有效数字及其运算法则

合集下载

有效数字

有效数字

电阻值只记录到“ 10”。
6、若测值恰为整数,必须补零,直补到可
疑位。
6
三.有效数字的运算规则
(1)记录测量数据时,一般只保留一位可疑数字. 如滴定管读数32.47ml.
(2) 在运算中舍去多余数字时采用四舍五入法.等 于5时,如前一位为奇数,则增加1;如前是偶数则 舍去.
(3)加减运算时,计算结果有效数字的末位的位置 应与各项中绝对误差最大的那项相同. 即保留 各小数点后的数字位数应与最小者相同. 13.75 +0.0084 +1.642应为13.75+0.01+1.64
四舍、六入、五凑偶
16
估计值只有一位,所以也叫欠准数位或 可疑数位。
3
有效数字的特点
(1)位数与单位变换或小数点位置无关 。 35.76cm = 0.3576m = (2)00.00的0地35位76km
0.0003576 3.005 3.000 都是四位
(3)特大或特小数用科学计数法
3.576 101
3.576 102
h 6.627 10 34 j s
4
二、有效数字的读取
进行直接测量时,由于仪器多种多样, 正确读取有效数字的方法大致归纳如下:
1、一般读数应读到最小分度以下再估一 位。例如,1/2,1/5,1/4,1/10等。
2、有时读数的估计位,就取在最小分度
位。例如,仪器的最小分度值为0.5,则
21 30 0 333
20 9673
20 967
可见,约简不影响计算结果。在加减法运 算中,各量可约简到其中位数最高者的下一 位,其结果的欠准数位与参与运算各量中位 数最高者对齐。
11
乘、除法

有效数字及运算法则

有效数字及运算法则

★移液管:25.00mL(4);
☆ 量筒(量至1mL或0.1mL):26mL(2), 4.0mL(2)
a) 数字前0不计,数字后计入 : 0.02450
b) 数字后的0含义不清楚时,最好用指数形式表 示: 1000 ( 1.0×103,1.00×103 ,1.000 ×103 ) a) 自然数可看成具有无限多位数(如倍数关系、分
如,将下列数字修约成4位有效数字: 0.52666 10.2452 10.2350 10.2450 10.245001
→0.5267
→ 10.25 →10.24 →10.24 →10.25
.
有效数字运算规则
加减法: 结果的绝对误差应不小于各项中绝对误差 最大的数。(与末位数最大的数一致) 50.1 1.46 + 0.5812 52.1412 52.1 ±0.1 ±0.01 ±0.001 50.1 1.5 + 0.6 52.2
有效数字及运算法则
有效数字(significant figure)
1定义:是在分析工作中实际测量到的数字, 除最后一位是可疑的外,其余的数字都是确 定的。它一方面反映了数量的大小,同时也 反映了测量的精密程度。
2构成:全部准确数字+最后一位估计的可疑数 字
如滴定管读数23.45mL,23.4是准确的,而 第四位5可能是4也可能是6,虽然是可疑的, 但又是有效的。
,e
数关系);常数亦可看成具有无限多位数,如
有效数字位数的确定
• • • • 1.0008,43.181 0.1000,10.98% 0.0382,1.98×10- 10 54, 0.0040 5位 4位 3位 2位 1位 位数含糊不确定
• 0.05, 2×10-5 • 3600, 100

第三节有效数字及其运算规则

第三节有效数字及其运算规则

准确数字
可疑数字 绝对误差 相对误差
0.19% 实际数据范围 51.8 0.1
3. 在0 ~ 9中,只有“ 0 ”既是有效数 字,又是无效数字(双重意义)
例: 0.06050 四位有效数字
定位 有效位数
例:3600
3600 → 3.6×103
有效数字位数不确定
两位
3600 → 3.60×103
3.某试样经分析测得含锰的质量分数(%) 为:41.24,41.27,41.23,41.23,求分 析结果的平均偏差,标准偏差和变异系 数。
4.下列数据包含几位有效数字,若有效数 字位数大于两位的请修约为两位 (1)0.0251 (2)0.2180 (3)1.8×10-5 (4)pK=2.55 (5)6910 (6)20.37
(× )
5 0.1
1.45
+ 0.5812
52.1
5 2. 1312
(√ )
1.加减法:以小数点后位数最少的数为准 (即以 绝对误差最大的数为准)
例: 10.5 + 0.145 + 1.325 5 = ?
Ea ±0.1 修约后 10.5 ±0.001 + 0.1 ±0.0001 + 1.3 =11.9 11.9 保留三位有效数字
51.8
这两个数是一样的吗?
51.80
第三节 有效数字及其运算规则
一、有效数字 二、有效数字的修约规则 三、有效数字的运算法则
一、有效数字:实际可以测量得到的数字 1. 有效数字由其前面的所有准确数字和 最后一位可疑数字构成
例 : 滴 定 读 数 20.30mL , 四 位 有 效 数 字 , 其 中 “20.3”是准确数字,最后一位“0”是可疑的,

有效数字及运算法则

有效数字及运算法则
0.01 = 2104 35 = 2104
试用有效数字计算结果: (1)123.98 - 40.456 + 7.8 = 171.0 (2) lg10.00 = 1.0000 (3)789.30 × 50 ÷ 0.100 = 3.9×103 (4)1.002 = 1.00
(5) 1.00 1.00
— 电流:80mA; 80.0mA; 80.00mA; — 电压:80V; 80.0V; 80.00V
注意:进行单位换算时, 有效数字的位数不变。
2.数值的科学记数法
数据过大或过小时,可以 用科学表达式。
某电阻值为20000(欧姆),保留三位有 效数字时写成 2.00104
又 如 数 据 为 0.0000325m , 使 用 科 学 记 数 法写成3.2510-5m
3.有效数字与仪器的关系
有效数字及运算法则
一、有效数字的一般概念
定义:在测量结果的数字表示 中,由若干位可靠数字加一位 可疑数字,便组成了有效数字。
上述例子中的测量结果均为三 位有效数字
二、有效数字位数的确定
1.关于“0”的有效问题 ①.当“0”在数字中间或末尾时有 效 如:12.04cm 、20.50m 2 、1.000A
等中的0均有效。
注意:不能在数字的末尾随便加“0”或减 “0”
数学上:2.85 2.850 2.8500 物理上:2.85 2.850 2.8500
②.小数点前面的“0”和紧接小 数点后面的“0”不算作有效数 字如:0.0123dm、0.123cm、0.00123m
均是3位有效数字。
5.相对误差的表达
E N 100% N
0.05 E1 1.20 100% 4.2%

有效数字及其运算规则

有效数字及其运算规则

有效数字及其运算规则一、测量结果得有效数字1.有效数字得定义及其基本性质测量结果中所有可靠数字加上末位得可疑数字统称为测量结果得有效数字。

有效数字具有以下基本特性:(1)有效数字得位数与仪器精度(最小分度值)有关,也与被测量得大小有关。

对于同一被测量量,如果使用不同精度得仪器进行测量,则测得得有效数字得位数就是不同得。

例如用千分尺(最小分度值,)测量某物体得长度读数为。

其中前三位数字“”就是最小分度值得整数部分,就是可靠数字;末位“"就是在最小分度值内估读得数字,为可疑数字;它与千分尺得在同一数位上,所以该测量值有四位数字、如果改用最小分度值(游标精度)为得游标卡尺来测量,其读数为,测量值就只有三位有效数字。

游标卡尺没有估读数字,其末位数字“"为可疑数字,它与游标卡尺得也就是在同一数位上。

(2)有效数字得位数与小数点得位置无关,单位换算时有效数字得位数不应发生改变。

2、有效数字与不确定度得关系在我们规定不确定度得有效数字只取一位时,任何测量结果,其数值得最后一位应与不确定度所在得那一位对齐、如,测量值得末位“”刚好与不确定度得“"对齐。

由于有效数字得最后一位就是不确定度所在位,因此有效数字或有效位数在一定程度上反映了测量值得不确定度(或误差限值)。

测量值得有效数字位数越多,测量得相对不确定度越小;有效位数越少,相对不确定度就越大。

3.数值得科学表示法二、有效数字得运算规则1.数值得舍入修约原则测量值得数字得舍入,首先要确定需要保留得有效数字与位数,保留数字得位数确定以后,后面多余得数字就应予以舍入修约,其规则如下:(1)拟舍弃数字得最左一位数字小于5时,则舍去,即保留得各位数字不变。

(2)拟舍弃数字得最左一位数字大于5,或者就是5而其后跟有并非0得数字时,则进1,即保留得末位数字加1。

(3)拟舍弃数字得最左一位数字为5,而5得右边无数字或皆为0时,若所保留得末位数字为奇数则进1,为偶数或0则舍去,即“单进双不进”。

有效数字与运算法则

有效数字与运算法则
• 0.05, 2×10-5
• 3600, 100
5位 4位 3位 2位
1位 位数含糊不确定
说明(1)0的不同作用:是有效数字,如1.0008中0;不是有效 数字,如0.0382中0,起定位作用; (2)位数不定的,可科学计数,3600,可写为3.6×103, 3.60×103,3.600×103,有效数字分别为2,3,4位。
如,将下列数字修约成4位有效数字: 0.52666 →0.5. 267
10.2452 → 10.25 10.2350 →10.24 10.2450 →10.24 10.245001 →10.25
有效数字运算规则
加减法: 结果的绝对误差应不小于各项中绝对误差 最大的数。(与末位数最大的数一致)
50.1 1.46 + 0.5812 52.1412 52.1
±0.1 ±0.01 ±0.001
50.1 1.5 + 0.6 52.2
先修约至安全数字,再运算,后修约至应有的有效数。
乘除法: 结果的相对误差应与各因数中相对误差最大的 数相适应 (即与有效数字位数最少的一致)
例1 0.0121 × 25.66 × 1.0578 = 0.328432 (±0.8%) (±0.04%) (±0.01%) (±0.3%)
谢谢观看! 2020
注意(1)若数据进行乘除运算时, 第一位数字大于
或等于8, 其有效数字位数可多算一位。如9.46可 看做是四位有效数字。
(2)乘方或开方,结果有效数字位数不变。例如, 6.542=42.8
(3)对数计算:对数尾数的位数应与真数的有效 数字位数相同。
例如:[H ] 6.31011 mol/L
pH 10.20
a) 数字前0不计,数字后计入 : 0.02450

有效数字及运算规则

有效数字及运算规则

有效数字及运算规则1.4.1 有效数字的基本概念任何测量结果都存在不确定度,测量值的位数不能任意的取舍,要由不确定度来决定,即测量值的末位数要与不确定度的末位数对齐。

如体积的测量值3cm 961.5=V ,其不确定度3cm 04.0=V U ,由不确定度的定义及V U 的数值可知,测量值在小数点后的百分位上已经出现误差,因此961.5=V 中的“6”已是有误差的欠准确数,其后面一位“1”已无保留的意义,所以测量结果应写为3cm 04.096.5±=V 。

另外,数据计算都有一定的近似性,计算时既不必超过原有测量准确度而取位过多,也不能降低原测量准确度,即计算的准确性和测量的准确性要相适应。

所以在数据记录、计算以及书写测量结果时,必须按有效数字及其运算法则来处理。

熟练地掌握这些知识,是普通物理实验的基本要求之一,也为将来科学处理数据打下基础。

测量值一般只保留一位欠准确数,其余均为准确数。

所谓有效数字是由所有准确数字和一位欠准确数字构成的,这些数字的总位数称为有效位数。

一个物理量的数值与数学上的数有着不同的含义。

例如,在数学意义上600.460.4=,但在物理测量中(如长度测量),cm 600.4cm 60.4≠,因为cm 60.4中的前两位“4”和“6”是准确数,最后一位“0”是欠准确数,共有三位有效数字。

而cm 600.4则有四位有效数字。

实际上这两种写法表示了两种不同精度的测量结果,所以在记录实验测量数据时,有效数字的位数不能随意增减。

1.4.2 直接测量的读数原则直接测量读数应反映出有效数字,一般应估读到测量器具最小分度值的10/1。

但由于某些仪表的分度较窄、指针较粗或测量基准较不可靠等,可估读5/1或2/1分度。

对于数字式仪表,所显示的数字均为有效数字,无需估读,误差一般出现在最末一位。

例如:用毫米刻度的米尺测量长度,如图1-4-1(a )所示,cm 67.1=L 。

“6.1”是从米尺上读出的“准确”数,“7”是从米尺上估读的“欠准确”数,但是有效的,所以读出的是三位有效数字。

第二章第二节有效数字及运算法则

第二章第二节有效数字及运算法则
1) 2)
前面的“ 只起定位作用 只起定位作用——故无效 “1”前面的“0”只起定位作用 前面的 故无效 0.1080g中,夹在数字中间的“0”和数字后面的 中 夹在数字中间的“ 和数字后面的 “0”,都是有数值意义的 ,都是有数值意义的——故有效 故有效
这样的数字, (2)像3600这样的数字,有效数字位数比较含 ) 这样的数字 应根据实际的有效数字位数,分别写成: 位 糊,应根据实际的有效数字位数,分别写成:2位 有效数字、 位有效数字和 位有效数字分别为: 位有效数字和4位有效数字分别为 有效数字、3位有效数字和 位有效数字分别为:
H + = 6.3 × 10 −12 mol/L
6
注意: 注意: 改变单位, 改变单位,不改变有效数字的位数 如: 24.01mL
3 24.01× 24.01×10- L
台秤(称至 台秤 称至0.1g):12.8g(3位), 0.5g(1位), 1.0g(2位) 称至 位 位 位 分析天平(称至 分析天平 称至0.1mg):12.8218g(6位), 称至 位 0.5024g(4位), 0.0500g(3位) 位 位 ★滴定管(量至 量至0.01mL):26.32mL(4位), 3.97mL(3位) 滴定管 量至 位 位 量至0.01mL): 25.00mL(4位); ★移液管(量至 移液管 量至 位 吸量管(量至 吸量管 量至0.01mL): 5.00mL(3位) 量至 ( 位 ★容量瓶:100.0mL(4位),250.0mL (4位),50.00mL(4位) 容量瓶 位 位, ( 位 量筒(量至 量至1mL或0.1mL):26mL(2位), 4.0mL(2位) ☆ 量筒 量至 或 位 位 标准溶液的浓度, 标准溶液的浓度,用4位有效数字表示: 0.1000 mol/L 位有效数字表示:

有效数字及运算规则

有效数字及运算规则

有效数字及运算规则有效数字的基本概念任何测量结果都存在不确定度,测量值的位数不能任意的取舍,要由不确定度来决定,即测量值的末位数要与不确定度的末位数对齐。

如体积的测量值3cm 961.5=V ,其不确定度3cm 04.0=V U ,由不确定度的定义及V U 的数值可知,测量值在小数点后的百分位上已经出现误差,因此961.5=V 中的“6”已是有误差的欠准确数,其后面一位“1”已无保留的意义,所以测量结果应写为3cm 04.096.5±=V 。

另外,数据计算都有一定的近似性,计算时既不必超过原有测量准确度而取位过多,也不能降低原测量准确度,即计算的准确性和测量的准确性要相适应。

所以在数据记录、计算以及书写测量结果时,必须按有效数字及其运算法则来处理。

熟练地掌握这些知识,是普通物理实验的基本要求之一,也为将来科学处理数据打下基础。

测量值一般只保留一位欠准确数,其余均为准确数。

所谓有效数字是由所有准确数字和一位欠准确数字构成的,这些数字的总位数称为有效位数。

一个物理量的数值与数学上的数有着不同的含义。

例如,在数学意义上600.460.4=,但在物理测量中(如长度测量),cm 600.4cm 60.4≠,因为cm 60.4中的前两位“4”和“6”是准确数,最后一位“0”是欠准确数,共有三位有效数字。

而cm 600.4则有四位有效数字。

实际上这两种写法表示了两种不同精度的测量结果,所以在记录实验测量数据时,有效数字的位数不能随意增减。

直接测量的读数原则直接测量读数应反映出有效数字,一般应估读到测量器具最小分度值的10/1。

但由于某些仪表的分度较窄、指针较粗或测量基准较不可靠等,可估读5/1或2/1分度。

对于数字式仪表,所显示的数字均为有效数字,无需估读,误差一般出现在最末一位。

例如:用毫米刻度的米尺测量长度,如图1-4-1(a )所示,cm 67.1=L 。

“6.1”是从米尺上读出的“准确”数,“7”是从米尺上估读的“欠准确”数,但是有效的,所以读出的是三位有效数字。

有效数字及运算法则

有效数字及运算法则

找出下列正确的数据记录:
(4)用量程为100 mA,刻有100小格的0.1级表测量 电流,指针指在80小格上;用量程为100V,刻 有50小格的1.0级表测量电压,指针指在40小格 上,数据如下:
— 电流:80mA; 80.0mA; 80.00mA; — 电压:80V; 80.0V; 80.00V
等中的0均有效。
注意:不能在数字的末尾随便加“0”或减 “0”
数学上:2.85 2.850 2.8500
物理上:2.85 2.850 2.8500
②.小数点前面的“0”和紧接小 数点后面的“0”不算作有效数 字如:0.0123dm、0.123cm、0.00123m
均是3位有效数字。
有效数字的位数
测量值本身的大小、仪器的准确度
米尺 L=2.52cm (三位有效数字)
20分度游标卡尺 L=2.525cm (四位有效数字)
螺旋测微计 L=2.5153cm (五位有效数字)
4.不确定度的表达
N N (单位)
σ取一个有效数字, σ决定N的有效位
a 10.0 0.1cm2 b 20.02 0.01cm
被测物体
当读数正好为24㎜时读数为24.0㎜
三、直接测量有效数字的确定 ——如何读数
读数的一般规则: 读至仪器误差所在的位置
(1)用米尺测长度
(2)用0.1级量程为100mA电流表测电流
对于0.1级表:
△仪= 100mA×0.1% = 0.1mA
指针在82mA与83mA之间:读为82.* mA
指针正好在82mA上:读为82.0mA
100 0.1 __0_.1_×__1_02__,
式子的前一项 100 0.1 __1___。

有效数字及其运算法则 - 有效数字及其运算法则

有效数字及其运算法则 - 有效数字及其运算法则
0.536 0.001 0.25
14.7 - 0.3674 - 14.064 =(小数1位)
14.7 0.37 14.06
8
2.乘除法 各测量值相对误差传递 计算结果以有效数字位数最少的为准
若 R=XY R x b
R xb
9
x 0.3210 48.112 (21.25 16.10) 0.28451000 0.3210 48.112 5.15 0.28451000
0.3210 48.11 5.15 (三位) 0.28451000
10
例:6.549, 2.451 一次修约至两位有效数字
6
3、运算过程中可多保留一位 4、修约标准偏差其结果应使准确度降低
S=0.213 两位 S=0.22 表示标准偏差和RSD时,通常取两位有效数字
7
三、运算法则 1、加减法
各测量值绝对误差传递,结果与数据中绝 对误差大的数据相当
0.5362 + 0.001 + 0.25 =(小数点后两位)
5.结果首位为8和9时,有效数字可以多计一位。 例:90.0%,101.4% 均可示为四位有效数字.
3
6. 记录有效数字时,不可夸大。 例:托盘天平:10.3g × 10.3000g,
量筒:10 mL H2O × 10.00mL. 7.常量分析0.000018 2500L (4位) 86(3位) 99.9%(4位) pH=12.26(2位)
2.5430 (5位) Ka=1.8×10-5(2位) 2.50×10-3(3位) 9 (2位) 100.1%(4位)
5
二、数字修约规则
1、四舍六入五留双
四位:14.2442 24.4863 15.0250 15.0150 15.0251

有效数字及运算规则

有效数字及运算规则

有效数字及运算规则一、有效数字为了取得准确的分析结果,不仅要准确测量,而且还要正确记录与计算。

所谓正确记录是指记录数字的位数。

因为数字的位数不仅表示数字的大小,也反映测量的准确程度。

所谓有效数字,就是实际能测得的数字。

有效数字保留的位数,应根据分析方法与仪器的准确度来决定,一般使测得的数值中只有最后一位是可疑的。

例如在分析天平上称取试样,这不仅表明试样的质量,还表明称量的误差在±以内。

如将其质量记录成,则表明该试样是在台称上称量的,其称量误差为,故记录数据的位数不能任意增加或减少。

如在上例中,在分析天平上,测得称量瓶的重量为,这个记录说明有6位有效数字,最后一位是可疑的。

因为分析天平只能称准到,即称量瓶的实际重量应为±,无论计量仪器如何精密,其最后一位数总是估计出来的。

因此所谓有效数字就是保留末一位不准确数字,其余数字均为准确数字。

同时从上面的例子也可以看出有效数字是和仪器的准确程度有关,即有效数字不仅表明数量的大小而且也反映测量的准确度.二、有效数字中"0"的意义"0"在有效数字中有两种意义:一种是作为数字定值,另一种是有效数字.例如在分析天平上称量物质,得到如下质量:物质称量瓶Na2CO3H2C2O4·2H2O称量纸质量10.14302.1045有效数字位数6位5位4位3位以上数据中“0”所起的作用是不同的。

在中两个“0”都是有效数字,所以它有6位有效数字。

在中的“0”也是有效数字,所以它有5位有效数字。

在中,小数前面的“0”是定值用的,不是有效数字,而在数据中的“0”是有效数字,所以它有4位有效数字。

在中,“1”前面的两个“0”都是定值用的,而在末尾的“0”是有效数字,所以它有3位有效数字。

综上所述,数字中间的“0”和末尾的“0”都是有效数字,而数字前面所有的“0”只起定值作用。

以“0”结尾的正整数,有效数字的位数不确定。

例如4500这个数,就不会确定是几位有效数字,可能为2位或3位,也可能是4位。

有效数字及其运算规则.

有效数字及其运算规则.

二、有效数字的修约规则
1.四舍六入五留双 例:0.37456 , 0.3745 均修约至三位有效数字 0.374 0.375 2.只能对数字进行一次性修约 例:6.549, 2.451 6.5 一次修约至两位有效数字 2.5
3.当对标准偏差修约时,修约后会使标准偏差结果 变差,从而至0.14,可信度↑
第三节
有效数字及其运算规则
一、有效数字 二、有效数字的修约规则 三、有效数字的运算法则
一、有效数字:实际可以测得的数字 1. 有效数字位数包括所有准确数字和一位欠准数字 例:滴定读数20.30mL,最多可以读准三位 第四位欠准(估计读数)±1% 2. 在0~9中,只有0既是有效数字,又是无效数字 例: 0.06050 四位有效数字 定位 有效位数 例:3600 → 3.6×103 两位 → 3.60×103 三 位 3.单位变换不影响有效数字位数 例:10.00[mL]→0.001000[L] 均为四位
三、有效数字的运算法则 1.加减法:以小数点后位数最少的数为准(即以 绝对误差最大的数为准) 例: 50.1 + 1.45 + 0.5812 = ? 52.1 δ ±0.1 ±0.01 ±0.0001
保留三位有效数字
2.乘除法:以有效数字位数最少的数为准(即以 相对误差最大的数为准) 例:0.0121 × 25.64 × 1.05782 = 0.328 ? δ ±0.0001 ±0.01 ±0.00001 RE ±0.8% ±0.4% ±0.009%
保留三位有效数字
续前
4.pH,pM,pK,lgC,lgK等对数值,其有效数字的 位数取决于小数部分(尾数)数字的位数,整数部 分只代表该数的方次 例:pH = 11.20 → [H+]= 6.3×10-12[mol/L] 两 位 5.结果首位为8和9时,有效数字可以多计一位 例:90.0% ,可示为四位有效数字 例:99.87% →99.9% 进位

有效数字及其运算法则

有效数字及其运算法则

1.3 有效数字及其运算法则物理实验中要记录数据并进行运算,记录的数据应取几位,运算后应保留几位,这些要由不确定度来决定,也涉及有效数字的问题。

1.3.1 有效数字的概念任何一个物理量,既然其测量结果都包含有误差,该物理量的数值就不应该无限制地写下去。

例如,)02.037.1(±cm。

因为由不确定度0.02cm可cm应写成)02.1(±.03682知,该数值在百分位上已有误差,在它以后的数字便没有意义了。

因此,测量结果只写到有误差的那一位数,并且在位数以后按“四舍五入”的法则取舍。

最后一位虽然有误差,但在一定程度上也能反映出被测量的客观大小,也是有效的。

所以我们把能反映出被测量实际大小的全部数字,称为有效数字。

或者说,我们把测量结果中可靠的几位数字加上有误差的一位数字,统称为测量结果的有效数字。

有效数字数字的个数叫做有效数字的位数,如上述的1.37cm称为三位有效数字。

有效数字的位数与十进制单位的变换无关,即与小数点的位置无关。

因此,用以表示小数点位置的0不是有效数字。

当0不是用作表示小数点位置时,0和其它数字具有同等地位,都是有效数字。

显然,在有效数字的位数确定时,第一个不为零的数字左面的零不能算有效数字的位数,而第一个不为零的数字右面的零一定要算做有效数字的位数。

如0.0135 m是三位有效数字,0.0135m和1.35cm及13.5mm三者是等效的,只不过是分别采用了米、厘米和毫米作为长度的表示单位;1.030m是四位有效数字。

从有效数字的另一面也可以看出测量用具的最小刻度值,如0.0135m是用最小刻度为毫米的尺子测量的,而1.030m是用最小刻度为厘米的尺子测量的。

因此,正确掌握有效数字的概念对物理实验来说是十分必要的。

有效数字的位数多少大致反映相对不确定度的大小。

有效数字位数越多,相对不确定度越小,测量结果的精确度越高。

1.3.2 如何确定有效数字当给出(或求出)不确定度时,测量结果的有效数字由不确定度来确定。

有效数字及运算法则

有效数字及运算法则
有效数字的位数
测量值本身的大小、仪器的准确度
米尺 L=2.52cm (三位有效数字)
20分度游标卡尺 L=2.525cm (四位有效数字)
螺旋测微计 L=2.5153cm (五位有效数字)
4.不确定度的表达
N N (单位)
σ取一个有效数字, σ决定N的有效位
a 10.0 0.1cm2 b 20.02 0.01cm
100.0035=1.00809611.008
四、间接测量量有效数字的确定 ——有效数字的运算法则
1.加减法 2.乘除法 3.乘方与开方 4.函数运算
5.自然数与常量
①自然数不是测量值,不存在误差, 故有效数字是无穷位。
如在D=2R中,2不是一位有效数字,而是无穷位
②常数、e等的位数可与参加运算的 量中有效数字位数最少的位数相同 或多取一位。
例 9 L=2R 其中R=2.3510-2m
就应取3.14(或3.142)
即L=23.1422.3510-2=0.148(m)
综合运算举例
50.00 ( 18.30 16.3 ) ( 103 3.0 ) ( 1.00 + 0.001 )
=
50.00 2.0 100 1.00
=
1.0102 100
= 1.0
10.02 lg100.0 35 27.3211 27.31 = 100 2.0000 35
0.01 = 2104 35 = 2104
试用有效数字计算结果: (1)123.98 - 40.456 + 7.8 = 171.0 (2) lg10.00 = 1.0000 (3)789.30 × 50 ÷ 0.100 = 3.9×103 (4)1.002 = 1.00

有效数字运算规律

有效数字运算规律

有效数字运算规律
1. 加法和减法:在进行加法或减法运算时,先将两个数的小数点对齐,然后从最低位开始逐位相加减,最后将结果保留到与原始数据相同的小数位数。

2. 乘法和除法:在进行乘法或除法运算时,先将两个数的小数点对齐,然后按照整数乘法或除法的法则进行计算,最后将结果保留到与原始数据相同的小数位数。

3. 混合运算:在进行混合运算时,先按照运算符的优先级进行计算,然后按照上述规则对结果进行处理。

4. 科学记数法:在使用科学记数法表示的数进行运算时,需要将指数部分进行相应的运算,并将结果保留到与原始数据相同的小数位数。

5. 约简和四舍五入:在进行有效数字的运算时,通常需要对结果进行约简或四舍五入。

约简是指将结果保留到指定的小数位数,而四舍五入则是根据指定的舍入规则对结果进行处理。

需要注意的是,在进行有效数字的运算时,应该遵循一定的规范和约定,以确保结果的准确性和可读性。

同时,还应该根据具体的应用场景和需求,选择合适的运算方法和精度要求。

有效数字修约和运算法则

有效数字修约和运算法则

•有效数字修约与运算法则• 1.有效数字的大体概念:•(1)有效数字是指在查验工作中所能取得有实际意义的数值,其最后一名数字欠准是允许的,这种由靠得住数字和最后一名不肯定数字组成的数值,即为有效数字。

•(2)有效数字的定位(数位),是指肯定欠准数字的位置,那个位置肯定后,其后面的数字均为无效数字。

•例如,一支25ml的滴定管,其最小刻度为,若是滴定管的体积介符于到之间,则需估量一名数字,读出,那个7就是个欠准的数字,那个位置肯定后,它有效位数就是4个,即便其后面还有数字也只是无效数字。

•(3)在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一名向右数取得的位数减去无效零(即仅为定位用的零)的个数。

•例如:35000,如有两个无效零,则为三位有效位数,应写作350×102或×104;如有三个无效零,则为两位有效位数,应写作35×103或×104。

•(4)在其他10进位数中,有效数字系指从非零数字最左一名向右数而取得的位数,例如:、、和均为两位有效位数;为三位有效位数;为四位有效位数;为五位有效位数。

•(5)非持续型数值:(如个数、分数、倍数)是没有欠准数字的,2其有效位数可视为无穷多位。

例如,H2SO4中的2和4是个数。

常数л和系数等。

数值的有效位数可视为无穷多位。

每1ml××滴定液(L)中的为名义浓度,规格项下的或“1ml:25mg”中的“”、“1”、“25”均为标示量,其有效位数,也为无穷多位。

即在计算中,其有效位数应按照其他数值的最少有效位数而定。

•(6)pH值等对数值,其有效位数是由其小数点后的位数决定的,其整数部份只表明其真数的乘方次数。

•如:pH= ([H+]=×10-12mol/L),其有效数字只有两位。

•(7)有效数字的首位数字为8或9时,其有效位数能够多计一名,例如:85%与115%,都能够看成是三位有效数字;%与%都能够看成是四位有效数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有效数字及其运算法则
物理实验中经常要记录很多测量数据,这些数据应当是能反映出被测量实际大小的全部数字,即有效数字。

但是在实验观测、读数、运算与最后得出的结果中。

哪些是能反映被测量实际大小的数字应予以保留,哪些不应当保留,这就与有效数字及其运算法则有关。

前面已经指出,测量不可能得到被测量的真实值,只能是近似值。

实验数据的记录反映了近似值的大小,并且在某种程度上表明了误差。

因此,有效数字是对测量结果的一种准确表示,它应当是有意义的数码,而不允许无意义的数字存在。

如果把测量结果写成54.2817±0.05(cm)是错误的,由不确定度0.05(cm)可以得知,数据的第二位小数0.08 已不可靠,把它后面的数字也写出来没有多大意义,正确的写法应当是:54.28±0.05(cm)。

测量结果的正确表示,对初学者来说是一个难点,必须加以重视,多次强调,才能逐步形成正确表示测量结果的良好习惯。

一、有效数字的概念
任何一个物理量,其测量的结果既然都或多或少的有误差,那么一个物理量的数值就不应当无止境的写下去,写多了没有实际意义,写少了有不能比较真实的表达物理量。

因此,一个物理量的数值和数学上的某一个数就有着不同的意义,这就引入了一个有效数字的概念。

若用最小分度值为1mm的米尺测量物体的长度,读数值为5.63cm。

其中5和6这两个数字是从米尺的刻度上准确读出的,可以认为是准确的,叫做可靠数字。

末尾数字3是在米尺最小分度值的下一位上估计出来的,是不准确的,叫做欠准数。

虽然是欠准可疑,但不是无中生有,而是有根有据有意义的,显然有一位欠准数字,就使测量值更接近真实值,更能反映客观实际。

因此,测量值应当保留到这一位是合理的,即使估计数是0,也不能舍去。

测量结果应当而且也只能保留一位欠准数字,故测量数据的有效数字定义为几位可靠数字加上一位欠准数字称为有效数字,有效数字数字的个数叫做有效数字的位数,如上述的5.63cm称为三位有效数字。

有效数字的位数与十进制单位的变换无关,即与小数点的位置无关。

因此,用以表示小数点位置的0不是有效数字。

当0不是用作表示小数点位置时,0和其它数字具有同等地位,都是有效数字。

显然,在有效数字的位数确定时,第一个不为零的数字左面的零不能算有效数字的位数,而第一个不为零的数字右面的零一定要算做有效数字的位数。

如0.0135m是三位有效数字,0.0135m和1.35cm及13.5mm三者是等效的,只不过是分别采用了米、厘米和毫米作为长度的表示单位;1.030m是四位有效数字。

从有效数字的另一面也可以看出测量用具的最小刻度值,如0.0135m是用最小刻度为毫米的尺子测量的,而1.030m是用最小刻度为厘米的尺子测量的。

因此,正确掌握有效数字的概念对物理实验来说是十分必要的。

二、直接测量的有效数字记录
物理实验中通常仪器上显示的数字均为有效数字(包括最后一位估计读数)都应读出,并记录下来。

仪器上显示的最后一位数字是0时,此0也要读出并记录。

对于有分度式的仪表,读数要根据人眼的分辨能力读到最小分度的十分之几。

在记录直接测量的
有效数字时,常用一种称为标准式的写法,就是任何数值都只写出有效数字,而数量级则用10的n次幂的形式去表示。

1.根据有效数字的规定,测量值的最末一位一定是欠准确数字,这一位应与仪器误差的位数对齐,仪器误差在哪一位发生,测量数据的欠准位就记录到哪一位,不能多记,也不能少记,即使估计数字是0,也必须写上,否则与有效数字的规定不相符。

例如,用米尺测量物体长为52.4 mm 与52.40 mm 是不同的两个测量值,也是属于不同仪器测量的两个值,误差也不相同,不能将它们等同看待,从这两个值可以看出测量前者的仪器精度低,测量后者的仪器精度高出一个数量级。

2.根据有效数字的规定,凡是仪器上读出的数值,有效数字中间与末尾的0,均应算作有效位数。

例如,6.003cm , 4.100 cm 均是四位有效数字;在记录数据中,有时因定位需要,而在小数点前添加0,这不应算作有效位数,如0.0486 m是三位有效数字而不是四位有效数字,有效数字中的0有时算做有效数字,有时不能算做有效数字,这对初学者也是一个难点,要正确理解有效数字的规定。

3.根据有效数字的规定,在十进制单位换算中,其测量数据的有效位数不变,如4.51 cm 若以米或毫米为单位,可以表示成0.0451 m 或45.1 mm,这两个数仍然是三位有效数字。

为了避免单位换算中位数很多时写一长串,或计数时出现错位,常采用科学表达式,通常是在小数点前保留一位整数,用10n表示,如4.51×102m,4.51×104cm 等,这样既简单明了,又便于计算和确定有效数字的位数。

4.根据有效数字的规定对有效数字进行记录时,直接测量结果的有效位数的多少,取决于被测物本身的大小和所使用的仪器精度,对同一个被测物,高精度的仪器,测量的有效位数多,低精度的仪器,测量的有效位数少。

例如,长度约为3.7cm的物体,若用最小分度值为1mm 的米尺测量,其数据为3.70cm ,若用螺旋测微器测量(最小分度值为0.01mm ),其测量值为3.7000cm ,显然螺旋测微器的精度较米尺高很多,所以测量结果的位数也多;被测物是较小的物体,测量结果的有效位数也少。

对一个实际测量值,正确应用有效数字的规定进行记录,就可以从测量值的有效数字记录中看出测量仪器的精度。

因此,有效数字的记录位数和测量仪器有关。

三、有效数字的运算法则
在进行有效数字计算时,参加运算的分量可能很多。

各分量数值的大小及有效数字的位数也不相同,而且在运算过程中,有效数字的位数会越乘越多,除不尽时有效数字的位数也无止境。

即便是使用计算器,也会遇到中间数的取位问题以及如何更简洁的问题。

测量结果的有效数字,只能允许保留一位欠准确数字,直接测量是如此,间接测量的计算结果也是如此。

根据这一原则,为了达到:①不因计算而引进误差,影响结果;
②尽量简洁,不作徒劳的运算。

简化有效数字的运算,约定下列规则:
1.加法或减法运算
.3
46
478=
=
+
2.
2
481
7.
481
266.
49=
-
72.
=
78.
9.
4.3
45
45
大量计算表明,若干个数进行加法或减法运算,其和或者差的结果的欠准确数字的
位置与参与运算各个量中的欠准确数字的位置最高者相同。

由此得出结论,几个数进行加法或减法运算时,可先将多余数修约,将应保留的欠准确数字的位数多保留一位进行运算,最后结果按保留一位欠准确数字进行取舍。

这样可以减小繁杂的数字计算。

推论(1)若干个直接测量值进行加法或减法计算时,选用精度相同的仪器最为合理。

2.乘法和除法运算
41099.155.449199.235.834⨯==⨯
2131467.1135.194.2569==÷
由此得出结论:用有效数字进行乘法或除法运算时,乘积或商的结果的有效数字的位数与参与运算的各个量中有效数字的位数最少者相同。

推论(2)测量的若干个量,若是进行乘法除法运算,应按照有效位数相同的原则来选择不同精度的仪器。

3.乘方和开方运算
66.53)532.7(2=
37.58.32=
由此可见,乘方和开方运算的有效数字的位数与其底数的有效数字的位数相同。

4.自然数 1,2,3,4,…不是测量而得,不存在欠准确数字。

因此,可以视为无穷多位有效数字的位数,书写也不必写出后面的0,如D =2R ,D 的位数仅由直测量R 的位数决定。

5.无理常数π, ,3,2的位数也可以看成很多位有效数字。

例如L =2πR ,若测量值(m)1035.21-⨯=R 时,π应取为3.142。


(m)1048.11035.2142.3212--⨯=⨯⨯⨯=L
6.有效数字的修约。

根据有效数字的运算规则,为使计算简化,在不影响最后结果应保留有效数字的位数(或欠准确数字的位置)的前提下,可以在运算前、后对数据进行修约,其修约原则是“四舍六入五看右左”,五看右左即为五时则看五后面若为非零的数则入、若为零则往左看拟留数的末位数为奇数则入为偶数则舍,这一说法可以简述为五看右左。

中间运算过程较结果要多保留一位有效数字。

相关文档
最新文档