】结合实际求角的正切值 三、解答题18.【答案】(1)π(2)S =【解析】(1)由题意得,1cos21cos22222A B A B ++--,112cos22cos222A AB B -=-,sin(2)sin(2)66A B ππ-=-,由a b ≠得A B ≠,又(0,)A B +∈π,得2266A B ππ-+-=π,即23A B π+=,所以3Cπ=;(2)由c =,2[()]4f x b +≤,sin sin a c A C =得85a =, 由a c <,得A C <,从而3cos 5A =,故()sin sin sin cos cos sin B A C A C A C =+=+=, 所以ABC △的面积为1sin 2S ac B =. 【提示】给出未知函数运用诱导公式和两角和与差的公式、正弦定理等进行化简求三角形中的角.【考点】两角和与差的公式,正弦定理19.【答案】(1)*2()n n a n =∈N*(1)()n b n n n =+∈N(2)(i )11()12n n S n n *=-∈+N (ii )4k =【解析】(1)由题意,*12()n b k a a a n =∈N L ,326b b -=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为*2()n n a n=∈N ,所以(1)(1)21232n n n n na a a a ++==L ,故数列{}nb 的通项公式为,*(1)()n b n n n =+∈N ;(2)(i )由(1)知,*11111()21n n n n c n a b n n ⎛⎫=-=--∈ ⎪+⎝⎭N ,所以11()12n n S n n *=-∈+N ; (ii )因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)1(1)2n nn n c n n +⎡⎤=-⎢⎥+⎣⎦, 而11(1)(1)(2)(1)(2)0222n n n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<,所以当5n ≥时,0n c <,综上对任意n *∈N 恒有4n S S ≥,故4k =.【提示】给出已知条件,求等比数列的通项和前n 项和. 【考点】等比数列的性质以及通项公式和前n 项和的运用20.【答案】(1)在直角梯形BCDE 中,由1DEBE ==,2CD =得,BD BC =,由2AC AB ==,则222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD . (2)方法一:作BF AD ⊥,与AD 交于点F ,过点F 作FG DE ∥,与AE 交于点G ,连结BG , 如图所示,由(1)知,DE AD ⊥,则FG AD ⊥,所以BFG ∠是二面角B AD E --的平面角,在直角梯形BCDE 中,由222CD BD BC =+,得BD BC ⊥,又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥,在RtACD △中,由2CD =,AC =AD = 在RtAED △中,1DE =,AD =AE =在Rt ABD △中,BD =2AB =,AD 得BF ,23AF AD =,从而23GF =,在ABE ABG △,△中,利用余弦定理分别可得2cos 3BAE BG ∠=,在BFG △中,222cos 22GF BF BG BFG BF GF +-∠==g ,所以6BFG π∠=, 即二面角2[()]4f x b +≤的大小是6π.方法二:以D 为原点,分别以射线DE DC ,为x ,y 轴的正半轴,建立空间直角坐标系D xyz -如图所示,由题意可知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,A ,(1,1,0)B ,设平面ADE 的法向量为111(,,)m x y z =u r ,平面ABD 的法向量为222(,,)n xy z =r,可算得(0,2,AD =-u u u r ,(1,1,0)DB =u u u r ,(1,2,AE =-u u u r,由00m AD m AE ⎧=⎪⎨=⎪⎩u r u u u rg ur u u ur g 得,1111102020y x y ⎧-=⎪⎨-=⎪⎩,可取(0,1,m =u r , 由00n AD n BD ⎧=⎪⎨=⎪⎩r u u u r gr u u u r g 得,22220200y x y ⎧-=⎪⎨+=⎪⎩,可取(1,n =-r ,于是||cos ,||m n m n m n〈〉==u r ru r r g u r r ,由题意可知,所求二面角是锐角,故二面角2[()]4f x b +≤的大小是6π.【提示】考查空间点、线、面位置关系,二面角,证明线面垂直,利用空间向量求解线面垂直和二面角数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)【考点】线面垂直的判定,二面角,空间向量的应用21.【答案】(1)设直线b ∈R 的方程为(0)y kx m k =+<, 由22221y kx m x y a b =+⎧⎪⎨+=⎪⎩,消去y 得,222222222()20b a k x a kmx a m a b +++-=, 由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭, 又点P 在第一象限,故点P的坐标为22⎛⎫ ⎝; (2)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k+≥,2222a b ≤=-,当且仅当2b k a=时等号成立,所以点P 到直线1l 的距离的最大值为a b -.【提示】给出椭圆的标准方程,根据直线与椭圆只有一个公共点,联立椭圆和直线的方程,求出交点坐标,并求出该点到某直线的距离.【考点】椭圆的几何性质,点到直线距离,直线与椭圆的位置关系,基本不等式22.【答案】(1)338,(1)134,13()()132,134,(1)a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎩ (2)230a b -≤+≤【解析】(1)因为3333,()()33,()x x a x a f x x x a x a ⎧+-≥=⎨-+<⎩,所以2233,()()33,()x x a f x x x a ⎧+≥'=⎨-<⎩,由于11x -≤≤,(i )当1a ≤-时,有x a ≥,故3()33f x x x a =+-,此时()f x 在(1,1)-上是增函数,因此()(1)43M a f a ==-,()(1)43m a f a =-=--,()()43(43)8M a m a a a -=----=(ii )当11a -<<时,若(,1)x a ∈,3()33f x x x a =+-,在(,1)a 上是增函数, 若(1,)x a ∈-,3()33f x x x a =-+,在(1,)a -上是减函数,所以()max{(1),(1)}m a f f =-,3()()m a f a a ==,由于(1)(1)62f f a --=-+,因此,当113a -<≤时,3()()34M a m a a a -=--+, 当113a <<时,3()()32M a m a a a -=-++, (iii )当1a ≥时,有x a ≤,故3()33f x x x a =-+,此时()f x 在(1,1)-上是减函数,因此()(1)23M a f a =-=+,()(1)23m a f a ==-+,故()()23(23)4M a m a a a -=+-+=,综上338,(1)134,13()()132,134,(1)a a a a M a m a a a a a ≤-⎧⎪⎛⎫⎪--+-<≤ ⎪⎪⎝⎭-=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎪≥⎩(2)令()()h x f x b =+,则3333,()()33,()x x a b x a h x x x a b x a ⎧+-+≥=⎨-++<⎩,2233,()()33,()x x a h x x x a ⎧+≥'=⎨-<⎩,因为2[()]4f x b +≤,对[1,1]x ∈-恒成立,即(2)2h x -≤≤对[1,1]x ∈-恒成立,所以由(1)知,(i )当1a ≤-时,()h x 在(1,1)-上是增函数, ()h x 在[1,1]-上的最大值是(1)43h a b =-+,最小值是(1)43h a b -=--+,则432a b --+≥-,且432a b -+≤,矛盾;(ii )当113a -<≤时,()h x 在[1,1]-上的最大值是(1)43h ab =-+,最小值是3()h a a b =+, 所以32a b +≥-,432a b -+≤,从而323362a a a b a --+≤+≤-且103a <≤,令3()23t a a a =--+,则2()330t a a '=->,()t a 在10,3⎛⎫ ⎪⎝⎭上是增函数,故()(0)2t a t >=-,因此230a b -≤+≤,(iii )当113a <<时,()h x 在[1,1]-上的最大值是(1)32h a b -=++,最小值是3()h a a b =+,所以32a b +≥-,322a b ++≤,解得283027a b -<+≤, (iv )当1a ≥时,()h x 在[1,1]-上的最大值是(1)32h a b -=++,最小值是(1)23h a b =-++,所以322a b +≤+,322a b +-≥-,解得30a b +=. 综上3a b +的取值范围230a b -≤+≤.【提示】给出函数的表达式,求解在固定区间上的最值,利用函数导数判断函数的单调性,求解代数式的取值范围.【考点】导数在最大值、最小值问题中的应用。

2014届宁波市十校联考高中数学考试分析

2014届宁波市十校联考高中数学考试分析

2014届宁波十校联考余姚高中数学考试分析文科数学试卷分析(一)特点1、考查完整本卷考查的基础知识与高考要求完全符合,本卷考查的基本技能与高考要求完全符合。

完整地考查了高考范围内集合、函数、三角函数、解三角形、不等式、数列、解析几何、立体几何、复数、导数等各个章节的内容。

完整地考查了高中学生应该掌握的基本数学思想:分类讨论、数形结合等。

2、重点突出在全面考查的前提下,高中数学的主干知识如函数、三角函数、数列、立体几何、导数、圆锥曲线等仍然是支撑整份试卷的主体内容,尤其是解答题,涉及内容均是高中数学的重点知识。

明确了中学数学的教学方向和考生的学习方向。

3、区分合理本卷体现了“起点低、坡度缓、层次多、区分好”的命题特色,很多题目是由多个知识点构成的,使学生易于上手,能让不同层次的学生获得不同的分值。

整个试卷语言简练,注重能力;贴近考生实际,体现选拔功能;重点考查通性通法,避免偏题、怪题,适当控制运算量,加大思考量,在大题中,每个题的难度按照由易到难的梯度设计,学生入口容易,但是又不能无障碍的获得全分。

(二)试卷亮点第5题设问比较新颖,“经过该可行域”需要学生理解问题,具体分析。

第7题“计算该数列的第10项”要求学生理解清楚手头要完成的事情,不可盲目的给出n的范围。

第10题解法较多,但学生对向量的理解和掌握向来是最弱的。

第15题只需将(2a,b)看成(x,y)然后猜想x=y时取最值即可,放缩后用单调性对填空15题来说要求有些高。

第16题若掌握“定比分点”知识就极为简单,关键是将N点的向量式写成坐标式,比较M,N两点的横坐标即可。

第17题需用数形结合解决。

第20题是翻折问题,要会作线面垂直。

第21题要会分类讨论。

第22题对运算要求较高。

这些问题对学生的能力有所要求。

考查了函数与方程的思想、变换的思想、分类讨论、数形结合的思想,体现宽口径,多角度的命题思路.(三)教学建议1、重视数学思想方法的训练。

常用的数学思想:化归思想,参数分离等等都应熟练掌握。

2014年高考浙江理科数学试题及答案(精校版)

2014年高考浙江理科数学试题及答案(精校版)

2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A. ∅B. {2}C. {5}D. {2,5} 2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A. 902cm B. 1292cmC. 1322cm D. 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像( )A. 向右平移4π 个单位B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m nx y项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= ( )A. 45B. 60C. 120D. 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) A.3c ≤ B.36c <≤ C.69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是( )8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x y x y x y ≥⎧=⎨<⎩,设,a b r r 为平面向量,则( )A .min{||,||}min{||,||}a b a b a b +-≤r r r r r rB. min{||,||}min{||,||}a b a b a b +-≥r r r r r rC. 2222max{||,||}||||a b a b a b +-≤+r r r r r rD. 2222max{||,||}||||a b a b a b +-≥+r r r r r r9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99,Λ ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-L ,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<二. 填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ=________.13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线12222=-by a x (0,0a b >>)两条渐近线分别交于点A ,B.若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m = ,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ 为直线AP 与平面ABC 所成角)三. 解答题:本大题共5小题,共72分。

浙江省宁波市2014届高三第二次模拟考试数学理试题(Word版)

浙江省宁波市2014届高三第二次模拟考试数学理试题(Word版)

浙江省宁波市2014届高三第二次模拟考试数学理试题(Word 版)本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(选择题部分 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |1122x -<<},N ={x | x 2 ≤ x },则M ∩N =(A )1[1,)2- (B )1(,1]2-(C )1[0,)2(D )1(,0]2-2.设a >1>b >0,则下列不等式中正确的是 (A )(-a )7<(-a )9 (B )b - 9<b - 7(C )11lg lg a b > (D )11ln ln a b>3.已知R α∈,cos 3sin αα+=tan2α=(A )43 (B )34 (C )34- (D )43-4.若某程序框图如图所示,则输出的n 的值是(A )3 (B )4 (C )5 (D )6(第4题图)5.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥ (C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ6.已知某锥体的三视图(单位:cm )如图所示,则该锥体的体积为 (A )23cm (B )43cm (C )63cm (D )83cm 7.251(1)(2)x x--的展开式的常数项是(A )48 (B )﹣48 (C )112 (D )﹣1128.袋子里有3颗白球,4颗黑球,5颗红球.由甲、乙、丙三人依次各抽取一个球,抽取后不放回.若每颗球被抽到的机会均等,则甲、乙、丙三人所得之球颜色互异的概率是 (A )14 (B )13 (C )27 (D )3119.已知实系数二次函数()f x 和()g x 的图像均是开口向上的抛物线,且()f x 和()g x 均有两个不同的零点.则“()f x 和()g x 恰有一个共同的零点”是“()()f x g x +有两个不同的零点”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件10.设F 1、F 2是椭圆Γ的两个焦点,S 是以F 1为中心的正方形,则S 的四个顶点中能落在椭圆Γ上的个数最多有(S 的各边可以不与Γ的对称轴平行)(A )1个 (B )2个 (C )3个 (D )4个(第6题图)正视图侧视图俯视图第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题, 每小题4分, 共28分. 11.已知复数z 满足22z z +-= i (其中i 是虚数单位),则z = ▲ . 12.设25z x y =+,其中实数,x y 满足68x y ≤+≤且20x y -≤-≤,则z 的取值范围是▲ .13.已知抛物线23x y =上两点,A B 的横坐标恰是方程2510x x ++=的两个实根,则直线AB 的方程是 ▲ .14.口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X ,则随机变量X 的数学期望是 ▲ .15.已知直线10x y --=及直线50x y --=截圆C 所得的弦长均为10,则圆C 的面积是 ▲ .16.在△ABC 中,∠C=90︒,点M 满足3BM MC =,则sin ∠BAM 的最大值是 ▲ .17.已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非零实数....x 、y ,使得AO x AB y AC =+,且21x y +=,则cos ∠BAC = ▲ .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分) 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且sin 5B c =,11cos 14B =.(I )求角A 的大小;(II )设BC 边的中点为D ,AD =ABC ∆的面积. 19.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,n N *∈. (I )求数列{}n a ,{}n b 的通项公式;(II )设⎩⎨⎧=为偶数为奇数n b n a c n n n , 求数列{}n c 的前n 项和n P .20.(本题满分15分)如图所示,PA ⊥平面ABCD ,△ABC 为等边三角形,PA AB =,AC ⊥CD,M 为AC 中点.(I )证明:BM ∥平面PCD ;(II )若PD 与平面PAC 所成角的正切值,求二面角C -PD -M 的正切值.21.(本题满分15分)已知椭圆Γ:22221(0)x y a b a b +=>>的离心率为12,其右焦点F 与椭圆Γ的左顶点的距离是3.两条直线12,l l 交于点F ,其斜率12,k k 满足1234k k =-.设1l 交椭圆Γ于A 、C 两点,2l 交椭圆Γ于B 、D (I )求椭圆Γ的方程;(II )写出线段AC 的长AC 关于1k 的函数表达式,并求四边形ABCD 面积S 的最大值.22.(本题满分14分)已知R λ∈,函数(1)()ln 1x f x x x λλ-=-+-,其中[1,)x ∈+∞.(Ⅰ)当2λ=时,求()f x 的最小值;(Ⅱ)在函数ln y x =的图像上取点(,ln )n P n n ()n N *∈,记线段P n P n +1的斜率为k n ,12111n nS k k k =+++ .对任意正整数n ,试证明: (ⅰ)(2)2n n n S +<; (ⅱ)(35)6n n n S +>.宁波市2014年高考模拟试卷数学(理科)参考答案PABCDM(第20题图)说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算。

2014年江南十校高三联考数学试题及答案理科

2014年江南十校高三联考数学试题及答案理科

2014年安徽省“江南十校”高三联考数学(理科)试卷答案一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.C .解析:()()1,,3,1∞-=-=N M2. A.解析:()()0222212=-⇒+--=+-a i a a i ai 3.C 解析:由题知2,13,322==⇒==b a e c ,这样的双曲线标准方程有两个4.D 解析:由7662a a +=得65=a ,所以54959==a S5.B 解析:值域[]1,2-,3=-a b6.D 解析:将多面体分割成一个三棱柱和一个四棱锥7.B 解析:回归直线不一定过样本点8.C 解析:由b a //知332=+y x ,则()849123132233123≥⎪⎪⎭⎫ ⎝⎛++=+⎪⎪⎭⎫ ⎝⎛+=+y x x y y x y x y x . 9.B 解析:根据向量加法的平行四边形法则得动点P 的轨迹是以OC OB ,为邻边的平行四边形,其面积为BOC ∆面积的2倍.在ABC ∆中,由余弦定理可得2222cos a b c bc A =+-,代入数据解得7=BC ,设ABC ∆的内切圆的半径为r ,则()11sin 22bc A a b c r =++,解得263r =,所以36736272121=⨯⨯=⨯⨯=∆r BC S BOC ,故动点P 的轨迹所覆盖图形的面积为36142=∆BOC S 10.C 解析:()11sin ,3sin sin )(2≤≤-=-++=t x t a a x a x x f 令,则()aa at t t g 32-++=,对任意 0)(,≤∈x f R x 恒成立的充要条件是()⎪⎪⎩⎪⎪⎨⎧≤-+=≤-=-0321)1(0311a a g ag ,解得a 的取值范围是(]1,0二、填空题:本大题共5小题,每小题5分,共25分。

把答案填在答题卡的相应横线上。

2014年第一次十校联考理科数学试题

2014年第一次十校联考理科数学试题

江西省重点中学盟校2014届高三第一次联考高三数学(理)试卷命题人:景德镇一中江宁赣州三中明小青余江一中官增文审题人:景德镇一中曹永泉一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足()1z =(i为虚数单位),则z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.函数()lg(3)f x x=-的定义域是A.(3,)+∞B.(2,3)C.[2,3)D.(2,)+∞3.已知,m n是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是A.若αα//,//nm,则nm//B.若,αγβγ⊥⊥,则α∥βC.若βα//,//mm,则βα//D.若,m nαα⊥⊥,则m∥n4.为了调查你们学校高中学生身高分布情况,假设你的同桌抽取的样本容量与你抽取的样本容量相同且抽样方法合理,则下列结论正确的是A.你与你的同桌的样本频率分布直方图一定相同B.你与你的同桌的样本平均数一定相同C.你与你的同桌的样本的标准差一定相同D.你与你的同桌被抽到的可能性一定相同5.下列函数中,与函数111()22xxf x-+=-的奇偶性、单调性均相同的是A.xy e=B.ln(y x=C.2y x=D.tany x=6.已知直线1x y+=与圆22x y a+=交于A、B两点,O是原点,C是圆上一点,若OCOBOA=+,则a的值为A.1B C.2D.47.设lg lg lg111()121418x x xf x=+++++,则1()()=f x fx+A.1B.2 C.3 D.48.如图,函数()sin()f x A xωϕ=+(其中0A>,与坐标轴的三个交点P、Q、R满足(2,0)P ,为QR的中点,PM=,则A的值为A BC.8 D.169.给出下列命题,其中真命题的个数是①存在x R∈,使得007sin cos2sin24x xπ+=成立;②对于任意的三个平面向量a、b、c,总有()()a b c a b c⋅⋅=⋅⋅成立;③相关系数r(||1r≤),||r值越大,变量之间的线性相关程度越高.A.0 B.1 C.2 D.310.如图,已知正方体1111ABCD A BC D-的棱长是1,点E是对角线1AC上一动点,记AE x=(0x<<,过点E平行于平面1A BD的截面将正方体分成两部分,其中点A所在的部分的体积为()V x,则函数()y V x=的图像大致为A BC D1A第10题图第 1 页共2 页第 2 页 共 2 页二.填空题:本大题共4小题,每小题5分,共20分. 11.已知3sin a xdx π=⎰,则61()x ax+的展开式中的常数项是__________. 12.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y13.春节期间,某单位安排甲、乙、丙三人于正月初一至初五值班,每人至少值班一天,且每人均不能连续值班两天,其中初二不安排甲值班,则共有__________种不同的值班安排方案.14.过双曲线22221x y a b-=(0,0)a b >>的左焦点(,0)F c -(0)c >,作倾斜角为6π的直线FE 交该双曲线右支于点P ,若1()2OE OF OP =+,且0OE EF ⋅=,则双曲线的离心率为__________. 三.选做题:请在下列两题中任选一题作答,若两题都做,则按第一题评阅计分,本题共5分. 15(1).(坐标系与参数方程选做题)在极坐标系中,曲线1)sin cos 2(:1=+θθρC 与曲线)0(,:2>=a a C ρ的一个交点在极轴上,则a 的值为__________.15(2).(不等式选做题)若关于x 的不等式|1|||3x x m -+-<的解集不为空集,则实数m 的取值范围是__________.四.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且有tan tan sin 3cos A C BC+=.(1)求cos A 的值;(2)若2b =,3c =,D 为BC 上一点.且2CD DB =,求AD 的长.17.(本小题满分12分)江西某品牌豆腐食品是经过A 、B 、C 三道工序加工而成的,A 、B 、C 工序的产品合格率分别为34、23、45.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;恰有两次合格为二等品;其它的为废品,不进入市场. (1)生产一袋豆腐食品,求产品为废品的概率;(2)生产一袋豆腐食品,设X 为三道加工工序中产品合格的工序数,求X 的分布列和数学期望.18.(本题满分12分)如图,三棱锥P ABC -中,AB AC ==4BC =,PC =P 在平面ABC 内的射影恰为ABC ∆的重心G ,M 为侧棱AP 上一动点. (1)求证:平面PAG ⊥平面BCM ;(2)当M 为AP 的中点时,求直线BM 与平面PBC所成角的正弦值. 19.(本题满分12分)已知数列{}n a 前n 项和为n S ,向量(,)a n = 2 与(,)n b n S = +1 ,且a b λ=,R λ∈ (1)求数列{}n a 的通项公式; (2)求21{}n n a a +的前n 项和n T ,不等式3log (1)4n a T a <-对任意的正整数n 恒成立,求a 的取值范围.20.(本题满分13分)设定圆22:(16M x y +=,动圆N 过点(0)F 且与圆M 相切,记动圆N 圆心N 的轨迹为C .(1)求轨迹C 的方程;(2)已知(,)A -2 0 ,过定点(,)B 1 0 的动直线l 交轨迹C 于P 、Q 两点,APQ ∆的外心为N .若直线l 的斜率为1k ,直线ON 的斜率为2k ,求证:12k k ⋅为定值.21.(本题满分14分)已知函数()ln af x ax bx x=++ (a 、b 为常数),在1x =-时取得极值. (1)求实数b 的取值范围;(2)当1a =-时,关于x 的方程()2f x x m =+有两个不相等的实数根,求实数m 的取值范围; (3)数列{}n a 满足1111n n a a -=-+ (*n N ∈且2n ≥),112a =,数列{}n a 的前n 项和为n S , 求证:12n n S a nn a e+-⋅≥(*n N ∈,e 是自然对数的底).。

2014年浙江省高考理科数学试题及答案解析(名师精校版)

2014年浙江省高考理科数学试题及答案解析(名师精校版)

绝密★考试结束前2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =ð( )(A )∅ (B ){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|5}A x N x x N x =∈≥=∈≥,{|25}{2}U C A x N x =∈≤<=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2(i)2i a b +=”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,则22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故选A .【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )(A )902cm (B )1292cm(C )1322cm (D )1382cm 【答案】D【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(4)为了得到函数sin3cos3y x x =+的图像,可以将函数2cos3y x =的图像( ) (A )向右平移4π个单位 (B )向左平移4π个单位 (C )向右平移12π个单位 (D )向左平移12π个单位【答案】C【解析】sin3cos32sin(3)2sin[3()]412y x x x x ππ=+=+=+,而2cos32sin(3)2y x x π==+=2sin[3()]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需将2cos3y x =的图象向右平移12π个单位,故选C .【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.(5)在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++=( )(A )45(B )60(C )120(D )210【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x +展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C . 【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( )(A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c > 【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故选C .【点评】本题考查方程组的解法及不等式的解法,属于基础题.(7)在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函数()(0)a f x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故选D .【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键. (8)记,max{,},x x y x y y x y≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,设,a b r r 为平面向量,则( )(A )min{||,||}min{||,||}a b a b a b +-≤r r r r r r (B )min{||,||}min{||,||}a b a b a b +-≥r r r r r r(C )2222max{||,||}||||a b a b a b +-≤+r r r r r r (D )2222max{||,||}||||a b a b a b +-≥+r r r r r r 【答案】D【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-r r r r 与min{||,||}a b r r的大小不确定,平行四边形法可知max{||,||}a b a b +-r r r r所对的角大于或等于90︒ ,由余弦定理知 2222max{||,||}||||a b a b a b +-≥+r r r r r r,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+r r r r r rr r r r r r ),故选D . 【点评】本题在处理时要结合着向量加减法的几何意义,将a r ,b r ,a b +r r ,a b -r r放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.(9)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D )1212,()()p p E E ξξ<< 【答案】A 【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m n C C C C p C C C +++=++g g =223323()(1)m m mn n n m n m n -++-++-, ∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >.又∴1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m n E m n m n m nξ+=⨯+⨯=+++, 又222(1)(1)n m n C n n P ξ+-===,11222(2)n m m n C C mnP ξ+===,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mnm n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m n m n ++=(1)0()(1)m m mnm n m n -+>++-,所以21()()E E ξξ>,故选A . 解法二:在解法一中取3m n ==,计算后再比较,故选A .【点评】正确理解()1,2i i ξ=的含义是解决本题的关键.此题也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99L ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-L ,1,2,3k =,则( )(A )123I I I << (B )213I I I << (C )132I I I << (D )321I I I << 【答案】B 【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭g,故2111352991199()199999999999999I ⨯-=++++==L g , 由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯g , 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-g g g g L g g=12574[2sin(2)2sin(2)]139999ππ->g g ,故213I I I <<,故选B . 解法二:估算法:k I 的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x =的区间[0,1]等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+- =11223344A H A H A H A H +++(1)(0)f f =-1=,同理对题中给出的1I ,同样有11I =;而2I 略小于1212⨯=,3I 略小于14433⨯=,所以估算得213I I I <<,故选B .【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 . 【答案】6【解析】第一次运行结果1,2S i ==;第二次运行结果4,3S i ==;第三次运行结果11,4S i ==;第四次运行结果26,5S i ==;第五次运行结果57,6S i ==;此时5750S =>,∴输出6i =.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(12)随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= . 【答案】25【解析】设1ξ=时的概率为p ,ξ的分布列为:由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξ的分布列为即为故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.(13)当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是 __.【答案】3[1,]2【解析】解法一:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三点坐标代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩ 解得312a ≤≤ ,∴实数a 的取值范围是3[1,]2.解法二:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤得,由图分析可知,0a ≥且在(1,0)A 点取得最小值,在(2,1)B 取得最大值, 故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故实数a 的取值范围是3[1,]2.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.ξ 0 1 2P15 p 115p --ξ 0 1 2P15 35 15(14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 【答案】60 【解析】解法一:不同的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有223436C A =, 二是有三人各获得一张奖券,共有3424A =,因此不同的获奖情况共有362460+=种. 解法二:将一、二、三等奖各1张分给4个人有3464=种分法,其中三张奖券都分给一个人的有4种分法, 因此不同的获奖情况共有64460-=种.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.(15)设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .【答案】(,2]-∞.【解析】由题意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得2a ≤.【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.(16)设直线30x y m -+=(0m ≠) 与双曲线22221x y a b-=(0,0a b >>)两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 . 【答案】5【解析】解法一:由双曲线的方程可知,它的渐近线方程为b y x a =和by x a=-,分别与直线l : 30x y m -+= 联立方程组,解得,(,)33am bm A a b a b ----,(,)33am bm B a b a b-++, 设AB 中点为Q ,由||||PA PB = 得,则3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b mQ a b a b ----,PQ 与已知直线垂直, ∴1PQ l k k =-g ,即222222319139b ma b a m m a b --=----g , 即得2228a b =,即22228()a c a =-,即2254c a =,所以5c e a ==.解法二:不妨设1a =,渐近线方程为222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,设AB 中点为00(,)Q x y ,由韦达定理得:202391b my b =-……① ,又003x y m =-,由1PQ l k k =-g 得00113y x m =--g , 即得0011323y y m =--g 得035y m =代入①得2233915b m m b =-,得214b =,所以22215144c a b =+=+=,所以5c =,得5c e c a ===.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题. (17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角). 【答案】539【解析】解法一:∴15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,过P 作PP BC '⊥,交BC 于P ', 1︒当P 在线段BC 上时,连接AP ',则'tan 'PP AP θ=,设BP x '=,则20CP x '=-, (020x ≤<)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=-. 在直角ABP ∆'中,2'225AP x =+ ∴2'320tan '3225PP x AP x θ-==+g ,令220225xy x-=+,则函数在 []0,20x ∈单调递减, ∴0x =时,tan θ取得最大值为232002034334592250-==+g2︒当P 在线段CB 的延长线上时,连接AP ',则'tan 'PP AP θ=, 设BP x '=,则20CP x '=+,(0x >) 由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=+, 在直角ABP ∆'中,2'225AP x =+, ∴2'320tan '3225PP xAP x θ+==+g ,令220225x y x+=+,则2222520'(225x )225x y x-=++,∴当225450204x <<=时'0y >;当454x >时'0y <, 所以当454x =时max 2452054345225()4y +==+, 此时454x =时,tan θ取得最大值为3553339=g , 综合1︒,2︒可知tan θ取得最大值为539. 解法二:如图以B 为原点,BA 、BC 所在的直线分别为x ,y 轴,建立如图所示的空间直角坐标系,∴15cm AB =,25cm AC =,90ABC ∠=︒, ∴20cm BC =,由30BCM ∠=︒,可设3(0,,(20))3P x x -(其中20x ≤),'(0,,0)P x ,(15,0,0)A , 所以2223(20)'3203tan '315225x PP x AP x xθ--===++g, 设2320(x)tan 3225x f x θ-==+g (20x ≤), 22322520'(x)3(225)225x f x x +=-++g , 所以,当22545204x <-=- 时'0y >;当45204x -<≤时'0y <, 所以当454x =-时max 24520453534()()43945225()4f x f +=-==+g ,所以tan θ取得最大值为539. 解法三:分析知,当tan θ取得最大时,即θ最大, 最大值即为平面ACM 与地面ABC 所成的锐二面角的度量值,如图,过B 在面BCM 内作BD BC ⊥交CM 于D , 过B 作BH AC ⊥于H ,连DH ,则BHD ∠即为平面ACM 与地面ABC 所成的二面角的平面角,tan θ的最大值即为tan BHD ∠,在Rt ABC ∆中,由等面积法可得15201225AB BC BH AC ===g g ,203tan303DB BC =︒=g , 所以max203533(tan )tan 129DB BHD BH θ=∠===.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题:本大题共5题,共72分.解答应写出文字说明,演算步骤或证明过程.(18)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知,3a b c ≠=,22cos cos 3sin cos 3sin cos A B A A B B -=-.(1)求角C 的大小;(2)若4sin 5A =,求ABC ∆的面积.解:(1)由题得1cos21cos233sin 2sin 22222A B A B ++-=-,即3131sin 2cos2sin 2cos22222A AB B -=-,sin(2)sin(2B )66A ππ-=-,由a b ≠得A B ≠,又(0,)A B π+∈ ,得22B 66A πππ-+-=,即23A B π+=,所以3C π=. (2)3c =,4sin 5A =,sin sinC a c A =,得85a =,由a c < 得A C <,从而3cos 5A =,故sin sin()B A C =+=433sinAcosC cosAsinC ++=, 所以,ABC ∆的面积为18318sin 225S ac B +==.【点评】本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题. (19)已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈L .若{}n a 为等比数列,且1322,6a b b ==+. (1)求n a 与n b ; (2)设11(*)n n nc n N a b =-∈.记数列{}n c 的前n 项和为n S . (∴)求n S ;(∴)求正整数k ,使得对任意*n N ∈均有k n S S ≥.解:(1)∴123(2)(*)n b n a a a a n N =∈L ①,当2n ≥,*n N ∈时,11231(2)n b n a a a a --=L ②,由①÷②知:当2n ≥时,1(2)n n b b n a --=,令3n =,则有323(2)b b a -=, ∴326b b =+,∴38a =.∴{}n a 为等比数列,且12a =, ∴{}n a 的公比为q ,则2324a q a ==,由题意知0n a >,∴0q >, ∴2q =.∴*2nn a n N ∈=().又由123(2)(*)n b n a a a a n N =∈L ,得:1232222(2)n b n ⨯⨯⨯⨯=L , 即(1)22(2)n n n b +=,∴*1n b n n n N =+∈()(). (2)(∴)∴1111111()2(1)21n n n n n c a b n n n n =-=-=--++, ∴123n n S c c c c =++++L =2111111111()()()21222321n n n --+--++--+L =21111(1)2221n n +++--+L =111121n n --++=1112n n -+.(∴)因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)[1](1)2n nn n c n n +=-+, 而11(1)(1)(2)(n 1)(n 2)0222n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<g ,所以,当5n ≥时,0n c <,综上,对任意*n N ∈恒有4n S S ≥,故4k =.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.(20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =.(1)证明:DE ⊥平面ACD ; (2)求二面角B AD E --的大小.解:(1)在直角梯形BCDE 中,由1DE BE ==,2CD =,得2BD BC ==,由2AC =,2AB =得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD .(2)解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AB 交于点G ,连接BG , 由(1)知DE AD ⊥,则FG AD ⊥,所以BFG ∠就是二面角B AD E --的平面角,在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥, 又平面ABC ⊥平面BCDE , 得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD ∆中,由2DC =,2AC =,得6AD =; 在Rt AED ∆中,由1ED =,6AD =得7AE =;在Rt ABD ∆中,由2BD =,2AB =,6AD =, 得233BF =,23AF AD =,从而 23GF =,在ABE ∆,ABG ∆中,利用余弦定理分别可得57cos 14BAE ∠=,23BC =.在BFG ∆中,2223cos 22GF BF BG BFG BF GF +-∠==g , 所以,6BFG π∠=,即二面角B AD E --的大小为6π. 解法二:以D 的原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz -, 如图所示.由题意知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,(0,2,2)A ,(1,1,0)B .设平面ADE 的法向量为111(,,)m x y z =u r,平面ABD 的法向量为222(,,)n x y z =r,可算得:(0,2,2)AD =--u u u r,(1,2,2)AE =--u u u r ,(1,1,0)DB =u u u r , 由00m AD m AE ⎧=⎪⎨=⎪⎩u r u u u rg u r u u u r g ,即11111220220y z x y z ⎧--=⎪⎨--=⎪⎩, 可取(0,1,2)m =-u r ,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即22222200y z x y ⎧--=⎪⎨+=⎪⎩ 可取(0,1,2)n =-r ,于是||3|cos ,|||||32m n m n m n ⋅<>===⋅⋅u r ru r r u r r .由题意可知,所求二面角是锐角,故二面角B AD E --的大小为6π. 【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.(21)如图,设椭圆C:22221(0)x y a b a b+=>>动直线l 与椭圆C 只有一个公共点P , 且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -. 解:(1)解法一:设l 方程为(0)y kx m k =+<,22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,消去y 得:222222222()20b a k x a kmx a m a b +++-=, 由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222(,)a km b mP b a k b a k -++,又点P 在第一象限, 故点P 的坐标为22222222(,)a k b P b a kb a k-++.解法二:作变换''x x ay y b⎧=⎪⎪⎨⎪=⎪⎩,则椭圆C :22221(0)x y a b a b +=>> 变为圆'C :22''1x y +=,切点00(,)P x y 变为点00'(',')P x y ,切线00:()l y y k x x -=-(0)k <,变为00':'y (')l by k ax x -=-.在圆'C 中设直线''O P 的方程为''y mx =(0m >), 由22''''1y mx x y =⎧⎨+=⎩,解得02021'1'1x m m y m ⎧=⎪+⎪⎨⎪=⎪+⎩, 即221'(,)11m P mm++,由于'''O P l ⊥,所以'''1O P l k k =-g ,得1ak m b ⋅=-,即bm ak=-, 代入得22221'(,)11()()bak P b bak ak -++,即222222'(,)ak b P a k b a k b -++, 利用逆变换''x x ay y b ⎧=⎪⎪⎨⎪=⎪⎩,代入即得:22222222(,)a k b P a k b a k b -++. (2)由于直线1l 过原点O 且与直线l 垂直,故直线1l 的方程为0x ky +=, 所以点P 到直线1l 的距离222222222||1a kb kb a k b a kd k -+++=+,整理得:22222222a b d b b a a k k-=+++,因为22222b a k ab k+≥,所以2222222222222a b a b d a b b b a abb a a k k --=≤=-+++++,当且仅当2bk a=时等号成立. 所以,点P 到直线1l 的距离的最大值为a b -.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.(22)已知函数()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (2)设,b R ∈若()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,求3a b +的取值范围.解:(1)∴33333,()3||33,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,∴2233,'()33,x x af x x x a ⎧+≥⎪=⎨-<⎪⎩,由于11x -≤≤,(∴)当1a ≤-时,有x a ≥,故3()33f x x x a =+-,所以,()f x 在(1,1)-上是增函数,因此()(1)43M a f a ==-,()(1)43m a f a =-=--, 故()()(43)(43)8M a m a a a -=----=.(∴)当11a -<<时,若(),1x a ∈,3()33f x x x a =+-,在(),1a 上是增函数;若()1,x a ∈-,3()33f x x x a =--,在()1,a -上是减函数, ∴()max{(1),(1)}M a f f =-,3()()a m a f a ==, 由于(1)(1)62f f a --=-+,因此当113a -<≤时,3()()34M a m a a a -=--+; 当113a << 时,3()()32M a m a a a -=-++; (∴)当1a ≥时,有x a ≤,故3()33f x x x a =-+,此时()f x 在(1,1)-上是减函数,因此()(1)23M a f a =-=+,()(1)23m a f a ==-+,故()()4M a m a -=;综上,338,1134,13()()132,134,1a a a a M a m a a a a a ≤-⎧⎪⎪--+-<≤⎪-=⎨⎪-++<<⎪⎪≥⎩.(2)令()()h x f x b =+,则3333,()33,x x a b x a h x x x a b x a ⎧+-+≥⎪=⎨-++<⎪⎩,2233,'()33,x x ah x x x a⎧+≥⎪=⎨-<⎪⎩,因为()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,即2()2h x -≤≤对[]1,1x ∈-恒成立,所以由(1)知, (∴)当1a ≤-时,()h x 在(1,1)-上是增函数,()h x 在[1,1]-上的最大值是(1)43h a b =-+,最小值(1)43h a b -=--+,则432a b --+≥-且432a b -+≤矛盾;(∴)当113a -<≤时,()h x 在[1,1]-上的最小值是3()h a a b =+, 最大值是(1)43h a b =-+,所以32a b +≥-且432a b -+≤, 从而323362a a a b a --+≤+≤- 且103a ≤≤, 令3()23t a a a =--+,则2'()330t a a =->,∴()t a 在1(0,)3上是增函数,故()(0)2t a t >=-,因此230a b -≤+≤;(∴)当113a <<时,()h x 在[1,1]-上的最小值是3()h a ab =+,最大值是(1)32h a b -=++,所以由32a b +≥-且322a b ++≤,解得283027a b -<+≤ (∴)当1a ≥时,()h x 在[1,1]-上的最大值是(1)32h a b -=++,最小值是(1)3a b 2h =+-,所以由322a b +-≥-且322a b ++≤,解得30a b +=.综上,3a b +的取值范围是230a b -≤+≤.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。

专题12 概率和统计-2014届高三名校数学(理)试题解析分项汇编(第02期) Word版含解析[ 高考]

专题12 概率和统计-2014届高三名校数学(理)试题解析分项汇编(第02期) Word版含解析[ 高考]

一.基础题组1. 【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】已知2~(3,)N ξσ,若(2)0.2P ξ≤=,则ξ≤P(4)等于( )A .2.0B .3.0C .7.0D .8.02. 【河北省邯郸市2014届高三9月摸底考试数学理科】已知随机变量ξ服从正态分布2(4,)N σ,若(8)0.4P ξ>=,则(0)P ξ<=( )A .0.3B .0.4C .0.6D .0.73. 【湖北省武汉市2014届高三10月调研测试数学(理)】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是 ( )4.【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】某小学对学生的身高进行抽样调查,如图,是将他们的身高(单位:厘米)数据绘制的频率分布直方图.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人,则从身高在[140,150]内的学生中选取的人数应为________.5.【江苏省阜宁中学2014届高三年级第一次调研考试】下图茎叶图是甲、乙两人在5次综合测评中成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.二.能力题组1.【中原名校联盟2013-2014学年高三上期第一次摸底考试理】在圆22+=--(2)(2)4x y内任取一点,则该点恰好在区域50303x x y x ⎧⎪⎨⎪⎩+2y -≥-2+≥≤内的概率为( )A .18π B .14π C .12π D .1π考点:二元一次不等式组表示的平面区域和几何概型等知识, 考查学生的基本运算能力.2. .【山西省山大附中2014届高三9月月考数学理】抛一枚均匀硬币,正反每面出现的概率都是12,反复这样投掷,数列{}a n 定义如下:a n n n =-⎧⎨⎪⎩⎪11,第次投掷出现正面,第次投掷出现反面,若S a a a n N n n =+++∈12 ()*,则事件“280,2S S ≠=”的概率是( )A .1256 B.13128 C.12 D.732三.拔高题组1. 【湖北省武汉市2014届高三10月调研测试数学(理)】现有A ,B 两球队进行友谊比赛,设A 队在每局比赛中获胜的概率都是23.(Ⅰ)若比赛6局,求A 队至多获胜4局的概率;(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.(Ⅱ)由题意可知,ξ的可能取值为3,4,5.考点:排列组合,分布列,期望.2.【浙江省温州八校2014届高三10月期初联考数学(理)】一个袋子里装有7个球, 其中有红球4个, 编号分别为1,2,3,4;白球3个, 编号分别为2,3,4. 从袋子中任取4个球(假设取到任何一个球的可能性相同).(Ⅰ) 求取出的4个球中, 含有编号为3的球的概率;(Ⅱ) 在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.(Ⅱ)随机变量X的所有可能取值为1,2,3,4. ……6分考点:概率,分布列,期望.3. 【浙江省嘉兴一中2014届高三上学期入学摸底数学(理)】一个口袋中有红球3个,白球4个.(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X 的数学期望E(X).(Ⅱ) 设“每次同时摸2个,恰好中奖”为事件B ,则75C C )(27141323=+=C C B P随机变量X 的所有可能取值为1,2,3,4. ……6分4314716075175)1(=⎪⎭⎫ ⎝⎛-⋅⋅==C X P , 42224760075175)2(=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛==C X P , 43347100075175)3(=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛==C X P , 4444762575)4(=⎪⎭⎫ ⎝⎛==C X P ,……10分所以随机变量X 的分布列是随机变量X 的数学期望240168607625471000376002716014444=⨯+⨯+⨯+⨯=EX . ……14分 考点:组合公式、概率,分布列,期望4. 【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】(本题满分12分)在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是23. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X 的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率.【答案】(Ⅰ)X 的分布列数学期望4EX =;(Ⅱ)81. 【解析】试题分析:(Ⅰ)先定出X 的所有可能取值,易知本题是6个独立重复试验中成功的次数的离散概率分布,即为二项分布.由二项分布公式可得到其分布列以及期望.(Ⅱ)根据比赛获胜的规定,教师甲前四次投球中至少有两次投中,后两次必须投中,即可能的情况有1.前四次投中2次(六投四中);考点:1.二项分布;2.离散型随机变量的分布列与期望;3.随机事件的概率.5.【2014届广东高三六校第一次联考理】甲乙丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意。

2014年全国高考浙江省数学(理)试卷及答案【精校版】

2014年全国高考浙江省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设a,b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不 同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大EA值 。

2014年宁波市高三十校联考数学理科试卷

2014年宁波市高三十校联考数学理科试卷

2014年宁波市高三“十校”联考数学(理科)说明:1.本试题卷分选择题和非选择题部分.满分150分,考试时间120分钟.2.请将答案全部填写在答题纸上.选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数4312iz i+=+,则z 的共轭复数z 等于( ) A.2i -+ B.2i -- C.2i + D.2i -2.设集合2{|4}M x x =≥,{|10}N x x =+>,则R (C M)N = ( )A.{|12}x x -<≤B.{|2}x x <C.{|12}x x -<<D.{|2}x x ≤ 3.若某几何体的三视图(单位:cm )如右图所示, 其中左视图是一个边长为2的正三角形,则这 个几何体的体积是( )A.23cm 3C.3D. 33cm4.已知,a b R ∈,则“||||||a b a b -=+”是“0ab <”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 5.设a R ∈,数列2{()}(N )n a n *-∈是递增数列,则a 的取值范围是( ) A.0a ≤ B.1a < C.1a ≤ D.32a < 6.函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期是π,若其图像向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图象( )A.关于点(,0)12π对称 B.关于点5(,0)12π对称C.关于直线12x π=对称D.关于直线512x π=对称7.若直线,l m 与平面,,αβγ满足,,,l l m m βγααγ=⊂⊥ ,则有( )A.m β 且l m ⊥B.αβ 且αγ⊥C.αβ⊥且m γD.αγ⊥且l m ⊥8.已知双曲线22221(0,0)x y a b a b -=>>的焦点为12F F 、,渐近线为12l l 、,过点2F 且与1l 平行的直线交2l 于M ,若M 在以线段12F F 为直径的圆上,则双曲线的离心率为( )A.2 9.已知a b c 、、均为单位向量,且满足a b ⋅ =0,则()()a b c a c ⋅ +++的最大值是( )A.2+B.3C.2D.1+10.对定义域为D 的函数,若存在距离为d 的两条平行直线11l y kx m =+:和2:l2y kx m =+12()m m <,使得当x D ∈时,12()kx m f x kx m ++≤≤恒成立,则称函数()f x 在(x D ∈)上有一个宽度为d 的通道。

数学理卷·2014届浙江省宁波市高三第二次高考模拟考试(2014.04)word版

数学理卷·2014届浙江省宁波市高三第二次高考模拟考试(2014.04)word版

宁波市2014年高考模拟考试数学(理科)试卷本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(选择题部分 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |1122x -<<},N ={x | x 2 ≤ x },则M ∩N = (A )1[1,)2- (B )1(,1]2-(C )1[0,)2(D )1(,0]2-2.设a >1>b >0,则下列不等式中正确的是 (A )(-a )7<(-a )9 (B )b - 9<b - 7(C )11lg lg a b > (D )11ln ln a b>3.已知R α∈,cos 3sin αα+tan2α=(A )43 (B )34 (C )34- (D )43-4.若某程序框图如图所示,则输出的n 的值是(A )3 (B )4 (C )5 (D )6(第4题图)5.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥ (C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ6.已知某锥体的三视图(单位:cm )如图所示,则该锥体的体积为 (A )23cm (B )43cm (C )63cm (D )83cm 7.251(1)(2)x x--的展开式的常数项是(A )48 (B )﹣48 (C )112 (D )﹣1128.袋子里有3颗白球,4颗黑球,5颗红球.由甲、乙、丙三人依次各抽取一个球,抽取后不放回.若每颗球被抽到的机会均等,则甲、乙、丙三人所得之球颜色互异的概率是 (A )14 (B )13 (C )27 (D )3119.已知实系数二次函数()f x 和()g x 的图像均是开口向上的抛物线,且()f x 和()g x 均有两个不同的零点.则“()f x 和()g x 恰有一个共同的零点”是“()()f x g x +有两个不同的零点”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件10.设F 1、F 2是椭圆Γ的两个焦点,S 是以F 1为中心的正方形,则S 的四个顶点中能落在椭圆Γ上的个数最多有(S 的各边可以不与Γ的对称轴平行)(A )1个 (B )2个 (C )3个 (D )4个(第6题图)正视图侧视图俯视图第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题, 每小题4分, 共28分. 11.已知复数z 满足22z z +-= i (其中i 是虚数单位),则z = ▲ . 12.设25z x y =+,其中实数,x y 满足68x y ≤+≤且20x y -≤-≤,则z 的取值范围是▲ .13.已知抛物线23x y =上两点,A B 的横坐标恰是方程2510x x ++=的两个实根,则直线AB 的方程是 ▲ .14.口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X ,则随机变量X 的数学期望是 ▲ .15.已知直线10x y --=及直线50x y --=截圆C 所得的弦长均为10,则圆C 的面积是 ▲ .16.在△ABC 中,∠C=90︒,点M 满足3BM MC =u u u u r u u u u r,则sin ∠BAM 的最大值是 ▲ .17.已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非零实数....x 、y ,使得AO x AB y AC =+u u u r u u u r u u u r,且21x y +=,则cos ∠BAC = ▲ .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分) 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且sin 5B c =,11cos 14B =.(I )求角A 的大小;(II )设BC 边的中点为D ,AD =ABC ∆的面积. 19.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,n N *∈. (I )求数列{}n a ,{}n b 的通项公式;(II )设⎩⎨⎧=为偶数为奇数n b n a c n n n , 求数列{}n c 的前n 项和n P .20.(本题满分15分)如图所示,PA ⊥平面ABCD ,△ABC 为等边三角形,PA AB =,AC ⊥CD,M 为AC 中点.(I )证明:BM ∥平面PCD ;(II )若PD 与平面PAC所成角的正切值为2,求二面角C -PD -M 的正切值.21.(本题满分15分)已知椭圆Γ:22221(0)x y a b a b +=>>的离心率为12,其右焦点F 与椭圆Γ的左顶点的距离是3.两条直线12,l l 交于点F ,其斜率12,k k 满足1234k k =-.设1l 交椭圆Γ于A 、C 两点,2l 交椭圆Γ于B 、D (I )求椭圆Γ的方程;(II )写出线段AC 的长AC 关于1k 的函数表达式,并求四边形ABCD 面积S 的最大值.22.(本题满分14分)已知R λ∈,函数(1)()ln 1x f x x x λλ-=-+-,其中[1,)x ∈+∞.(Ⅰ)当2λ=时,求()f x 的最小值;(Ⅱ)在函数ln y x =的图像上取点(,ln )n P n n ()n N *∈,记线段P n P n +1的斜率为k n ,12111n nS k k k =+++L .对任意正整数n ,试证明: (ⅰ)(2)2n n n S +<; (ⅱ)(35)6n n n S +>.宁波市2014年高考模拟试卷数学(理科)参考答案PABCDM(第20题图)说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算。

浙江省名校高三联考数学(理)试题(含答案)

浙江省名校高三联考数学(理)试题(含答案)

浙江省名校新高考研究联盟2014届第二次联考数学(理科)试题卷命题人: 萧山中学 沈建刚 慈溪中学 应勤俭本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()112213V h S S S S =++球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高第I 卷(选择题 共50分)一、选择题(共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.请将你认为正确的选项答在指定的位置上。

)1.设U R =,{}1<=x x P ,{}42≥=x x Q ,则=Q C P U ( )A .}21|{<<-x xB .}12|{<<-x xC .}21|{<<x xD .}22|{<<-x x 2.设复数z 满足(1)2i z i -=,则z = ( ) A .1i -+ B .1i -- C .1i + D .1i -3.已知向量(1,1)m a =+,(2,2)n a =+,若()()m n m n +⊥-,则a = ( ) A .4- B .3- C .2- D .1-4.已知两相交平面,αβ,则必存在直线l ,使得 ( ) A .//,l l αβ⊥ B .,l l αβ⊥⊥ C .,l l αβ⊥⊂ D . //,//l l αβ5.函数()sin cos()6f x x x π=++的值域为 ( )A .[2,2]-B .[3,3]-C .[1,1]-D .33[,]22-6.函数()sin cos f x A x B x =+(,A B R ∈且不全为零),则“0B =”是“函数()f x 为奇函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.设实数,x y 满足不等式组30453300,0x y x y x y -+>⎧⎪+-<⎨⎪≥≥⎩,若,x y 为整数,则34x y +的最大值是 ( )A .26B .25C .23D .228.已知函数ax x xx f +-=3)(3的定义域为),0[+∞,则实数a 的取值范围为 ( ) A .(0,3)B .)2,0(C .),2(+∞D .),3(+∞9.已知六张卡片中,三张红色,三张黑色,它们分别标有数字2,3,4,打乱后分给甲,乙,丙三人,每人两张,若两张卡片所标数字相同称为“一对”卡片,则三人中至少有一人拿到“一对”卡片的分法数为 ( ) A .18 B .24 C .42 D .4810.已知双曲线22221(,0)x y a b a b-=>的左、右焦点分别为12,F F ,过2F 且倾斜角为60的直线与双曲线右支交于,A B 两点,若1ABF ∆为等腰三角形,则该双曲线的离心率为 ( )A .1132-+ B .1132+ C .113113,22-++或 D .其它第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共7小题,每小题4分,共28分。

2014年全国高考浙江省数学(理)试卷及答案【精校版】

2014年全国高考浙江省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设a,b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不 同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大EA值 。

2014届高三上册理科数学期始考试题(有答案)

2014届高三上册理科数学期始考试题(有答案)

2014届高三上册理科数学期始考试题(有答案)宁波效实中学高三起始考(理科数学)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分.请在答题卷内按要求作答第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的.1、函数的单调递增区间是A.B.C.D.2、设等差数列的前项和为,若,,则A.63B.45C.36D.273、函数的部分图象如图所示,则的值分别是A.B.C.D.4、已知数列满足,则的前10项和等于A.B.C.D.5、设等差数列的公差不为0,.若是与的等比中项,则A.2B.4C.6D.86、已知,则A.B.C.D.7、在中,已知是边上一点,若,则A.B.C.D.8、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是A.B.C.D.9、已知函数,下列结论中错误的是A.的图像关于中心对称B.的图像关于直线对称C.的最大值为D.既奇函数,又是周期函数10、在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则|PA|2+|PB|2|PC|2等于A.2B.4C.5D.10第Ⅱ卷(非选择题共70分)二、填空题:本大题共7小题,每小题3分,共21分.11、已知等差数列的前项和为,若,则____.12、若,.则.13、已知向量a,b夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.14、已知平面向量a,b,c不共线,且两两之间的夹角都相等,若|a|=2,|b|=2,|c|=1,则a+b+c与a的夹角是________.15、如图中,已知点D在BC边上,ADAC,则的长为_______________16、下面有五个命题:①函数y=sin4x-cos4x的最小正周期是.②终边在y轴上的角的集合是③在同一坐标系中,函数的图象和函数的图象有三个公共点.④把函数⑤函数其中真命题的序号是(写出所有真命题的编号)17、已知点O在二面角的棱上,点P在内,且。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年宁波市高三“十校”联考数学(理科)命题:慈溪中学 象山中学说明:1.本试题卷分选择题和非选择题部分.满分150分,考试时间120分钟.2.请将答案全部填写在答题纸上.选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数4312iz i+=+,则z 的共轭复数z 等于( ) A.2i -+ B.2i -- C.2i + D.2i -2.设集合2{|4}M x x =≥,{|10}N x x =+>,则R (C M)N = ( )A.{|12}x x -<≤B.{|2}x x <C.{|12}x x -<<D.{|2}x x ≤ 3.若某几何体的三视图(单位:cm )如右图所示, 其中左视图是一个边长为2的正三角形,则这 个几何体的体积是( )A.23cm 3C.3D. 33cm4.已知,a b R ∈,则“||||||a b a b -=+”是“0ab <”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 5.设a R ∈,数列2{()}(N )n a n *-∈是递增数列,则a 的取值范围是( ) A.0a ≤ B.1a < C.1a ≤ D.32a <6.函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期是π,若其图像向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图象( ) A.关于点(,0)12π对称 B.关于点5(,0)12π对称 C.关于直线12x π=对称 D.关于直线512x π=对称7.若直线,l m 与平面,,αβγ满足,,,l l m m βγααγ=⊂⊥ ,则有( )A.m β 且l m ⊥B.αβ 且αγ⊥C.αβ⊥且m γD.αγ⊥且l m ⊥8.已知双曲线22221(0,0)x y a b a b-=>>的焦点为12F F 、,渐近线为12l l 、,过点2F 且与1l 平行的直线交2l 于M ,若M 在以线段12F F 为直径的圆上,则双曲线的离心率为( )A.2 9.已知a b c 、、均为单位向量,且满足a b ⋅ =0,则()()a b c a c ⋅ +++的最大值是( )A.2+B.3+C.2D.1+ 10.对定义域为D 的函数,若存在距离为d 的两条平行直线11l y kx m =+:和2:l2y kx m =+12()m m <,使得当x D ∈时,12()kx m f x kx m ++≤≤恒成立,则称函数()f x 在(x D ∈)上有一个宽度为d 的通道。

有下列函数:①1()f x x=;②()sin f x x =;③()f x =3()1f x x =+。

其中在[1,)+∞上有一个通道宽度为1的函数是( ) A .①② B .①③ C .③④ D .①④非选择题部分(共100分)二.填空题:本大题共7小题,每小题4分,共28分。

11.在6(3)(1)x x +-的展开式中,4x 的系数是______________(用数字作答). 12.执行如图中的程序框图,输出的结果为____________. 13.抛物线28y x =的焦点为F ,其准线与x 轴的焦点为M ,抛物线上的点P满足||||2PF PM =,O 为坐标原点,则||PO =_________14.已知不等式组1400x x y kx y ⎧⎪+-⎨⎪-⎩≤≤≥所表示的区域是面积为1的三角形,则实数k 的值为15.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球。

现从甲、乙两个盒子内各任取2个球。

设ξ为取出的4个球中红球的个数,则ξ的数学期望E ξ=16.实数,x y 满足224x y +=,则x y xy +-的最大值为17.有7个座位连成一排,4人就坐,要求恰有两个空位相邻且甲乙两人不坐在相邻座位,则不同的坐法有______________种(用数字作答).三.解答题:本大题共5个小题,共72分。

解答应写出文字说明.证明或演算过程。

18.(本小题满分14分)在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且a b ≥,sin 2sin A A B =.(Ⅰ)求角C 的大小;(Ⅱ)若c =,求a b +的最大值.19.(本小题满分14分)已知数列{}n a 是公差不为零的等差数列,1015a =,且347a a a 、、成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2nn n a b =,数列{}n b 的前n 项和为n T ,求证:714n T -<-≤.20.(本小题满分15分)如图,三棱锥P —ABC 中,已知平面PA B ⊥平面ABC ,AC BC ⊥,2AC BC a ==,点O,D 分别是,AB PB 的中点,PO AB ⊥,点Q 在线段AC 上,且2AQ QC =. (Ⅰ)证明:C D ∥平面OPQ ;(Ⅱ)若二面角A PB C --,求PA.21.(本小题满分15分)如图,椭圆22122:1(0)x y C a b a b+=>>和圆2222:C x y b +=,已知圆2C 将椭圆1C 的长轴三等分,且圆2C 的面积为π.椭圆1C 的下顶点为E ,过坐标原点O 且与坐标轴不重合的任意直线l 与圆2C 相交于点A 、B ,直线EA 、EB 与椭圆1C 的另一个交点分别是P 、N. (Ⅰ)求椭圆1C 的方程;(Ⅱ)ⅰ)设PM 的斜率为t ,直线l 斜率为l k ,求lk t的值; ⅱ)求△EPM 面积最大时直线l 的方程.22.(本小题满分14分)已知a 为正实数,函数2222222(),()2(),x x a x x af x x x a x x a ⎧--+⎪=⎨-+<⎪⎩≥. (Ⅰ)当4a =时,求()f x 的单调递增区间;(Ⅱ)函数()f x 在[0,1]x ∈上的最小值为(1)f ,求a 的取值范围.2014年宁波市高三“十校”联考数学(理科)参考答案一.选择题:二.填空题(11)25 (12)10 (13) (14)1 (15)76 (16)52(17)336 三.解答题18.解:(Ⅰ)sin 2sin AA B =,即2sin()2sin 3A B π+=,则sin()sin 3A B π+=. 因为0,A B π<<,又a b ≥,进而A B ≥,所以3A B π+=,故23A B π+=,故3C π=. (6分)(Ⅱ)由正弦定理及(Ⅰ)得(sin )sin ca b A sinB C+=+2[sinA sin()])36A ππ=++=+ (10分)由A B ≥知233A ππ<≤,5266A πππ+<≤ (12分)故62A ππ+=,即3A π=时a b +的最大值为. (14分)19.解:(Ⅰ)设数列{}n a 的公差为d (0d ≠),由已知得:10243715a a a a =⎧⎪⎨=⎪⎩,即:12111915(3)(2)(6)a d a d a d a d +=⎧⎪⎨+=++⎪⎩解得:132a d =⎧⎨=⎩, ∴25n a n =- (5分) (Ⅱ)∵2522n n n n a n b -==∴23311252222n n n T ---=++++ ① 234113112725222222n n n n n T +----=+++++ ②(7分) ①—②得:23113111252()222222n n n n T +--=++++- 112122n n +-=--2112n n n T -=-- (10分)∵210()2n n n N *->∈ ∴1n T <-∵12,0b b <,3n ≥时0n b > ∴2T 最小,又274T =-∴714n T -<-≤ (14分)20.解:21解(Ⅰ)依题意:1b =,则3a b =,∴椭圆方程为2219x y +=(4分) (Ⅱ)ⅰ)由题意知直线PE,ME 的斜率存在且不为0,P E ⊥ME. 不妨设直线PE 的斜率为k (k>0),则PE :1y kx =-,由22119y kx x y =-⎧⎪⎨+=⎪⎩得:22218919191k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩或01x y =⎧⎨=-⎩ ∴2221891(,)9191k k P k k -++ (5分) 用1k-去代k ,得222189(,)99k k M k k --++,则 2PM 110k t k k-== (6分)由2211y kx x y =-⎧⎨+=⎩得:2222111k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩或01x y =⎧⎨=-⎩∴22221(,)11k k A k k -++ ∴212l k k k -=(8分),则5l k t=(9分)ⅱ)由ⅰ)可知:||PE|EM|∴EPM1S 2= 3221162()162()994829982k k k k k k k k ++==++++ 设1u k k =+,则EPM 2162162S 649(2)829u u u u ==-++278=(13分) 当且仅当183u k k =+=时去等号,221128()()49k k k k -=+-=∴1k k -=,则直线AB :212k y x k -=, 所以所求直线l的方程为y =. (15分)22.解:(Ⅰ)4a =时,2222222(4),()2(4),4x x x x f x x x x x ⎧--+⎪=⎨-+<⎪⎩≥4 2x ≥4时,2()6280f x x x '=-++<恒成立,故无单调递增区间;24x <时,由2()6280f x x x '=+->得423x -<<-或12x <<(5分)所以()f x 的单调递增区间为4(2,),(1,2)3--.(Ⅱ)由题意即求[0,1]x ∈,()(1)f x f ≥恒成立时a 的取值范围. (7分)1x =时()(1)f x f =;对[0,1)x ∈,要使()(1)f x f ≥ ①当1a ≥时,由()(1)f x f ≥,得:222()32x x a x a -+-≥即322(1)21a x x x ---≥,3222122331x x a x x x --=++-≥故2233a ++≥,4a ≥ (9分)②当01a <<时,由()(1)f x f ≥,得:1x <时,222()21x x a x a --+-≥即2221a x x ++≤,故只需221a a ≤,此式恒成立. (11分)ⅱ)0x <222()21x x a x a -+-≥,即322(1)21a x x x +++≥322212211x x a x x x ++=-++≤114,即1016a <≤时,只需221a a ≤,此式恒成立.214,即1116a <≤时,只需211722()1448a -+=≤,所以171616a ≤≤.由1)、2)得:7016a <≤ (13分)综上,7016a <≤或4a ≥ (14分)。

相关文档
最新文档