Experimental open air quantum key distribution with a single photon source
量子纠缠态的制备

量子纠缠态的制备Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】量子纠缠态的制备摘要:量子纠缠是量子信息中最重要、也最为神奇的一个课题.量子纠缠是一种有用的信息“资源”,在量子隐形传态、量子密集编码、量子密钥分配以及在量子计算的加速、量子纠错、防错等方面都起着关键作用.在量子信息中,信息的处理离不开量子态及其演化.而量子纠缠态毫无疑问是各种量子态中最为重要的一种.它可用于检验量子力学的基本原理,而且也是实现量子通信的重要信道.所以,纠缠态的制备和操作就显得尤为重要,文章简要介绍量子纠缠态的定义、量子纠缠态的度量及分类、量子纠缠态的制备,并介绍纠缠态的一些应用.关键字:量子纠缠;腔QED;离子阱;生成纠缠;蒸馏纠缠Quantum Pestering Condition PreparationAbstract: The quantum entanglement is one of the most important subject, and also the supernatural part of quantum information science. As an important quantum resource, the entangled states are playing the key role in many sorts of quantum informationp r o c e s s,f o r e x a m p l e,q u a n t u m t e l e p o r t a t i o n,q u a n t u m d e n s e coding, and quantum key dist- ribution as well as quantum computation acceleration, the quantum correct-error, guard-errora n d s o o n.I n q u a n t u m i n f o r m a t i o n s c i e n c e,i n f o r m a t i o np r o c e s s i n g c a n n o t l e a v e t h e q u a n t u m s t a t e a n d i t’s t h e e v-olution. But quantum entanglement condition is without a doubt in each kind of quantum state the most important one kind. It may use in examining the quantum mechanics the basic principle, m o r e o v e r a l s o r e a l i z e s t h e q u a n t u m c o r r e s p o n d e n c e i m p o r t a nt channel. Therefore, the pestering condition preparation and the o p e r a t i o n a p p e a r s e s p e c i a l l y i m p o r t a n t l y,a r t i c l e b r i e f introduction quantum entanglement condition definition, quantum e n t a n g l e m e n t c o n d i t i o n m e a s u r e a n d c l a s s i f i e d,q u a n t u m e n t a n g l e m e n t c o n d i t i o n p r e p a r a t i o n,a n d i n t r o d u c t i o n e n t a n g l e m e n t c o n d i t i o n s o m e a p p l i c a t i o n s. Key word: Quantum entanglement; Cavity QED; Ion trap;Formation of entanglement;Disillation of entanglement毕业论文题目:量子纠缠态的制备系别: 物理与电子工程系学科专业: 物理学姓名: 许军霞指导教师: 苏晓琴运城学院2006 年 06 月学士学位论文系别:物理与电子工程系学科专业:物理学姓名:许军霞运城学院2006 年 06 月目录1引言 (1)2量子纠缠 (1)量子纠缠态的定义 (2)量子纠缠态的度量和分类 (3)3纠缠态的制备 (5)在自发参量体系下制备纠缠态 (6)3.1.1制备双光子纠缠态 (6)3.1.2制备三光子纠缠态 (7)在QED中制备纠缠态 (9)3.2.1双原子纠缠态的制备 (9)3.2.2三原子纠缠态的制备 (10)离子阱中制备纠缠态 (10)4纠缠态的应用 (11)5结束 (13)致谢 (14)参考文献 (14)1 引言在量子信息中,信息的处理离不开量子态及其演化.而量子纠缠毫无疑问是各种量子态中最为重要的一种. 纠缠态做为一种重要的“量子资源”,近年来随着量子信息学的蓬勃发展得到了广泛的应用.诸如成功的应用于量子密钥分配,量子密集编码,量子隐行传态,量子纠缠码,量子计算领域.由于多子系统纠缠态具备很多两个子系统所不具备的性质,而且,随着日益发展的实验技术,使得对于量子纠缠态的制备更为深化.这不仅关系着量子纠缠本质的问题,还有助于人们对量子力学基础理论的理解.更能开发出许多神奇的应用.量子纠缠是量子信息学中最重要也是最为奇特的一个课题.在量子信息学中,量子纠缠在量子信息学的两大领域---量子通信和量子计算中都有着广泛的应用.要实现量子计算首先就要实现两比特逻辑门,通常是受控非门(CNOT),这种逻辑门事实上就是将两个量子比特纠缠起来的过程.除此之外,量子纠错码方案通常也要使用量子纠缠态.在量子通信中,使得纠缠态具有重要意义的主要是量子隐形传态技术.甚至有人认为在某种意义上可以将量子通信等价于异地纠缠态的建立,操纵和测量.另一方面,为了检验局域隐变量理论,人们对制备和操纵纠缠态产生了浓厚的兴趣.两个两态粒子能够实现 Einstein, Podolsky和Rosen (EPR)对,并且通过违背Bell不等式,从而否定了局域隐变量原理.近年来,Geenberger等人制备了三或更多粒子纠缠态,即(GHZ)态,这种纠缠态给出了一种新的局域隐变量原理与量子理论矛盾,它不需要违背Bell不等式,就可以对局域隐变量进行检验.正因为它有这种特性,最近,Cirac等人,Haroche,Gerry以及zheng 等人分别通过腔QED制备了GHZ态.2004年2月德国Bourennane等人成功制备了偏振光子三个和四个量子比特纠缠[]1.同年,我国科技大学潘建伟教授首次制备了5光子纠缠态,标志着我国对粒子纠缠领域已经超过了美国,英国,奥地利等发达国家,达到了国际领先水平.本文将介绍量子纠缠态的定义、量子纠缠态的度量及分类、量子纠缠态的制备,并介绍纠缠态的一些应用及发展概况.2 量子纠缠量子纠缠态的定义近些年来,随着量子信息这一新兴领域的蓬勃发展,量子纠缠逐渐成为人们的热门话题.但是它并不是什么新鲜事物.“纠缠”一词的出现可追朔到量子力学诞生之初.从量子力学诞生之日起,围绕量子力学中对其基本原理的诠释和对其基本概念的理解的争论就从未间断过.争论发生在以爱因斯坦为代表的经典物理学家和以玻尔为代表的哥本哈根学派之间,争论的核心实质上是涉及“纠缠态”以其展现出的非局域关联.最近20年来,由于实验技术的巨大进展,这些争论已不再停留在思辩阶段,而是可以依靠实验来验证,并由此引发了量子信息学的理论与实验的蓬勃发展.那么,怎样的量子态才算纠缠态呢中国科学院院士郭光灿打了一个形象的比喻: “就像一个母亲和她的女儿,分别居住在中国和美国.在美国的女儿怀孕了,当她生孩子的一瞬间,哪怕远隔千山万水,不用电话通知,远在中国的母亲就顺理成章地变成了外婆.” 即两个粒子无论分开多远,对其中一个粒子操纵或者作用,必将影响另一个粒子的态.”所谓纠缠态,是指复合系统的一种特殊的量子态,它在任何表象中,都无法写成两个子系量子态的直积形式.为了方便理解,考虑到由A 和B 两个子系统组成的二体系统(A 和B 均为纯态).设A 的本征态矢为ψA ,B 的本征态矢为ψB ,若(A+B )这个复合系统的本征态矢ψAB 不能表示成ψA 与ψB 的直积形式时,则称纯态ψAB 为一纠缠态.即: ψψψ⊗≠B A AB .[]2(1) 当考虑到混态情况时,可用密度矩阵来表示,即: ρρρB A AB ⊗≠(2)如果: ,1100B A B A AB βα+=ψ 122=+βa , (3)就是纯态情况下的一个纠缠态.下面我们以自旋分别为21的两粒子体系的最大纠缠态——Bell 基为例,来说明纠缠态的含义.对于两个两粒子的量子系统,存在如下四个量子态,即Bell 算符的本征态:()110021212112±=Φ±(4a ) ()011021212112±=ψ± (4b)假设我们有两个只有两个量子态的原子1和2,它们可以处在(4b )式其中之一的叠加态,()011021211221-=ψ-,其中 1021表示原子1处于态0,原子2表示原子1处于态1,原子2处于0.当这两个原子处于叠加态处于态1.0121ψ±时,我们说这两个原子处于纠缠态,因为这是我们只知道一个原子处于0态,一个原子处于态1,然而,并不知道哪个原子处于态0,哪个原子处于态1.原子1有可能处于态0,也可能处于态1,同时原子2也有可能处于态0,也有可能处于态1.因此,这两个原子是纠缠在一起的.因为纠缠态的每一分量均由两个粒子的单态0和1构成,所以处于纠缠态10的两个粒子有一个奇妙的特性:一旦测量确定了其中第一个粒子的状态0,纠缠态对应的波函数便塌缩到它所相应的分量1,从而瞬间决定了另一个粒子状态1,这时即使两粒子间的空间距离很遥远(几米,几千米或几万米),人们原则上也能在瞬间由一个粒子的状态确定另一个粒子的状态.比如对处于态0的两原子系统,若对原子1进行测量,结果发现它处于0态,则马上知道1原子2处于1态.这就是被爱因斯坦称之为“遥远距离的地点间的幽灵般的相互作用量子纠缠态的度量和分类当两地分享了一定量的纠缠态的时候,纠缠的所有者们可以通过对纠缠态做局域操作并辅以经典通信的手段来行使量子通信、量子计算的功能,如量子隐形传态、量子密钥分配等等,这都是要以消耗两地共享的纠缠态为代价的.所以,在量子信息中,纠缠经常被看作是一个非局域的源.于是,如何对纠缠定量化就被提升到一个很重要的地位.当今,人们已广泛使用四个Bell态作为定量化两子系系统纠缠的标准,每个Bell态的纠缠度定义为1,也称为一个ebit(纠缠比特).所谓纠缠度,就是指所研究的纠缠态携带纠缠的量的多少. 纠缠度的提出为不同的纠缠态之间建立了可比关系.目前,对两子系复合系统中纯量子态的纠缠定量化工作已经完成.对于一个两子系的纯量子态ψAB ,它的纠缠度等于任一子系统约化密度矩阵的Von Neumann 熵()()ρB A S []3.即:()()ρρB A P S S E ==.子系(比如说A) Von Neumann 熵的求法是:先求出子系约化密度矩阵ρρAB B A Tr =的所有本征值{}p i ,则()P P i ii AB S log 2∑-=ρ.两子系复合系统的一个特征是它可以进行Schmidt 分解.比如说一个m×n维的复合系统,不妨令m≤n,则此系统中的任一纯态ψAB 可以写成:i i p B A m i i AB `1∑ψ==, 这里{}i A 与{}i B `分别为A 与B 子系m维空间中的一组正交基.由此我们可以看出两个子系统的Von Neumann 熵是相等的.注意,也仅有两子系复合系统中的纯态才一定可以展成Schmidt 分解的形式,对多子系复合系统中的纯态Schmidt 分解不再必要,于是,单个子系的Von Neumann 熵也无法完全刻画多子系系统的纠缠.定量化纠缠的困难在于混和态纠缠度的定义.由于在混合纠缠态中,量子关联成分和经典关联成分杂糅在了一起.我们可以把经典关联看作是量子关联的“噪声”,“噪声”过大就会湮没量子关联成分. 美国科学家Bennett 等人提出了生成纠缠(formantion of entanglement )和蒸馏纠缠(disillation ofentanglement []4的概念.生成纠缠()ρAB F E 定义为:通过局域操作和经典通信过程,为制备纠缠态ρAB 所消耗掉Bell 态的最小数目,即如果制备ρAB 的n份拷贝需要k 个Bell 态,则生成纠缠()n k E n AB F minlim ∞→=ρ. 类似地,蒸馏纠缠()ρAB D E 定义为:通过局域操作和经典通信过程,可以从ρAB 中提取出的Bell 态的最大数目, 即,有n份ρAB 的拷贝,可从中提取k `个Bell 态,则()n k E n AB D `maxlim ∞→=ρ. 生成纠缠和蒸馏纠缠的关系是:E E D F ≥,当考虑的态为两子系复合系统的纯态时,()()()()ρρρB A AB D AB F S E E ==.通常人们把通过局域操作和经典通信的手段,从部分纠缠态中提取最大纠缠态的过程叫做纠缠纯化(purification of entanglement ).如果部分纠缠态为纯态,则称为纠缠浓缩.纠缠纯化所依据的思想是:在局域操作和经典通信的前提下,纠缠的期望值不能增加.这一结论隐含了不能通过局域手段从非纠缠态的系综中获得纠缠态,但这并不能排除利用局域操作和经典通信从一个部分纠缠态的系综中挑出一个子系综,使其拥有更大的平均纠缠.从E D 的定义可以看出, E D 的获取依赖于最佳的纠缠纯化方案.目前,人们尚未能找到通用的最佳纠缠纯化方案.所以,在绝大多数情况下,仅能给出E D 的上限.同样,对生成纠缠的研究也仍在继续,Wootters 给出了2×2系统纠缠态生成纠缠的解析求法,但如何求解更高维系统量子态的生成纠缠,迄今仍然是一个未解的难题.以上的两种纠缠度定义分别反映了混和态的两个不同的方面.尤其是蒸馏纠缠,联系着具体的纠缠纯化操作,是一个与量子信息的实际应用紧密相关的物理概念.在承认蒸馏纠缠是一种好的纠缠度定义的前提下,Horodecki 父子证明了任何一个满足ρAB 三组纠缠假定的纠缠度()ρE 必须满足:()()ρρE E F D E ≤≤.我们在上面已给出了纠缠态的定义,但这种定义是非常形式化的.一般情况下,当我们拿到一个具体的密度矩阵的时候,我们不知道它是否具有子系密度矩阵的直积形式的分解,也就是说,我们不知道它是纠缠的还是非纠缠(可分)的.最先研究这个问题并取得重要进展的是Peres,他给出了判别两子系系统的量子态为可分的必要条件.这个必要条件是这样陈述的:两子系系统可分量子态ρAB 的部分转置矩阵σAB 为半正定.这里σAB 与ρAB 矩阵元的关系为ρμρννσμσμμμn mv B A B A B A B A n m n m n m ,,===,此条件可以作为判别纠缠态的充分条件.即,如果我们发现一个密度矩阵的部分转置矩阵带有负的本征值,我们就可以判定这个量子态为纠缠态.人们将部分转置为负定的情形简记为NPT,相反,部分转置为半正定则记为等人证明了PPT是一个与不可蒸馏性紧密相关的概念.任何一个带有PPT特性的两子系复合系统的量子态,即使生成纠缠为零,但蒸馏纠缠为零,即我们无法通过局域操作和经典通信的手段从中提取Bell态.Horodecki 将这种态称为“束缚纠缠态”.这直接导致了纠缠态的分类,我们将束缚纠缠态以外的纠缠态统称为“可蒸馏的纠缠态”.最新的研究成果表明,即使是NPT的纠缠态也存在束缚纠缠态的情况.由于无法从束缚纠缠态中蒸馏出Bell态,所以束缚纠缠态不能胜任Bell态在量子通信中所扮演的角色.但束缚纠缠态的存在,揭示了自然界更为深刻的一面,即信息的不可逆过程,这很类似于热力学中的熵增加现象.近来,关于束缚纠缠态的研究被普遍开展.人们发现在束缚纠缠态中存在一种“纠缠激活”的有趣现象.即当两地分享某种可蒸馏的纠缠态的同时也分享一定量的束缚纠缠态,在这种情况下,束缚纠缠态可以起到一定的“抽运”作用,使可蒸馏纠缠态具有更强的隐形传态能力.另外,某些高维情况下的束缚纠缠态,其隐形传态的能力也高出了经典限制.3 纠缠态的制备量子纠缠态在量子隐行传态,量子密集编码,量子密码通信以及量子计算方面具有极其重要的地位,因此量子纠缠态的制备是量子信息领域中的关键问题.要把所以处于直积态的两个或更多的微观体系纠缠起来,需要有可控的相互作用.目前,在一些物理系统中实现了纠缠态的制备,例如:非线性光学系统[]5,腔量子电动力学(QED)系统[]6,离子阱系以及最近实现的原子集团的纠缠.目前,对于两粒子体系,最成功的是在非线性光学系统利用自发参量下转换实现的双光子纠缠.下面简单介绍一下自发参量下转换制备光子纠缠和腔QED 中制备原子纠缠的方案以及离子阱中制备纠缠态. 在自发参量下转换制备纠缠态自发参量下转换是晶体的非线性作用过程,非线性作用强度由非线性晶体的电化强度决定的:()()()()()()()()()+∑+∑+∑=ωωωωωωω322132121E E E E X E E X E X p l j k j ijkl k j ijk j ij i ·······其中,参量的转换由中间的二阶非线性作用产生 ,高阶项非常的小,可以忽略,此过程必须满足能量守恒定律,即:ωωωi s p +=, →→→+=k k k s i p(5)此(a)式也称为相位匹配条件.ωp ,ωs ,ωi 和→k p ,→k s ,→k i 分别表示泵浦光,信号光和休闲光的频率和波失.由于晶体的双折射导致不同的偏振光在晶体的折射率不同,以及晶体的色散作用可以使得在某些晶体中的位相匹配得以满足,可以选择适当的非线性晶体来实现自发参量下转换. 3.1.1制备双光子纠缠态我们利用连续波激光束泵浦非线性晶体的自发参量下转换过程制备出双光子偏振纠缠态.将一束浦光入射一非线性晶体BBO 上,就会产生一对纠缠的光子对.自发参量下转换是晶体的非线性作用过程,根据晶体的位相区配的类型,可将参量下转换分为I 型和II 型,下面分别介绍这两种类型的征.(以负单轴晶体为例).I 型参量下转换的过程可以表示为 o o e +→ ,也就是产生的双光子偏振相同且均垂直泵浦光的偏振方向.产生的参量光的空间分布以泵浦光为轴成锥状分布,如图(1)所示:图(1) I 型自发参量下转换这种类型产生的是在时间,空间和频率上纠缠的双光子态.II 性型参量转换[]7可表示为 o e e +→ ,即产生的双光子对偏振方向互相垂直.II 型参量下转换通常采用频率简并情况,这时,可产生偏振纠缠双光子对.如图(2)所示,图 (2) II 型参量下转换参量光在非线性匹配时的分布分为两个圆锥,图中上半圆为e 光,下半圆为o 光,其交叉的两点则可能是e 光或o 光.这样,在这两个方向上的一对光子就形成了偏振纠缠光子态.1999年Kwait 等人提出了一种新方法产生偏振纠缠光子对.他们采用I 型非共线相位匹配的BBO 晶体,粘合时,两块晶体的光轴置于互相垂直的两个平面内.当以一束偏振的 浦光入射这个组合晶体时,就会产生一对偏振纠缠的光子对.这种方法一个很大的优点,就是方便的产生非最大纠缠态,只要改变浦光的偏振状态即可.[]8用这种方法制备纠缠态,其纠缠源亮度和纠缠度都接近于国际上同类研究的领先水平.此外,我们的纠缠源还具有参数可调谐的特点,即它不仅能产生常用的最大纠缠态,还能很方便的产生各种纠缠度的非最大纠缠态,其纠缠度是便于控制的,这为研究纠缠态的各种性质变化提供了有力、方便的工具.利用这种纠缠源,我们还制备了量子信息学中另一种重要的混合态纠缠态---Werner 态,采用的方案使得Werner 态中纠缠的成分是可控制的.Werner 态可直接用于纠缠纯化的实验研究,这对于量子通信从理论研究到实验研究甚至实用化研究都有重要的作用.3.1.2制备三光子纠缠态[]8一束泵浦光入射到一非线性晶体BBO 上,就会产生一对纠缠的光子对[]9.现在,如图C 所示,假设光源A 和B 入射晶体后,各产生一对纠缠光子对,即可表示为:()VV HH A212121+=Φ(6a)()VVHH B434321+=Φ(6b)图 (3) 制备三光子光路图图中A 和B 为产生纠缠光子对的两个光源. PBS 是偏振光束器它能是它能使水平偏振的光子通过,而反射垂直偏振光子,如图(4)所示(1)水平偏振光子入射 (2)垂直偏振光子入射图 (4) 光子入射偏振光束分束器PBS 的示意图四个光子的态可以表示为:()()VVH HVV H H B A 43432121121++=Φ⊗Φ=ψ(7a)经过PBS1后,整个系统的态为 ⎪⎪⎭⎫⎝⎛+++=ψH HVV VVHHVVVV H H H H 4321432143214321221 (7b )让光子2经过4s 透射和-45 反射的偏振光束分束器PBS.当且仅当单光子探测器D T 1测到一个光子时,光子1,3和4将坍塌为如下纠缠态:()VVV H HH 431431321+=ψ(7c )同样,当且仅当单光子探测器D T 2探测到一个光子时,光子1,3和4将坍塌 如下纠缠态: ()VVVHHH41431421-=ψ(7d)因此,通过单光子探测器分辨是否探测到光子,就可以制备三光子纠缠态,即GHZ 态.在腔QED 中制备原子纠缠态 3.2.1制备双原子纠缠态一个双能级原子等同于一个自旋为21的一个粒子,而且对原子的探测效率可基本上达到 10000 ,此外,原子在空间上容易分开.因此,在腔量子电动力学中制备纠缠态是一个很有意义的课题.在腔QED 中,原子—光腔系统的量子态演化可以用Jaynes —Cummings 模型来描述.Phoenix 等人,Kudryavtseu 等人和Cirac 等人分别提出了制备两原子EPR 态.1997年巴黎高等师院课题组在实验上成功地制备EPR 态.采用的方法是将一个初始处于激发态e 的原子注入初始为真空的光腔,经过2π的Rabi 旋转,就得 ()1,0,211g e +=ψ (8a )为了读出光场的状态,需要再有一个处于基态g 的原子进入光腔,经过一个位相π的Rabi 旋转,两个原子就处于下面的纠缠态:()eg ge ,,212-=ψ(8b)以上这些方法是在原子与光场发生共振相互作用情形下产生的.2000年Zheng 和Guo 提出了将两个双能级原子直接注入一个非共振腔场,用以制备双原子纠缠态的方案.此后巴黎高等师院的课题小组将此理论方案在实验上已经取得了成功.接着,这一理论又被推广到多个原子纠缠态的制备上[]10.3.2.2制备三原子纠缠态对于三原子纠缠态的制备,Cirace 等人提出了一种新方案,用以制备三个两能级原子的最大纠缠态: ()g g g e e e GHZ,,,,21±=ψ (9)在此方案中,一个单膜腔场首先被制备到如下的福克叠加态:()3021±=ψf (10) 然后,三个与腔膜共振的双能级原子被逐个的注入腔中.这些原子初始时都处于基态,对于每一个原子的速度做适当的选择,最后,三个原子将被制备到GHZ 态上,而腔膜则处于真空态.上述过程实际上是光场的相干性(量子信息)向原子转移的过程.Zheng 和Guo 提出了基于Raman 型的Jaynes —Cummings 模型制备三原子GHZ 态的方案. 与上述方法不同在于初始光场制备在0与1的叠加态.另外利用∧型三能级原子的两个低能级之间的纠缠,这样,这些原子的自发发射可以得到很好的抑制,因而,系统的相干性可以达到较好的保持.在实验上,2000年巴黎高等师院的课题小组制备了三原子GHZ 态.2002年Zheng 和Guo 提出了一种方案制备W态.在这个方案中,腔场和腔中的原子状态演化可以用Jaynes —Cummings 哈密顿量描述: ()ασσαωααωσ+-++-Ω-⎪⎭⎫ ⎝⎛++=221 iH zeg []11(11) 腔C 初始处于真空态0,第一个原子A1初始处于激发态e 1,将其注入腔中,相互用演化相位为⎪⎪⎭⎫⎝⎛-=Ω32arcsin 221πt ,当A1从腔中飞出后,将初始处于基态g 2的原子A2注入腔中,令演化相为22π=Ωt .第三个原子A3初始处于基态g 3,在A2飞出腔后,A3进入腔中,演化相为π=Ωt 3.这是三原子为W 态,而腔场为真空态. 离子阱中制备纠缠态离子阱中的两离子纠缠态于1998年在美国Boulder 的NIST 的一个实验室里实现的.这一实验中,以椭圆Paul 阱中铍离子作为量子比特的载体,量子比特的状态为:,2,12122↓≡==m S S F F ↑≡==1,12212m S S F F . (12)通过离子在阱中的振动模式与两个能级的藕合,可以操纵两个两个离子的能级偶合起来.由于3,32232==→↓m S S F F .这一过程可以在σ+偏振的激光控制下完成.实验上可以以90%的探测效率区分单个离子的状态是处于↑还是↓.这一实验制备的并非标准的Bell 态,而是下面的态:()↑↓-↓↑=ΦΦψ5453e i e []12 (13)4 纠缠态的应用量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有的经典信息系统的极限,因而量子力学便首先在信息科学中得到应用,一门新的学科分支———量子信息学也应运而生.该学科是量子力学与信息科学相结合的产物,是以量子力学的态叠加原理为基础,研究信息处理的一门新兴前沿科学.量子信息学包括量子密码术、量子通信、量子计算机等几个方面,近年来在理论和实验上都取得了重大的突破.量子计算机量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置.当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机.量子计算机的概念源于对可逆计算机的研究.研究可逆计算机的目的是为了解决计算机中的能耗问题.在经典计算机中,基本信息单位为比特,运算对象是各种比特序列.与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列.所不同的是,量子比特序列不但可以处于各种正交态的叠加态上, 而且还可以处于纠缠态上.这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质.与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果.因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算.量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算.除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的.迄今为止,世界上还没有真正意义上的量子计算机.但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想.如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了.研究量子计算机的目的不是要用它来取代现有的计算机.量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处.量子计算机的作用远不止是解决一些经典计算机无法解决的问题.。
索尼探梦之旅

索尼探梦之旅
时间:2019-05-15 10:27:50 | 作者:干旭栋
今天,妈妈带我和琦琦一家人一起去朝阳公园的索尼探梦科技馆玩。
一到公园买了票,我们就直奔索尼探梦科技馆,进了馆里,我就被各种各样的科技吸引了。
这里有叔叔、阿姨的讲解,我和琦琦玩的很开心,妈妈说我们俩都快要玩疯了。
最让我感兴趣的是叔叔做的三个实验。
第一个实验是静电水母,首先,叔叔拿出一个长条形气球和一块毛皮,他先拿气球磨擦毛皮,然后就产生静电,工作人员拿出道具,叔叔让我们猜是什么东西,小朋友们猜什么的都有,我也没猜对,叔叔说:“你们猜不?缋春苷?常,这是我养的一只宠物叫水母,它在睡觉,现在把它唤醒,工作人员一甩,叔叔用气球在它下面移动控制水母,好神奇啊!叔叔说:“这是因为气球和水母是同一种静电,它们相互排斥,所以叔叔就可以控制水母。
第二个是静电泡泡,它是由水、洗洁精和糖做成的,把泡泡吹破就像彩色的雪花一样,特别漂亮。
第三个实验是静电杯,它是由两个塑料杯和锡纸做的,在两个杯子上分别包上锡纸,两个杯子中间放上条条的锡纸,这个静电杯就做好了,在用皮毛磨擦就产生了静电,我和妈妈还上台体验了静电杯的实验,我的手被电了一下,太神奇了。
我们玩的很开心,也学到了许多知识。
量子信息讲座第四讲量子密码通信_吴令安

量子信息讲座第四讲 量子密码通信*吴 令 安(中国科学院物理研究所光物理实验室,北京 100080) 摘 要 根据海森伯不确定性原理,任何窃听者无法窃听量子密码通信中的信息而不被发现.文章讲述了量子密钥生成与分发的基本原理,并介绍了当前实验研究的进展.关键词 密码学,量子密钥,不确定性原理QUANTUM C RYPT OGRAPHYWu Ling-An(La b.of Optic a l Physics,Ins titute of Phys ics,The Chin es e Academy of S cienc es,Beijing 100080)Abstract Quantum cryptography is based upon Heisenberg's uncertainty principle which guarantees that no eavesdropper can escape detection.The basic princ iples of quantum key dist ribu-tion are explained and a review presented of current experimental research in the field.Key words cryptography,quantum key distribution,unc ertainty relation1 引言1917年,美国破译Zimmerman记录稿,得知德国许诺奖赏美国部分土地给墨西哥以引诱其协助战争,才决心介入第一次世界大战.密码学作为一门严格的科学,从本世纪初发展成为数学的一个分支,也促使了计算机的发展.第二次世界大战中,英国将当时新研制的大型计算机Colossus用于破译德国的密码立了大功.古今中外,保密通信享有特殊的重要性,同时,窃取、破译情报也同样重要.今天,除军事和外交上的需要,随着信息高速公路的全面展开,商业贸易、网络通信等等都需要防范非法的第三者窃听.计算机的飞速发展使破译手段越来越高明,对加密方法要求就更高.下面先介绍经典密码术的基本原理以及它有哪些局限性.2 经典密码通信原理保密通信的目的是让通信双方互相交流信息而不让非法第三者窃取或破坏信息的内容.通常说的对信息加密就是对信息明文M进行数据的变换G k,得出密文C:G k(M)=C密文发给合法的接受者,通过逆变换进行解密,恢复原明文M:G k-1(C)=M.明文和密文之间的变换借密码算法在参数K 作用下完成,这样的参数可称为密钥,保密通信的关键就在于密钥K的生成.一个最简单的加密例子为,对明文CIPHER每个字按字母表顺序往后循环错3位,形成密文FLSKHU,此时K=3.解密就只需按字母表向前循环3个字母* 1997-11-19收到初稿,1998-03-10修回即恢复原文.这种加密、解密使用同样的或可互推的密钥称为对称密码,其缺点是必须经常更换密钥,否则容易被破译,而这意味着通信双方之间必须经常传送密钥,这更增加了被窃听的危险.图1给出传统密码通信的基本原理.在密码学中,发送者、接受者及窃听者各有惯用名,分别取为Alice,Bob和Eve,以下简称A,B和E.图1 经典密码通信基本原理 以前,密码通信是依靠密钥、编码规则和密钥传送三方面的保密来保证其安全性.随着密码学数学理论的发展,出现了越来越复杂的密码,但理论上不被破译的可能性并未得以证明,日益增强的计算机使很复杂的密码也不断被破译.唯有永远不被重复使用的随机数密码本(称为vernam或一次性便笺式密码本)从数学上被证明是不可破译的.但因为它和明文一样长,要求通信双方经常生成、传送并保存数量庞大的数据库作为密码本,使用很不方便.其次,密码本在传送过程中有可能被截获、复制或篡改.在70年代中期,Diffie和Hellman提出一种非对称密码通信概念,即公开密钥密码术.其特点是通信双方必须事先商定好密钥,编码规则是公开的,由数学上的单向逆函数给出(例如,两个大素数的乘积).若A需向B发送密文,她用B的公开密钥编码,在公共信道上发送,而B用另一个只有他自己知道的密码本K 对密文脱密.没有掌握K的任何其他人都无法对密文解密,甚至A也推算不出K,因为这相当于两个大素数之积的因子分解问题.公开密钥通信方式优点很多,当今使用普遍,特别是在商业贸易的电子往来中.然而,其所谓“无法解密”是相对的,只是说需要非常长的时间才能破译,没有数学证明公钥密码是不可破译的,所以,在军事、外交中仍在使用vernam密码本,如在莫斯科—华盛顿热线通信中.现在计算机发展越来越快,过去需要几千年机时才能破译的密码,现在很快就可破译.例如,1977年在美国出了个解密题,其解密需要将一个129位数分解成一个64位和一个65位素数的乘积,估计用当时的计算机需要用4×1016年才能得出结果.然而到了1994年,计算机硬件、软件速度提高到只需8个月就可求出结果.从数学或经典物理找出一种不可破译、不可被窃取的绝对安全密码通信系统,目前还做不到.然而,量子力学的海森伯不确定性原理(原译测不准原理,即uncertainty principle)提供了一种可行途径.3 量子密码本分发的原理从上面可以看到,保密通信中的关键是密钥,通信安全就在于保证密钥的安全.在公开密钥密码系统出现时,人们已开始从一个全新的角度考虑保密通信.首先想到将量子力学用于密码术的是美国的Wiesner,他在1970年提出用共轭编码制造不可伪造的“电子钞票”,但他的方案需要能长时间保存单量子态,不大现实,因而他的大胆设想未被接受,论文遗憾地被拒绝刊登,直到1983年才得以在会议录上发表[1].在同他的讨论中,Bennett和Brassard受到启发,认识到单量子虽不好保存但可用于传输信息.1984年,他们提出第一个量子密码术方案,用单光子偏振态编码,现在称之为BB84协议[2],迎来了量子密码术新时期.1992年, Bennett又提出一种与BB84协议类似而更简单、但效率减半的方案,后称之为B92协议[3].基于另一种量子现象即Einstein-Podolsky-Rosen(EPR)佯谬,Ekert于1991年提出用双量子纠缠态实现量子密码术,称为EPR协议[4].后来也出现了不少其他协议,但都可归纳为以上三种类型.这里所说的量子密码通信其实不在于密码通信本身,量子密码术不是用于传输密文,而是用于建立、传输密码本,这个密码本是绝对安全的,并且,根据海森伯不确定性原理,任何窃听者的存在都会被发现.下面以BB84协议为例解释量子密码术的中心思想.根据其量子特性,光子的偏振态属于二维希耳伯特空间,可用下面三套互为共轭的矢量基中任何一套来描述:(i)(0,1)、(1,0);(ii)1/ 2(1,1)、1/2(1,-1)和(iii)1/2(1,i)、1/2 (i,1).前两套基的基矢量代表线偏振光的偏振方向,两套基互成45°,第三套基代表圆偏振光的右旋态、左旋态.两套基互为共轭指的是,一套基的任一基矢在另一套基的任何基矢上的投影都相等.因此,对于某一基的基矢量子态,以另一个共轭基对其进行测量,会消除它测量前具有的全部信息而结果完全随机.例如,一个水平放置的检偏棱镜,透射光偏振方向为水平,反射光偏振方向为垂直,用它去测量一个线偏振方向为45°的光子,完全无法知道该光子会在哪个出口出现,因为两个方向出现的几率都为50%.如果光子初态偏振方向为水平或垂直,在检偏器两个出口各放置一个探测器,就可完全判断光子的偏振方向,测量结果是确定性的.利用光子上述量子特性,通信双方A,B可用单光子的偏振态,在公开通道上建立密钥本而窃听者E无从知晓,并且E的任何窃听活动都会被A,B发现,具体方法如下:首先,A,B选择光子的任何两个共轭基,为了说明方便,我们选两个线偏振基.以基矢的方向代表二进制的0,1比特,如定义0°和45°的偏振方向为0,而90°和135°的偏振方向为1.A 通过沿正向或斜向放置的偏振棱镜向B发送偏振方向任取为0°,45°,90°或135°的单光子序列.B用检偏器同步测量每个光子的偏振方向,每次随机选择正向或斜向检偏基.在一半的情况下,A的基会与B的一致,这时A能确切知道光子的原偏振方向.双方偏振基不同时,根据量子力学,B的测量结果是完全随机、不确定的.随后B宣布他所使用的偏振基序列(当然不公布测量结果),A告诉B哪些基选对了,双方保留基相同时与偏振态对应的随机比特数序列作为密码本.下面与表1对应给出建立密码本的具体步骤.(1)A向B发送一串偏振方向随机选定的单光子;(2)B随机选择正向或斜向检偏基,测量光子的偏振方向;(3)B所测得的偏振方向(空格表示未接收到光子);表1 BB84量子密钥分发协议1/———/// 2+××++××+×+×+××3—/—/ 4√√√√√√5101010 60171100 (4)B公布所用的测量基后,A告诉他哪些基选对了;(5)A,B保留基一致时对应的比特数,放弃其他数据;(6)B随便公布某些比特,供A确认有无错误;(7)经A确认无误、可认定无人窃听之后,剩下的比特序列留作密码本.第4、6步的通话完全可在公开通道上进行,不会影响保密性,因为密钥取决于A,B双方所选的随机序列.A自己事先都不知道密钥本会是怎样的.密钥是在传送过程中形成的,所以没有通常密钥在传递过程中丢失的危险.即使因吸收损耗等原因造成光子丢失也无关紧要,只是损失了一部分比特.实际上所产生的密码本属vernam型,但A,B可随时产生,不必存放大量数据,也不必靠用信使传送的笨方法.4 数据的安全增强至于窃听者E,因为单光子不可分解,她不能用分流的手段探测到情报.她若企图复制携带密钥信息的光量子态来获取信息,那么量子不可克隆定理确保这种窃听策略无法见效.她只能企图截获光子,但因为她预先不能知道B 会选哪一个偏振基,也就无从知道B的测量结果.假定E有超凡的能力,在瞬间内能截获并测量光子,再按所测结果向B重发光子序列,在B和A的同基事件中,有50%几率E的基选对了,这时她的存在不会被发现.若她选错了,对她重发给B的光子,B的测量结果有50%与A的选向不一致.在A,B比较测量结果时,会发现25%的数据错了便可判定有窃听者.反复抽查几次后,E很难逃脱最终暴露的命运.若A,B抽查M=100个比特,E不被发现的几率为(3/4)M,即约3×10-13.在实际情况下,即使没有窃听者的攻击,由于不可能保证每次光脉冲只含一个光子、信道和探测器又存在噪声、起偏和检偏器消光比不可能达到100%等原因,A和B不可能第一次就有完全一致的比特序列,需要协调他们的数据,但这可以在公开的信道上进行.首先,他们从抽查比较中估计一下总误码率,并为保险起见,假定这全由E所引起.若低于10%,按目前已有的办法还可以提取安全的密码本.第一步,做奇偶性检查.双方对各自的比特顺序进行统一的随机置换,然后分成许多块,块大小的选择应使每块中的错码数不超过1.然后A,B比较每块的奇偶性,若一样的,可暂时认为无误;若不同,则把那块再分成两块,检查奇偶性,直到找出误码.为了不泄漏信息给E,每次公开比较后扔掉每块的最后一位比特.因为奇偶性相同的块仍可能含有误码,所以整个过程要重复多次,每次增加块的大小,最后随机抽查子集的奇偶性.这时A,B的数据虽然协调了,但也有一部分可能泄密了,所以要进行第二步的安全增强.其基本方法是再求一系列子集的奇偶性,但这次不公布结果,而是把奇偶值序列本身留作最后的密码本.当然,数据协调中牺牲了很多比特,这是为保证绝对安全所付的必要代价.另外,真正发出的脉冲光不是纯粒子数态而基本上是相干态,也就是说,光子不是一个个等间距地分布而是服从泊松分布.因此,为了保证不出现一个脉冲含两个光子,只允许平均每脉冲含0.1光子.这样,加上A,B不同基的50%几率(不计损耗等因素),有效比特传输率就降到1/ 20.其实这个问题不大,因为量子密码术只用于密钥的生成与分发,可在A和B有空时进行,发密文时则用通常的高速信道.上面介绍的BB84协议用了两个线偏振共轭基,实际上BB84原文章分析的是圆偏振基加上一个线偏振基.除光子的偏振性以外,也可用光的相位作编码.在图2中,A,B各占有一个Mach-Zehnder (MZ)干涉仪的一半,并分别控制两边臂中的相位调制器A,B.A从第一个分束器输入一串光脉冲,两个分束器无损耗,且反射、透射率相等.B在第二个分束器的两个输出口Ⅰ,Ⅱ放置探测器.若B保持B=0,则当A=0(或π)时,图2 相位编码的量子密钥分发原理(Ⅰ,Ⅱ分别为对应0,1比特的探测器;A ,B分别为A,B随机控制的相位调制器)由于干涉,信号脉冲将出现在探测器Ⅰ(或探测器Ⅱ).但若B=π/2,对单个光子,它走的路径是不确定的,到达两个探测器的几率均等.如同偏振编码的情况,A随机选择A为(0,π)或(π/2,3π/2)两个共轭基中的任一相位值,B独立地随机选择B为0或π/2.规定A为0或π/2时A记作0,为π或3π/2时记作1,且光子到达探测器Ⅰ时B记作1,到达Ⅱ时记作0.当A,B的相差为π/2或3π/2时,即A,B用的基不同时,所测数据无效.5 两个非正交态协议在BB84协议中,A使用了四个偏振态,但她也可只用两个非正交偏振态实现量子密钥分配.在B92协议[3]中,A以0°,45°两个偏振方向的光子代表0,1比特,向B随机发送光子脉冲, B随机选90°或135°两个检偏方向.可见,若B 的检偏方向垂直于A所选方向(50%几率),探测器接收不到任何光子;若成45°,则有50%几率接收到光子.而一旦测到光子,B就会知道光子的偏振方向,因为只有一种可能性.这样,B 若以90°(135°)方向测到光子,他就知道A发出的光子态是45°(0°),对应着1(0)比特.B只需告诉A他什么时候测到光子,双方就可建立密钥本.这种方法比BB84协议简单,发射光子源及探测器减少一半,但代价是传输率也减少一半,因为只有25%的光子被接收到.6 相关粒子协议1991年,英国的Ekert基于量子力学的另一种概念,提出利用一对量子相关粒子实现安全公钥分发[4].取名于EPR佯谬的一对总自旋为零、有量子关联的EPR粒子,一旦测出其中一个粒子的自旋为1/2(或-1/2),那么,不需对另一个粒子进行测量就可肯定地知道它的自旋为-1/2(或1/2).这种EPR粒子或纠缠态粒子的非局域量子性质似乎显示了量子力学的不完备性,为此提出了一些“隐变量”理论.1964年,Bell提出验证隐变量是否存在的著名“不等式”判据[5],即从经典确定论出发,与测量各个自旋分量的统计分布有关的一个关联函数必须大于等于某个常数.然而到目前为止,所有实验都违背Bell不等式,支持量子力学的现有假设.在EPR公钥分配协议中,相关粒子源可用非线性光学晶体参量下转换过程中产生的光子对.其中一个光子由A接收和测量,另一个孪生光子则由B接收和测量.同BB84协议类似, A,B双方都随机选择共轭基进行测量,基相同的测试结果保留作为密码本.但和上面不同的是,基本不相同的数据也保留(所以EPR协议也属于所谓舍弃数据协议种类),用于Bell不等式判据的检验.如果违反不等式,得到量子的预期值,表明量子信道是通的;如果不等式满足,说明信道出了问题,即存在窃听者,她扮演了经典“隐变量”的角色.90年代以来,根据以上三个基本协议还提出了几种改型,包括用相干态光传输密钥,但思想基础都是由不确定性原理出发,生成并分发密钥.下面介绍实现量子密钥分发的实验进展.7 量子密钥分发的实验演示量子密钥传输的实验于1989年第一次成功,由美国和加拿大的Bennett和Brassard 等人做出[6],实验装置如图3所示.图3 第一次量子密钥分发实验示意图(L为聚焦透镜;F为滤光片;Q为偏振片;P1、P2和P3为电光调制器;W为沃拉斯顿棱镜;D1,D0为光电倍增管) 由绿色发光二极管发出一串脉宽为5μs、重复频率为几千赫的微弱光脉冲,经衰减后平均每脉冲只有0.1个光子,以保证少于1/20的脉冲数中含两个以上的光子.起偏器为两个电光调制器,A通过随机选择其电压来选择光子的线偏振或圆偏振态.接收端由另一个随机控制的调制器以及输出棱镜组成检偏器,由两个光电倍增管探测单光子,分别把0,1信号输到计算机.实验中光子在自由空间只传播了32cm,误码率为4%,有效比特传输率也很低(10分钟内传了105比特),但窃听者能截获的比特数估计只有6×10-171,说明安全程度非常高,足以显示量子密钥分发的潜力和诱人前景.在不到10年的时间内,实验量子密码术以惊人的速度发展,已逼近实用阶段.目前,进展最快的国家为英国、瑞士和美国.英国国防研究部最早使用光纤进行了量子密钥的实验.他们用相位调制编码的BB84协议,通信双方各有一台双臂不等长的光纤MZ干涉仪用于发送和控制光脉冲,这样,A,B之间只需用一根传输光缆.光源为1.3μm波长的脉冲半导体激光器,该波长在光纤中吸收损耗较小,为标准的光通信波长.1993年开始时使用了10km长的光纤,探测器为低温冷却的锗雪崩二极管.后来这项研究转到英国通讯实验室(British Telecom Laboratories).到了1995年,经过各方面的改进,在10km和30km长的光纤中误码率分别降到1.5%和4%,有效比特传输率为每秒700和260[7].光纤传输系统如图4所示,其中节省了一个探测器,在比特1的光路中加一段延迟,以时间分割区分信号为0或1.在英国的国防研究部也曾尝试过用双光子的EPR方案,从He-Cd激光器441.6nm波长的光入射到LiIO3晶体,产生一对下转换光子,分别送至A,B的光纤MZ干涉仪,两台干涉仪相距4.7km[8].A随机选择她的干涉仪的相位为0或π/2,B同样随机选择相位为0或-π/2.当两个相位之和为0或2π整数倍时,A,B的光子相关联,对应的数据保留作为密码本,否则废弃.但该方案技术难度大,波长不适合于长距离光纤通信,目前还未见到更长距离的实验报道.相位编码与偏振编码相比,其优点是,对光图4 相应编码光纤通信示意图(S为衰减器;Q为偏振器;Y为延迟器;A ,B为相位调制器;D为Ge雪崩二极管)的偏振态要求不那么苛刻.在长距离的光纤中,即使用保偏光纤,光的编振性也会退化,造成误码率的增加.然而,瑞士日内瓦大学用偏振编码的BB84协议取得惊人的成绩,1993年在1.1km长的光纤中传输1.3μm波长光子,误码率仅为0.54%,而随后1995年在日内瓦湖底铺设的23km长民用光通信光缆中进行了实地表演,误码率为3.4%[9].所使用的光学元件都为光通信用的标准元件,附加纠偏反馈控制.在美国的Johns Hopkins大学,基于最早的BB84实验方案,用He-Ne激光和电光调制器产生光脉冲,通过附加各种自动控制装置,在1km长的光纤中达到0.4%误码率,并已用计算机直接对话发送密文.另外,他们在原光纤系统基础上增加了扩束准直光学器件,成功地在大白天室外环境下传输单光子,自由空间光程为200多米,误码率2%,比特传输率1kH z[10].美国Los Alamos国家实验室采用的实验装置与英国的有些相似,有两台光纤MZ干涉仪,波长也为1.3μm,但使用的是B92方案.发送者A 只选择0或π/2相位值,B选3π/2或π相位检测.虽然有效比特传输率更低,但通过先进的电子学,他们最近成功地在长达48km的地下光缆中进行了密钥传送,误码率约为1.2%,同时在205m长的自由空间里也做出实验[11].美国加州大学San Diego分校近来实现了另一种长距离干涉仪,以声光调制器对信号进行频率分割,所得干涉峰有很高的可见度[12],但还未见到他们应用此技术于量子密钥分配的报道.在我国,量子密码通信的研究刚刚起步.中国科学院物理研究所于1995年在国内首次做了演示性实验,和BB84第一次实验类似[13].最近华东师范大学用B92方案做了实验[14],但都未在光纤中进行.在理论方面,中国科学技术大学也在开展研究[15].总的来说,比起国外目前的水平,我国差距较大,需要迎头赶上.8 量子密码通信发展前景为了进一步走向实用化、商业化,人们已在探讨量子密钥分配的网络化.上面介绍的是A, B两人之间,即点对点如何建立密码本,这可能足以满足某些军事或外交方面的特殊需要,但若能推广到A与多用户之间,甚至任意点对任意点之间建立密钥,则量子密码通信的应用会更广泛.现在已经提出树形、环形和星形网络,英国通信实验室在这方面又走在前面,提出几种实用方案,并已申请专利.几种网络通信方式仍以上面的三种量子密钥分配协议为基础,因篇幅有限,这里就不多介绍了.从量子理论中物理学最基础的概念出发,由理论上提出设想,到实现今天几十公里长、接近实用的量子密钥传输系统,只用了几年时间.在如此短的时间内取得如此飞速的发展,在科学技术史上也是少有的.本文只是对其进行了初步介绍,新的实验结果仍在不断地出现,记录在不断地被刷新.近来,量子力学另一个生长点是量子计算机的研究,虽然刚刚起步,但理论研究已显示了量子计算机的威力.现在已有算法模型,原则上可使量子计算机用于求解某些数学难题(如大数的因子分解),其速度比经典计算机的速度快几个数量级.虽然离现实还较遥远,但量子计算机已经是传统密码术,特别是公开密钥加密系统的不可忽视的威胁.量子计算机和量子密码术都植根于量子力学,只有量子密码术能够抵挡量子计算机的攻击.量子密码通信的前途无比光明.参考文献[1]S.Wiesner,S IGACT News,15(1983),78.[2]C.H.Bennett,G.Brassard,Proc.IEEE Internat.Conf.on Computers,Systems and S ign al Proces sing,Bangalore,New York,IEEE,(1984).[3]C.C.Bennett,Phys.Rev.Lett.,68(1992),3121.[4]A.K.Ekert,Phys.Rev.Lett.,67(1991),661.[5]J.S.Bel l,Phys ics,1(1964),195.[6]C.H.Bennett et al.,J.Cryptol.,5(1992),3.[7]C.Marand,P.D.Iow ns end,Op t.Lett.,20(1995),1695.[8]A.K.Ekert,J.G.Rarity,P.R.Tapster et al.,Phys.Rev.Lett.,69(1992),1293.[9]A.Muller,H.Zbinden,N.Gisin,Europh ys.Lett.,33(1996),335.[10]J.D.Fran son,B.C.Jacobs,E l ectro n.Lett.,31(1995),232;B.C.Jacobs,J.D.Franson,Opt.Lett.,21(1996),1854.[11]R.J.Hughes et al.,Co n temp.Ph ys.,36(1995),149.[12]P.C.S un,Y.Mazurenko,Y.Fain man,Opt.Lett.,20(1995),1062.[13]邵进、吴令安,量子光学,1(1995),41.[14]张涌,华东师范大学博士论文,(1997).[15]Zhang Xiaoyu,Guo Guangcan,Chin.Phys.Lett.,13(1996),277;Shi Baosen,Gu o Gu angcan,Ch in.Phys.Lett.,14(1997),521.1998年第10期《物理》内容预告研究快讯准周期LiT aO3光学超晶格及其三倍频效应(祝世宁等);参量激励型孤子的研究进展(王新龙等).知识和进展水声学与海洋工程(李允武);量子计算与超冷离子(冯芒等);试论高比能量电池进展(查全性);组织光学概要(谢树森);光纤的色散(王林等);太阳中微子问题与非标准电弱模型(杜九林).物理学和经济建设光栅装饰薄膜及其再现机理研究(雷广东).实验技术X光磁圆二色谱及其应用(丁海峰等);固体材料拉伸波速的共振法测量(朱承纲).物理学史和物理学家激光领域的开拓人———怀念邓锡铭先生(邵海鸥).前沿和动态超越紫外线光刻极限的新工艺(吴自勤);用时间和角分辨光发射谱研究二维极化子的形成(戴闻).世纪之交谈物理世纪之交物理学思考之一———处于世纪之交的物理学困惑(曹昌年).。
我国实现模式匹配量子密钥分发

我国实现模式匹配量子密钥分发
佚名
【期刊名称】《电子质量》
【年(卷),期】2023()2
【摘要】据报道,中国科学技术大学潘建伟、陈腾云等与清华大学马雄峰合作,首次在实验上实现了模式匹配量子密钥分发(MP-QKD)。
相关研究成果日前发表在《物理评论快报》上。
量子密钥分发(QKD)基于量子力学基本原理,可以实现理论上无条件安全的保密通信,因此近几十年来一直是学术界的研究热点。
MP-QKD是由清华大学马雄峰研究组于2022年提出的-种新型测量设备无关量子密钥分发协议,要求通信双方首先将信息编码在单个光学模式中,基于探测响应结果,通信双方按照--定规则进行配对,再根据配对情况进行基矢比对、参数估计等后处理操作来产生最终的安全密钥。
【总页数】1页(P51-51)
【正文语种】中文
【中图分类】TN9
【相关文献】
1.上海微系统所超导单光子探测技术在量子通信应用中取得重要突破--成功实现200公里测量器件无关量子密钥分发
2.“墨子号”量子卫星成功实现洲际量子密钥分发
3.量子通信技术首次实现白天远距量子密钥分发
4.墨子号量子卫星实现洲际量子密钥分发
5.我国实现远距离量子密钥分发和光纤振动传感
因版权原因,仅展示原文概要,查看原文内容请购买。
Python与航天应用探索宇宙奥秘

行数据清洗、转换和统计分析。
02
科学计算与仿真
航天工程需要进行复杂的数学计算、物理仿真等,Python的SciPy、
Matplotlib等库提供了科学计算和可视化的功能,支持航天工程师进行
算法设计和仿真验证。
03
自动化与智能化
随着航天技术的不断发展,对习、深度学习等技术,实现航天任务的自主规
Orekit:一款基于Java的开源航天动力学软件库,提供精确的轨道计算和任务规划功能 ,同时支持Python语言调用。
04
Python在航天数据处理 中的应用
航天数据特点与处理需求
数据类型多样性
航天数据包括遥感图像、卫星通信、导航定位等多种类型,需要 针对不同类型数据进行专门处理。
数据量巨大
航天任务产生的数据量通常很大,需要高效的数据处理技术和强 大的计算能力。
划、智能控制等。
Python在航天领域的应用现状
卫星导航与定位
Python在卫星导航与定位方 面有着广泛的应用,如利用 Python进行GPS数据处理、 卫星轨道计算等。
遥感图像处理
Python的PIL、OpenCV等 库支持遥感图像的读取、处 理和分析,可以实现图像增 强、目标检测等功能。
航天器控制
任务规划软件工具介绍
STK(Systems Tool Kit):一款专业的航天任务分析软件,提供全面的航天器建模、 分析和可视化工具,支持Python脚本编写和二次开发。
GMAT(General Mission Analysis Tool):一款开源的航天任务分析工具,提供灵 活的航天器建模和任务规划功能,支持Python接口和自定义算法开发。
数据存储与管理
使用Python中的数据库接口,如SQLite、MySQL等,实现数据的存储和管理,方便后 续的数据分析和可视化。
基于单像素成像的遥感图像分辨率增强模型

航天返回与遥感第44卷第6期130 SPACECRAFT RECOVERY & REMOTE SENSING2023年12月基于单像素成像的遥感图像分辨率增强模型陈瑞林章博段熙锴孙鸣捷*(北京航空航天大学仪器科学与光电工程学院,北京100191)摘要目前对地遥感的最主要途径之一便是通过遥感相机获得目标物信息,然而遥感相机的分辨率直接影响成像质量。
结合遥感相机的推扫式成像技术,文章提出了一种基于单像素成像的超分辨增强技术模型,该模型能够简化重建过程,其设计目标是基于单像素超分辨的技术手段将航天遥感相机的图像分辨率增强4倍。
为了验证该设计思想及其重建效果,文章设置了超分辨增强仿真试验,最终仿真试验结果表明,基于单像素的超分辨模型可以将图像的信噪比提高1.1倍,且重建的图像具有明显的抑制噪声的效果,起到了良好的降噪功能,相较于其他传统图像分辨率增强方法(如双三次内插、超深超分辨神经网络)具有更高的优越性。
该方法可为地理遥感探测、土地资源探查与管理、气象观测与预测、目标毁伤情况实时评估等诸多领域的图像处理和应用提供有力支持。
关键词单像素超分辨分辨率增强推扫式成像降噪效果遥感应用中图分类号: TP751.2文献标志码: A 文章编号: 1009-8518(2023)06-0130-10 DOI: 10.3969/j.issn.1009-8518.2023.06.012Remote Sensing Image Resolution Enhancement Technology Based onSingle-Pixel ImagingCHEN Ruilin ZHANG Bo DUAN Xikai SUN Mingjie*(School of Instrument Science and Optoelectronics Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191, China)Abstract At present, one of the most important ways of earth remote sensing is to obtain target information through remote sensing cameras, but the resolution of remote sensing cameras directly affects the imaging quality. Combined with the pushbroom imaging technology of remote sensing camera, this paper proposes a super-resolution enhancement technology model based on single-pixel imaging, which can simplify the reconstruction process, and its design goal is to enhance the image resolution of aerospace remote sensing camera by 4 times based on single-pixel super-resolution technology. In order to verify the design idea and its reconstruction effect, the super-resolution enhancement simulation experiment is set up, and the final simulation results show that the single-pixel super-resolution model can improve the signal-to-noise ratio of the image by 1.1 times, and the reconstructed image has the obvious effect of suppressing noise, which plays a good noise reduction function, and has higher superiority than other收稿日期:2023-06-30基金项目:国家自然科学基金委项目(U21B2034)引用格式:陈瑞林, 章博, 段熙锴, 等. 基于单像素成像的遥感图像分辨率增强模型[J]. 航天返回与遥感, 2023, 44(6): 130-139.CHEN Ruilin, ZHANG Bo, DUAN Xikai, et al. Remote Sensing Image Resolution Enhancement Technology Based on Single-Pixel Imaging[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(6): 130-139. (in Chinese)第6期陈瑞林等: 基于单像素成像的遥感图像分辨率增强模型 131traditional image resolution enhancement methods (such as bicubic interpolation and ultra-deep super-resolution neural network). This method can provide strong support for image processing and application in many fields, such as geographic remote sensing detection, land resources exploration and management, meteorological observation and prediction, and real-time assessment of target damage.Keywords single-pixel super-resolution; resolution enhancement; push-broom imaging; noise reduction effect; remote sensing application0 引言对地遥感成像的主要途径之一就是航天遥感相机,由于其具有覆盖范围广、成像速度快、风险低等优势,在国土资源管理、气象预报、地理测绘等领域发挥着举足轻重的作用。
FSlabs协和标准飞行手册

Concorde 标准飞行操作手册编译: CXN0006祁火箭/Rocket Q西南之鹰追随者A Proud member of China South West Airlines.声明:本标准飞行操作手册基于Flight Sim Labs(以下简称FSLabs)的ConcordeX Updated SP2插件,手册中有关面板截图,检查单,计算表格来源于FSlabs的自带文档。
本手册版权归祁火箭以及西南之鹰共同所有,依照西南之鹰精神,我们鼓励在无偿的前提下,飞友个人间交流本教程。
在这里再次强调,任何人和组织不得用于出售出租等商业用途,严禁用于飞行模拟平台以外的用途,不得在未经撰写人及西南之鹰同意的情况下进行转载,违者自行承担引起的一切后果及相应的法律责任!西南之鹰主QQ群(限制加入)1766360西南之鹰协和天空QQ群 140796176Table of Contents/目录Disclaim (3)简介 (3)飞行计划简介 (4)燃油以及配载 (5)性能计算器 (7)FSX设置参考/FSX Setting (9)Preliminary Cockpit Checklist/驾驶舱准备检查单 (10)Powering the Craft/给飞机接通电源 (11)INS校准 (13)TCAS测试 (17)Before start checklist/启动前检查单 (18)工作进行中 (19)Pushback (Engine Start) Checklist/推出(发动机启动)检查单 (29)MANUAL ENGINE START SEQUENCE/发动机启动程序 (30)REQUEST PUSHBACK/准备推出 (33)AFTER START CHECKLIST/启动后检查单 (37)TAXI CHECKLIST/滑行检查单 (47)TAXI GUIDELINES/滑行指南 (48)BUSY LITTLE FLIGHT ENGINEER/工程师准备工作 (52)BEFORE TAKE-OFF, TAKE-OFF & CLIMB/起飞前,起飞,初始爬升 (56)BEFORE TAKE-OFF CHECKLIST/起飞前检查单 (57)LINE-UP RUNWAY 27L (58)TAKE-OFF (59)AFTER TAKE-OFF CHECKLIST/起飞后检查单 (65)AT M 0.7 CLIMB CHECKLIST/0.7马赫检查单 (68)SUBSONIC, TRANSONIC, SUPERSONIC! (70)SUBSONIC CRUISE TO TRANSONIC CLIMB/从亚音速巡航进入超音速爬升 (71)THE ACCELERATION/加速 (72)Transonic Checklist/跨音速检查单 (73)At M = 1.0 (73)At M = 1.1 (74)At M = 1.3 (74)At M = 1.7 (74)When Fuel Transfer Is Complete/当燃油传输完成 (75)At FL500 (76)Cruise Climb/巡航爬升 (77)INS Route Reader: Load Segment/巡航中INS航路读取 (78)Deceleration and Descent Checklist/减速下降检查单 (80)PLANNING THE DESCENT/下降计划 (81)D&D CALCULATION/减速下降点计算 (83)FUEL&CG – DESCENT/下降中的燃油重心管理 (84)DECELERATION & DESCENT CHECKLIST/减速及下降检查单 (85)AT DECELERATION POINT/在减速点时 (86)At M = 1.5 (88)At M = 1.3 (88)At M = 1.00 (88)IN-FLIGHT IDLE REVERSE(慢车俯冲下高) (90)SUBSONIC DESCENT/亚音速下降 (90)APPROACH & LANDING/进近与着陆 (91)THE APPROACH/进近 (92)APPROACH CHECKLIST/进近检查单 (94)Landing/着陆 (96)ILS APPROACH/ILS进近 (96)Landing Checklist/着陆检查单 (98)AFTER LANDING CHECKLIST/着陆后检查单 (101)Parking Checklist/停机检查单 (104)RETURN JOURNEY/回程 (108)THE NEW YORK 31L Departure (108)LONDON DECELERATION & ARRIVAL/伦敦航段的减速下降 (111)EGLL-Ockham Charts (112)QUICK SHEETS (114)TAKE-OFF/起飞 (114)正常起飞程序 (115)噪音限制起飞程序 (116)CLIMB/爬升 (117)Descent (118)减速及下降距离计算表 (119)APPROACH & LANDING (121)Landing Profile/着陆示意 (122)VISUAL REFERENCE TERMINOLOGY (123)DisclaimThis document is for academic and study purpose only.Not for use in real aviation.Not for Sell, including any virtual currencySome Screenshots, checklist items, calucation tables are from the original ConcordeX tutorial.pdf简介该手册以英航经典的希思罗至肯尼迪往返航线为基础。
量子模拟器:入门指南与使用技巧(四)

量子模拟器:入门指南与使用技巧1、什么是量子模拟器量子模拟器是一种可以模拟和研究量子系统行为的计算工具。
它通过模拟量子力学的基本原则和算法来模拟量子系统的行为,从而帮助我们更好地理解和探索量子世界。
与传统的计算机模拟器相比,量子模拟器更适合处理量子系统的复杂性,有效地模拟量子行为。
2、量子模拟器的原理量子模拟器基于量子比特(qubit)和量子门(quantum gates)的概念。
量子比特是量子信息的基本单位,可以表示0和1两种状态的叠加态。
量子门是用于改变和操作量子比特状态的基本操作。
通过使用不同的量子门组合,我们可以模拟和研究各种量子系统的行为。
3、如何使用量子模拟器了解量子编程语言在使用量子模拟器之前,我们需要了解一种量子编程语言,例如Qiskit、Q#等。
这些语言具有与传统编程语言类似的语法和结构,但是专门用于编写量子算法和模拟器。
安装量子模拟器软件安装适用于您的操作系统的量子模拟器软件。
根据您的需求,选择合适的量子模拟器,例如IBM Q Experience、Google QuantumComputing等。
这些软件提供了友好的用户界面和文档,帮助您快速入门。
编写量子程序使用量子编程语言编写您的量子程序。
首先,您可以选择一个简单的问题作为起点,例如模拟一个简单的量子态或实现一个基本的量子算法。
编写量子程序时,要注意选择合适的量子门操作和参数。
运行和调试程序在完成编写后,您可以通过运行量子模拟器来执行程序。
量子模拟器将模拟量子系统的行为,并输出相应的结果。
如果程序出现错误或不符合预期,您可以使用调试工具进行排查和改进。
4、使用量子模拟器的技巧理论知识的学习在使用量子模拟器之前,了解量子力学的基本原理和量子算法的基本知识是非常重要的。
掌握量子态、量子比特、量子门等概念,可以帮助您更好地理解和操作量子模拟器。
研究现有的量子算法了解和研究现有的量子算法可以为您的模拟器使用提供灵感和参考。
通过学习已有的量子算法和模型,您可以在自己的项目中应用相应的思想和技巧。
量子锁定原理

量子锁定原理量子锁定原理(Quantum Locking Principle),也称为量子磁悬浮或量子磁性锁定,是一种基于超导材料和磁场的现象。
它涉及到超导材料在极低温下(通常是液氮温度)表现出的迈克耳孙效应和荷兰珠子效应。
当一个超导材料被冷却到临界温度以下(通常低于超导材料的临界温度),它会表现出以下特性:1.零电阻:超导材料在超导状态下电阻为零,电流可以无损耗地通过超导材料传输。
这是量子锁定原理的基础之一。
2.磁场排斥:当一个超导材料被磁场穿透时,它会产生一个与磁场大小相等但方向相反的电流。
这个电流会抵消磁场的效果,使超导材料内部的磁场趋近于零。
3.迈克耳孙效应:超导材料的磁场排斥效应被称为迈克耳孙效应。
它是由于超导材料的电子对在受到磁场影响时以相反的动量进行配对而形成的。
4.荷兰珠子效应:超导材料中的迈克耳孙效应导致了一种称为荷兰珠子效应的现象。
当超导材料被置于磁场中时,小的磁体(通常是超导体样品)可以悬浮在磁场之上,并且能够在磁场中保持稳定的位置。
这种悬浮现象被称为量子锁定,因为超导材料在不受外部支撑的情况下被锁定在磁场之上。
量子锁定则利用了这种超导材料的特性。
当一个超导材料被放置在磁场中,并通过冷却达到超导状态时,超导材料会产生一个与磁场相等但反向的电流,这个电流会抵消磁场的效果,并使超导材料浮于磁场之上。
这种现象被称为量子磁悬浮或量子锁定,因为超导材料在磁场中被锁定在一个特定的位置,即使没有外部支撑也可以悬浮起来。
量子锁定原理在科学研究和技术应用中具有一定的潜力。
它可以用于制造超导列车、磁悬浮交通工具以及高精度仪器等领域。
在磁悬浮列车中,超导磁体被安装在列车底部,与轨道下方的导向磁场相互作用,使列车悬浮起来并沿轨道高速运行。
这种方式可以减少摩擦和空气阻力,从而实现高速、平稳和节能的交通方式。
然而,由于超导材料需要极低的温度才能实现超导状态,并且对磁场要求较高,因此在实际应用中仍面临一些挑战和限制。
【解码天宫】详解神秘的量子密钥分发试验

【解码天宫】详解神秘的量子密钥分发试验前不久发射的“墨子”号量子卫星,引发了大家对量子通信这个神奇概念的关注,而在天宫二号上,也将进行一项与量子通信相关的试验,这就是量子秘钥分发试验。
这是一个什么样的试验?天宫二号空间实验室发射升空后,一张神秘的照片在互联网上披露出来。
这个被网友们称为带着“星球大战即视感”的照片,其实正是天宫二号上面进行量子通信试验的设备进行测试时留下的。
潘院士和团队制造出这样无法分割的光量子后,就把要传输的信息放在里面。
您会觉得,这样的光量子被人偷走了该怎么办。
别着急,在量子通信中,光量子承载的只是密钥。
通俗地说,如果我们把需要传输的信息比作一个带锁的包裹,光量子携带的秘钥信息就是开锁的钥匙。
一把钥匙被偷,就把这把钥匙作废换一把新的,照样能打开包裹。
那么,这把钥匙有没有可能被人复制呢?那么在天宫二号的任务中,如何把生成的秘钥传递给地面的接受站,并完成保密通信呢?这样一把的钥匙,天宫二号上通过精密的激光器和光学设备,一秒钟就能生成上亿把,分发给位于全国多地的地面站,再用他们破译加密信息。
这就是天宫的量子秘钥分发试验。
这些钥匙由主宰宇宙的量子力学原理产生,偷走没用,又无法复制,更不能通过计算破解,真正做到了万无一失。
记者探访:量子通讯难在何处虽然量子秘钥具有这么好的安全性,但要实现它的传递,特别是,在天宫二号和地面站之间的天地传送,难度却特别高。
天宫二号的这次试验,也是世界上首次进行的天地之间的量子秘钥的传输分发试验。
在利用光的量子通信里,通信通道的建立是个大难题,通俗地说,就是要让通信双方看到相互发出的光。
比如,从高速飞行的天宫二号上把激光注入地面站,就好比在飞机上,往地面上的存钱罐扔进去一个硬币,这就要求光线的发射和接收双方要对得出奇的准。
而且,常理来说,想让远处的人看见自己手里的灯,你就应该把灯调的尽可能亮,可量子通信不行,因为它使用的是弱到不能再弱的单个光子。
抓到了这微弱的单个光子,还不是所有挑战的终结。
介绍一种科学现象的英语作文高中

介绍一种科学现象的英语作文高中全文共3篇示例,供读者参考篇1Title: Introducing a Scientific Phenomenon: Quantum EntanglementIntroductionQuantum entanglement is a fascinating phenomenon in the field of quantum mechanics that has captured the attention of scientists and the public alike. First proposed by Albert Einstein, Boris Podolsky, and Nathan Rosen in 1935, this phenomenon has since been the subject of numerous experiments and studies that have revealed its bizarre and counterintuitive nature.What is Quantum Entanglement?At its core, quantum entanglement refers to a connection between two or more particles that persists no matter the distance between them. When two particles become entangled, their properties such as spin, polarization, and momentum become correlated in a way that defies classical physics.One of the most famous examples of quantum entanglement is the thought experiment known as the EPR paradox, named after its discoverers. In this scenario, two particles are created in such a way that their properties become entangled. When the properties of one particle are measured, the properties of the other particle are instantly determined, regardless of the distance between them.Understanding the ImplicationsThe implications of quantum entanglement are far-reaching and have profound effects on our understanding of the universe. For starters, this phenomenon challenges the concept of local realism, which states that objects have definite properties independent of observation. Quantum entanglement suggests that the properties of particles are interconnected in a way that transcends classical notions of reality.Furthermore, quantum entanglement has practical applications in the field of quantum computing and cryptography. By harnessing the properties of entangled particles, researchers are able to perform computations at speeds that are exponentially faster than traditional computers. Similarly, quantum entanglement can be utilized to create secure communication channels that are immune to eavesdropping.The Future of Quantum EntanglementAs our understanding of quantum mechanics continues to evolve, the study of quantum entanglement will undoubtedly play a central role in shaping the future of science and technology. From unlocking the secrets of the universe to revolutionizing computing and telecommunications, the possibilities afforded by this phenomenon are virtually limitless.In conclusion, quantum entanglement is a remarkable scientific phenomenon that challenges our understanding of the world around us. By delving into the intricacies of entangled particles, we gain new insights into the nature of reality and open up exciting possibilities for the future.References:1. Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804-1807.2. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777-779.3. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., & Zeilinger, A. (1998). Violat ion of Bell’s inequality under strictEinstein locality conditions. Physical Review Letters, 81(23), 5039-5043.4. Zeilinger, A. (2018). Quantum entanglement: A fundamental concept in quantum physics. Reviews of Modern Physics, 71(2), S288-S297.篇2Introduction:In the world of science, there are countless fascinating phenomena that occur every day, shaping the way we understand the world around us. One such phenomenon that has captivated scientists and researchers for centuries is the process of photosynthesis. Photosynthesis is the vital process by which green plants, algae, and some bacteria convert light energy from the sun into chemical energy stored in glucose molecules. This process is essential for life on Earth, as it is the primary source of energy for all living organisms.History of Discovery:The discovery of photosynthesis can be traced back to ancient civilizations, where early farmers and naturalists observed the power of the sun in helping plants grow. However, the true understanding of photosynthesis as a biochemicalprocess did not come until the 18th century, when Joseph Priestley and Jan Ingenhousz conducted groundbreaking experiments.Priestley, an English chemist, discovered that plants could restore air that had been "damaged" by burning a candle. He called this life-giving substance "dephlogisticated air," which we now know as oxygen. Ingenhousz, a Dutch scientist, further expanded on Priestley's work by discovering that plants only produce oxygen in the presence of light. This led to the realization that plants have the ability to convert light energy into chemical energy, marking the beginning of our modern understanding of photosynthesis.The Process of Photosynthesis:Photosynthesis can be broken down into two main stages: the light-dependent reactions and the light-independent reactions (Calvin Cycle). In the light-dependent reactions, light energy is absorbed by chlorophyll molecules in the chloroplasts of plant cells. This energy is used to split water molecules into oxygen, protons, and electrons. The oxygen is released into the air, while the protons and electrons are used to produce ATP and NADPH, which are energy-carrying molecules.In the light-independent reactions, also known as the Calvin Cycle, the ATP and NADPH produced in the light-dependent reactions are used to fix carbon dioxide molecules from the air. These molecules are combined with water to form glucose, a sugar molecule that serves as the primary energy source for plants and other organisms that consume them.Importance of Photosynthesis:Photosynthesis is crucial for maintaining life on Earth for several reasons. Firstly, it is the primary source of energy for plants, which form the base of the food chain. Without photosynthesis, plants would not be able to produce the energy-rich molecules needed for growth and reproduction. This, in turn, would lead to a collapse of ecosystems and the extinction of countless species.Secondly, photosynthesis plays a vital role in the global carbon cycle. By absorbing carbon dioxide from the atmosphere and converting it into glucose, plants help to regulate the Earth's climate and reduce the levels of greenhouse gases that contribute to global warming. In this way, photosynthesis acts as a natural buffer against climate change and helps to maintain the delicate balance of the Earth's atmosphere.Conclusion:In conclusion, photosynthesis is a fundamental scientific phenomenon that underpins life on Earth. Through the process of converting light energy into chemical energy, plants provide the energy needed for all living organisms to survive and thrive. Understanding the intricacies of photosynthesis is essential for addressing pressing environmental issues such as climate change and food security. By studying this remarkable process, scientists can unlock the secrets of nature and pave the way for a sustainable future for generations to come.篇3Introduction to Quantum EntanglementQuantum entanglement is a phenomenon that has fascinated scientists and researchers for decades. It is a unique property of quantum mechanics where two or more particles become linked in such a way that the state of one particle instantly affects the state of the other, regardless of the distance between them. This mysterious connection between particles has puzzled physicists and led to numerous experiments and studies in the field of quantum physics.One of the key concepts of quantum entanglement is the idea of superposition, where particles exist in multiple statessimultaneously until they are measured or observed. When particles become entangled, their states become correlated, meaning that the measurement of one particle will instantly determine the state of the other, regardless of the distance between them. This phenomenon has been verified through a series of experiments, including the famousEinstein-Podolsky-Rosen (EPR) experiment and the Bell test experiments.The implications of quantum entanglement are vast and have the potential to revolutionize fields such as communication, computing, and cryptography. For example, quantum entanglement could lead to the development of ultra-secure communication networks using quantum encryption, where the entangled particles can be used to transmit information in a way that is impossible to intercept or decode. Quantum computing, which harnesses the power of quantum entanglement to perform complex calculations at speeds far beyond classical computers, could also revolutionize the way we process information and solve problems.Despite the exciting possibilities that quantum entanglement presents, there are still many challenges and mysteries surrounding this phenomenon. Questions about thenature of entanglement, the role of consciousness in quantum mechanics, and the potential for practical applications remain unanswered. However, as scientists continue to explore the depths of quantum physics, it is clear that quantum entanglement will play a crucial role in shaping the future of science and technology.In conclusion, quantum entanglement is a truly fascinating phenomenon that has the potential to change the way we understand the universe. Its mysterious properties and implications for technology make it an exciting field of study for physicists and researchers. As we continue to delve into the world of quantum mechanics, it is likely that we will uncover even more about this strange and intriguing phenomenon. Quantum entanglement truly is a phenomenon that showcases the wonders and mysteries of the quantum world.。
iypt2024年题目乒乓球火箭释放装置

iypt2024年题目乒乓球火箭释放装置乒乓球火箭释放装置的设计与制作,无疑是本届iypt2024年比赛的一大亮点。
此装置的主要目的是实现乒乓球的精准释放,以达到比赛要求的飞行速度和飞行距离。
以下将从四个方面详细介绍本装置的设计原理和制作过程。
一、乒乓球固定结构设计乒乓球固定结构是整个装置的核心部分,关系到乒乓球能否在释放过程中保持稳定。
我们采用了三角形结构,将乒乓球置于三角形框架内,并用高强度材料制成。
此结构不仅能确保乒乓球在发射过程中的稳定性,还能承受一定的冲击力。
二、火箭推进系统设计火箭推进系统是实现乒乓球高速飞行的关键。
我们采用了喷气式推进器,通过压缩气体驱动乒乓球向前。
在设计时,我们充分考虑了气体的压力、流速和乒乓球的质量,以确保达到比赛要求的飞行速度。
三、释放控制系统设计释放控制系统是控制乒乓球在合适的时间和位置释放的关键。
我们采用了电磁控制系统,通过控制电磁阀的开关,实现乒乓球的精准释放。
在设计时,我们针对比赛场地的风向、大小等因素,进行了详细的计算和模拟,以确保乒乓球在最佳时机释放。
四、飞行轨迹监测与调整为了保证乒乓球的飞行轨迹符合比赛要求,我们设计了飞行轨迹监测与调整系统。
该系统通过激光测距仪、摄像头等设备,实时监测乒乓球的飞行状态,并计算出其飞行轨迹。
若发现乒乓球飞行轨迹与预期不符,系统将自动调整喷气式推进器的参数,使其回到正确轨迹。
总之,乒乓球火箭释放装置的设计与制作,充分体现了参赛者们对物理原理的深入理解和创新实践。
在iypt2024年比赛中,我们有信心凭借此装置,实现乒乓球的精准释放,为我国赢得荣誉。
让我们共同期待比赛的结果,也为参赛者们付出的努力喝彩。
量子计算领域的主流编程工具汇总(一)

量子计算是一门新兴的学科领域,其在计算能力和数据处理方面具有巨大的潜力。
随着量子计算技术的发展,各种量子编程工具也随之涌现,为开发人员提供了有效的工具和平台来构建和运行量子算法。
本文将对当前量子计算领域的主流编程工具进行汇总和分析。
1. QiskitQiskit是一个基于Python的开源量子计算软件开发工具包,由IBM量子计算实验室开发和维护。
它提供了一整套用于创建和执行量子计算任务的API和工具,包括量子电路构建、量子仿真和实际量子计算机执行。
使用Qiskit,开发人员可以方便地进行量子算法的设计、测试和部署。
2. Microsoft Quantum Development Kit微软量子开发工具包(Microsoft Quantum Development Kit)是一个面向量子计算的编程工具套件。
它集成了Q#编程语言和用于量子程序设计的开发工具,为开发人员提供了一个完整的开发环境。
微软量子开发工具包通过Microsoft Quantum网络服务,使开发人员可以在云端运行量子计算任务。
3. PyQuilPyQuil是由Rigetti Computing公司开发的Python库,用于量子计算和量子编程。
它提供了一套API,以实现从量子电路的构建到量子程序的执行。
PyQuil还集成了一个有用的类似于Python的语言(Quil),使开发人员可以方便地描述和执行量子计算任务。
4. CirqCirq是由Google量子实验室开发的一个开源量子编程框架。
它提供了一个Python库,用于构建、操作和优化量子电路。
Cirq的设计目标是提供灵活性和可扩展性,使开发人员能够利用量子计算机的全潜力。
5. QuTiPQuTiP(Quantum Toolbox in Python)是一个用于量子计算的开源Python库。
它提供了一套丰富的工具和函数,用于模拟和处理量子系统的动力学,以及实现量子算法。
QuTiP还提供了一些可视化工具,用于可视化量子系统的演化过程。
邀请朋友去参加航空科技展英语作文

邀请朋友去参加航空科技展英语作文Today,Wang Kai and several classmates to do the experiment particularly exciting,because the last lesson in the afternoon they will go to the classroom performance experiment.The"bite bite 00 00,"third lessons in the afternoon and the bell rang,the students went into several experimental classroom,we also opened the TV to watch quietly.Four bell class performance,they speak with eloquence,speak good after a burst of thunderous applause.The next is four class show"the egg into the bottle.I saw them put an egg in the mouth of a bottle,because the bottle is too small,do not put the egg go in,but they fell a little vinegar in the bottle,then put a lighted match inside,then quickly put the egg in the bottle,the egg is not like that in the bottle does not go on,but as a kind of drill hole,slowly drilled into Go,"thump"sound,fell into the bottle,this is really amazing!We are unable to bring your.。
qssh原理

qssh原理
QSSH(Quantum Secure Shell)是一种基于量子密码学的安全通信协议,旨在提供安全的远程登录和文件传输功能。
其原理主要基于量子密钥分发(Quantum Key Distribution,QKD)和量子随机数生成(Quantum Random Number Generation,QRNG)技术。
QKD是QSSH的核心组件,它利用量子力学的原理来生成和分发安全的密钥。
在QKD过程中,两个通信方(通常称为Alice和Bob)通过交换量子态来生成共享的随机密钥。
由于量子态的特殊性质,任何对传输过程的窃听或干扰都会导致量子态的改变,从而被通信方发现。
因此,QKD能够确保密钥的分发是安全的,不会被第三方窃取。
QRNG则用于生成随机的量子数,这些数可以作为密钥的一部分或用于其他安全应用。
QRNG基于量子力学的随机性原理,能够生成真正的随机数,避免了传统随机数生成器可能存在的安全隐患。
在QSSH中,QKD和QRNG技术被结合起来,用于建立安全的通信通道。
首先,Alice和Bob通过QKD过程生成共享的随机密钥。
然后,他们使用这些密钥来加密和解密通信过程中的数据,确保数据的机密性和完整性。
此外,QRNG生成的随机数可以用于身份验证和密钥协商等过程,进一步增强通信的安全性。
总之,QSSH是一种基于量子密码学的安全通信协议,它利用QKD 和QRNG技术来提供安全的远程登录和文件传输功能。
通过结合量子力学的原理和传统密码学的技术,QSSH能够确保通信过程的安全性,防止窃听和篡改等安全威胁。
量子科技实验室设备使用指南

量子科技实验室设备使用指南量子科技实验室是当代科研领域中重要的探索机构,涉及到诸多高级设备。
本文将介绍如何正确使用量子科技实验室的设备,以确保研究工作的顺利进行。
1. 量子计算机量子计算机是量子科技实验室最重要的设备之一。
为了保证正常操作,请遵循以下步骤:1.1 入场准备:进入实验室前,确保手部清洁,穿戴实验室规定的防护服和手套,在实验室内遵守相应的安全规定。
1.2 运行前检查:检查计算机所需的冷却装置和电源是否正常连接。
1.3 软件准备:启动计算机并登录系统后,确保所需的软件已经安装并及时更新。
1.4 实验设置:根据研究需求进行实验设置,包括输入参数、量子比特数量等。
1.5 数据收集:运行实验后,记录并保存结果。
确保数据的可靠性和保密性。
1.6 关机操作:实验结束后,将计算机正常关闭,并清理相关工作区。
2. 量子通信设备量子通信设备用于进行安全加密的通信工作,如量子密钥分发和量子隐形传态等。
正确操作量子通信设备非常重要,以下是操作步骤:2.1 准备工作:在操作前,确保设备与通信网络连接正常,相关设备如光纤通路是否处于良好状态。
2.2 加密设置:设置加密协议和密钥,确保通信的安全性。
2.3 收发信号:按照设备说明书,进行适当的调整和设置,确保信息的准确传递和接收。
2.4 故障排除:如果发生通信中断或其他问题,检查设备连接是否松动,并重新调整相关参数。
2.5 日常维护:对设备定期检查,确保设备处于正常工作状态,并及时更换和更新设备。
3. 量子传感器量子传感器是一种高灵敏度的测量仪器。
在使用量子传感器时,请遵循以下步骤:3.1 环境准备:确保使用量子传感器的环境符合要求,如温度、湿度等。
3.2 仪器连接:根据传感器的类型和测量对象,正确连接传感器并进行校准。
3.3 测量操作:根据需要选择相应的测量模式和参数,并确保测量过程稳定。
3.4 数据记录:记录测量结果,并保存数据以便后续分析和研究。
3.5 故障处理:如果出现测量异常或其他问题,检查仪器连接和传感器状态,并根据需要进行调整和更换。
充气密封舱飞行试验方案

充气密封舱飞行试验方案
一、试验目标
本试验旨在验证折叠状态下充气密封舱的刚度和强度是否满足飞行器上行要求,同时评估在轨充气展开后,舱体结构的基频变化以及柔性结构强度能否承受在轨内外压差。
二、试验准备
1. 硬件设备:充气密封舱、气压监测设备、振动测试设备、数据采集系统。
2. 软件工具:ABAQUS仿真软件。
三、试验步骤
1. 充气密封舱折叠状态下的刚度与强度测试:
(1)将充气密封舱置于测试平台上,调整至折叠状态。
(2)利用ABAQUS软件进行仿真分析,模拟折叠状态下充气密封舱的刚度和强度表现。
(3)根据仿真结果,评估其是否满足飞行器上行要求。
2. 在轨充气展开后,舱体结构基频测试:
(1)将充气密封舱置于模拟在轨环境的测试环境中,进行充气展开。
(2)利用振动测试设备对舱体结构进行振动测试,采集基频数据。
(3)分析基频数据,评估其随充气压力上升的变化情况。
3. 柔性结构强度测试:
(1)模拟在轨内外压差环境,对充气密封舱进行压力加载。
(2)观察柔性结构在压差作用下的表现,评估其强度是否能够承受在轨内外压差。
四、数据分析与结论
1. 对试验数据进行整理,使用ABAQUS软件进行仿真结果比对与分析。
2. 根据数据分析结果,得出结论:如果折叠状态下充气密封舱的刚度和强度满足飞行器上行要求,且在轨充气展开后,舱体结构基频随充气压力上升而增大,柔性结构强度可承受在轨内外压差,则该充气密封舱通过飞行试验验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :q u a n t -p h /0402110v 1 17 F eb 2004Experimental open air quantum key distribution with a single photon sourceR All´e aume †,F Treussart †,G Messin ‡,Y Dumeige †,J-F Roch †,A Beveratos ‡,R Brouri–Tualle ‡,J-P Poizat ‡and P Grangier ‡†Laboratoire de Photonique Quantique et Mol´e culaire,UMR 8537du CNRS,ENS Cachan,61avenue du Pr´e sident Wilson,94235Cachan Cedex France ‡Laboratoire Charles Fabry de l’Institut d’Optique,UMR 8501du CNRS,F-91403Orsay France Abstract.We present a full implementation of a quantum key distribution (QKD)system with a single photon source,operating at night in open air.The single photon source at the heart of the functional and reliable setup relies on the pulsed excitation of a single nitrogen-vacancy color center in diamond nanocrystal.We tested the effect of attenuation on the polarized encoded photons for inferring longer distance performance of our system.For strong attenuation,the use of pure single photon states gives measurable advantage over systems relying on weak attenuated laser pulses.The results are in good agreement with theoretical models developed to assess QKD security.Submitted to:New J.Phys.PACS numbers:03.67.Dd,42.50.Dv,33.50.-j,78.55.Hx1.IntroductionKey distribution remains a central problem in cryptography,as encryption system security cannot exceed key security.Public key protocols rely on computational difficulty[1]. They cannot however guarantee unconditional security against future algorithm or hardware advances.As Bennett and Brassardfirst proposed twenty years ago[2],quantum physics can be used to build alternative protocols for key distribution[3].In their proposed“BB84”scheme for quantum key distribution(QKD),afirst user(Alice)sends a second user(Bob)a sequence of single photons on an authenticated channel.Each of them is independently and randomly prepared in one of the four polarization states,linear-vertical(V),linear-horizontal (H),circular-left(L),circular-right(R).For each photon he detects,Bob picks randomly one of the two non orthogonal bases to perform a measurement.He keeps the outcome of his measurement secret and Alice and Bob publicly compare their basis choices.They only keep data for which polarization encoding and measurements are done in the same basis.In the absence of experimentally induced errors and eavesdropping,the set of data known by Alice and Bob should agree.Due to quantum physics’contraints on single photon measurements an eavesdropper(commonly named Eve)cannot gain even partial information without disturbing the transmission.The unavoidable errors introduced by Eve can be detected by the legitimate users of the quantum transmission channel.If the measured error rate is too high,no secret can be generated from the transmitted data.But if the error rate remains within acceptable bounds Alice and Bob can distill a secure secret key,perfectly unknown by Eve,using key reconciliation procedures.This perfectly secure key can then be used for data encryption.Interest in experimental QKD has evolved from early proof-of-principle experiments [4,5]to long distance demonstrations on opticalfibers[6,7]as well as in free space [8,9,10]and now to commercial products[11,12].Nevertheless,several technological and theoretical barriers still have to be overcome to improve performance of current QKD systems.Most of them relie on weak coherent pulses(WCP)as an approximation to single photons.Such classical states are very simple to produce but a fraction of them will contain two photons or more.Since information exchanges using such multiphotonic pulses can be spied on by potential eavesdropping strategies[13,14],security hazard is introduced in the key distribution process.For QKD schemes relying on WCP,one hasfinally to throw away part of the initially exchanged information,proportional to what an eavesdropper could have learned from it.Indeed,in WCPs’schemes,the probability for multiphotonic pulses is directly connected to the mean intensity of the initial pulse that must therefore be attenuated more and more to guarantee security as line losses become higher.Therefore either transmission rate at long distance becomes vanishingly small or complete security cannot be guaranteed.The use of true single photon source(SPS)presents an intrinsic advantage over WCPs’schemes since it potentially permits greater per-bit extraction of secure information.This advantage becomes significant for systems with high losses on the quantum transmission channel like envisioned satellite QKD[9].Single photon quantum cryptography has recently been implemented in two experiments[15,16]which gave clear evidence for that advantage.Following the work of Beveratos et al[15],we have used a pulsed SPS,based on temporal control of thefluorescence of single color nitrogen vacancy(NV)center in diamond nanocrystal.On the emitted polarized photons,we have then implemented the“BB84”QKD protocol[2].In our realization,quantum communication between Alice and Bob has been realized in open air during night,between the two wings of the Institut d’Optique’s building. The QKD system has been operated with realistic background light,key size in the kbit range and in a configuration where Alice and Bob are two entirely remote parties connected via aquantum transmission channel in free space and a classical channel using internet link.In Section 2we describe the experimental setup used to address single color centers and the QKD protocol based on polarization encoding on the emitted photons.Section 3deals with the parameters of the QKD experiment.InSection 4,we detail how the quantum key is extracted from raw data using Q UCRYPT software [18].Finally,Section 5is devoted to the discussion of security models for absolute secrecy.We will show that in a realistic regime corresponding to high losses in the quantum transmission channel,our single photon QKD setup has a measurable advantage over similar systems using WCP.2.Experimental setupBuilding ABuilding B Figure 1.Experimental setup for our quantum key distribution system based on apolarized single photon source.This system corresponds to the implementation ofthe BB84protocol.It was operated at night,using a free space quantum channelbetween Alice and Bob and the Internet as the classical channel.APD:silicon avalanchephotodiode.BS:beam splitter.PBS:polarizing beam splitter.EOM:electro opticalmodulator.λ/2:achromatic half-wave plate.λ/4:achromatic quarter-wave plate2.1.Single photon emissionLots of effort have been put in the realization of single photon sources over the recent years.Since first proposals [17,19,20],a great variety of schemes have been worked out,based upon the control of fluorescence from different kind of emitters,like molecules [21,22,23],atoms [32],color center [36]or semiconductor structures [24,25,26,27,28,29,30,31,36].Our single photon source is based upon the pulsed excitation of a single NV color center[33,34]inside a diamond nanocrystal [35,36].This type of emitter,which shares many similarities with the emission from molecules,has important practical advantages since it can be operated at room temperature and is perfectly photostable for both cw and pulsed nanosecond excitation ‡.‡Note that under femtosecond pulsed excitation,we observed the photoinduced creation of new color centers [37]in nanocrystal containing initially a single NV center.Such behavior under femtosecond laser illumination place some limitations on the use of sub-picosecond pulses to trigger single photon emission.The nanostructured samples are prepared following a procedure described in Ref.[35], starting from type Ib synthetic powder(de Beers,Netherlands).The diamond nanocrystals are size-selected by centrifugation,yielding a mean diameter of about90nm.A polymer solution (polyvinylpyrrolidone,1%weight in propanol)containing selected diamond nanocrystals is deposited by spin-coating on a dielectric mirror,resulting in a30nm thick polymer layer holding the nanocrystals.The ultra-lowfluorescing dielectric SiO2/Nb2O5mirrors(Layertec, Germany)have been optimized to efficiently reflect the emission spectrum of a NV color center,which is centered on690nm(60nm FWHM).Backgroundfluorescence around the emission of a single NV color center is moreover strongly reduced by photobleaching after a few hours of laser illumination,its emission properties remaining unaffected.Under pulsed excitation with pulse duration shorter than the excited state lifetime(which for the considered samples of NV color centers is distributed around25ns[35]),a single dipole emits single photons one by one[19,20].As described in Ref.[36],we use a homebuilt pulsed laser at532nm with a0.8ns pulse duration to excite single NV color center.The 50pJ energy per pulse is high enough to ensure efficient pumping of the emitting center in its excited state.Repetition rate was set to5.3MHz so that successivefluorescent decays are well separated in time.The green excitation light is focused on the nanocrystals by a high numerical aperture(NA=0.95)metallographic objective.Fluorescence light is collected by the same objective.A long-passfilter(low cutting edge at645nm)is used to block reflected 532nm pump light.The stream of collected photons is then spatiallyfiltered by focusing into a100µm diameter pinhole which ensures the setup confocality.Linear polarization of the emitted photons is obtained by passing light through a polarizing cube.Since thefluorescence light emitted by a single color center is partially polarized,an achromatic half-wave plate is introduced in front of the cube.Its rotation allows to send that linearly polarized fraction of the NVfluorescence either towards Bob,or towards two avalanche silicon photodiodes (APDs)arranged in a Hanbury Brown and Twiss configuration.This setup is used to acquire an histogram of the delay between two consecutively detected photons(cffigure2),from which we infer how far the source departs from an ideal SPS.2.2.Implementation of the“BB84”QKD protocolWe then implement the“BB84”QKD protocol,by coding the bits on polarization states of the single photons.We use the horizontal-vertical(H−V)and circular left-circular right (L−R)polarization basis.Each of these polarization states is obtained by applying a given level of high voltage on a KDP electro-optical modulator(EOM,Linos LM0202,Germany). Homemade electronics provides fast driving of the high voltage,being capable of switching the300V halfwave voltage of the EOM within30ns.In our key distribution,the sequence of encoded polarization bits is generated with hardware electronics,using two programmable electronic linear shift registers in the Fibonacci configuration.Each register gives a pseudo-random sequence of220−1=1048575bits,and the“BB84”four states are coded with two bits,each of them belonging to one of the two pseudo-random sequences.As shown onfigure1,quantum key distribution is realized between two parties,Alice and Bob,located in two remote wings of Institut d’Optique building(Orsay,France).Single photons are sent through the windows,from one building to another.To minimize diffraction effects,the beam is enlarged to a diameter of about2cm with an afocal setup made of two lenses,before sending it through30.5m of open air.Transmitted photons are collected on Bob’s side by a similar afocal setup which reduces its diameter back to the original one.On Bob’s side,a combination of four Si-APDs was used to measure the polarization sent by Alice(seefigure1).The H−V or L−R basis is passively selected,as the single photonsare either transmitted or reflected on a50/50beam splitter used at almost0◦incidence to avoid any mixing between the four polarization states.In the linear polarization detection basis H−V,states H and V are simply discriminated by a polarizing beamsplitter whose outputs are sent onto two APDs.For the circular L−R basis,an achromatic quater-wave plate transforms the incoming circular polarisations into linear ones,which arefinally detected with a polarizing beamsplitter and two APDs.The polarization state associated to each detection event on Bob’s APDs is recorded by a high speed digital I/O PCI computer card(National Instrument,PCI-6534).In order to remove non-synchroneous APD dark counts,reading of each detector output is synchronized with the excitation pulses.Since the pumping laser is driven by a stable external clock,this synchronisation is achievedfirst by sending a small fraction of the excitation laser pulses toward a fast photodiode on Bob’s side.The photodiode output is reshaped into a30ns TTL-like pulse which is electronically delayed while the output electric pulses from each APD are reshaped to a constant60ns duration TTL-like pulse,eliminating any APD pulse widthfluctuation.The acquisition card reads its states inputs on the falling edge of the synchronization pulse.Optimal setting of the electronic delay therefore ends up in a time-gated measurement of the APD outputs,within a gate of60ns width.The sequence of time-gated polarization state measurements constitutes Bob’s raw key. It can be considered as the output of the“quantum communication phase”which lasts a period of0.2s.The remaining steps of the“BB84”QKD protocol are purely classical ones. They consist in taking advantage of the quantum correlations between Alice’s information and Bob’s raw key in order to distill secrecy between these two parties.All theses steps,detailed in Part4.2,are realized over the internet using TCP/IP protocol,by the open source Q UCRYPT software written by L.Salvail(Aahrus University,Denmark)[18].3.Parameters of the QKD experimentThe principal goal of our experiment was to bring together a realistic setup in order to test practical feasibility of single-photon open air QKD.Experimental sessions were done from the end of August2003to the middle of September2003.The system was operated at night so as to keep the influence of background light(in our case,moon and public lightning)at a relatively low level.Our room temperature SPS proved its convenience and reliability in these experimental conditions.Note that for consistency reasons,all the data analyzed in the article were obtained from the emission of a given single NV color center,chosen for its strong emission rate.Keeping always this same center allows to consistently investigate the effect of high attenuation on the quantum transmission channel.3.1.Emission efficiency of the SPS and assessment of its subpoissonian statistics Preliminary characterization of the SPS quality,performed on Alice’s side,consists in measurements of the emission rate and the reduction in probability of multiphotonic emissions,compared with an equivalent WCP of same mean number of photons per pulse.For a0.2s sequence of transmission and a pulsed excitation of5.3MHz a total of 8.8×104photons is recorded on Alice’s side.By correcting from the APD efficiency ηAPD=0.6,we can thus infer that the overall emission efficiency of the polarized SPS is of about≈2.8%.After polarization encoding in the EOM of transmission T EOM=0.90and transmission T optics=0.94through the optics of the telescope,the mean number of polarized single photon per pulse sent on the quantum channel isµ=0.0235.c o i n c ide n c e s delay τ (ns)Figure 2.Histogram of time intervals between consecutive photon detection events inAlice’s correlation setup.Integration time is 175s.Lines are exponential fits for eachpeak,taking into account background level.Radiative lifetime given by the fit is 35nsand the repetition period is of 188ns.The strong reduction of coincidences at zero delaygives evidence for single photon emission by the excited color center.Direct evidence for the reduction of multiphotonic emission probability comes from the acquisition of the delays with the Hanbury Brown and Twiss setup on Alice’s side (figure 2).The photon statistics of the SPS can be quantified more precisely from Bob’s measurements which give the probability distribution of the number of photocounts within the 60ns timeslots used for time-gated detection.To perform such evaluation,we have gathered the data corresponding to more than 40×106pulses registered by Bob’s acquisition card.For a given detection timeslot probabilities for detecting one and two photons are respectively P d (1)=7.6×10−3and P d (2)=2.7×10−6.From these numbers,we can infer the amount of reduction of multiphotonic emission probability with respect to the photon statistics of an equivalent WCP [20].Note that one needs to take into account the fact that each avalanche photodiode cannot detect more than one photon per timeslot,due to their detection deadtime.From the configuration of the APDs detection scheme on Bob’s side,the probability P d (2)to detect two photons is only 5/8of the probability for Bob to receive two photons,the probability that two photons arrive on the same APD being 3/8.Reduction factor R of the multiphotonic probability is thereforeR =5P d (2)=6.7.(1)That result agrees well with the sub-poissonnian reduction factor of 6.1that can be inferred from the normalized area of figure 2,taking into account the 60ns integration time and the lifetime of the emitter [36].For security analysis and numerical simulations,a value of R =6.7for the sub-poissonian reduction factor will be taken since it corresponds to a direct outcome of the photocounts record.As it will be discussed in more details in the section concerning security models,information leakage towards potential eavesdropper is directly linked to S (m)which is the probability per excitation pulse that a multiphotonic pulse leaves on Alice’s side.For theequivalent WCP,that parameter is:S(m)WCP=1−(1+µ)e−µ=2.7×10−4(2) whereas for the SPS,that parameter can be evaluated asS(m) SPS =1p exp+p darkAdded attenuation Average size of raw data(bits)p exp QBER180007.6×10−3 1.65%0.49842504.0×10−3 2.2%0.2521002.0×10−3 3.2%0.12810259.8×10−4 4.15%0.0573953.8×10−49.4%Table1.Measured experimental parameters as a function of the added attenuation on thequantum channel.In order to limit statisticalfluctuations,values of the QBER e and of p exphave been computed on samples of at least3000bits,obtained by concatenation of several rawdata samples.4.Experimental implementation of“BB84”QKD protocol4.1.Raw key exchange and sifted dataDuring a key transmission sequence lasting0.2s,Bob detects approximatively a fraction ηBob×µof the1048575bits initially encoded by Alice.Without any added attenuation on the quantum transmission channel,Bob detects on average8000bits,which constitute the initial raw data exchanged through the physical quantum channel.Starting from this shared information,Alice and Bob then extract a key by exchanging classical information for basis reconciliation.Bob reveals the index of the pulses for which a photocount has been recorded and publicly announces to which polarization basis(H−V or L−R)it belongs.Events corresponding to more than one photodection on Bob’s APDs are discarded since they are ambiguous.Note that one should nevertheless impose an upper bound on the acceptable number for such events,so that discarding them does not introduce a backdoor for any eavesdropper.Considering the low number of multiple photodetection events in our experiment,suchfiltering does not introduce any practical limitation in the key distillation process.Alice then reveals which bits correspond to identical polarization basis and should be retained.This process ends up in sifted data,which number N sifted≈4000is on average half the number of Bob’s recorded data.4.2.Key distillation from sifted dataSifted data shared by Alice and Bob have imperfect correlations since they are affected by errors.They are moreover not perfectly secure since an eavesdropper may have gained some information on exchanged bits during the quantum transmission sequence.Starting from those data,complete secrecy is then obtained by error correction followed by privacy amplification[39].That two-steps procedure,which allows one to distill a secret key for the sifted data,is achieved throughout the IP network using the public domain software Q UCRYPT[18].Q UCRYPT uses the algorithm C ASCADE for error correction[40].It implements an iterative dichotomic splitting of Alice and Bob sifted data into blocks and compares their parity in order to spot and correct the errors.This algorithm is optimized to correct all the errors while revealing a minimum number of bits.For a QBER e,the Shannon information f(e)=−log2e−(1−e)log2(1−e)(5) gives a lower bound on the amount of information that needs to be exchanged on the public channel to correct one error.A random subset of1%of the data used by Q UCRYPT is taken to evaluate the QBER e.With such length of tested data the number of secure bits extracted from the sifted data fluctuates by less than5%from one run of Q UCRYPT to another.Moreover,for our data samples of a few thousands of bits,C ASCADE corrects errors with a good efficiency.We indeed checked that the information disclosed to correct one error is only10%greater than the limit imposed by the Shannon bound.The total amount of information an eavesdropper may have gained on the sifted data is a crucial parameter for thefinal privacy amplification step.It is the sum of two contributions: the information classically disclosed during error correction added to the information that Eve may have gained during the quantum transmission.This later part has to be evaluated accordingly to security requirement and model.By setting an upper bound on the QBER in data processing by Q UCRYPT we ensure that all our QKD sessions are secure against afirst class of attack.We set this bound to12.5%, which corresponds to the minimum probability for Eve to introduce an error by performing measurements on a single pulse without knowing Bob’s measurement basis[41].However more efficient attacks can be used.We therefore assessed the security of our data in reference to the approach of N.L¨u tkenhaus,who developed a theoretical framework for the secure experimental QKD implementations of the“BB84”protocol[14].It has the nice feature of giving a positive security proof for realistic experimental systems under the so-called individual attacks.The calculations are based on the assumption that Eve’s optimal strategy is to perform a Photon Number Splitting(PNS)attack on multiphotonic pulses,allowing her tofinally get all the information carried on those pulses.Although such strategy might not always be the optimal one[42],it becomes the most efficient eavesdropping scheme on the“BB84”protocol for strong transmission losses on the quantum channel.Note that alternative protocols to the“BB84”protocol,robust against the PNS attack,have been recently proposed[43]and might constitute an efficient way to increase the span of experimental QKD systems relying on WCPs.Under high attenuation,such schemes allow to work with higherµ(mean number of photons per pulse)since information carried on two-photon pulses is less vulnerable to eavesdropping.It would be interesting to compare the performance of SPSs with respect to WCPs in this case,although such analysis is beyond the scope of the present article.5.Performance of the QKD setup and resistance to lossesSecure key distribution performance of the QKD system is characterized by the mean amount of secure information exchanged on each sent pulse.Experimental measurements of that parameter have been performed for different level of losses in the quantum channel.The results are compared to numerical simulations based on the analytical derivation of the number of secure bits per pulse G after privacy amplification and error correction evaluated from the analysis of Ref.[14]and given byG=1p exp 1−log1+4e p exp p exp−S(m) 2 +1.1[log2e+(1−e)log2(1−e)] (6)Theoretical curves giving G versus attenuation on the quantum transmission channel are displayed onfigure3,together with experimental points corresponding either to our SPS024681012attenuation on quantum channel (dB)-3-2-4-5-6l o g (n u m b e r o f s h a r e d s e c u r e b i t s /p u l s e )10SPS WCP Figure 3.Simulation and experimental data for the number of exchanged secure bitsper time slot,versus attenuation in the quantum channel.Solid-line red curve and wide-dashed blue curve correspond respectively to numerical simulations of equation (6)forSPS and WCP,using experimental parameters given in section (3).The narrow-dashedcurve is obtained by optimizing G with respect to µin equation (6).It corresponds to thelimit of WCP performance under our experimental conditions and security model.or to an equivalent WCP.Measured experimental rates correspond to data samples large enough to ensure a statistical accuracy better than 5%.They are in good agreement with theoretical curves showing that experimental parameters have been correctly assessed and that data samples are large enough for efficient error correctionIn the absence of attenuation,an average of 3200secure bits can be exchanged within the 0.2s transmission sequence.It corresponds to a 16kbits/s rate,twice larger than the one of the first experimental realization [15].As it can be seen on figure 3,reduction of the proportion of multiphotonic pulses gives a significant advantage of our system over WCP,in the strong attenuation regime.Since our setup is affected by relatively high level of dark counts §and since we have adopted a restrictive security model,our system cannot work under attenuation stronger than 13dB.It however allows us to directly check for the influence of the photon statistics on the experimental QKD system.A first comparison consists in keeping a constant value of µ=0.0235and calculating the effect of either sub-poissonian or poissonian statistics on the size of the final key.This directly relates to the comparison of the “SPS”and “WCP’curves on figure 3.When the system is operated with WCP,one can try to optimize G over µfor different attenuation values.However,even with this strategy (cf figure 3)it clearly appears that our SPS overcomes WCP operated in same experimental conditions,as soon as attenuation reaches 9dB.In all cases the maximum distance at which secure key distribution can be guaranteed is increased by more than 2dB.§There are several reasons for that.The main one is inherent to the long emission liftetime of our SPS,forcing us to use long (here 60ns)detection window.There are two other reasons that coud be subject to improvement :we are using a passive determination of the detection basis on Bob side,which increases dark counts by a factor of two,and two of our Si APDs have dark count rate higher than the common value of 70Hz.6.ConclusionIn this paper we have demonstrated a free space QKD setup using the“BB84”protocol. The system is based on a stable,simple,and reliable pulsed single photon source(SPS). The open air experimental conditions in which it was operated are reasonably close to those for practical application.They might be extended to kilometric distances using previously established techniques[10].Advantages of SPS over equivalent weak coherent pulses(WCP) have been experimentally assessed for increasing propagation losses.The results demonstrate quantitatively that QKD with SPS outperforms QKD with WCP,when transmission losses exceed10dB.There clearly remains much room for improvement.For instance,SPS sources using quantum dots[27,28,29,30]are able to emit much shorter pulses with much narrower bandwidths than diamond NV color centers.Those properties are indeeed very favorable for efficient QKD but presently require a cryogenic(liquid He)environment.This constraint makes quantum-dot-based QKD much less suitable for outdoor applications than our SPS. Avenues might be found either by developing semiconductor quantum dots operating at higher temperature(e.g.with II-VI semiconductors),or byfinding other color centers with improved performances.New improvement can also be foreseen on the protocol side[43],where both SPS and non-SPS sources deserve to be examined.Presently,neither color-center-nor quantum-dot-based SPS can operate at the telecom wavelength range around1550nm.Their main application given their emission wavelength is free-space QKD,especially QKD from satellite[9].Compactness and reliability then become major issues.Development of nanofabrication techniques should allow the realization of compact sources based on diamond nanocrystals.In any case,QKD systems have in recent years overcome many difficulties initially considered insurmountable.It is promising that such progress will continue in the near future.AcknowledgementsWe thank Thierry Gacoin for realizing the NV centers samples and Louis Salvail and Martial Tarizzo for help with the QUCRYPT software.This work was supported by the European Commission(IST/FET program),by France Telecom R&D and by the”ACI Jeunes Chercheurs”(Minist`e re de la Recherche et des Nouvelles Technologies).[1]Diffie W,and Hellman M E,1976,New directions in cryptography,IEEE Trans.Inf.Theory IT-22644[2]Bennett C H,and Brassard G,Quantum cryptography:public key distribution and coin tossing,Int.Conf.onComputers,Systems and Signal processing(Bangalore,India,Dec.1984)pp.175-9[3]For a recent review,see Gisin N,Robordy G,Tittel W,and Zbinden H,2002,Quantum cryptography,Rev.Mod.Phys.74,145[4]Bennett C H,Bessette F,Brassard G,Salvail L,and Smolin J,1992,Experimental quantum cryptography,J.Cryptology5,3[5]Townsend P,1994,Secure key distribution system based on quantum cryptography,Electron.Lett.30809[6]Ribordy G,Brendel J,Gautier J-D,Gisin N,and Zbinden H,2001,Long-distance entanglement-based quantumkey distribution Phys.Rev.A63,012309[7]Kosaka H,Tomita A,Nambu Y,Kimura T,and Nakamura K,2003,Single-photon interference experiment over100km for quantum cryptography system using a balanced gated-mode photon detector,Electron.Lett.39, 1199[8]Hughes R J,Nordholt J E,Derkacs D,and Peterson C G,2002,Practical free-space quantum key distributionover10km in daylight and at night,New Journal of Physics4,43[9]Rarity J G,Tapster P R,Gorman P M,and Knight P,2002,Ground to satellite secure key exchange using quantumcryptography,New Journal of Physics4,82。