七年级数学月月考试卷及答案
七年级数学月考试卷带答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √2B. πC. -3D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()。
A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各式中,同类项是()。
A. 2x^2 和 3x^3B. 5xy 和 -7xyC. 4a^2b 和 3a^2b^2D. 6mn 和 -9mn4. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的周长是()cm。
A. 20B. 22C. 24D. 265. 若一个数的平方是4,则这个数是()。
A. ±2B. ±4C. 2D. -26. 在直角坐标系中,点P(2,3)关于y轴的对称点是()。
A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 下列图形中,不是轴对称图形的是()。
A. 正方形B. 等腰三角形C. 长方形D. 梯形8. 若|a| = 5,|b| = 3,则|a - b|的最大值是()。
A. 8B. 7C. 6D. 59. 下列各式中,完全平方公式正确的是()。
A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^210. 若一个数的立方是-27,则这个数是()。
A. -3B. 3C. ±3D. ±1二、填空题(每题3分,共30分)11. 0的相反数是_________,零的绝对值是_________。
12. 2的平方根是_________,-3的立方根是_________。
13. 5xy与-7xy的和是_________。
14. (3x - 2y)^2 展开后的结果是_________。
七年级月考试卷数学及答案
一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -3B. 0C. 3.5D. -2.12. 下列各数中,有最小整数的是()A. -1/3B. 0.5C. -2D. 1/43. 下列各数中,能被3整除的是()A. 9B. 12C. 18D. 244. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 55. 下列各数中,是偶数的是()A. 2B. 3C. 4D. 56. 下列各数中,绝对值最大的是()A. -5B. -4C. -3D. -27. 下列各数中,能同时被2和3整除的是()A. 6B. 8C. 9D. 108. 下列各数中,是质数的是()A. 2B. 3C. 4D. 59. 下列各数中,是合数的是()A. 2B. 3C. 4D. 510. 下列各数中,是互质数的是()A. 4和9B. 5和10C. 6和8D. 7和14二、填空题(每题3分,共30分)11. 2的平方根是______,3的立方根是______。
12. -5的相反数是______,5的倒数是______。
13. 2/3乘以3/4等于______,5减去2/5等于______。
14. 0.8加上0.2等于______,1.5乘以2等于______。
15. 3除以0.6等于______,4减去1.2等于______。
16. 0.3乘以0.5等于______,1.2除以0.4等于______。
17. 2/5加3/5等于______,4/7减去1/7等于______。
18. 0.6乘以1.2等于______,1.5除以0.3等于______。
三、解答题(每题10分,共40分)19. 简化下列各数:a. 24/36b. 18/27c. 42/6020. 求下列各数的和或差:a. 5/6 + 2/3b. 3/4 - 1/2c. 7/8 + 1/8 - 1/421. 解下列方程:a. 2x + 3 = 11b. 5 - 3x = 2c. 4x - 7 = 1522. 求下列各数的百分比:a. 20是30的多少百分比?b. 40是50的多少百分比?c. 60是80的多少百分比?四、应用题(每题15分,共30分)23. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,它离出发地多远?24. 一个长方形的长是8厘米,宽是5厘米,求这个长方形的面积和周长。
七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
七年级数学下册第一次月考试卷(附答案)
七年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.计算a 2•a 3=( )A.a 8B.a 6C.a 5D.a 92.一个数是0.0 000 016,这个数用科学记数法表示的是( )A.1.6×10﹣6B.1.6×10﹣7C.1.6×107D.1.6×10﹣83.下列计算结果是a 6的是( )A.a 7-aB.a 2•a 3C.(a 4)2D.a 8÷a 24.下列是负数的( )A.|﹣5|B.(﹣1)2023C.﹣(﹣3)D.(﹣1)05.下列计算正确的是( )A.a 5+a 5=a 10B.(ab 4)4=ab 8C.(a 3)3=a 9D.a 6÷a 3=a 26.下列能用平方差公式计算的是( )A.(a -b )(a -b )B.(a -b )(﹣a -b )C.(a+b )(﹣a -b )D.(﹣a+b )(a -b )7.若多项式x 2+mx+4是完全平方式,则m 的值为( )A.2B.﹣2C.±2D.±48.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )A.2B.﹣2C.4D.﹣49.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=13a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).A.5个B.4个C.3个D.2个10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A.(a-b)2+4ab=(a+b)2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2二.填空题。
(共24分)11.计算:2x•(﹣3x)= .12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.13.已知2m=3,2n=2,则22m+n等于.14.若a=2023,b=1,则代数式a2023•b2023的值是.202315.若x-y=3,xy=10,则x2+y2的值为.16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.三.解答题。
2024-2025学年北师大版七年级数学上册第一次月考测试卷及答案
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章---第二章。
5.难度系数:0.69。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1084.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.66.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.127.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.88.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.09.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==14×2× 2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
七年级月考试卷含答案数学
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -2B. 0.5C. √2D. -3/42. 下列代数式中,同类项是()A. 3a^2bB. 2a^2b + 4ab^2C. 5a^2 - 3aD. 4a^2b - 2ab^23. 已知一个长方形的周长是20cm,如果长是6cm,那么宽是()A. 2cmB. 3cmC. 4cmD. 5cm4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 等边三角形5. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 2x + 1 = 3C. 2x - 1 = 1D. 2x + 1 = 16. 下列函数中,自变量x的取值范围是全体实数的是()A. y = x^2B. y = √xC. y = 1/xD. y = |x|7. 下列运算中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^28. 下列图形中,内角和是360°的是()A. 三角形B. 四边形C. 五边形D. 六边形9. 下列命题中,正确的是()A. 对顶角相等B. 相邻角互补C. 同位角相等D. 对应角相等10. 下列函数中,图象是直线的是()A. y = x^2B. y = 2x - 1C. y = √xD. y = 1/x二、填空题(每题3分,共30分)11. 3的平方根是________,它的相反数是________。
12. 如果a + b = 5,a - b = 1,那么a的值是________,b的值是________。
13. 一个数的绝对值是4,那么这个数是________或________。
14. 下列函数中,是正比例函数的是________。
七年级月考试卷答案数学
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2B. 0C. 1D. -5答案:C解析:正数是大于零的数,因此选项C是正确答案。
2. 下列各数中,负数是()A. 2B. -3C. 5D. 0答案:B解析:负数是小于零的数,因此选项B是正确答案。
3. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 0答案:A解析:因为a > b,所以a - b一定大于0,因此选项A是正确答案。
4. 下列各数中,有理数是()B. πC. -1/3D. 无理数答案:C解析:有理数是可以表示为两个整数之比的数,因此选项C是正确答案。
5. 下列各数中,无理数是()A. 2B. 3/4C. √9D. √2答案:D解析:无理数是不能表示为两个整数之比的数,因此选项D是正确答案。
6. 若a² = 4,则a的值是()A. 2B. -2C. 0D. ±2答案:D解析:a² = 4意味着a可以是2或者-2,因此选项D是正确答案。
7. 下列各数中,绝对值最小的是()A. 1B. -1D. -2答案:C解析:绝对值表示一个数与零的距离,因此0的绝对值最小,选项C是正确答案。
8. 若x² - 5x + 6 = 0,则x的值是()A. 2B. 3C. 1D. 2或3答案:D解析:这是一个二次方程,可以通过因式分解或者使用求根公式求解,x的值可以是2或者3,因此选项D是正确答案。
9. 下列各数中,最接近π的是()A. 3.1B. 3.14C. 3.1416D. 3.14159答案:C解析:π是一个无理数,其近似值为3.1416,因此选项C是正确答案。
10. 下列各数中,有理数是()A. √25B. √16C. √4D. √0答案:C解析:√4 = 2,可以表示为两个整数之比,因此选项C是正确答案。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
江苏省镇江市镇江新区2024—2025学年七年级上学期10月月考数学试卷[含答案]
(4)负分数集合{ …… }
18.把下列各数表示的点画在数轴上(请标注原数),并用“ < ”把这些数连接起来.
- -3.5 ,0, - -4 , - -1
19.计算:
(1) 7 + -14 - -9 - +12
(2)
1 3
+
æ çè
-
1 4
ö ÷ø
+
4 7
+
æ çè
-
1 3
ö ÷ø
+
æ çè
-
3 4
三、解答题(本大题共有 8 小题,共计 72 分.解答时应写出必要的文字说明、
证明过程或演算步骤.)
17.把有理数 2.8, - 1 ,0, +4 , -5 ,2,3.41, - 22 , -6 1 ,9 分别填入下列数集内:
4
7
3
(1)正整数集合{ …… }
(2)正数集合 { …… }
(3)正分数集合{ …… }
客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)
+8,- 6,+ 3,- 6,+ 8,+ 4,- 8,- 4,+ 3,+ 3 .
(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出
发地多少千米?
(2)若汽车每千米耗油 0.4 升,则 8:00~9:15 汽车共耗油多少升?
(1)请你认真思考上述运算,归纳☆运算的法则: 两数进行☆运算时,同号 ,异号 .特别地,0 和任何数进行☆运算,或任何数和 0 进行☆
试卷第 3 页,共 5 页
运算, .
(2)计算: +11☆ éë0☆-12ùû .
初一数学第一学期第一次月考试卷两份(附答案)
数学月考试题(一)一、选择题(每小题3分,共24分)1.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .-3mB .+3mC .+mD .﹣5m2.下列各数中,不是有理数的是( ) A .3.14 B .C .D .0.10100100013. 下列说法中,正确的是( ) A .0是最小的整数 B .最大的负整数是﹣1C.有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列算式正确的是 ( ) A .(-14)-5=-9 B .0-(-3)=3 C .(-3)-(-3)=-6 D .()5353-=--5.如图,在数轴上点M 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.4D .2.46.若a 的倒数为﹣,则a 是( )A .B .﹣C .2D .﹣27.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( ) A .4个B .3个C .2个D .1个8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是 ( ) A .点C B .点D C .点A D .点B二、填空题(每小题3分,共30分)9. ―2的相反数是_______;10.比较大小:-0.3 ____11.今年2月份某市一天的最高气温为10℃,最低气温为﹣7℃,那么这一天的最高气温比最低气温高.12.绝对值小于3的所有整数和是.13.如果3-m与2m+1互为相反数,则m=________。
14.若|x+2|+|y﹣3|=0,则x+y的值为.15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是________。
16.若|﹣x|=5,则x=17.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为18.a是不为1的有理数,我们把11-a称为a的差倒数.如:2的差倒数是11-2=-1,-1的差倒数11-(-1)=12.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2011=________.三、解答题(共96分)19.(8分)把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.+(﹣4),4,0,﹣|﹣2.5|,﹣(﹣3).20.(8分)若a、b互为相反数,c、d互为倒数,m(m<0)的绝对值为2,求2m﹣cd+的值。
福建省厦门第一中学2024—2025学年上学期七年级10月月考数学试卷(解析版)
福建省厦门第一中学2024—2025学年度第一学期10月学业调研评估初一年数学学科练习第Ⅰ卷说明:(1)考试时间60分钟.满分120分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.第Ⅰ卷(选择题)一、选择题(每题3分,共30分)1. 如果收入100元记作+100元.那么−80元表示()A. 支出20元B. 支出80元C. 收入20元D. 收入80元【答案】B【解析】【分析】根据正负数的意义进一步求解即可.【详解】∵收入100元记作+100元,∴−80元表示支出80元,故选:B.【点睛】本题主要考查了正负数的意义,熟练掌握相关概念是解题关键.2. –2017的相反数是()A. -2017B. 2017C.12017− D.12017【答案】B【解析】【分析】一个数的相反数就是在这个数前面添上“-”号,据此可得.【详解】解:–2017的相反数是2017,故选B.【点睛】本题考查了相反数的概念.解题的关键是掌握相反数的概念.只有符号不同的两个数互为相反数.3. 数轴上的点A到原点的距离是5,则点A表示的数为()A. -5B. 5C. 5或-5D. 2.5或-2.5【答案】C【解析】【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C .4. 化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A. B. C. D.【答案】B【解析】【分析】求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.本题考查正数与负数以及绝对值,熟练掌握绝对值的意义是解题的关键.【详解】解:通过求4个排球的绝对值得:| 1.1| 1.1−=,|0.6|0.6−=,|0.9|0.9+=,|1|1+=.0.6−的绝对值最小,所以这个砝码是最接近标准的球.故选:B .5. 数轴上的点M 对应的数是2−,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. 6−B. 2C. 6−或2D. 6 【答案】B【解析】【分析】本题考查了数轴上数的表示以及数轴上点的变化规律,熟练掌握点在数轴上移动的规律是解题的关键.根据点在数轴上移动的规律,左减右加;列出算式,计算即可;【详解】解:242−+=故选:B .6. 3x =,4y =,则x y −的值是( )A. 7−B. 1C. 1−或7D. 1或7−【答案】C【解析】【分析】本题考查绝对值的意义,有理数的减法;求出y 的值,然后代入x y −中即可求出答案.【详解】解:由题意可知:3x =,4y =±,当4y =时,341x y −=−=−,当4y =−时,347x y −=+=,故选:C .7. 魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是()()235431++−=−的计算过程,则图(2)表示的计算过程是( )A. ()()22231−++=B. ()()223210−++=C. ()()223210++−=−D. ()()22231++−=−【答案】B【解析】 【分析】由白色算筹表示正数,灰色算筹表示负数,即可列式计算.详解】解:由题意可得:图(2)表示的计算过程是()()223210−++=, 故选B .【点睛】本题考查正负数的表示,关键是明白白色算筹表示正数,灰色算筹表示负数.8. 有理数a 、b 在数轴上的位置如图所示,则下列各式运算结果符号为正的是( )A. a b −B. a bC. abD. a b +【答案】D【【解析】 【分析】本题考查了数轴,有理数的加减乘除运算法则,根据数轴可得0,a b a b <<<,进而逐项分析判断,即可求解. 【详解】解:根据数轴可得0,a b a b <<<,∴0a b −<,0a b<,0ab <,0a b +>, 故选:D .9. 体育课上全班女生进行百米测验,达标成绩为18秒,第一小组8名女生的成绩如下:30.500.11 2.6 1.60.3−+−−−+−,,,,,,,其中“+”表示成绩小于18秒,“﹣”表示成绩大于18秒,则这个小组的达标率是( )A. 25%B. 37.5%C. 50%D. 62.5%【答案】B【解析】【分析】根据正负数的意义可得达标的有3人,然后计算即可.【详解】解:由题意得,达标的有3人, 则这个小组达标率是3100%37.5%8×=, 故选:B .【点睛】本题考查了正负数的意义,有理数的除法,根据正负数的意义得出达标的人数是解题的关键. 10. 已知整数1234a a a a ……,,,,满足下列条件:12101a a a ==−+,,324323a a a a ++……-,=,=-依此类推,则2023a 的值为( )A. 1011−B. 1010−C. 2022−D. 2023−【答案】A【解析】【分析】分别求出234567a a a a a a ,,,,,的值,观察其数值的变化规律,进而求出2023a 的值.【详解】解:根据题意可得, 10a =,2111a a +=-=-,3221a a +=−=-,的4332a a =−+=−,5442a a =−+=−,6553a a =−+=−,7663a a =−+=−,…观察其规律可得,202312022−=,202221011÷=,20231011a ∴=−,故选:A .【点睛】本题考查了数的变化规律,通过计算前面几个数的数值观察其规律是解本题的关键,综合性较强,难度适中.第Ⅱ卷(非选择题)二、填空题(第11题每空2分,其余每空3分,共25分)11. (1)化简:2−−=______;()2−−=______;2128−=______; (2)9−的倒数是______; (3)比较大小:32−______43−(填“>”或“<”). 【答案】 ①. 2− ②. 2 ③. 34−##0.75− ④. 19− ⑤. < 【解析】【分析】本题主要考查了求一个数的绝对值,化简多重符号,有理数大小的比较,求一个数的倒数,根据相关的定义进行计算即可.(1)根据绝对值的意义,相反数定义进行计算即可;(2)根据“乘积为1的两个数互为倒数”进行计算即可;(3)根据两个负数比较大小的方法:绝对值大的反而小,进行比较大小即可.【详解】解:(1)2=2−−−;()2=2−−;213284−=−; 故答案为:2−;2;34−;(2)9−的倒数是19−; 故答案为:19−;(3)3322−=,4433−=, ∵3423>, ∴3423−<−, 故答案为:<.12. 比3−小8的数是________.【答案】11−【解析】【分析】本题主要考查了有理数减法计算,只需要求出38−−的结果即可得到答案.【详解】解:3811−−=−,∴比3−小8的数是11−,故答案为:11−.13. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________.【答案】4−(答案不唯一). 【解析】【分析】本题主要考查数轴,解题关键是熟知当数轴方向朝右时,右边的数总比左边的数大.由题图可知,3m <−,写出一个符合条件的m 值即可.【详解】解:由题图可知,3m <−,∴符合条件的m 的整数值可以为4−(答案不唯一).故答案为:4−(答案不唯一). 14. 绝对值小于3的所有整数的和是______.【答案】0【解析】【分析】根据绝对值的性质得出绝对值小于3的所有整数,再求和即可.【详解】解:绝对值小于3的所有整数有:21012−−,,,,,它们的和为:0,故答案为:0.【点睛】本题考查了绝对值的性质,解题的关键是熟知绝对值的概念及性质,并正确求一个数的绝对值.15. 若320x y ++−=,则x y +=_________________ . 【答案】1−【解析】【分析】本题主要考查绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.根据绝对值的非负性求出x y 、的值即可得到答案.【详解】解: 320x y ++−=, 30x ∴+=,20y −=, 3,2x y ∴=−=,321x y ∴+=−+=−,故答案为:1−.16. 在一条可以折叠的数轴上,点A ,B 表示的数分别是10−,3,(如图1)以点C 为折点,将此数轴向右对折,折叠后若点A 落在点B 的右边(如图2),且A 、B 两点距离是1,则点C 表示的数是______.【答案】3−【解析】【分析】本题主要考查数轴,熟练掌握数轴上两点的距离与点表示的数的运算关系是解答的关键.先根据A B 、表示的数求得的长,再由折叠后AB 的长求得BC 的长,进而可确定点C 表示的数.【详解】解:A B ,表示的数分别是10−,3,()31013AB ∴=−−=,∵折叠后点A 在点B 的右边,且1AB =,131162BC +∴=−=, C ∴点表示的数是363−=−,故答案为:3−.三、解答题(本大题共8题,共65分)17. 把下列各数的序号填在相应的集合里:①35−,②0.2,③47−,④0,⑤122−,⑥π,⑦ 2.3 ,⑧320+. 整数集合:{_________________________}⋅⋅⋅;负分数集合:{_________________________}⋅⋅⋅;正有理数集合:{_________________________}⋅⋅⋅.【答案】①④⑧;③⑤⑦;②⑧【解析】【分析】本题考查了实数的分类,掌握有理数的概念和实数的分类方法是解题的关键.按照实数的分类填写,实数分为有理数和无理数,无理数是无限不循环小数,有理数分为整数和分数,整数分为正整数,0和负整数,分数分为正分数和负分数.【详解】解:整数集合{①35−,④0,⑧320+…}负分数集合{③47−,⑤122−,⑦ 2.3 …} 正有理数集合{②0.2,⑧320+…}., 故答案为:①④⑧;③⑤⑦;②⑧.18. 将下列各数在数轴上表示出来,并用“<”把这些数连接起来.5+,0.5−,4−,0,112,123− 【答案】11420.501532−<−<−<<<+,数轴见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【详解】解:如图所示,11420.501532−<−<−<<<+; 19. 计算(1)()()4282924−−−−+−;(2)()11324864 −−+×−;(3)()()()2584−×+−÷−;(4)()1481227349−÷×−−−÷.【答案】(1)27−(2)11−(3)8−(4)7−【解析】【分析】本题主要考查了有理数混合运算,解题的关键是熟练掌握有理数混合运算法则,“先算乘方,再算乘除,最后算加减,有小括号的先算小括号里面的”.(1)根据有理数加减混合运算法则进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据有理数四则混合运算法则进行计算即可;(4)先计算绝对值,然后根据有理数四则混合运算法则进行计算即可.【小问1详解】解:()()4282924−−−−+−4282924=−−+−32292432427=−;【小问2详解】 解:()11324864−−+×−()()()113242424864=−×−−×−+×−3418=+−11=−;【小问3详解】解:()()()2584−×+−÷−102=−+8=−;【小问4详解】 解:()1481227349−÷×−−−÷ ()4481999=−××−− 169=−+7=−.20. 出租车沿东西方向的道路上来回行驶,早上从A 地出发,中午到达B 地,约定向东为正方向,当天行驶路程记录如下:4+,6−,8+,5−,4,6+,10+,9−.(单位:千米) (1)B 地在A 地什么方向?距离A 地多远?(2)若汽车每千米耗油0.1升,出发前汽车油箱有油10升,求到达B 地后汽车油箱还剩多少升油?【答案】(1)B 地在A 地的正东方向,距离A 地12千米(2)到达B 地后汽车还剩4.8升油【解析】【分析】本题考查有理数四则混合运算应用、正负数的应用,关键是理解题意,正确列出算式. (1)将记录数据相加,根据和的符号可作出判断;(2)求得记录数据绝对值的和,即为行驶的路程,进而列式计算即可.【小问1详解】解:∵()()()46854610912++−++−++++−=(千米), ∴B 地在A 地的正东方向,距离A 地12千米.小问2详解】 解:这一天走的总路程为:46854610952+−++−++++−=(千米), 应耗油520.1 5.2×=(升), 10 5.2 4.8−=(升), 答:到达B 地后汽车还剩4.8升油.21. 食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表: 与标准质量的差值(单位:克) 5− 2− 0 1 3 6的【袋数1 4 3 4 5 3(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?【答案】(1)这批样品的平均质量比标准质量多,平均每袋多1.2克(2)抽样检测的样品总质量是9024克【解析】【分析】本题主要考查了正负数的实际应用,有理数混合计算的实际应用,熟知相关计算法则是解题的关键.(1)根据有理数的加法,可得总质量比标准质量多,根据平均数的意义,可得答案;(2)根据标准质量加上比标准质量多的,可得答案.【小问1详解】解:根据题意,得:()()512403143563−×+−×+×+×+×+×()5841518=−+−+++24=(克), 平均质量为2420 1.2÷=(克), 答:这批样品的平均质量比标准质量多,平均每袋多1.2克;【小问2详解】45020249024×+=(克), 答:抽样检测的样品总质量是9024克.22. 已知有理数x 、y 满足||9x =,||5y =.(1)若0x <,0y >,求+x y 的值;(2)若||x y x y +=+,求x y −的值.【答案】(1)4−(2)4或14【解析】【分析】(1)先根据绝对值的定义和0x <,0y >求出x 和y 的值,再代入+x y 计算;(2)先根据绝对值的定义和||x y x y +=+求出x 和y 的值,再代入x y −计算【小问1详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵0x <,0y >∴x =−9,y =5,∴x +y =−9+5=−4.【小问2详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵||x y x y +=+,∴x +y ≥0,∴x =9,y =5或x =9,y =−5,∴x y −=9−5=4或x y −=9−(−5)=14.【点睛】本题考查了绝对值的定义和有理数的加减运算,正确求出x 和y 的值是解答本题的关键. 23. 定义新运算:11a b a b ∗=−,1a b ab⊗=(右边的运算为平常的加、减、乘、除). 例如:114373721∗=−=,11373721⊗==×. 若a b a b ⊗=∗,则称有理数,a b 为“隔一数对”.例如:1123236⊗==×,11123236∗=−=,2323⊗=∗,所以2,3就是一对“隔一数对”. (1)下列各组数是“隔一数对”的是 (请填序号) ①1,2a b ==; ②1,1a b =−=; ③41,33a b =−=−. (2)计算:(3)4(3)4(31415)(31415)−∗−−⊗+−∗−(3)已知两个连续的非零整数都是“隔一数对”.计算:1223344520202021⊗+⊗+⊗+⊗++⊗ .【答案】(1)①③;(2)12−;(3)20202021 【解析】【分析】(1)按照题干定义进行计算,判断是否满足条件即可;(2)直接根据题目定义分别计算各项,然后再合并求解即可;(3)根据定义进行变形和拆项,然后根据规律求解即可.【详解】解:(1)①1,2a b ==; ∵111122a b ∗=−=,11122a b ⊗==×, ∴a b a b ⊗=∗,则①是“隔一数对”;②1,1a b =−=; ∵11211a b ∗=−=−−,1111a b ⊗==−−×, ∴a b a b ⊗≠∗,则②不是“隔一数对”; ③41,33a b =−=−; ∵94131143a b −−∗=−=,1941433a b ⊗== −×−, ∴a b a b ⊗=∗,则③是“隔一数对”;故答案为:①③;(2)根据定义,原式()1111134343141531415−−+−−−×−− 111034(3)4−−+−−× 711212=−+ 12=−; (3)根据定义,原式1223344520202021=∗+∗+∗+∗++∗1111111111()()()()()1223344520202021=−+−+−+−++− 112021=− 20202021=. 【点睛】本题考查有理数的定义新运算,仔细审题,理解题干中的新定义,熟练掌握有理数的混合运算法则是解题关键.24. 数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例:如图1所示,数轴上点A ,B ,C 所表示的数分别为1,3,4,因为3124312AB BC AB BC =−==−==,,,所以称点B 是点A ,C 的“关联点”.图1(1)如图2所示,点A 表示数2−,点B 表示数1,下列各数2,4,6所对应的点分别是C 1,C 2,C 3其中是点A ,B 的“关联点”的是 ;图2(2)如图3所示,点A 表示数10−,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”, 请求出此时点P 表示的数.图3【答案】(1)C 2 (2)①点P 35−,520,33−;②点P 表示的数为5540652,, 【解析】【分析】(1)分别求出点C 1,C 2,C 3到,A B 两点间的距离,再进行验证即可;(2)①分类讨论点P 在AAAA 之间和点P 在A 点左侧时的情况即可;②分类讨论点P 为点,A B 的“关联点”、点B 为点,A P 的“关联点”、点A 为点,B P 的“关联点”即可求解.【小问1详解】解:∵()11224,211AC BC =−−==−=∴点C 1不是点A ,B 的“关联点”∵()22426,413AC BC =−−==−=∴222AC BC =即:点2C 是点A ,B 的“关联点”∵()33628,615AC BC =−−==−=∴点3C 不是点A ,B 的“关联点”故答案为:2C【小问2详解】解:解:设点P 在数轴上表示的数为p①(i )当点P 在AAAA 之间时,若2AP BP =,则()10215p p +=− 解得:203p =若2BP AP =,则()15210p p −=+ 解得:53p =−(ii )当点P 在A 点左侧时,则2BP AP =,即:()15210p p −=−− 解得:35p =−故:点P 表示的数为35−,520,33−;②(i )当点P 为点,A B 的“关联点”时,则2PA PB =,即:()10215p p +=−解得:40p =(ii )当点B 为点,A P “关联点”时,则2AB PB =,即:()1510215p +=− 解得:552p =或2BP AB =,即:()1521510p −=+解得:65p =(iii )当点A 为点,B P 的“关联点”时,则2AP AB =,即:()1021510p +=+的解得:40p=故:点P表示的数为55 40652,,【点睛】本题以新定义题型为背景,考查了数轴上两点间的距离公式.掌握相关结论,进行分类讨论是解题关键.。
七年级月考数学试卷答案
一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. -1/3D. 无理数答案:C2. 如果a > 0,那么下列不等式正确的是()A. a > 0B. -a < 0C. a^2 > 0D. a^2 < 0答案:C3. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形答案:B4. 下列代数式中,同类项的是()A. 2x^2B. 3xyC. 4x^2yD. 5x^2 + 3xy答案:A5. 若a + b = 5,a - b = 1,则a的值为()A. 3B. 2C. 4D. 6答案:A6. 在直角坐标系中,点P(2,-3)关于x轴的对称点是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)答案:A7. 下列关于二次函数的图象的描述正确的是()A. 二次函数的图象一定是开口向上的抛物线B. 二次函数的图象一定是开口向下的抛物线C. 二次函数的图象一定是顶点在x轴上的抛物线D. 二次函数的图象一定是顶点在y轴上的抛物线答案:C8. 若一个数的平方等于4,那么这个数是()A. ±2B. ±4C. ±1D. ±3答案:A9. 下列图形中,是四边形的是()A. 等腰三角形B. 平行四边形C. 梯形D. 三角形答案:B10. 下列关于实数的说法正确的是()A. 实数包括有理数和无理数B. 实数不包括无理数C. 实数不包括整数D. 实数不包括正数答案:A二、填空题(每题3分,共30分)11. 若x - 2 = 5,则x = _______。
答案:712. 下列数中,绝对值最小的是 _______。
答案:-1/213. 若一个数的倒数是3,那么这个数是 _______。
答案:1/314. 下列图形中,周长最大的是 _______。
答案:正方形15. 下列代数式中,合并同类项后得到2x的是 _______。
四川省绵阳市东辰学校2023-2024学年七年级上学期11月月考数学试卷(含解析)
2023年秋期11月月考试题七年级数学(测试时间:80分钟满分:150分)一、选择题(本大题共12小题,每小题4分,共48分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在括号内.1. 的绝对值是()A. 3B.C.D.答案:A解析:解:的绝对值是3,故选:A.2. 下列各式:①②③④⑤千克,不符合代数式书写要求的是()A 5个 B. 4个 C. 3个 D. 2个答案:C解析:解:①,不符合要求;②,符合要求;③=,不符合要求;④符合要求;⑤千克=千克,不符合要求;因此有3个书写不符合要求,故选:C.3. 下列说法正确的是()A. 的系数是7B. 的次数为6C. 数字0也是单项式D. 的常数项为1答案:C解析:解:A、的系数是,故此选项不符合题意;B、的次数为,故此选项不符合题意;C、数字0也是单项式,故此选项符合题意;D、的常数项为,故此选项不符合题意;故选:C.4. 下列各式中,运算正确是()A B.C. D.答案:D解析:解:,故A错误;,故B错误;,故C错误;,故D正确;故选:D5. 如图,下列不正确的说法是()A. 直线与直线是同一条直线;B. 射线与射线是同一条射线C. 线段与线段是同一条线段;D. 射线与射线是同一条射线答案:B解析:解:、直线与直线是同一条直线,故本选项不符合题意;、射线与射线不是同一条射线,故本选项符合题意;、线段和线段是同一条线段,故本选项不符合题意;、射线与射线是同一条射线,故本选项不符合题意;故选:B.6. 如图所示,下列表示角的方法错误的是()A. 与表示同一个角B. 表示的是C. 也可用来表示D. 图中共有三个角:答案:C解析:解:与表示同一个角,故A选项正确;表示的是,故B选项正确;只有在顶点处只有一个角的情况,才可用顶点处的一个字母来表示这个角,因此不可以用来表示,故C选项错误;图中共有三个角:,故D选项正确;故选C.7. 下列去括号或添括号的变形中,正确的是()A. B.C. D.答案:A解析:A、,故此选项正确;B、,故此选项错误;C、,故此选项错误;D、,故此选项错误;故选:A.8. 下列对使用四舍五入法得到的近似数描述正确的是( )A. 近似数5.1万精确到十分位B. 近似数精确到万位C. 0.145精确到十分位约为0.2D. 近似数0.230精确到千分位答案:D解析:解:A、近似数5.1万精确到千位,所以A选项的说法不正确;B、近似数精确到千位,所以B选项的说法不正确;C、0.145精确到十分位约为0.1,所以C选项的说法不正确;D、近似数0.230精确到千分位,所以D选项的说法正确.故选:D.9. 根据图中的程序,若输入,则输出结果y为()A. B. 0 C. 1 D. 2答案:A解析:解:当时,,∴,故选:A.10. 如图,将图中的纸片折起来可以做成一个正方体,这个正方体“让”字所在面的对面是()字A. 数B. 学C. 着D. 迷答案:D解析:解:这个正方体“让”字所在面的对面是“迷”,故选:D.11. 如图,每一个图形都是由一些小黑方块按一定的规律排列组成的,其中第①个图形中有1个小黑方块,第②个图形中有5个小黑方块,第③个图形中有11个小黑方块……,按此规律,则第⑨个图中小黑方块的个数是()A. 89B. 71C. 55D. 41答案:A解析:解:第①个图形:1;第②个图形:;第③个图形:;第④个图形:;第⑨个图形:;∵;故选:A.12. 由n个大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则n的最大值为()A. 5B. 6C. 7D.答案:D解析:解:根据主视图和左视图可得:这个几何体有2层,3列,最底层最多有个正方体,第二层有4个正方体,则搭成这个几何体的小正方体的个数最多是个.故选:D.二、填空题(本大题共6小题,每小题4分,共24分)13. 如图所示,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际应用的数学知识是______.答案:两点确定一条直线解析:解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.14. 如图,共有_____条线段.答案:解析:解:线段有条:,,,,,,故答案为:.15. a与b的2倍的差是______.答案:##解析:解:代数式表示a与b的2倍的差为:,故答案为:.16. 若与是同类项,则=______.答案:解析:解:∵与是同类项,∴,,解得:,,∴.故答案为:.17. 在数轴上与表示-3的点相距5个单位长度的点所表示的数是_________________.答案:-8或2.解析:解:当点在-3右边时,-3+5=2.当点-3左边时,-3-5=-8.故答案为-8或者2.18. 已知M为线段的三等分点,且,则线段的长为______.答案:9或##或9解析:解:如图1所示:点是的三等分点,.如图2所示:点是的三等分点,.的长度为9或,故答案为:9或.三、解答题(本大题共7小题,共78分)解答应写出文字说明,证明过程或演算步骤.19. 计算:(1);(2);(3);(4).答案:(1)(2)(3)(4)小问1解析:解:===;小问2解析:解:===;小问3解析:解:=;小问4解析:解:==.20. 如图,平面上有A、B、C、D四个点,请根据下列语句作图.(1)画直线AC;(2)线段AD与线段BC相交于点O;(3)射线AB与射线CD相交于点P.答案:(1)图见解析(2)图见解析(3)图见解析解析:解:(1)直线AC如图所示.(2)线段AD与线段BC相交于点O,如图所示.(3)射线AB与射线CD相交于点P,如图所示.21. 已知.(1)求;(2)若的值与的取值无关,试求的值.答案:(1)(2)小问1解析:解:∵,∴;小问2解析:解:,∵的值与的取值无关,∴的值与的取值无关,∴,∴.22. 对于有理数a、b,定义一种新运算“”,规定.(1)计算的值;(2)当a、b在数轴上的位置如图所示时,①______0,______0(填“>”、“=”或“<”);②化简.答案:(1)8 (2)①<,<;(2)小问1解析:根据题意知:;小问2解析:①由图可知且,则、,故答案为:<,<.②.23. 某地区的手机收费标准有两种方式,用户可任选其一:A:月租费元,元/分;B:月租费元,元/分.(1)某用户某月打手机x分钟,则A方式应交付费用:______元;B方式应交付费用:______元;(用含x 的代数式表示)(2)某用户估计一个月内打手机时间为5小时,你认为采用哪种方式更合算?答案:(1),(2)B种方式小问1解析:解:A方式应交付费用:元,B方式应交付费用:元,故答案为:,;小问2解析:解:采用B种方式较合算,理由如下:5时=分当时,A方式应交付费用:元B方式应交付费用:元∵,∴采用B种方式较合算.24. 如图,C为线段上一点,点B为的中点,且,.(1)求的长.(2)若点E在直线上,且,求的长.答案:(1)(2)或小问1解析:解:点为的中点,,,,答:的长为.小问2解析:由题意得:,,当点在线段上时,,当点在线段的延长线上时,.答:的长为或.25. 如图,点C在线段上,点M、N分别是的中点.(1)若,求线段的长;(2)若C为线段上任一点,满足,其它条件不变,你能猜想的长度吗?请直接写出你的答案.(3)若C在线段的延长线上,且满足,M、N分别为的中点,你能猜想的长度吗?请画出图形,写出你的结论,并说明理由.答案:(1)(2)(3),图形见解析;结论理由见解析小问1解析:解∶∵M、N分别是的中点,∴,∵,∴;小问2解析:解∶∵M、N分别是的中点,∴,∵,∴;小问3解析:解∶,理由如下∶如图,∵M、N分别是的中点,∴,∵,∴.。
河南省安阳市林州市2023-2024学年七年级上学期12月月考数学试卷(含答案)
七年级上学期第三次阶段自评(B)数学(考试范围:至124页满分:120分)注意事项:1.本试卷分试题卷和答题卡两部分.试题卷共4页,两个大题,满分120分.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人所在学校、姓名、考场、座号、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.有理数,在数轴上的对应的位置如图所示,则()A.B.C.D.2.下列各式中,是一元一次方程的有( )(1)x+π>3;(2)x﹣2;(3)2+3=5x;(4)x+y=5;(5)x2﹣1=0.A.1个B.2个C.3个D.4个3.下列运用等式性质进行的变形,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么4.若方程的解为,则a为()A.1B.C.2D.5.下列变形正确的是()A.若,则B.若,则C.若,则.若,则.定义a*b=ab+a+b,若3*x=27,则x.4x=2是关于x的一元一次方程ax.........2010年地球停电一小时”活动的某地区烛光晚餐中,设座位有排,每排坐每排坐31人,则空个座位.则下列方程正确的是(....二、填空题(每小题.已知是关于的一元一次方程,则.在朱自清的《春》中描写春雨像牛毛、像花针、像细丝,密密麻麻地斜织着14.小红在解关于的一元一次方程时,误将看作,得方程的解为,则原方程的解为.15.有一列数,按一定的规律排列:―64,128,…,其中某三个相邻数之和为(1);(2).(3)..关于的方程与的解互为相反数.求的值;.小亮在解关于的一元一次方程时,发现正整数□被污染了,若老师告诉小亮这个方程的解是正整数,则被污染的正整数是多少?3cm,将其绕它的一边所在的直线旋转一周,得到一个立体图形.)求此几何体的体积;结果保留.用白铁皮做罐头盒,每张铁皮可制作盒身22.情境:请根据图中的信息,解答下列问题:(1)购买6根跳绳需______元,购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.23.一项工程,甲队单独完成需30天,乙队单独完成需45天,现甲队先单独做20天,之后两队合作.(1)甲、乙合作多少天才能把该工程完成?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在40天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?答案与解析1.A2.A3.B4.D5.D6.C7.B8.D9.B10.D11.12.点动成线13.大14.15.128、-256、512.16.(1)(2)(3)(1)解:,移项得:,合并同类项得:,系数化为1得:;(2)解:,去括号得:,移项得:,合并同类项得:,系数化为1得:;(3)解:去分母得:去括号得:,移项得:,合并同类项得:,系数化为1得:.17.解:解方程得,解方程得,∵关于的方程与的解互为相反数∴,解得.18.2解:设被污染的正整数为,则有,∴,解得,∵这个方程的解是正整数,∴是正整数,且为正整数,∴或或(舍去).∴被污染的正整数是2.19.(1)圆柱,面动成体;(2)或.解:(1)这个几何体的名称为圆柱,这个现象用数学知识解释为面动成体;故答案为:圆柱,面动成体;(2)①当绕4cm的边旋转时,此时底面半径为3cm,高为4cm,∴圆柱的体积.②当绕3cm的边旋转时,此时底面半径为4cm,高为3cm,∴圆柱的体积.故这个几何体的体积是或.20.用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.解:设用张制作盒身,张制作盒底,可以正好制成整套罐头盒.根据题意,得.解得.所以.答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.21.(1)840千米每小时(2)2448千米(1)解:设无风时飞机的速度为,则顺风飞行时的速度,逆风飞行的速度,依题意得:,解得,答:无风时飞机的飞行速度为;(2)解:两城之间的距离.答:两城之间的距离为.22.(1)150,240(2)有这种可能,小红购买跳绳11根,理由见解析(1)6×25=150(元),12×25×0.8=240(元)(2)有这种可能设小红购买跳绳x根,根据题意得25×80%x=25(x-2)-5,解得x=11.因此小红购买跳绳11根.23.(1)甲、乙合作6天才能把该工程完成;(2)由甲、乙合作18天完成更省钱.解:(1)设甲、乙合作天才能把该工程完成.,解得.答:甲、乙合作6天才能把该工程完成.(2)当甲队独做时:万元乙队单独完成超时,所以乙队不能独做.当甲、乙两队全程合作时:设甲、乙合作天完成全工程.,解得:万元.105万元>99万元.答:由甲、乙合作18天完成更省钱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4,71
,32
,2,π
中,无理数有 A .1个 B .2个 C . 3个 D .4个
计算41
2的结果是23
21
2 23
± 21
2
4.在下图中,∠1,∠2是对顶角的图形是( )
5.下列各组数中互为相反数的是 ( )
A.-2与2)2(-
B. -2与3
8- C.-2与-21 D.∣-2∣与2、
估算30的值在 A. 7和8之间 B. 6和7之间
C. 5和6之间
D. 4和5之间
8.下列判断:① 0.25的平方根是0.5; ② 只有正数才有平方根; ③ -7是-49的平方根; ④)5(的平方根是5±.正确的有( )个。
A 1
B 2
C 3
D 4
10.若a ,b 为实数,且|a+1|+=0,则(ab )的值是( )
11.如图是一把剪刀,其中∠1=40°,则∠2=__________,
12.命题“两直线平行,内错角相等”的
题设是 ,结论是 ;
13.81的平方根是_________,9的算术平方根是________ , A 2B 11A . B
-27的立方根是_________ 。
14.如图,BC⊥AE,垂足为C ,过C 作CD∥AB.若∠ECD=48°,
则∠B=__________.
15.计算(1)2)7(-= ,(2)±972= ,(3)3125-= 16.将一个直角三角板和一把直尺如图放置,如果∠α=43°,
则∠β的度数是__________.
17.比较大小:10 π;10
1 101;
2 2. 18.如图,点D 在AC 上,点E 在AB 上,且BD⊥CE,垂足为点M .
下列说法:①BM 的长是点B 到CE 的距离;②CE 的长是点C 到
AB 的距离;③BD 的长是点B 到AC 的距离;④CM 的长是点C 到
BD 的距离.其中正确的是 _________ (填序号).
三、解答下列各题(共66分)
19.计算(每小题3分,共12分)
⑴25
91- ⑵43-2(1-3)+2)2(- ⑶38+0+4 (4)2+32—52
20.求下列x 的值(每小题3分,共12分)
⑴x 2-81=0 (2)(x-2)2=16;
(3)x 3-0.125=0; (4)(x-3)3+8=0;
21.(8分)在四边形ABCD 中,已知AB∥CD,∠B=60°,
(1)求∠C 的度数;
(2)试问能否求得∠A 的度数(只答“能”或“不能”)
(3)若要证明AD∥BC,还需要补充一个条件,请你补充一个条件并加以证明.
22.(6分)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.
23. (8分)已知:如图AB∥CD,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD,交AB 于H ,∠AHF=500, 求:∠AGE 的度数.
24.一个正数a 的平方根是3x ―4与1―2x ,则a 是多少?(6分)
25.(6分)如图,①如果12∠=∠,那么根据 内错角相等,两直线平行
可得 // ; ② 如果∠DAB+∠ABC=180°,那么 根据 ,
可得 // . ③当AB // CD 时, 根据 ,
得∠C+∠ABC=180°;
④当 // 时, 根据 ,得∠C=∠3. H G F E D C B A D B C
A 1 E 2
3
26.探究题:(8分)
(1)如图①,EF ∥BC ,试说明∠B +∠C +∠BAC =180°.
(2)如图②,AB∥CD,试说明∠A+∠B+∠ACB=180°.
(3)由前两个问题,你总结出什么结论?
七年数学参考答案
一、BDACA CCACB
二、11.40° 12. 两直线平行,内错角相等 13.±9,3,-3 14.42° 15.3 , ±35,-5 16.47° 17.>,>,< 18.①④ 三、19.(1)54 (2)63 (3)4 (4)-3 20.(1)±9 (2)6或-2 (3)0.5 (4)1
21. 解:(1)∵ AB ∥ CD ,∠ B=60°, ∴ ∠ C=180°﹣∠ B=120°.(2)不能.
(3)答案不唯一,如:补充∠A=120°,
证明:∵∠B=60°,∠A=120°,∴∠A+∠B=180°,∴AD ∥BC .
22.ab=1,c+d=0原式=-1+0+1=0
23.80°
24. 3x ―4+1―2x=0,x=3 a=25
25.①如 AB // CD ;②同旁内角互补两直线平行
AD // BC .③ 两直线平行,同旁内角互补
④AE // BC , 两直线平行,内错角相等
26. (1)因为EF∥BC,所以∠B=∠EAB,∠C=∠FAC(两直线平行,内错角相 等).因为∠EAB+∠FAC +∠BAC=180°,所以∠B+∠C+∠BAC=180°.
(2)因为AB∥CD,所以∠ACD=∠A,∠DCE=∠B(两直线平行,内错角相等,同位角相等).因为∠ACD +∠DCE+∠ACB=180°,所以∠A+∠B+∠ACB=180°.
(3)由以上两个问题可知:三角形的内角和为180°.。