法拉第效应-磁光调制实验

合集下载

法拉第效应实验报告终结版

法拉第效应实验报告终结版

法拉第效应实验报告学号: 姓名:实验日期:2013年9月16日 指导教师:廖红波【摘要】 本实验中,我们通过磁场与电感线圈电流的对应关系来确定磁场。

通过使用消光法和磁光调制法测定了MR3和ZF7的法拉第磁致旋光效应,并测定了样品的旋光角,计算给定条件下的费尔德常数,得到MR3-2的费尔德常数为−105.9000rad T ∗m ⁄,ZF7的费尔德常数为19.0750rad T ∗m ⁄。

最后设计实验验证了法拉第效应的旋光非互易性,并依此区分自然旋光和法拉第旋光。

关键词:法拉第效应、磁光调制法、消光法、费尔德常数、旋光非互易性一、引言19世纪中至20世纪初是科学发现的黄金时期,若干种对于了解固体物理特性并揭示其内部电子态结构有着重要意义的磁光效应现象相继被发现。

1845年,英国物理学家法拉第(Faraday )发现了法拉第效应。

法拉第效应的非旋光互易性使得它在激光技术、光纤通信技术中获得重要应用。

此次实验就是利用晶体的磁光学原理,通过消光法和磁光调制法测定MR3和ZF7晶体的θ−B 关系曲线并得出MR3和ZF7晶体的费尔德常数,区分了石英晶体自然旋光与MR3玻璃磁致旋光的“旋光非互易性”。

二、 实验原理:法拉第效应就是当在光的传播方向上加上一个强磁场时,平面偏振光穿过处于该磁场中的样品后,其偏振面会偏转一个角度。

实验结果表明,光的偏振面旋转的角度θF 与其在介质中传播的距离及l 介质中磁感应强度在光传播方向上的分量B 成正比,即()F d V Bl θλ= (1)上式中,比例系数d V 称为费尔德常数,它由材料本身的性质和工作波长决定,表 征物质的磁光特性。

法拉第效应与自然旋光不同。

在法拉第效应中对于给定的物质,偏振面的旋转方向只由磁场的方向决定而和光的传播方向无关。

法拉第效应是不可逆的光学过程,光线往返一种,旋光角将倍增,这称为法拉第效应的“旋光非互易性”。

而自然旋光过程是可逆的,旋光方向和光的传播方向有关,本实验中如何判定自然旋光和法拉第效应也是根据这一性质来设计实验的。

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验
化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体 血液中或尿液中糖份的测定等。
一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品
角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量 E 可以分解为图 3-(a)
所示两个旋转方向不同的圆偏振光 ER 和 EL ,通过介质后,它们的相位滞后不同,旋转方向
也不同,在出射界面上,两个圆偏振光的旋转电矢量如图 3-(b)所示。当光束射出介质后, 左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。
(7)
由式(7)可知,当α 一定时,输出光强 I 仅随θ 变化,因为θ 是受交变磁场 B 或信号电流
i = i0 sin ωt 控制的,从而使信号电流产生的光振动面旋转,转化为光的强度调制,这就是磁
光调制的基本原理。
图 4 磁光调制装置
根据倍角三角函数公式由式(7)可以得到
I
=
1 2
I0[1 +
cos
器之间加一个由励磁线圈(调制线圈)、磁光调制晶体和低频信号源组成的低频调制器,则调
制励磁线圈所产生的正弦交变磁场 B = B0 sin ωt ,能够使磁光调制晶体产生交变的振动面转
角θ = θ0 sin ωt ,θ0 称为调制角幅度验
I = I0 cos2 (α + θ ) = I0 cos2 (α + θ0 sin ωt)
幅度 i0 连续可调,所以磁光调制器的光强调制深度 i0 连续可调。只要选定调制频率 f (如

法拉第磁光效应实验

法拉第磁光效应实验
(5.16.25)
式中,I0为起偏器同检偏器的透光轴之间夹角=0或=时的输出光强。若在两个偏振器之间加一个由励磁线圈(调制线圈)、磁光调制晶体和低频信号源组成的低频调制器(参见图5.16.4),则调制励磁线圈所产生的正弦交变磁场B=B0sint,能够使磁光调制晶体产生交变的振动面转角=0sint,0称为调制角幅度。此时输出光强由式(5.16.25)变为
(5.16.35)
若将输出的调制光强入射到硅光电池上,转换成光电流,在经过放大器放大输入示波器,就可以观察到被调制了的信号。当=45时,在示波器上观察到调制幅度最大的信号,当=0或=90,在示波器上可以观察到由式(5.16.34)和式(5.16.35)决定的倍频信号。但是因为 一般都很小,由式(5.16.34)和式(5.16.35)可知,输出倍频信号的幅度分别接近于直流分量0或I0。
②了解顺磁、弱磁、抗磁性、铁磁性或亚铁磁性材料的基本特性,以及费尔德常数V与磁光材料性质的关系。
③比较法拉第磁光效应与固有旋光效应的异同。
④磁光调制过程中,调制信号与输入信号之间的函数关系。
5.16.2
1
实验表明,在磁场不是非常强时,如图5.16.1所示,偏振面旋转的角度与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B成正比,即:
对于每一种给定的物质,法拉第旋转方向仅由磁场方向决定,而与光的传播方向无关(不管传播方向与磁场同向或者反向),这是法拉第磁光效应与某些物质的固有旋光效应的重要区别。固有旋光效应的旋光方向与光的传播方向有关,即随着顺光线和逆光线的方向观察,线偏振光的偏振面的旋转方向是相反的,因此当光线往返两次穿过固有旋光物质时,线偏振光的偏振面没有旋转。而法拉第效应则不然,在磁场方向不变的情况下,光线往返穿过磁致旋光物质时,法拉第旋转角将加倍。利用这一特性,可以使光线在介质中往返数次,从而使旋转角度加大。这一性质使得磁光晶体在激光技术、光纤通信技术中获得重要应用。

近代物理实验报告—法拉第效应

近代物理实验报告—法拉第效应

法拉第效应一、引言1845年英国物理学家法拉第发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象即法拉第效应。

随后费尔德的研究发现法拉第效应普遍存在于固体、液体、和气体中,只是大部分物质的法拉第效应很弱。

法拉第效应只是磁光效应中的一种。

磁光效应是描述在磁场的作用下,具有固有磁矩的介质中传播的光气无力性质发生变化的现象,比如光的频率,偏振面,相位等性质发生了变化。

法拉第效应的应用领域极其广泛,可用于物质结构的研究、光谱学和电工测量等领域。

此外利用法拉第效应原理制成的各种可快速控制激光参数的元器件也已广泛地应用于激光雷达、激光测距、激光陀螺、光纤通信中。

本实验的目的是通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,学会计算费尔德常数。

二、实验原理法拉第效应就是,当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,振动面转过的角度称为法拉第效应旋光角。

实验发现θ=VBL (1)其中θ为法拉第效应旋光角,L 为介质的厚度,B 为平行与光传播方向的磁感强度分量,V 称为费尔德常数,它由材料本身的性质和工作波长决定的,表征物质的磁光特性。

一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,V>0;反之则叫右旋,V<0。

法拉第效应与自然旋光不同在于:法拉第效应对于给定的物质,偏振面的旋转方向只由磁场的方向决定而与光的传播方向无关,光线往返一周,旋光角将倍增,这叫做法拉第效应的“旋光非互易性”。

而自然旋光过程是可逆的。

1、法拉第效应原理的菲涅尔唯象理论一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光。

在没有外加磁场时,介质对它们具有相同的折射率和传播速度,他们通过距离为 的介质后,他们产生的相位移相同,不发生偏转。

当有外磁场时,由于磁场使物质的光学性质改变,两束光具有不同的折射率和传播速度,产生不同的相位移:2L L n l πϕλ=(2)2R R n l πϕλ=(3)其中,L ϕ、R ϕ分别为左旋、右旋圆偏振光的相位,L n 、R n 分别为其折射率,λ为真空中的波长。

法拉第磁光效应实验

法拉第磁光效应实验
若入射光改为左旋圆偏振光,结果只是使L前的符号改变,即有
(5.16.17)
对比无磁场时的色散公式
(5.1作用下,电子做受迫振动,振子的固有频率由0变成0±L,这正对应于吸收光谱的塞曼效应;二是由于0的变化导致了折射率的变化,并且左旋和右旋圆偏振的变化是不相同的,尤其在接近0时,差别更为突出,这便是法拉第效应。由此看来,法拉第效应和吸收光谱的塞曼效应是起源于同一物理过程。
磷素
589.3
12.3 102
与固有旋光效应类似,法拉第效应也有旋光色散,即费尔德常数随波长而变,一束白色的线偏振光穿过磁致旋光介质,则紫光的偏振面要比红光的偏振面转过的角度大,这就是旋光色散。实验表明,磁致旋光物质的费尔德常数V随波长的增加而减小(如图5.16.2),旋光色散曲线又称为法拉第旋转谱。
假定入射光波场具有通常的简谐波的时间变化形式eit,因为我们要求的特解是在外加光波场作用下受迫振动的稳定解,所以 的时间变化形式也应是eit,因此式(5.16.6)可以写成
(5.16.7)
式中 ,为电子共振频率。设磁场沿 +z方向,又设光波也沿此方向传播并且是右旋圆偏振光,用复数形式表示为
将式(5.16.7)写成分量形式
了解顺磁、弱磁、抗磁性、铁磁性或亚铁磁性材料的基本特性,以及费尔德常数V与磁光材料性质的关系。
比较法拉第磁光效应与固有旋光效应的异同。
磁光调制过程中,调制信号与输入信号之间的函数关系。
5.16.2
1.法拉第效应
实验表明,在磁场不是非常强时,如图5.16.1所示,偏振面旋转的角度与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B成正比,即:
5.16.1 实验要求
1.实验重点
用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。

法拉第效应—磁光调制试验

法拉第效应—磁光调制试验

法拉第效应—磁光调制实验汪能06300190058摘要当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。

通过法拉第效应—慈光调制实验可以研究ZF6重火石玻璃在不同波长下的费尔德而常量,研究其色散曲线,进而测量电子的荷质比。

关键词法拉第效应旋光角费德尔常量荷质比1.引言1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。

如图⑴所示:图⑴法拉第效应偏振面转过的角度φ满足以下公式:φ=VBD其中B为磁场强度,D为介质厚度,V为费德尔常量。

下表为若干物质的费德尔常量。

法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。

如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关。

利用法拉第效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲强磁场、交变强磁场。

在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏的高压电流。

磁光调制主要应用于光偏振微小旋转角的测量技术,它是通过测量光束经过某种物质时偏振面的旋转角度来测量物质的活性,这种测量旋光的技术在科学研究、工业和医疗中有广泛的用途,在生物和化学领域以及新兴的生命科学领域中也是重要的测量手段。

如物质的纯度控制、糖分测定;不对称合成化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。

2.费德尔常量的测量实验中,直接利用公式:φ=VBD作φ~B曲线求斜率得到费德尔常量。

法拉第效应磁光调制试验

法拉第效应磁光调制试验

数据分析
计算费尔德常数 高阶项的 不确定度大于 低阶项的不确 定度。
费尔德常 数的涨落比较 大。
实验内容
测量旋光角的大小与波长的关系
波长增大,偏转角度呈减小的趋势,但是波长越 大,减小的趋势在减弱
数据分析
旋光角的大小与波长的关系
偏转角与波长并不是线性关系,费尔德
常数与介质的色散关系有关,因此需要测量
实验装置
实验内容
测量电流与磁场的关系 遇到的问题 1、电流为零, 磁场不为零 2、电流与磁场 不是线性关系 解决的方法 1、电流按同一 方向增大 2、每一个电流 测一个磁场
实验内容
测量波长与螺距的关系
610 590
570
550 530 510 490 470
螺距的标准 只有几个特殊的 波长 如果需要其 他的波长或者调 出其他螺距时, 就简单地通过拟 合求出
一下重火石玻璃的色散曲线。
法拉第磁光偏转效应的发现实际上是从 实验的角度上证明了光与磁的相互作用
任何伟大的发现在解决老问题的同时又 孕育的新问题
物理的美就在于物质之间的相互作用不 是孤立的,物质具有广延的性质
法拉第效应 磁光调制实验
江智宇 12307130310 光科学与工程系
谢谢大家
450 3 3与磁场的关系
波长λ/nm 500 520 540 560 580 600
斜率10-3·°· Gs-1 18.3 18.0 16.3 14.2 13.6 11.6
纵截距b/° 1.5 -0.2 -0.1 -0.2 0.0 -0.3
误差分析
波长λ/nm 纵截距b/° 不确定度 500 1.5 0.2 520 -0.2 0.4 540 -0.1 0.3 560 -0.2 0.3 580 0 0.4 600 -0.3 0.7

物理实验报告_法拉第效应

物理实验报告_法拉第效应

实验题目:法拉第效应摘要:本实验利用磁光调制器将激光调制后,再经过装有样品的磁场旋转,通过倍频法测相应的旋光角。

并比较了不同样品的旋光特性,并验证了法拉第旋光具有不可逆性。

使得法拉第效应的本质更易理解。

其中动手设计的部分更锻炼了思考和实践能力。

关键词:法拉第效应,磁光调制器,MR3,ZF6,互易性,关系图。

引言:1845年法拉第发现了磁致旋光现象,称为法拉第效应。

这是人类第一次认识到电磁现象与光现象的联系。

后来,费尔德发现法拉第效应普遍存在于固体、液体和气体。

法拉第效应只是磁光效应中的一种,磁光效应有很多类型,常见的有法拉第效应、塞曼效应、克尔效应、科顿-穆顿效应和磁激发光散射。

法拉第效应的应用领域极其广泛。

它可作为物质结构研究的手段,比如,根据结构来对法拉第效应的影响来分析碳氢化合物的结构;在光谱学中,可以用以研究激发能级的有关信息;在电工测量中,可用来测量电路中的电流和磁场。

如今利用法拉第效应原理制成的偏频盒、旋转器、环行器、相移器、锁式开关、Q开关、光纤隔离器等能快速控制激光参数的各种元器件,已广泛应用于激光雷达、激光测距、激光陀螺、光纤通信重。

实验原理: 所谓法拉第效应是指,在光的传播方向加一强磁场时,平面偏振光穿过磁场中样品后,偏振面将偏转一个角度,如图1-1所示。

其偏转角θ满足关系式:θ=VBL (1)图表1-1 平面偏振光沿磁场通过介质时偏振面偏转其中V称为费尔德常数,由材料本身性质和工作波长决定,在顺磁、弱磁和抗磁性材料中,V通常为常数,即θ与B具有线性关系;而在铁磁或亚铁磁材料中,θ与B不再是简单的线性关系。

在不同的介质中,光的偏振面旋转的方向也可能不同,且其方向与外磁场方向有关。

一般约定,旋转方向与产生磁场的螺线管中电流方向一致时,法拉第旋转是左旋的,V>0;反之则V<0,是右旋的。

法拉第旋光方向只由磁场方向决定,与传播方向无关,具有不可逆性。

而自然旋光过程是可逆的。

法拉第效应——磁光调制实验

法拉第效应——磁光调制实验

法拉第效应——磁光调制实验实验者:翦巽王福梅指导老师:白翠琴摘要:通过操作法拉第效应试验仪器,了解磁场和光波长对法拉第效应的影响。

关键词:法拉第效应,Verdet常数简介:1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。

法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。

之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。

本实验除了观测法拉第效应的现象外,同时也需要研究法拉第效应的Verdet 常数。

实验原理:当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。

振动面转过的角度称为法拉第效应旋光角。

实验发现:θ=VBLθ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。

实验仪器:法拉第效应实验装置如图所示。

由光源产生的复合白光通过小型单色仪后可以获得波长在360~800nm的单色光,经过起偏镜成为单色线偏振光,然后穿过电磁铁。

电磁铁采用直流供电,中间磁路有通光孔,保证人射光与磁场B方向一致。

根据励磁电流的大小可以求得对应的磁场值。

入射光穿过样品后从电磁铁的另一极穿出人射到检偏器上,透过检偏器的光进入光电倍增管,由数显表显示光电流的大小,即出射光强的大小。

根据出射光强最大(或最小)时检偏器的位置读数即可得出旋光角。

检偏器的角度位置读数也由数显表读出。

实验内容:先使用游标卡尺测量样品的厚度:L=1.070cm开启测试灯源,转动起偏器使得数显表读数达到最小,这时起偏器和检偏器主截面垂直。

实验3.11 法拉第效应实验

实验3.11  法拉第效应实验

实验3.11 法拉第效应实验光和一切微观物质一样,具有波粒二象性,当一束光通向在磁场作用下的具有磁矩的物质,从介质反射或者透射后,光的相位、频率、光强、传输方向和偏振状态等传输特性发生变化,这种现象叫做磁光效应。

法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值倍增。

如用于光纤通讯系统中的磁光隔离器,激光磁光调制等技术。

一、实验目的1.观察光的偏振现象,研究光的波动性。

2.观察并理解法拉第效应,研究影响振动面偏转角度的因素。

3. 计算材料的费尔德常数。

二、实验原理1.法拉第效应:1845年,法拉第在实验中发现,当一束线偏振光通过非旋光性介质时,如果在介质中沿光传播方向加一外磁场,则光通过介质后,光振动(指电矢量)的振动面转过一个角度θ,这种磁场使介质产生旋光性的现象称为法拉第效应或者磁致旋光效应。

自从法拉第发现这一效应以后,人们在许多固体、液体和气体中观察到磁致旋光现象。

对于顺磁介质和抗磁介质,光偏振面的法拉第旋转角θ与光在介质中通过的路程L 以及外加磁场磁感应强度在光传播方向上的分量成正比,即有:VBL =θ (3.1)其中V 为费尔德常数。

对于不同介质,偏振面旋转方向不同,习惯上规定,偏振面旋转绕向与磁场方向满足右手螺旋关系的称为“右旋”介质,其费尔德常数V > 0;反向旋转的称为“左旋”,费尔德常数V < 0。

2.法拉第效应的唯象解释:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。

这里左旋和右旋是相对于磁场方向而言的。

如果磁场的作用是使右旋圆偏振光的传播速度和左旋圆偏振光的传播速度不等,于是通过厚度为L 的介质后,便产生不同的相位滞后。

这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。

在磁致旋光介质的入射截面上,入射线偏振光的电矢量E 可以分解为图 3.1 (a)所示两个旋转方向不同的圆偏振光L E 和R E ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图3.1 (b)所示。

法拉第磁旋光效应实验报告

法拉第磁旋光效应实验报告

法拉第磁旋光效应实验报告一、引言法拉第磁旋光效应是指在磁场中通过偏振光,使得光线振动方向沿着磁场方向旋转的现象。

这一现象在物理学领域具有重要的意义,也被广泛应用于光学仪器中。

本文将对法拉第磁旋光效应实验进行详细介绍。

二、实验原理1. 法拉第效应法拉第效应是指在电场或磁场中,通过介质传播的偏振光线的振动方向发生改变的现象。

其中,在磁场中产生的现象被称为法拉第磁旋光效应。

2. 法拉第磁旋光效应当偏振方向与磁场垂直时,入射线偏振为线性偏振;当偏振方向与磁场平行时,入射线偏振为圆偏振。

在这种情况下,通过介质的光线会发生沿着磁场方向旋转的现象。

3. 实验装置本实验所需装置包括:He-Ne激光器、铜管、电源、反射镜、透镜等。

4. 实验步骤(1)将铜管置于强磁场中,使得通过铜管的光线方向与磁场垂直。

(2)调整透镜和反射镜的位置,确保激光器发出的光线经过铜管后能够被反射回来。

(3)分别测量磁场强度和通过铜管前后的偏振角度差,计算出法拉第旋转角度。

三、实验结果在实验过程中,我们测得了通过铜管前后的偏振角度差为20°,磁场强度为1.5T。

根据计算公式,我们得到了法拉第旋转角度为0.03°。

四、误差分析在实验过程中,存在一些误差因素会对实验结果产生影响。

例如,在调整透镜和反射镜位置时可能存在误差;测量偏振角度时也可能存在读数误差等。

五、结论本实验成功地验证了法拉第磁旋光效应,并且得到了较为准确的法拉第旋转角度。

同时,在实验过程中也发现了一些可能会影响实验结果的误差因素。

这些都为今后进一步深入研究提供了参考依据。

磁致旋光-法拉第效应实验原理

磁致旋光-法拉第效应实验原理

磁致旋光-法拉第效应实验原理
铁磁致旋光-法拉第效应是电子束照射于非晶态铁磁材料时出现的现象,它表现为铁磁材料在电子束照射下磁化,并发出强大的旋光。

它也被称为德利克氏效应,因为由法国物理学家威廉·德利克于1900年发现。

电子束照射铁磁材料还可以引起材料的热相对跃,导致材料的结构发生变化。

该效应的基本原理是,电子会通过外加磁场使非晶态铁磁材料变得磁化,从而产生旋光。

法拉第效应在火花放电中通常很强,甚至可以在室温下发出强旋光。


法拉第效应类似,从磁隙中发散出的热激光(SEL)也是一种强大的旋光效应,对旧歌剧外墙上有较多应用。

考虑到安全措施,大多数法拉第效应实验中都会使用有源磁场,如永磁体或电磁体。

电磁体可以实现快速更改磁场大小的速度。

永磁体则可以提供恒定的磁场条件,更适合用于长时间的控制和实验。

磁光调制实验报告Word版

磁光调制实验报告Word版

磁光调制实验报告课程:_____光电子实验_____学号:姓名:专业:信息工程南京大学工程管理学院磁光调制实验报告一、实验目的1 观察磁光调制现象2 测量调制深度与调制角幅度3测定旋光角与外加磁场的关系4 测量直流磁场对磁光介质的影响5 磁光调制与光通讯实验演示二、实验原理1 磁光效应当平面偏振光穿透某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表明其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即:θ (1)=vlB式中l为光波在介质中的路径,ν为表征磁致旋光效应特征的比例系数,称为维尔德(Verdet)常数。

由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏转等功能性磁光器件,其中磁光调制为其最典型的一种。

图1 磁光效应示意图如图1所示,在磁光介质的外围加一个励磁线圈就构成基本的磁光调制器件。

2 直流磁光调制当线偏振光平行于外磁场入射磁光介质的表面时,偏振光的光强I可以分解成如图2所示的左旋圆偏振光I L和右旋圆偏振光I R(两者旋转方向相反)。

由于介质对两者具有不同的折射率n L 和n R ,当它们穿过厚度为l 的介质后分别产生不同的相位差,体现在角位移上有:l n L L λθ=l n R R λθ=式中λ为光波波长 R L()()l n n R L R L ⨯-=-=λθθθ2 ( 2 ) ()R L B ,即可得(1)式,并由值与测得的B 与l 求出威德尔常数υ。

图2 入射光偏振面的旋转运动3 交流磁光调制用一交流电信号对励磁线圈进行激励,使其对介质产生一交变磁场,就组成了交流(信号)磁光调制器(此时的励磁线圈称为调制线圈),在线圈未通电流并且不计光损耗的情况下,设起偏器P 的线偏振光振幅为A 0,则A 0可分解为A 0 cos α及A 0 sin α两垂直分量,其中只有平行于P 平面的A 0 cos α分量才能通过检偏器,故有输出光强cos )cos (I A I ==(马吕斯定律)A I =式中α为起偏器P 与检偏器A 主截面之间的夹角,I 0为光强的幅值,当线圈通以交流电信号i=i 0 sin ωt 时,设调制线圈产生的磁场为B=B 0 sin ωt ,则介质相应地会产生旋转角θ=θ0 sin ωt ,则从检偏器输出的光强为:[][])sin (2cos 12)(2cos 12)(cos 00020t I I ωθαθαθα++=++=+= (3) 由此可知光输出可以是调制波的倍频信号。

实验四 磁光调制实验

实验四 磁光调制实验

实验四、磁光调制实验[实验目的]1.了解法拉第效应的工作原理;2.掌握磁光调制器件性能参数的测量方法;[实验原理]原来没有旋光性的透明介质,如水、铅玻璃等,放在强磁场中,可产生旋光性,这种现象称为法拉第效应。

具体的现象是,把磁光介质放到磁场中,使光线平行于磁场方向通过介质时,入射的平面偏振光的振动方向就会发生旋转,转移角度的大小与磁光介质的性质、光程和磁场强度等因素有关。

对于不同的介质其振动面的旋转方向不同,顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,反之,则称为左旋或负旋介质。

ψ=VlBcosα式中,ψ为振动面旋转的角度, l为光程,B为磁感应强度,α为光线与磁场的夹角,V为比例常数,称费尔德常数,单位rad/Tm,它与磁光介质和入射光的波长有关,是一个表征介质磁光特性强弱的参量。

对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。

这点是磁光介质和天然旋光介质之间的重要区别。

就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。

例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,另一次是与这个方向相反,观察结果,振动面并没旋转。

可是磁光物质则不同,光线以相反的两个方向两次通过磁光物质时,其振动面的旋转角是叠加的。

因此,在磁致旋光的情况下,使光线多次通过磁光物质可得到旋转角累加。

图1 磁光调制器结构简图磁光调制器就是根据法拉第效应制成的,其结构见图67-1。

将磁光介质(铁钇石榴石Y3Fe5O12或三溴化铬CrBr3)置于激磁线圈中。

在它的左右两边,各加一个偏振片。

安装时,使它们的光轴彼此垂直。

没有磁场时,自然光通过起偏振片变为平面偏振光通过磁光介质。

达到检偏振片时,因振动面没有发生旋转,光因其振动方向与检偏振片的光轴垂直而被阻挡,检偏振片无光输出。

有磁场时,入射于检偏振片的偏振光,因振动面发生了旋转,检偏振片则有光输出。

光输出的强弱与磁致的旋转角ψ有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费尔德(Verdet)对 许多介质的磁致旋光 进行了研究,发现了 法拉第效应在固体、 液体和气体中都存在。
法拉第效应的应用
光纤通讯中的磁光隔离器:减少光纤中器件表 面反射光对光源的干扰 磁场测量方面:磁光效应磁强计——测量脉冲 强磁场(天文学中测量射电脉冲星)、交变强 磁场 电流测量方面:测量几千安培的大电流和几兆 伏的高压电流 生命科学领域:医疗和生化中酶作用的研究; 研究核糖和核酸以及生命物质中左旋氨基酸的 测量;人体血液中或尿液中糖份的测定等。
11 1
1 .1 2 7 4 1 0 C k g
11
1
2 10

e
2mc d

dn
0 .0 3 7 5 8
实验得到的电子荷 质比比理论值偏小 35%!
误差分析
1.使用特斯拉计测电磁铁中心位置磁场,手 持特斯拉计可能不稳定,造成误差。 2.多次拟合结果,累计的系统误差较大
Λ (nm)
x 2 .2 8 3 4 9
) 3 4 0 .7 4 8 1
460
3.626
480
3.980
500
4.287
520
4.557
540
4.798
560
5.017
580
5.216
600
5.400
dd (mm)
U-B拟合(线性拟合)
U-B拟合(二次拟合)
B-Θ拟合 λ=580nm 证明Θ与B呈线性关系
疑问: λ-Θ曲线一定是线性的么
λ-Θ二次拟合
B=498.2mT
U=12V
可以做这样的近似
V

b
e 2mc
c
dn d

e 0 mc e 0 mc
(

2


4
)
b
2
总结
1.实验观察到了法拉第效应的磁致旋光效应 2.验证了法拉第效应中偏转角与磁感应强度 的线性关系 3.测出了不同波长对应的费尔德常数 4.测量出波长与折射率关系进一步求出电子 的荷质比(误差较大)
对所有的λ进行B-Θ拟合 求出V
Θ=VBL
λ/ nm
460 480 500 520 540 560 580 600
1.075 0.860 0.793 0.689 0.672 0.490 0.522 0.486 ( 10 )
-4
斜率
r
2
0.996 0.991 0.994 0.996 0.995
0.973 0.998 0.997 (舍)
费尔德 常数V rad/ (m· T)
10.641
8.596 7.849 6.821 6.721
——
5.217 4.861
λ-Θ拟合
最小偏向角法测三棱镜的折射率n
λ-n拟合
λ- V拟合
计算电子的荷质比
V

dn d

e 2mc
4

dn d
算得 e m
实际 e m 1 .7 5 8 8 1 0 C k g
Thank You!
感谢合作者 汪竟成!
Θ=VBL
θ为法拉第效应旋光角; L为介质的厚度; B为平行与光传播方向 的磁感强度分量; V称为费尔德(Verdet) 常数。

LBe 2mc

dn d
V


e 2mc

dn d
Hale Waihona Puke 实验装置dd-λ曲线
由实验室给出:
y 2 4 .3 6 6 6 2 e x p (
法拉第效应-磁光调制实验
09300190028 杨京南
法拉第效应
1845年,迈克尔· 法拉第(M.Faraday)发现: 在穿过介质时,偏振光波会因为外磁场的作用, 转变偏振的方向,这一现象称为 法拉 第效应。
法拉第效应第一次显 示了光和电磁现象之 间的联系,促进了对 光本性的研究,是光 学过程与电磁学过程 有密切联系的最早证 据。
相关文档
最新文档